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Abstract A resolution calculus for the quantified versions of the modal logics K, T, K4, KB, S4, SS, 

B, D, D4 and DB is presented. It presupposes a syntax transformation, similar to the skolemization in 

predicate logic, that eliminates the modal operators from modal logic formulae and shifts the modal 

context information to the term level. The formulae in the transformed syntax can be translated into 

conjunctive nonnal form such that a clause based modal resolution calculus is definable without any 

;ldditional inference rule, but with special modal unification algorithms. The method can bc arr1icd 10 

firsl-order modal logics with the two orerators 0 and 0 and with standard conslanH10lnain possihle 

worlds semantics with Ilexihlc constant and function symbols, where the accessihility relation lIIay have 

allY combination of the following properties: reflexivity, symmetry. transitivity, seriality or non-seriality. 

While extensions to other systems seem possible, they have not yet been investigated. 
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Abstract A resolution calculus for the quantified versions of the modal logics K, T, K4, KB, S4, SS,
B, D, D4 and DB is presented. It presupposes a syntax transformation, similar to the skolemization in
predicate logic, that eliminates the modal operators from modal logic formulae and shifts the modal
context information to the term level. The formulae in the transformed syntax can be translated into
conjunctive normal form such that a clause based modal resolution calculus is definable without any
additional inference rule, but with special modal unification algorithms. The method can be applied to
first—order modal logics with the two operators [:| and O and with standard constant-domain possible
worlds semantics with flexible constant and function symbols,  where the accessibility relation may have

any combination of the following properties: reflexivity, symmetry, transitivity, seriality or non—seriality.
While extensions to other systems seem possible, they have not yet been investigated.
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Chapter One 

Introduction 

The invention of the resolution principle for predicate logic by John Alan Robinson [Robinson 65] was 

an important step in the long lasting attempt of rendering formal reasoning to automated treatment. The 

resolution rule is simple, clear and easy to implement. Its efficiency - in terms of the branching rate in the 

search space, which is always finite for resolution - surpasses considerably other calculi like natural 

deduction or tableau systems wiLh an unrestricted instantiation rule. Therefore the resolution rule has 

become the favorite inference rule, for automated theorem proving as well as for PROLOG style logic 

programming. In more than 25 years of work with resolution based theorem proving sophisticated 

refinements, control and implementation techniques have been developed that enable today's theorem 

provers to solve undoubtedly nontrivial problems [Wos&Winker 84]. 

Unfortunately the application of the clause based resolution principle has been restricted to standard 

predicate logic. For nonclassical logics - modal logics, temporal logics, epistemic logics, relevance logics 

etc. - completely different calculi have been developed that require different implementations for their 

respective theorem proving systems with hardly a chance to apply results and techniques of the 

traditional work. 

With this monograph we intend to make a first step towards a situation where nonstandard logics, at least 

a large class of modal logics, are amenable to standard techniques. The method to bring this change 

about is to "skolemize" the modal operators. For example the formula c~is translated into a formula 

Vw 71w] where w is quantified over all accessible worlds and [w] is attached as an additional argument 

to the terms and literals in ~. Thus, we eliminate the moJal operators and obtain a standard predicate 

logic like syntax that still represents the modal semantics. The modal context information is recorded as a 

"world-path", a new kind of terms for which a special unification algorithm is to be defined. For each 

particular modal logic like S4, SS etc., we need a particular unification algorithm; and this is the only 

change that is necessary to turn any resolution theorem prover for predicate logic, no matter if clause 

based or not, and even logic programming systems, into a theorem prover for modal logic. 
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Chapter One

Introduction

The invention of the resolution principle for predicate logic by John Alan Robinson [Robinson 65] was
an important step in the long lasting attempt of rendering formal reasoning to automated treatment. The
resolution rule is simple, clear and easy to implement. Its efficiency - in terms of the branching rate in the
search Space, which is always finite for resolution - surpasses considerably other calculi like natural
deduction or tableau systems with an unrestricted instantiation rule. Therefore the resolution rule has
become the favorite inference rule, for automated theorem proving as well as for PROLOG style logic
pregramming. In more than 25 years of work with resolution based theorem proving sophisticated
refinements, control and implementation techniques have been developed that enable today’s theorem
provers to solve undoubtedly nontrivial problems [Wos&Winker 84].

Unfortunately the application of the clause based resolution principle has been restricted to standard
predicate logic. For nonclassical logies - modal logics, temporal logics, epistemic logics, relevance logics
etc. - completely different calculi have been developed that require different implementations for their
respective theorem proving systems with hardly a chance to apply results and techniques of the
traditional work.

With this monograph we intend to make a first step towards a situation where nonstandard logics, at least
a large class of modal logics, are amenable to standard techniques. The method to bring this change
about is to “skolemize” the modal operators. For example the formula n7  is translated into a formula
VW HW] where w is  quantified over all accessible worlds and [w] is  attached as an additional argument
to the terms and literals in 9'. Thus. we eliminate the modal operators and obtain a standard predicate
logic like syntax that still represents the modal semantics. The modal context information is  recorded as a
“world-path”. a new kind of terms for which a special unification algorithm is to be defined. For each
particular modal logic like S4, SS etc., we need a particular unification algorithm; and this is the only
change that is necessary to turn any resolution theorem prover for predicate logic, no matter if clause
based or not, and even logic programming systems, into a theorem prover for modal logic.



An Example that Demonstrates the Basic Ideas 

Consider the fonnula 

oO'v'x(OPx /\ 0 Qx) => 0 ('v'yPy /\ 'v'zQz) (*) 

The meaning of such a fonnula can be described in tenns of possible worlds which are connected by an 

accessibility relation [Hughes&CressweIl68]. A possible world is an interpretation in the predicate logic 

sense. It determines how the function and predicate symbols are to be interpreted in that world. For 

instance the symbol P may be interpreted in world 'a' as the predicate 'even', and in world 'b' as the 

predicate 'odd'. The nesting of the modal operators in a formula determines which world or which 

interpretation respectively is actually meant. O.1"means "there is a world b which is accessible from the 

actual world a, such that .1"holds in b". o.1"means "for every world b which is accessible from the actual 

world a, .1"holds in b". 

The premises 0 O'v'x (OPx /\ oQx) of the formula (*) can therefore be expressed in words as: 

o From the actual world there is an accessible world a, 

o	 from a there is an accessible world b, 

'v'x such that for all x 

(0 there is a world c, accessible from b (but depending on x, therefore c(x» 

Px such that Px holds, where P is interpreted in world c(x)
 

/\ and
 

o for all worlds u which are accessible from b
 

Qx) Qx holds, where Q is interpreted in world u.
 

Graphically:	 l{c;) - - - - - -.::, - - - - ",
 
" ,
,':/0 Px1 ,: 'v'xQx,f	 , 

" " :~ ~O PX2 : 'v'xQx ,
l""r~	 , 

P' , 
a b ,.------- : 

---1.·0 • OE--,J.;.I~ " 0 x3 ./ 'v'xQx ' 

o 'v'xQx : , 
I 0 'v'xQx :
•
'- .. - -

u 
_. - ---- •. / 

The syntax transformation we are going to present in this paper records these worlds a. b, c(x) and u 

explicitly and attaches them as an additional "world-path" argument to the predicate and function 

symbols. 

The above formula 0 O'v'x (OPx /\ oQx), for instance, is translated inlo 'v'x(P[abc(x)]x /\ 'v'u Q[abu]x) 

with the intuitive meaning: 

'v'x IFor all x 

(P((abc(x)] x) I Px holds in all worlds which are accessible via the paths ab c(x) 

/\ Iand 

'v'u Ifor all admissible worlds u (which worlds are actually admissible depends on the 

world-paths in the subformulae of the quantifier.) 

Q([abu] x» I Qx holds in all worlds which are accessible via the paths a b u. 
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An Example that Demonstrates the Basic Ideas

Consider the formula
0 0Vx(OPx A El Qx) => 0 (VyPy A VzQz) ( s )

The meaning of  such a formula can be described in terms of possible worlds which are connected by an
accessibility relation [Hughes&Cresswell 68]. A possible world is an interpretation in the predicate logic
sense. It determines how the function and predicate symbols are to be interpreted in that world. For
instance the symbol P may be interpreted in world ‘a’ as the predicate ‘even’, and in world ‘b’ as the
predicate ‘odd’. The nesting of the modal Operators in a formula determines which world or which
interpretation respectively is actually meant. Of  means “there is a world b which is accessible from the
actual world a, such that 9? holds in b”. E17 means “for every world b which is accessible from the actual
world a, 7 holds in b”.

The premises (> (W); (OPx A a)  of the formula (*) can therefore be expressed in words as:
<) From the actual world there is an accessible world a,
0 from a there is an accessible world b,
Vx such that for all x

((> there is a world c ,  accessible from b (but depending on x ,  therefore c(x))

Px such that holds, where P is interpreted in world 00:)
A and

El for all worlds u which are accessible horn b
Qx) Qx holds, where Q is interpreted in world u.

‚ - - -„

Graphically: flax.) """  ‘ .  .
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‘_
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—
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_“
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—
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The syntax transformation we are going to present in this paper records these worlds a. b, c(x) and u
explicitly and attaches them as an additional “world-path” argument to the predicate and function
symbols.
The above formula O OVx (<>Px A a),  for instance, is translated into Vx(P[abc(x)]x A Vu Q[abu]x)
with the intuitive meaning:
Vx | For all x
(P([abc(x)] x)  | Px holds in all worlds which are accessible via the paths a b c(x)

A land

Vu | for all admissible worlds u (which worlds are actually admissible depends on the

I _ world-paths in the subformulae of the quantifier.)
Q([abu] x)) | Qx holds in all worlds which are accessible via the paths a b u.



In order to prove the formula (*) by contradiction the consequence of the implication must be negated,
 

yielding -.. 0 ('VyPy 1\ 'VzQL), and after moving the negation sign inside: c(3y-..Py v 3z-..Qz).
 

The transformed version is 'Vv(-,P([v] f[vD v -..Q([v] g[v])) with the intuitive meaning:
 

\Iv IFor all admissible worlds v
 

(-,P([v] f[vD 1-,P(f[vD holds in all accessible worlds.
 

I f is a skolem function that denotes the original y "that must exist", 

I but in each world v, there may exist another y. 

v lor 

-..Q([v] g[v])) I-..Q(g[vD holds in all accessible worlds. 

I g is the second skolem function that depends also on v. 

(The fIrst world-path [v] in P([v] f[vJ) determines the modal context for the predicate symbol P whereas 

the second [v] determines the modal context for f. It is a coincidence that both are the same.) 

Eliminating the universal quantifIers, the transformed negated formula (*) can be written in clause form: 

Cl: P([abc(x)] x)
 

C2: Q([abu] x)
 

C3: -..P([v] f[vD v -..Q([v] g[v])
 

Let us try to fmd a resolution proof.
 

~: Assume the accessibility relation is serial, i.e. from each world there is an accessible world.
 

There are two candidates for resolution operations, C2 with C3,2 and Cl with C3,l. Consider the ftrst
 

candidate, C2 with C3,2. Before generating a resolvent the atoms Q([abu] x) and Q([v] g[v]) must be
 

unifIed, i.e. the problem of unifying the two world-paths [abu] and [v] has to be solved. It is easy to see
 

that the unifIcation is impossible unless the accessibility relation of the underlying logic is transitive or
 

symmetric. Let us assume transitivity. In this case {v ~ [abu]} is a (most general) unifIer for [abu] and
 

[v]. Combining this substitution with the unifIer for x and g[v], the fmal unifIer {v ~ tabu], x ~ g[abu]}
 

is obtained.
 

The modal resolution step is now:
 

C2: Q([abu] x)
 

C3: -,P([v] f[v]) v -..Q([v] g[v]) unifIer: 0' = {v ~ [abu] ,x ~ g[abu]}
 

Resolvent: -..P([abu] f[abu]) (in modal syntax: OOc3y -..Py) 

Consider now the second resolution possibility which gives rise to the unification problem P([abc(x)] x) 

and P([v] f[vD. This time the world-paths [abc(x)] and [v] can be unifIed only in logics with a transitive 

accessibility relation. In this case the unifIer is {v ~ [abc(x)]}. This substitution can be applied to the 

remaining terms before the unification proceeds, and the second unifIcation problem. x with f[abc(x)], 

fails with an occur check failure. The atoms P([abc(x)] x) and P([v] f[vD are not unifIable. Since the fIrst 

resolvent is also not unifIable with any other atom, and there is no other possibility for resolution, the 

proof fails; and in fact, the formula (*) is not a theorem. 
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In order to prove the formula ($) by contradiction the consequence of the irnplication must be negated.

yielding -. O (VyPy A VzQz), and after moving the negation sign inside: :16w v Elz—i).
The transformed version is Vv(—.P([v] f[v]) v —1Q([v] g[v])) with the intuitive meaning:

Vv | For all admissible worlds v
(—-.P([v] f[v]) | —1P(f[v]) holds in all accessible worlds.

l f is a skolem function that denotes the original y “that must exist”,
| but in each world v,  there may exist another y.

v I or

—-.Q([v] g[v])) | —:Q(g[v]) holds in all accessible worlds.

| g is the second skolem ftmction that depends also on v .

(The first world—path [v] in P([v] f[v]) determines the modal context for the predicate symbol P whereas
the second [v] determines the modal context for f. It is a coincidence that both are the same.)

Eliminating the universal quantifiers, the transformed negated formula (56) can be written in clause form:

Cl  P([abc(x)] x)

C2: Q([abu] X)

C3 -—-.P([v] f[Vl) v -1Q([v} aM)

Let us try to find a resolution proof.
gm: Assume the accessibility relation is serial, i.e. from each world there is an accessible world.

There are two candidates for resolution operations, C2 with C32 and C1 with C3,]. Consider the first
candidate, C2 with C3 ,2. Before generating a resolvent the atoms Q([abu] x) and Q([v] g[v]) must be

unified, i.e. the problem of unifying the two world-paths [abu] and [v] has to be solved. It is easy to see
that the unification is impossible unless the accessibility relation of the underlying logic is transitive or
symmetric. Let us assume transitivity. In this case {v  I-> [abu]} is a (most general) unifier for [abu] and
[v]. Combining this substitution with the unifier for x and g[v], the final unifier { v H [abu], x H g[abu]}

is obtained.
The modal resolution step is  now:

C2: Q([abu] K)

C31 —\P([V] f[V]) V -1Q([V] g[v]) unifier: O = ["  H [abu] , X H g[abUJ}

Resolvent: -.P([abu] f[abu]) (in modal syntax: OOuEly ——.Py)

Consider now the second resolution possibility which gives rise to the unification problem P([abc(x)] x )
and P([v] f[v]). This time the world-paths [abc(x)] and [v] can be unified only in logics with a transitive
accessibility relation. In this case the unifier is  {v  H [abc(x)]}. This substitution can be applied to the
remaining terms before the unification proceeds, and the second unification problem, x with f[abc(x)],
fails with an occur check failure. The atoms P([abc(x)] x) and P([v] f[v]) are not unifiable. Since the first
resolvent is also not unifiable with any other atom, and there is no other possibility for resolution, the
proof fails; and in fact, the formula ($) is not a theorem.



~: Assume the accessibility relation is not serial.
 

In the non-serial case there may be worlds from which there are no accessible worlds at all. A formula
 

[J.r is true in such worlds, not because the formula .r evaluates to a truth value, but because the 

quantification "for all accessible worlds ... " in the semantics of the [J -operator is empty. This has two 

consequences for the resolution rule in the transformed syntax: The first consequence is that a 

world-variable v in a formula Vv-,P([v] f[v]) v -,Q([v] g[v]) cannot be instantiated safely with a non

variable term. The interpretations with no accessible worlds would satisfy the original formula, but not 

its instance. The second consequence is that two syntactically complementary literals like Vv R[v] and 

Vv-,R[v] are not necessarily semanticall~ contradictory. Both formulae are simultaneously satisfiable 

when the quantification Vv is empty. They can't therefore be used as resolution literals without further 

provision. 

To overcome these difficulties we must introduce explicit reasoning about inhabited and not inhabited 

worlds. To this end a special predicate 'End(p)' is introduced which is true in an interpretation when 'p' 

is evaluated to the "last" world, Le. a world without accessible worlds. The right instance of 

Vv-,P([v] f[vJ)v-,Q([v] g[vJ) with the substitution a ={v H [abu], x H g[abu]} can now be expressed: 

-,End([]) /\ -,End([a]) /\ -,End([ab]) => Vu -,P([abu] flabu]) v -,Q([abu]g[abu]) or in clause form 

End([]) v End([a]) v End([ab]) v -,P([abu] flabu)) v -,Q([abu]g[abu)) 

with the meaning "when neither the initial world, nor the world [a] nor the world [ab] is the last world 

then Vu -,P([abu] f[abu]) v....,Q([abu] g[abu]) is a correct instance. (Actually the last condition 

-,End([ab)) can be omitted because when [ab] is the last world then the quantification Vu is empty and 

the clause is true anyway.) 

The "conditioned instances" of the two resolution literals in our example 

C2: Q([abu] x) 

C3: -,P([v] f[v)) v ....,Q([v] g[v)) unifier: CJ = {v H [abu] ,x H g[abu]} 

are 

cr,J.C2: End([]) v End([a]) v Q([abu] g[abu]) 

crJ..C3: End([]) v End([a]) v -,P([abu] f[abu]) v ...,Q([abu] g[abu]) 

To complete the resolution operation for this example we create the resolvent in the usual way. but insert 

an additional literal End([ab]) into the resolvent to ensure that the variable u denotes a nonempty set and 

the literals Q([abu] g[abu]) and ....,Q([abu]g[abu]) are really contradictory. The resolvent is therefore 

End([]) v End([a]) v End([ab]) v ....,P([abu] f[abu]) 

The presence of the literal -,P([abu] f[abu]) in this particular example makes the literal End([abJ) 

superfluous such that the final resolvent is 

End([]) v End([a]) v ....,P([abu] f[abu]). 

A literal End(p) can be resolved with a literal containing a world-path [p c~ .. ] where c is a nonvariable 

term denoting a world which is accessible from the world denoted by p. In the above example. both 

literals End([]) and End([a]) can be resolved against C2 because the world-path [abu] in C2 denotes a 

world [a], accessible from the initial world - which contradicts End([]) - and a world [ab] - which 

contradicts End([aJ). Two more resolution steps yield therefore the same clause ....,P([abu] f[abu]) as in 

the serial case. 

Thus. the resolution rule in the n<?n-serial case is a partial theory resolution in the sense of Mark Stickel 

[Stickel 85] where the End-literals form the residue which is implied by the conjunction of the two 

resolution literals. 
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QM: Assume the accessibility relation is not serial.
In the non—serial case there may be worlds from which there are no accessible worlds at all. A formula
nf i s  true in  such worlds, not because the formula 9' evaluates to a truth value, but because the

quantification “for all accessible worlds . . . ”  in the semantics of the EJ—operator is empty. This has two
consequences for the resolution rule in the transformed syntax: The first consequence is that a
world-variable v in a formula Vv—1P([v] f[v]) v -.Q([v] g[v]) cannot be instantiated safely with a non-
variable term. The interpretations with no accessible worlds would satisfy the original formula, but not
its instance. The second consequence is that two syntactically complementary literals like Vv RM and
Vv-1R[v] are not necessarily semantically contradictory. Both formulae are simultaneously satisfiable
when the quantification Vv is empty. They can’t therefore be used as resolution literals without further
provision.
To overcome these difficulties we must introduce explicit reasoning about inhabited and not inhabited
worlds. To this end a special predicate ‘End(p)’ is  introduced which is true in an interpretation when ‘p’
i s  evaluated to the “last” world, i .e .  a world without accessible worlds. The right instance o f
VV --1P([v] f[v])v—-1Q([v] g[v]) with the substitution 0 = [v  H [abu], x H g[abu]} can now be expressed:

-1End([]) A -—.End([a]) A -tEnd([ab]) => Vu -—1P([abu] f[abu]) v —1Q([abu]g[abu]) or in clause form
End([]) v End([a]) v End([ab]) v -—1P([abu] f[abu]) v —-.Q([abu]g[abu])

with the meaning “when neither the initial world, nor the world [a] nor the world [ab] i s  the last world

then Vu fiP([abu] f[abu]) v w([abu] g[abu]) is a correct instance. (Actually the last condition
—-.End([ab]) can be omitted because when [ab] is the last world then the quantification Vu is empty and
the clause is true anyway.)

The “conditioned instances” of the two resolution literals in our example
C2: Q([abUJ X)
C3: —-:P([v] f[v]) v —wQ([v] g[v])  unifier: 0 = {v  H [abu] , x H g[abu]}

are

otC2: End([]) v End([aD v Q([abu] gtabul)
olCS: End([]) v End([aD v «P([abu] f[abu]) v «Q([abu] g[abu])

To complete the resolution operation for this example we create the resolvent in the usual way. but insert
an additional literal End([ab]) into the resolvent to ensure that the variable 11 denotes a nonempty set and

the literals Q([abu] g[abu]) and fiQ([abu]g[abu]) are really contradictory. The resolvent is therefore
End([]) V'End([a]) v End([ab]) v —-1P([abu] f[abu])

The presence of the literal ——.P([abu] f[abu]) in this particular example makes the literal End([ab])
superfluous such that the final resolvent is

End([]) v End([a]) v —.P([abu] flabuD.

A literal End(p) can be resolved with a literal containing a world-path [p c ;  . . ]  where c is a nonvariable
term denoting a world which is accessible from the world denoted by p. In the above example, both
literals End([]) and End([aD can be resolved against C2 because the world-path [abu] in C2 denotes a
world [a ] .  accessible from the initial world - which contradicts End([])  - and a world [ab] » which

contradicts End([a]). Two more resolution steps yield therefore the same clause -.P([abu] f[abu]) as in
the serial case.
Thus, the resolution rule in the non-serial case is a partial theory resolution in the sense of Mark Stickel
[S tickel 85] where the End—literals form the residue which is implied by the conjunction of the two
resolution literals.



A Short Summary of the Subsequent Chapters 

Chapter 2: M-Logic 

We define the modal logics that are considered in this thesis. The formal definition of syntax and 

semantics serves as a point of reference for the following soundness and completeness proofs. 

Chapter 3: P-Logic 

The modal operators are translated into "world-paths" as mentioned above. We call the resulting logic 

"P-Iogic" and give a precise definition of the syntax and semantics of this logic. 

Chapter 4: Translation from M-Logic to P-Logic 

An algorithm for translating modal logic formulae into P-Iogic syntax is presented in this chapter. It is 

shown that a modal logic formula is satisfiable if and only if the corresponding translated formula is 

satisfiable in P-Iogic. Beyond this point, there is no need to ever consider the original modal logic syntax 

and instead we concentrate on the development of algorithms for the P-Iogic syntax. 

Chapter 5: Tools for P-Logic 

This chapter contains technical preparations for the subsequent chapters, the generation of a conjunctive 

normal form for P-formulae, some invariants on the structure of terms and the defmition of substitutions. 

Chapter 6: Modal Unification 

The unification algorithms for different variants of the accessibility relation are defined in this chapter. 

We prove the termination, soundness and completeness as well as some helpful invariants on the 

structure of the unified terms. It turns out that some of the unification problems are special cases of well 

known theory unification problems (c.f. [Siekmann 88]). 

Chapter 7: Modal Resolution 

The two versions of the modal resolution rule are defmed. Resolution for logics with a serial accessibility 

relation is just like ordinary resolution with the only difference that the unification algorithm may produce 

more than one, but at most finitely many most general unifiers. When the accessibility relation is not 

serial, additional literals must be inserted into the resolvent which express the condition "if the worlds in 

question are inhabited then ... ". We show the soundness of these two resolution rules. For the 

completeness proofs, an additional device is needed which will be provided in the next two chapters. 

Chapter 8: Term Frames 

Completeness of the resolution rule says that whenever a clause set is unsatisfiable, Le. false in all 

interpretations, the empty clause can be derived by a finite sequence of resolution steps. Standard 

completeness proofs take advantage of the fact that not all interpretations, but only interpretations over 

the set of ground terms (in predicate logic usually called Herbrand Interpretations, although originally 

introduced by Lowenheim and Skolem) need to be considered. We therefore define term interpretations 

or term frames respectively for P-Iogic and show that every satisfiable clause set has a term model. 

Chapter 9: Semantic Trees 

Semantic trees are a standard d~tastructure for giving an exhaustive survey of all possible term 

interpretations. In this chapter it is shown for P-Iogic that an unsatisfiable clause set has a finite closed 

semantic tree, which is then used in the completeness proof. 
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semantics serves as a point of reference for the following soundness and completeness proofs.

Chapter 3: P-Logic
The modal operators are translated into “world-paths” as mentioned above. We call the resulting logic
“P-logic” and give a precise definition of the syntax and semantics of this logic.

Chapter 4: Translation from M-Logic to P-Logic
An algorithm for translating modal logic formulae into P-logic syntax is  presented in this chapter. It is
shown that a modal logic formula is satisfiable if and only if the corresponding translated formula is
satisfiable in P-logic. Beyond this point, there is no need to ever consider the original modal logic syntax
and instead we concentrate on the deve10pment of algorithms for the P-logic syntax.

Chapter 5: Tools for P-Logic
This chapter contains technical preparations for the subsequent chapters, the generation of a conjunctive
normal form for P-formulae, some invariants on the structure of terms and the definition of substitutions.

Chapter 6: Modal Unification
The unification algorithms for different variants of the accessibility relation are defined in this chapter.
We prove the termination, soundness and completeness as well as some helpful invariants on the
structure of the unified terms. It turns out that some of the unification problems are special cases of well
known theory unification problems (c.f. [Siekmann 88]).

Chapter '7: Modal Resolution
The two versions of the modal resolution rule are defined. Resolution for logics with a serial accessibility
relation is just like ordinary resolution with the only difference that the unification algorithm may produce
more than one. but at most finitely many most general unifiers. When the accessibility relation is not
serial, additional literals must be inserted into the resolvent which express the condition “if the worlds in
question are inhabited then ...’.’ We show the soundness of these two resolution rules. For the
completeness proofs, an additional device is needed which will be provided in the next two chapters.

Chapter 8: Term Frames
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introduced by Lowcnheim and Skolem) need to be considered. We therefore define term interpretations
or term frames respectively for P-logic and show that every satisfiable clause set has a term model.

Chapter 9: Semantic Trees
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Chapter 10: Completeness of Modal Resolution 

Collecting the results of the two previous chapters, we can now prove that for every unsatisfiable clause 

set, the empty clause can be derived by a finite sequence of resolution steps. Hence, we have a 

semidecision procedure for first-order modal logic formulae based on the resolution rule. 

Chapter 11: Conclusion 

The final conclusion of this work is that modal logic theorems can be proved using an ordinary clause 

based resolution theorem prover. The efficiency, Le. the branching rate in the search space for modal 

logics with serial accessibility relations is not worse than the efficiency of predicate logic resolution 

theorem proving with, say, an associative and commutative function symbol, where we have more than 

one most general unifier. Although the technical aspects of the resolution rule for logics with non-serial 

accessibility relations can be compared with Digricoli's RUE-resolution for equality handling [Digricoli 

79], the final search space is much smaller. Therefore logics with non-serial accessibility relations are 

also tractable. 

We compare the new method with other deduction methods for modal logic and conclude with a 

discussion of possible extensions of the ideas presented in this work to more complex modal and 

epistemic logics. 

Although most of our logical notions are formally defmed within this thesis, we assume some familiarity 

with standard predicate and modal logic as well as some knowledge of automated theorem proving. 

Standard references are [Chang&Lee 73], [Loveland 78], [Hughes&Cresswell 68], [Smullyan 68]. 
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Chapter Two 

M-Logic 

Since there is a large variety of modal logics, in syntax as well as in semantics, it is necessary to firmly 

establish the particular kind of logic we are interested in. M-logic (M for Modal) is the name for a 

syntactically restricted version of the "classical" modal logics with the two modal operators c 
(necessarily) and 0 (possibly). The restrictions are not principal in nature, but concern the elimination of 

some "syntactic sugar" in order to keep the still extensive formalism in manageable proportions. 

Although our modal resolution calculus is not based on the original modal logic syntax, the formal 

definition of the syntax and semantics of our M-logic serves as a point of reference for the translation 

from M-logic into a more appropriate syntax, and for proving the soundness and completeness of the 

translation. 

2.1 Syntax of M.Logic 

The formulae of most classical modal logics are usually buill- unlike more recent extensions in temporal 

or dynamic logics - just as predicate logic formulae with two additional modal operators. We shall use 

the following logical connectives, quantifiers and operators: 

/\ (and) \;f (for all) 

v (or) 3 (there exists) 

-, (not) C (necessarily) 

=> (implies) 0 (possibly) 

<::::> (is equivalent) 

We consider modal logic formulae in negation normalform without the implication and equivalence sign, 

where all negation signs are moved in front of the atoms. Arbitrary modal logic formulae can be brought 

into this normal form using the following validity preserving rewrite rules: 

!f=> (j /\ (j => !f -,(!f /\ (j) ~ -,!fv -,(j 

-,!fV (j -,(!fV (j) ~ -,!f /\ -,(j 

3x -,!f -,c!f ~ O-,!f 

\;fx -,'f -,O!f ~ c-,!f. 

In the sequel "M" will be used as the index and prefix for Modal logic, because in subsequent chapters 

we must distinguish between the original and the translated formulae, which then will be indexed and 

prefixed with "P" for £redicate logic style. Additional notions like D-variables and D-valued function 

symbols (0 for .Qomain) are also defined this way, to distinguish them from other variable and function 

types to be added later on. 
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Chapter Two

M-Logic

Since there is a large variety of modal logics, in syntax as well as in semantics, it is necessary to firmly
establish the particular kind of logic we are interested in.  M-logic (M for Modal) is the name for a

syntactically restricted version of the “classical” modal logics with the two modal operators I:I
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some “syntactic sugar” in order to keep the still extensive formalism in manageable pr0portions.
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prefixed with “P” for Eredicate logic style. Additional notions like D-variables and D-valued function
symbols (D for Domain) are also defined this way, to distinguish them from other variable and function
types to be added later on.



Definition 2.1.1 (The Signature of M-Logic)
 
Besides of the fixed set of logical corlnectives and operators {A, v,-, 0, c}, the alphabet for building
 

M-logic terms and formulae consists of the following disjoint sets of symbols:
 

V o is a set of D-variable symbols.
 

lFO,n is a set ofn-place D-valuedfunction symbols where constants are in lFO,D'
 

lFo is the union of all D-valued function symbols.
 

JPn is a set of n-place predicate symbols.
 

I? is the union of all predicate symbols.
 

:EM := (VD' lFD• JP) is an M-signature. • 

The prefix "D" in D-variable symbols has been introduced to emphasize that these variables are
 

interpreted in the 120main of discourse. In P-Iogic we shall introduce W-variable symbols which are
 

interpreted in the set of :w.orlds. Hence, the prefix "D" in D-terms below emphasizes that the terms
 

denote domain elements, in contrast to W-terms in P-Iogic which concern worlds.
 

It is noted that an M-signature does not only supply symbols for building formulae, but we shall also
 

speak of the M-signature of a set of formulae, i.e. the particular set of symbols which occur just in these
 

formulae.
 

As a point of reference we state the standard definitions for terms, atoms, literals and formulae.
 

Definition 2.1.2 (Terms, Atoms, Literals and Formulae)
 
Given an M-signature IM:= (VD' PD, JP),
 

~ the set of D-terms TD over ~ is defmed as the least set such that:
 

(i) Each D-variable symbol is a D-tenn. 

(ii) Iff E lFn,n and tl'''''~ are D-terms then f(tl""'~) is aD-term. 
~ IfP E l?n and tl .... '~ are D-terms then P(tl ....'~) is an M-atom. 
~ An M-literal is either an M-atom (positive literal) or a negated M-atom (negative literal). 

Let ±P(t1,...•~) denote a literal which is either positive or negative. 

~ The set ofM-form.u1aJ! over ~ is defined as the least set such that: 

(i) An M-literal is an M-fonnula. 

(ii) If !Tand {j are M-fonnulae and x is a D-variable symbol then 

!T A {jl !Tv {jl VX!T, 3x!T, c!Tand 0 !T are M-fonnulae. 

For convenience we assume that the qU;aIltified variables in a formula are standardized apart 

(renamed), i.e. formulae like Vx3x!Tor 'r/x{j v 3x!Tdo not occur. • 
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2.2 Semantics of M-Logic 

A common model theory for modal logics is Kripke's "possible worlds semantics" [Kripke 59, 63]. A 

possible world determines how the function and predicate symbols are to be interpreted in that world. 

Within each world the interpretation is defined in the classical predicate logic sense. Different possible 

worlds may assign different meanings to the same symbol. For instance. the symbol f may be interpreted 

in one world as addition on integers and in another world as multiplication. Some authors distinguish 

between "rigid" function and predicate symbols, whose interpretation is the same in every world. and 

"flexible" function symbols whose interpretation may differ from world to world. We do not make this 

distinction, because it is a trivial exercise to extend a calculus with flexible symbols to one with rigid 

symbols as well. Just ignore the modal context information for rigid symbols. 

When the domain of the interpretation is the same in every possible world, we speak of a constant

domain interpretation, otherwise we speak of a varying-domain interpretation. Constant-domain 

interpretations arc characterized by the Barcanformula: 'V'XO.1'=> o'V'x.1'which expresses the fact that the 

universal quantifier does not depend on the modal context. Our modal resolution calculus will be defined 

for constant-domain interpretations only; a slight modification for varying-domain interpretations, 

however, will be presented in chapter 11. 

Worlds are connected by an "accessibility relation" 9t. A possible worlds structure can be displayed as a 

transition graph, where the nodes are labeled with the worlds and the edges represent the accessibility
I 

relation 9t. Two main classes of accessibility relations can be distinguished: serial and non-serial ones. 

An accessibility relation is said to be serial if from every world there exists an accessible world; the 

relation is non-serial otherwise. Accessibility relations with the following properties are considered in 

this work. (The letters in parentheses denote the traditional name of the corresponding logic.) 

non-serial serial 

no special properties (K) seriality only (D) 

reflexivity (T or M) (reflexivity implies seriality) 

symmetry (DB) (symmetry implies seriality) 

transitivity (K4) transitivity (04) 

reflexivity and symmetry (B) 

reflexivity and transitivity (S4) 

reflexivity, symmetry and transitivity (SS). 

The two missing combinations symmetry and non-seriality (KB) as well as symmetry and transitivity can 

be reduced to simpler ones as follows: 

If the accessibility relation 9t is symmetric, either 9t is not serial and there are only isolated worlds (let us 

call this the predicate logic interpretations) or 9t is serial because whenever a world b can be accessed 

from a world a, there is a world accessible from b, namely a. In order to check a formula for 

unsatisfiability in symmetric non-serial interpretations, it is therefore possible to split the proof into two 

cases: 
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1.	 Check the predicate logic interpretations. The unsatisfiability check for predicate logic interpretations 

can be performed by evaluating all subformulae 01"to False and all subformulae D~nO True and then 

proving the remaining first-order predicate logic formula with a theorem prover for predicate logic. 

2.	 Check the other interpretations assuming symmetry and seriality of~. 

If the accessibility relation ~ is symmetric and transitive. we have for all worlds a. b: Ifb is accessible 

rrom a. then by symmetry. a is also accessible from b. hence by transitivity. a is accessible by itself. 

Thus. either a is isolated or 9t is reflexive in a. In order to check a formula for unsatisfiability in 

symmetric and transitive interpretations, it is therefore again possible to split the proof into two cases: 

1.	 Check the predicate logic interpretations. 

2.	 Check the other interpretations assuming ~ being an equivalence relation. 

Examples 2.2.1: Possible worlds structures. 0 represents a world and - the accessibility relation: 

o 0 po0--...0	 0--...0 

o~ Q~ 0 ......0 
~ 9t is transitive ~ 9t is reflexive " 9t is symmetrico	 but not serial O~	 o 

• 
In the sequel expressions like "serial interpretations" mean "logics with serial accessibility relations". 

We define the semantics of our M-logic in the usual three steps: 

1.	 An "interpretation" defines the meaning of the individual symbols. 

2.	 The interpretation is turned into an interpreter, which assigns domain elements to terms. 

3. A satisfiability relation is dermed that assigns truth values to formulae. 

Following authors like [Fitting 83], we introduce "frames" as the kernel of an interpretation. A frame
 

describes the possible worlds structure, but it says nothing about the interpretation of variables and the
 

actual world that has to be used for the interpretation of a formula. This information is added in so called
 

"M-interpretations".
 

Definition 2.2.2 (M-Frames and M-Interpretations)
 

By an M-frame FM for the signature ~ we understand any triple (D, g, 9t) where
 

~ lD is a non-empty set, the domain of discourse.
 

~ 9 is a set of signature interpretations. Each signature interpretation is an assignment of
 

"values" to each function symbol and predicate symbol in ~ as follows:
 

To each n-place function symbol a mapping from on to ID is assigned.
 

To each n-place predicate symbol an n-place relation over J[)ll is assigned.
 

~	 9t is a relation over g x S. 
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By an M-interpretation SM for the signature ~ we understand any triple (fM•S, a) where
 

~ f M = (D, S, 9\) is an M-frame.
 

~ ~ is an element ofS.
 
> ais a D-variable assignment, i.e. a mapping VD ~ D. _
 

Remarks. Since a "possible world" determines the interpretation of the function and predicate symbols,
 

it is convenient to identify a possible world and the corresponding signature interpretation. Therefore we
 

use in the sequel the notions 'world' and 'signature interpretation' as synonyms to denote the elements of
 

~. Hence, 9\ is still the usual accessibility relation on worlds.
 

The variable assignment a is irrelevant for the interpretation of closed formulae. It is used for recording
 

the binding of quantified variables during a recursive descent into a formula. The world ~ in an
 

M-interpretation denotes the "actual" or "current" world that reflects the modal context for a subformula
 

inside a formula (see def. 2.2.5).
 

As a notational convention we defme:
 

Definition 2.2.3
 

Let d be a variable assignment. We define d[x/a] as:
 

a(y) ify *- x 
a[x/a] (y) := { 

a ify = x 

I.e. a[x/al is like d, except that it maps x to a.
 

Let ~ =(...• a.... )be any tuple containing a variable assignment. We use ~ [x/a] as an abbreviation for
 

(... , a[x/a], ... ). If ~ is a set of such tuples we use ~ [x/a] to denote the corresponding set where in each
 

element a is replaced by d[x/a]. _
 

Definition 2.2.4 (Evaluation of D-Terms)
 

Let SM := (fw~. d) be an M-interpretation for~.
 

~M can be turned into an homomorphism that evaluates D-terms in the actual world S by:
 

d(l) if t is a D-variable symbol 
~M(t) := { 

~(f) (SM(tl).· .. ,S M(t » if t = f(tl, ....t )n n
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By an M-t'nremretatt'on SM for the signature 2M we understand any triple (FM, 8 ,  ti.) where
> FM = (ID, 3 .  ER) is an M-frame.
>» E3 is an element of 3.
> d is a D—variable assignment, i.e. a mapping VD —> D. I

Remarks. Since a “possible world” determines the interpretation of the function and predicate symbols,
it is convenient to identify a possible world and the corresponding signature interpretation. Therefore we
use in the sequel the notions ‘world’ and ‘signature interpretation’ as synonyms to denote the elements of
SS. Hence, “R is still the usual accessibility relation on worlds.
The variable assignment d; is irrelevant for the interpretation of closed formulae. It is used for recording
the binding of quantified variables during a recursive descent into a formula. The world 8 in an
M-interpretation denotes the “actual” or “current” world that reflects the modal context for a subforrnula
inside a formula (see def. 2.2.5).

As a notational convention we define:

Defini t ion 2 .2 .3

Let li be a variable assignment. We define [fix/a] as:
d(y) if y at x

tMic/a] (y) :=
a if y = x

Le. [fix/a] is like [1. except that it maps x to a.
Let R = ( .  . . ,  d , .  . . )  be any tuple containing a variable assignment. We use R [x/a] as an abbreviation for
( .  d[x/a], .  . . ) .  If R i s  a set of such tuples we use R [x/a] to denote the corresponding set where in each

element li is replaced by [fix/a]. I

Definit ion 2 .2 .4  (Evaluation of D-Terms)
Let SM := (F , 8 ,  ti) be an M-interpretation for EM.
SM can be turned into an homomorphism that evaluates D—terms in the actual world 8 by:

d(t) if t is a D-variable symbol
SM(t) := .sm (SM(tl),....S Man))  If t == f(t1 ,...,tn)
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Definition 2.2.5 (Satisfiability)
 

The satisfiability relation If-M that determines the logical value of a formula in an M-interpretation is
 

defined inductively over the structure of M-formulae as follows:
 

Let f M := (D. 5. 9\) be an M-frame and let 5 M := (fM' 5, d) be an M-interpretation, then
 

:3M If-M P(t1•· ...In) iff 5(P)(5M(t1)' ... ,5M (tn)). (P is a predicate symbol.) 

5 M If-M-'~ iff not 5 M If-M~' 

:3M If-M (~ 1\ (j) iff :3M If-M ~ and :3M If-M (j. 

:3M If-M (~v (j) iff :3M If-M ~or :3M If-M (j. 

:3M If-M "Ix ~ iff for every a E D: :3M[x/a] If-:M 'f. 

:3M If-M::Ix ~ iff for some a E D: :3M [x!a] If-M~' 

:3M If-M D~ iff for every :3'E S with 9\(:3, :3'): (fM' :3', d) If-M 'f. 

:3M If-M 0 ~ iff there is some :3'E ~ with 9\(:3, :3') and (fM' .s', d) If-M ~. 

:3M satisfies ~ iff 5 M If-M ~ (fM satisfies ~ in the world .5) 

f M satisfies ~ iff it satisfies ~in every world •
 

Definition 2.2.6 (M-Models)
 

An M-frame is an M-model for an M-formula ~iff it satisfies ~in some world.
 

An M-formula ~is a tautology iff every M-frame satisfies ~in every world.
 

It is satisfiable iff there exists an M-model for 'f.
 

It is unsatisfiable iffno M-model for ~exists.
 •
 

It is noted that in the definition of the semantics of the cooperator: ''for every 5'E S with 9\(:3,5') ..... 

the quantification 'for every' may be empty if 9\ is not serial and if there is no accessible world from:3 at 

all. In this case D~is true for every ~, not because an atom evaluates to a truth value, but because a 

quantification quantifies over an empty set. This phenomenon which is not known in standard predicate 

logic causes the introduction of several new technical concepts and notions. 

A Normal Form for Formulae in S5 Interpretations. 

When the accessibility relation is an equivalence relation (modal logic S5), there is a certain normal form 

for M-formulae [Fitting 831. Roughly speaking all modal operators except the innermost nested ones can 

be eliminated and a formula with at most one nested modal operator ("modal degree" one) is kept. The 

reason is that in S5 every world is accessible from every other world, hence CD denotes the same set of 

worlds as c. Also the worlds accessed by DO can all be taken to be the same as the one accessed by 0 

alone. In the sequel we shall assume for S5 interpretations that all formulae have been reduced to this 

normal form. 
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Definit ion 2 .2 .5  (Satisfiability)
The satisfiability relation II—M that determines the logical value of a formula in an M-interpretation is
defined inductively over the structure of M-formulae as follows:
Let TM := (D, 8 .  9i) be an M-frame and let SM := (FM, S ,  d) be an M-intcrpretation. then

SM ll—M P(t1.. . ..t'n) iff 8(P)(S3M(t1).....SM(tn)). (P is a predicate symbol.)
SM u—M —-.9’ iff not SM Il-M :7.
SMn—M (in. (j) iff SMII-M grand SMll-M g.
SMn-M (n  9‘) iff SMn—M for  SMn—M (j.
SMtt-M Vx ? iff for every a e ID: SM[x/a] ”'M 9'.
SM ll—M 3x ff iff for some a e D: SM[x/a] ll-M $.
SMIt-M E19r iff for every S'e 5 with ‘Ji(8, 3'): (FM, 8',  li) Il-M 7.
SM Il-M <> 9? iff there is some S'e $ with EMS, 3') and (l-‘M, 8',  ti) ll—M 9'.

SM satisfies 7 iff SM n—M 7 (FM satisfies 7 in the world 3)
FM satisfies f iff it satisfies 9' in every world !

Definition 2.2.6 (M-Models)
An M-frame is an Mmodel for an M—formula fiff it satisfies &" in some world.
An M-formula 7 is a tautology iff every M-frame satisfies 9' in every world.
It is satt'sfiable iff there exists an M-model for gr.
It is unsatisfiable iff no M-model for 9' exists. I

It is noted that in the definition of the semantics of the n-operator: “for every 8 '6  3 with EMS, 3 ' ) .  . . ”
the quantification ‘for every’ may be empty if ‘R is not serial and if there is no accessible world from 8 at
all. In this case E! 9? is true for every {F, not because an atom evaluates to a truth value, but because a
quantification quantifies over an empty set. This phenomenon which is not known in standard predicate
logic causes the introduction of several new technical concepts and notions.

A Normal Form for Formulae in SS Interpretations.

When the accessibility relation is an equivalence relation (modal logic SS), there is a certain normal form
for M-formulae [Fitting 83]. Roughly speaking all modal operators except the innermost nested ones can
be eliminated and a formula with at most one nested modal operator (“modal degree” one) is kept. The
reason is that in SS every world is accessible from every other world, hence DE! denotes the same set of
worlds as D. Also the worlds accessed by :10 can all be taken to be the same as the one accessed by 0
alone. In the sequel we shall assume for SS interpretations that all formulae have been reduced to this
normal form.
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Chapter Three 

P-Logic 

P-Iogic ("P" for fredicate logic style) is a syntactic variant of M-logic where the modal operators art 

replaced by "world-paths". A world-path represents the modal context, i.e. the sequence ofnested modal 

operators of the corresponding M-formula, and is attached as an additional argument to the function and 

predicate symbols. It records the world in which the term or formula is to be interpreted. Thus a 

world-path denotes a mapping from the initial world to the actual world and not to a domain element. 

This suggests to formulate P-Iogic as a two-sorted logic with the two basic disjoint sorts D (for ~main) 

and W (for ~orlds). 

All in all we need the following syntactic constituents: 

1.	 The D-variables in P-Iogic are the same as in the M-logic. ' 
(Actually this is a consequence ofour restriction to constant-domain interpretations.) 

2.	 To each function symbol in M-logic there is a corresponding P-Iogic function symbol with an 
additional world-path argument. If the type of the M-logic symbol is (on --+ D), the type of the new 

function symbol is therefore (W x on --+ D). 

3.	 To each n-place predicate symbol in the M-logic there is a corresponding P-Iogic predicate symbol 

with an additional world-path argument. 

The type of this predicate symbol is therefore «W x on) --+ (True, False}). 
4.	 The O-operator is translated into Skolem functions which are intended to map worlds to accessible 

worlds, possibly depending on some domain variables, 

Therefore we need function symbols of type (on --+ (W --+ W». 
5. The c-operator is translated into universally quantified variables. The objects that are to be assigned 

to such a variable are functions which map worlds to accessible worlds. 
The type of such a "W-variable" is therefore (W --+ W). 

Since W-variables are functional variables, P-Iogic is actually a two-sorted monadic second order logic. 

There is a one to one correspondence between the M-logic function and predicate symbols and the 
corresponding P-Iogic function and predicate symbols with the additional world-path argument. For 

convenience we do not use different names, such that we can use the same symbol for building M-logic 
and P-Iogic terms and atoms. 
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Chapter Three

P-Logic

P-logic (“P” for Bredicate logic style) is a syntactic variant of M—logic where the modal operators are
replaced by “world-paths”. A world-path represents the modal context, i.e. the sequence of nested modal
operators of the corresponding M—fonnula, and is attached as an additional argument to the function and
predicate symbols. It records the world in which the term or formula is to be interpreted. Thus a
world-path denotes a mapping from the initial world to the actual world and not to a domain element.

This suggests to formulate P-logic as a two-sorted logic with the two basic disjoint 50113 D (for Domain)
and W (for Eorlds).

All in all we need the following syntactic constituents:
1.  The D-variables in P-logic are the same as in the M—logic. _

(Actually this is a consequence of our restriction to constant-domain interpretations.)
2 . To each function symbol in M-logic there is a corresponding P—logic function symbol with an

additional world-path argument. If the type of the M-logic symbol is (Dn —9 D), the type of the new
ftmction symbol is  therefore (W x D“ —> D).

3 . To each n-place predicate symbol in the M-logic there is a corresponding P—logic predicate symbol
with an additional world—path argument.
The type of this predicate symbol is therefore ((W x D“) -> {'I‘rue, False}).

4. The 0-0perator is translated into Skolem functions which are intended to map worlds to accessible
worlds. possibly depending on some domain variables,
Therefore we need function symbols of type (D“ _) (W —> W)).

5 . The {:|-Operator is  translated into universally quantified variables. The objects that are to be assigned
to such a variable are functions which map worlds to accessible worlds.
The type of such a “W-variable” is therefore (W —-> W).

Since W—variables are functional variables, P-logic is actually a two—sorted monadic second order logic.

There is a one to one correspondence between the M-logic function and predicate symbols and the
corresponding P-logic function and predicate symbols with the additional world-path argument. For
convenience we do not use different names. such that we can use the same symbol for building M-logic
and P-logic terms and atoms.
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3.1 Syntax of P-Logic 

As usual we begin with the defmition of the signature. 

Definition 3.1.1 (Signature of P-Logic)
 
The alphabet for building P-Iogic terms and formulae consists of the logical connectives A, V, 'V and the
 

following disjoint sets of symbols:
 

VD is a set ofD-variable symbols, Le. variable symbols of type D.
 

FD• is a set of D-valuedfunction symbols, Le. function symbols oftype (W x Dn -+ D).
n
 
FD is the union of all D-valued function symbols.
 

Pn is a set ofpredicate symbols of type «W x on) -+ {True, False})
 

JP is the union of all predicate symbols.
 

Vw is a set ofW-variable symbols, Le. variable symbols of type (W -+ W).
 

JFW,n is a set ofW-valuedjunction symbols, Le. function symbols of type (on -+ (W -+ W».
 

JFw is the union of all W-valued function symbols.
 

In case the signature is used to build terms. which are to be interpreted in logics with a symmetric 

accessibility relation we assume Vw and JFW,n to contain for each symbol s an associated "inverse" 

symbol s·l. These symbols denote functions that move "backward" in the possible worlds structure. 

They do not occur in formulae. but only in substitutions. If for example there is a constant symbol 

a E JFw.o denoting a function that maps for example a world 'Wl to 'W2• then a-I denotes the inverse 

function which maps 'W2 to 'Wl . We shall use these inverse functions only when the original functions 

are injective such that their inverse exists. 

• 
Again Ep may also be used to denote the particular symbols which occur in a set of P-formulae. 

Definition 3.1.2 (Term., Atoms, Literals and Formulae)
 
Given a P-signature Ep := (VD.FD, P, Vw,Fw),
 

~ the set ofD-terms over Ep is defIned as the least set such that:
 

(i) D-variable symbols are D-terms. 

(ii) Iff E FD•D, tl""'~ are D-terms and p is a world-path then f(p, tl' ....~) is aD-term. 

~ The set ofW-terms over 1;> is defmed as the least set such that: 

(i) W-variable symbols are W-terms. 

(ii) Ifg E FW•n and tl""'~ are D-terms then g(tl""'~ is a W-term. 

~ A world-path is a (possibly empty) string ofW-terms. 

)0 IfP e Pn, tl ....'~ are D-terms and wp is a world-path then P(wp, tl .... ,!n) is a P-atom. 
)0 A P-literal is either a P-atom or a negated P-atom. 

~ A ground term or ground literal is a term (literal) without vauiables. 

)0 The set ofP10rmuJae over Ep is defmed to be the least set such that: 

(i) A P-literal is a P-formula. 
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3 . 1 Syntax of P-Logic

As usual we begin with the definition of the signature.

Definition 3.1.1 (Signature of P-Logic)
The alphabet for building P-logic terms and formulae consists of the logical connectives A, v, V and the
following disjoint sets of symbols:

VD is a set of D—variable symbols, i.e. variable symbols of type D.
Fun is a set of D-valuedfunctian symbols, i.e. function symbols of type (W x D“ —-> D).
PD is the union of all D-valued function symbols.
IPn is a set of predicate symbols of type ((W x D“) —-> (True, False})
IP is the union of all predicate symbols.

VW is a set of W-variable symbols, i.e. variable symbols of type (W -> W).
m is a set of W-valuedfunction symbols, i.e. function symbols of type (Dn —> (W -—> W)).
IFW is the union of all W—valued function symbols.

In case the signature is used to build terms, which are to be interpreted in logics with a symmetric
accessibility relation we assume VW and FW.“ to contain for each symbol s an associated “inverse”
symbol s‘l. These symbols denote functions that move “backward" in the possible worlds structure.
They do not occur in formulae. but only in substitutions. If for example there is a constant symbol
a e IFWJ, denoting a function that maps for example a world WI to W2, then a'1 denotes the inverse
function which maps W2 to W1. We shall use these inverse frmctions only when the original functions
are injective such that their inverse exists.

EP := (VD' FD, IP, VW, ]Fw) is a P-signature . I

Again Ep may also be used to denote the particular symbols which occur in a set of P—formulae.

Definit ion 3 .  1 . 2  (Terms, Atoms, Literals and Formulae)
Given a P-signature Ep := (VD, FD, 1P, VW. FW),
> the set of D—zerms over Ep is defined as the least set such that:

(i) D-variable symbols are D—terms.
(ii) If f e Pam t1,. . .,tn are D-tenns and p is a world-path then f(p, t1,. . .,tn) is a D-terrn.

> The set of W-terms over EP is defined as the least set such that:
(i) W—variable symbols are W-terms.
(ii) If g e m and t1,. . .,tn are D-terms then g(t1,. . .,tn) is a W-term.

> A world-path is a (possibly empty) string of W-terms.
> If P e ]Pn, t1,. . .,tn are D-terms and wp is a world-path then P(wp, t1.. . .,tn) is a P-atom.
)» A P-lt'teral is either a P-atorn or a negated P-atom.
> A ground term or ground literal is a term (literal) without variables.
> The set of P-fannulae over EP is defined to be the least set such that:

(i) A P-literal is a P-formula.
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(ii) If fJ and (j are P-formulae and x is a D- or W-variable symbol then 

fJ1\ (j, fJv (j, 'VxfJ are P-formulae. 
(No existential quantifier is necessary because the translation into P-Iogic syntax contains a 

skolemization step which eliminates all existential quantifiers.) 
For convenience we assume again that the variables in the scope of quantifiers are appropriately 

renamed such that formulae like 'Vx «(jl\'Vx1) or 'Vx(jv 'VxfJdo nO,t occur. 

Some auxiliary notions: 

>- A variable is bound, if it is in the scope of a quantifier. 

>- A variable isfree in a term, atom or fonnula if it is not bound. 

~ set is true either if the term s is a subtenn of the term. atom or formula t or 
if s is a prefix (leading part) of some world-path occurring in t, i.e. for example [uv] e [uvwa]. 

(e is different from the membership predicate e.) 

>- Vars(sl ... sn) := set of all free variables occurring in the objects (terms etc.) sI'" .•8 •n

~ W-vars(sl' "Sn) := Vars(sl' "Sn) n Vwis the set ofW-variables occurring in SI'" "Sn' 
~ D-vars(sl ...sn) := Vars(sl...sn) n VD is the set ofD-variables occurring in sl•... 'sn. • 

Examples for P-formulae and their M-logic counterparts: (Some parentheses are omitted.) 

M-lode P-IofPc SiWature 

oP 

OP 

'Vw P[w] 

P[g] 

Pe Po. w e V w 
P e Po. g e lFw,O 

'Vx OQ(x.a) 
c'Vx (S(x) 1\ 0 3y 0 S(y» 

'Vx Q([h(x)]. x, a[h(x)]) 
'Vv 'Vx (S([v]. x) 1\ 'Vw S

Q e P2• x e VD' a e lFD,O' he lFW•l 
([vwk(x)], r([vw], x» 

t 
v 

t 
w 

tt 
rk 

Se JP!, v.w e V w, k e lFw.1, r e PD.1' 

Notational Conventions 

In the sequel the letters u. v. w, x, y, z from the end of the alphabet will be used to denote variables. In 

most cases, but not always, the letters x, y, z denote D-variables whereas u,V.W denote W-variables. 

Capital letters p. Q and S are predicate symbols. All other letters are used to denote terms or function 

symbols. In the particular context, it should be clear, what kind of objects are meant. Some letters are 

written outlined in order to emphasize that they denote sets. 

It is noted that we are not interested in all possible P-formulae which can be built according to the above 

definition. We are only interested in a subclass whose formulae reflect the meaning of a corresponding 

M-formula. We shall see that this restriction finds its expression in the fact that all occurrences of a 

particular W-variable symbol in a fonnula have identical prefixes in the world-path strings. This is so, 

because a particular W-variable symbol w corresponds to a particular occurrence ofa c-operator, and the 
prefiX of w corresponds to the modal context (surrounding modal operators) of this occurrence of o. 
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(ii) If 9‘ and g are P-forrnulae and x is a D- or W-variable symbol then
TA (j, ‚TV 9, fF are P—formulae.

(No existential quantifier is necessary because the translation into P-logic syntax contains a
skolemization step which eliminates all existential quantifiers.)
For convenience we assume again that the variables in the scope of quantifiers are appropriately
renamed such that formulae like Vx (gavxy) or n‘v f do not occur.

Some auxiliary notions:
> A variable is bound, if it is in the scope of a quantifier.
> A variable is free in a term, atom or formula if it is not bound.
» s e t is true either if the term s is a subtenn of the term, atom or formula t or

if s is a prefix (leading part) of some world-path occurring in t, i.e. for example [uv] e [uvwa].

(e is different from the membership predicate e .)
> Vars(s1 . . .sn) := set of all free variables occurring in the objects (terms etc.) s1,. . "an.

> W-vars(s1. ..sn) := Vars(s1. . .sn) n VW is the set of W-variables occurring in $1,. . .,sn.
)» D—vars(s1...sn) := Vars(s1. . -Sn) n VD is the set of D-variables occurring in s1....,sn. I

Examples for P-formulae and their M-logic counterparts: (Some parentheses are omitted.)

M P—logic Sm

DP Vw P[w] P e PO, w e VW

OP P[g] P e IPO, g e Fw.0

Vx 0Q(x,a) Vx Q([h(x)], x, a[h(x)]) Q e 1P2, x e VD, a e ]FD_0, h e FWJ

a (S(x) A L'l Ey 0 S(y)) VV Vx (S([v], x) A VW S([vwk(x)], r([vw], x))
T T TT S e Pl,  v,w @ VW, k e m r 6 Fur

v w r k

Notational Conventions
In the sequel the letters u, v,  w, x,  y, z from the end of the alphabet will be used to denote variables. In
most cases, but not always, the letters x,  y,  z denote D—variables whereas u,v,w denote W-variables.
Capital letters P, Q and S are predicate symbols. All other letters are used to denote terms or function
symbols. In the particular context, it should be clear, what kind of objects are meant. Some letters are
written outlined in order to emphasize that they denote sets.

It is noted that we are not interested in all possible P-formulae which can be built according to the above
definition. We are only interested in a subclass whose formulae reflect the meaning of a corresponding
M-forr-nula. We shall see that this restriction finds its expression in the fact that all occurrences of a
particular W-variable symbol in a formula have identical prefixes in the world-path strings. This is so,
because a particular W-variable symbol w corresponds to a particular occurrence of a u-operator, and the
prefix of w corresponds to the modal context (surrounding modal operators) of this occurrence of n .
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In order to characterize the subclass of P-formulae. which correspond to M-formulae. we need some
 

additional notation.
 

Definition 3.1.3 (The Prefix of a W-Variable)
 

Let t be a term, term1ist, formula or list of formulae and let w be a W-variable.
 

The prefix of the variable w in the term t is:
 

prefix(w. t) := {[s .w] I [s .w] e t} ( [s .w] := [sl ... skw] in case s =[SI" .stD 
prefix*(w, t) := {s I [s .w] e t} 

We shall omit the embracing set parentheses when the prefix of a W-variable is unique. _ 

Examples for prefixes of W-variables.
 

prefix (w. 'Vw.u P[wuJ) = [w]. preflX*(w. 'Vw.u P[wu]) =[J.
 

prefix (w, 'Vw,u P[wu]v Q[uw]) = {[w], [uw]} prefix*(w. 'Vw,u P[wu]v Q[uw]) = W, Cull. _
 

The nesttng of the universal quantifiers in a P·formula which corresponds to some M-formula is
 

correlated with the nesting of the variables in W-terms: When a variable x occurs in the prefix of a
 

W-variable v. the quantifier 'Vx must precede the quantifier 'Vu. If this condition is violated, we cannot
 

evaluate P-formulae properly in logics with non-serial accessibility relations. We therefore define an
 

ordering relation on variables. which expresses the nesting of variables in world-paths and can be used
 

to compare the nesting of variables with the nesting ofquantifiers.
 

Definition 3.1.4 (An Ordering Relation on Variables.) 

Let z be a (W- or D-) variable. w a W-variable and let 1"be a P-formula. 

z ~J"w iffze prefix(w.1'>. -
Examples for the ~9"relation: 

~= 'Vw.u P[wu]: w~9"u 

(j= 'Vw,x.u P[wg(x)u]: w Sr; u and x Sr; u. but not w ~r;x 
Lemma 3.1.5: ~J"is an ordering relation for W-variables in a formula 9" with unique prefixes. 

Proof: Reflexivity: Clearly we prefix(w.1'> = {[s .w] I [s .w] e 9"} if w occurs in 9". Le. w S9"w. 

Antisymmetry: Let w SJ"u and u ~J"w. i.e. we prefix(u.1) and u e prefix(w.1'>. 

For some s, [s .w] occurs as a subterm in prefix(u. 1'>. i.e. in [s.w...u]. s cannot contain u as a 

proper subterm, otherwise preflX(u, 1) would consist of at least two elements, which contradicts the 

precondition that the prefixes are unique. Therefore w and u must be identical. Le. w =u. 

Transitivity: The transitivity of ~J"follows immediately from the transitivity ofe ("is subterm oC') _ 

Now we are ready to give a characterization of the subclass of "M-adjusted" P-formulae which 

correspond to M-formulae. 
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In order to characterize the subclass of P-formulae. which correspond to M—formulae, we need some
additional notation.

Definition 3.1.3 (The Prefix of a W-Variable)
Let t be a term, termlist, formula or list of formulae and let w be a W—variable.
The prefix of the variable w in the term t is:

prefix(w, t) := {[s .w] I [s .w] e t} ( [s .w] := [s1...skw] in case s -- [s1...sk])
prefix*(w, t) := { s  | [s  .w] e t}

We shall omit the embracing set parentheses when the prefix of a W-variable is unique. I

Examples for prefixes of W-variables.
prefix (w, Vw.u P[wu]) = [w]. prefix*(w, Vw,u P[wu]) = [].
prefix (w, Vw.u P[wu]v Q[uw]) = { [w] .  [uw]} prefix*(w-, Vw,u P[wu]v Q[uw]) = [ [ ] ,  [u]} .  I

The nesting of the universal quantifiers in a P-formula which corresponds to some M-formula is
correlated with the nesting of the variables in “Home: When a variable x occurs in the prefix of a
W-variable v, the quantifier Vx must precede the quantifier Vu. If this condition is violated, we cannot
evaluate P—formulae properly in logics with non-serial accessibility relations. We therefore define an
ordering relation on variables, which expresses the nesting of variables in world-paths and can be used
to compare the nesting of variables with the nesting of quantifiers.

Definit ion 3 .1 .4  (An Ordering Relation on Variables.)
Let 2 be a (W» or D-) variable, w a W—variable and let _‘T be a P—formula.

z w iff z e prefix(w, 9). I

Examples for the S,. relation:
f = VW,“ P[Wu]: w Sfu
G = VWJ.“ P[wg(x)u]: w Sgu  and x SG 11, but not w sg  x I

Lemma 3.1.5: 59. is an ordering relation for W—variables in a formula f with unique prefixes.
Proof: Reflexivity: Clearly w e prefix(w, 9) = {[s  .w] I [s .w] e :7} if w occurs in f, i.e. w Syw.
Antisymmetry: Let w S:,u and u S9— w, i.e. w e prefix(u, 95) and 11 e prefix(w, ff).

For some s ,  [s .w]  occurs as a subterm in prefix(u, 9“), i .e. in [s .w. . .u] .  s cannot contain u as a

proper subterm, otherwise prefix(u, :?) would consist of at least two elements, which contradicts the

precondition that the prefixes are unique. Therefore w and u must be identical, i.e. w = u.
Transitivity: The transitivity of Sf follows immediately from the transitivity of e (“is subterm of”) I

Now we are ready to give a characterization of the subclass of “M-adjusted” P-formulae which
correspond to M-formulae.
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Definition 3.1.6 (M-Adjusted P-Formulae.) 

A P-fonnula (jis said to be M-adjusted iff 

a) the prefixes of all W-variables occurring in (j are unique and 

b) the nesting of the quantifications is in accordance with the :S1'relation, Le. 

for every subfonnula lIz 9"occurring in (j: ...., z S1'v for every free variable v occurring in']'. • 

Examples and Counterexamples for M-adjusted P-formulae. 

M-adjusted I not M-adjusted 

lIu,w P[uw] I lIw,u P[uw] (violates condition b) 

lIu,x,w P[ug(x)w] I Vu,w P[uw] v P[w]) (violates condition a) 

Vx,u,w P[ug(x)w] I lIu,w,x P [ug(x)w] (violates condition b). 

3.2 Semantics of P-Logic 

The semantics for P-Iogic is constructed as usual, except for the meaning of the W-valued symbols. 

W-valued function symbols are intended to convey the meaning of the O-operator whose interpretation is: 

From a given world g there exists an accessible world g' (possibly depending on some surrounding 

V-quantifiers) such that .... Thus, the object that is to be assigned to a W-valued function symbol must 

be a function - possibly depending on some domain arguments - which maps worlds to worlds. 

The W-variables are intended to convey the meaning of the a-operator whose interpretation is: For all 

worlds g' which are accessible from a given world g .... A quantification lIw... over a W-variable must 

therefore be restricted to some worlds; moreover the restriction has a dynamic character - it depends on 

the actual world. The only way to incorporate this restriction is to assign functions to W-variable 

symbols, which map worlds to accessible worlds. 

A serious complication arises in non-serial models, where a world may have no accessible world at all. 

Functions mapping worlds to accessible worlds are not total in such models. To handle partial functions 

we use the notion of a strict ro-extension of a function (see for instance [Loeckx 84D. The idea is to add 

an artificial bottom element .1. to the domain of the function and to change partial functions f into 

corresponding total functions f' (co-extensions), which return .1. if f is not dermed for some argument 

value. f' is said to be strict if it returns .1. whenever one of the arguments is .1.. 

Definition 3.2.1 (World-Access Functions) 

Given an M-frame FM = (D, 9, 9t), a function 4> : 9 ~ 9 is called a world-access/unction iff 

~ It is a strict ro-extension. 

~ For every g E S: 4>(g);t:.L => 9t(g, 4>(g». (4) maps worlds to accessible worlds.) 

~ For every g E 9: Whenever there is at least one world accessible from g then 4>(g) ;t:.L. 
(4) is maximally defined.) 

Let g~ be the set of all world-access functions for 9. • 
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Definition 3.1.6 (M-Adjusted P-Formulae.)

A P-formula g is  said to be M-adjusted iff ‘
a) the prefixes of all W—variables occurring in g are unique and
b) the nesting of the quantifications is in accordance with the Sgt-relation, i.e.

for every subfonnula Vz foccurring in g: -1 z sfv for every free variable v occurring in 9'. l

Examples and Counterexamples for M-adjusted P-formulae.
M—adjusted I not M—adjusted

Vu,w P[uw] I Vw,u P[uw] (violates condition b)
Vu,x,w P[ug(x)w] l Vu,w P[uw] v P[w]) (violates condition a)

Vx,u.w P[ug(x)w] I Vu,w,x P [ug(x)w] (violates condition b) I

3.2 Semantics of P-Logic

The semantics for P-logic is constructed as usual, except for the meaning of the W—valued symbols.
W-valued function symbols are intended to convey the meaning of the O—operator whose interpretation is:
From a given world SS there exists an accessible world 8 ’  (possibly depending on some surrounding
V—quantifiers) such that Thus, the object that is to be assigned to a W-valued function symbol must
be a function - possibly depending on some domain arguments - which maps worlds to worlds.

The W-variables are intended to convey the meaning of the n-operator whose interpretation is: For all
worlds 8 '  which are accessible from a given world 8 A quantification Vw. . .  over a W-variable must
therefore be restricted to some worlds; moreover the restriction has a dynamic character - it depends on
the actual world. The only way to incorporate this restriction is  to assign functions to W-variable
symbols, which map worlds to accessible worlds.

A serious complication arises in non-serial models, where a world may have no accessible world at all.
Functions mapping worlds to accessible worlds are not total in such models. To handle partial functions
we use the notion of a strict tin-extension of a function (see for instance [Loeckx 84]). The idea is to add
an artificial bottom element .I. to the domain of the function and to change partial functions f into
corresponding total functions f’ (co-extensions), which return J. if  f is not defined for some argument
value. 1” is said to be strict if it returns .1. whenever one of the arguments is .L.

Definition 3.2.1 (World-Access Functions)
Given an M-frame FM = (D, S, "R), a function :1) : S —-> S is called a world-access function iff

> It is a strict (:)-extension.
> For every 8 e 3 :  MS) # _L => EMS. MS )). (@ maps worlds to accessible worlds.)
> For every 5 e 3: Whenever there is at least one world accessible from S then MS) $ ..L.

(o is maximlly defined.)
Let S _, be the set of all world-access functions for S. I
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Definition 3.2.2 (P-Frames and P.lnterpretations)
 

By a P-frame f p for a P-signature ~ we understand any tuple (fM • ~w) where
 

~ f M = (D. 5. 9t) is an M-frame.
 

(I.e. an M-frame is the kernel ofP-logic's semantics.) 

~	 Sw is a W-signature interpretation that assigns to each W-valued function symbol g of type 

Dn ~ (W ~ W) a function "{: JDll ~ 5~ that maps domain elements to world-access functions. 

In case 9t is symmetric we need an additional property of Sw: 

Whenever Sw assigns a function "(to a W-valued function symbol g such that 'l<al•... '~) is 

injective for every al" .. ,~ E D then ~w must assign to the associated inverse symbol gol an 

associated inverse function yl such that 'l<a1,. ...~) 0 yl(al'" .•~) is the identity mapping. 

By a P-interpretation ~p for the signature 1:1' we understand any tuple (fp• ~o.a, w) where
 

~ f p = «10, 5. 9t). ~w) is a P-frame.
 

~ ~o is an element of5. (~o is the "initial world".)
 

~ a is a D-variable assignment. Le. an assignment of domain elements to D-variable symbols.
 

~ w is a W-variabLe assignment. Le. an assignment of world-access functions to W-variable symbols.
 

Whenever w assigns to a W-variable symbol u an injective world-access function <\> then w must 
1assign the inverse function <\>-1 to the associated inverse W-variable symbol u- .	 • 

Now that the meaning of the signature has been defmed, we have to say how a term is to be evaluated in
 

a given interpretation: D-terms must be evaluated to domain elements, W-terms to world-access functions
 

and world-paths to compositions of world-access functions.
 

Definition 3.2.3 (Evaluation of P-Logic Terms)
 
Let SI' = «fp, Sw), So. a, w) be a P-interpretation for the signature :El" where f p = (D. ~, 9t).
 

~p can be turned into a strict co-extension of a function from D-terms to 10 and W-terms to g~ and
 

world-paths to 3~ S.
 
We define the evaluation ~p(t) inductively on the structure of the term 1.
 

1.	 W-terms: t = wand w is a W-variable symbol: Sp(w) := w(w) 

t = g(t1 .....tn): ~p(g(tl'·...~» := ~W<g) (~p(tl)'···'~p(~» 

2. World-paths:	 t = [] ~p([]):= identity mapping 

t = [s . r] Sp([s . r]) := ~p(s) 0 ~p(r) 

3.	 D-terms: t = x and x is a D-variable symbol: ~p(x) := a(x) 

t = f(wp.t1, ... ,tn): ~p(f(wP,tl""'~» := ~p(wp)(~o)(f) (~p(tl)'''·'~p(~». 

Since W-terms are interpreted as world-access functions, the interpretation of a world-path - as the 

composition of the world-access functions assigned to its components - is a function that maps worlds ~ 

to other worlds S' which are accessible from ~ in the transitive closure of 9t. 

The world ~o deternlines the "initial world" which is used to "start" the interpretation of a formula. The 

initial world is mapped by the function assigned to a world-path to the actual world. Thus for a given 

world-path wp. ~p(wp)(~o) denot~ the world which corresponds to the actual world in M-logic. 
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Definition 3.2.2 (P-Frames and  P-Interpretations)
By a P-frame TP for a P-signature Ep we understand any tuple (FM, SW) where
> FM = (1D, 3 ,  9i) is an M—frame.

(I.e. an M~frame is the kernel of  P—logic’s semantics.)
> SW is a W-signature interpretation that assigns to each W—valued function symbol g of type

Dn —> (W ——> W) a function y: D“ —-) 3%  that maps domain elements to world-access functions.
In case ER is symmetric we need an additional property of SW:
Whenever SSW assigns a function y to  a W—valued function symbol g such that 7(a1,...,an) is
injective for every a1,...,arl e D then SW must assign to the associated inverse symbol g"1 an
associated inverse function Y1 such that Kay.  . „an) o Y1(a1,. . .,an) is the identity mapping.

By a P—t’nterpretatt'on Sp  for the signature EP we understand any tuple (FP, 80, d ,  11)) where
>- FP  = ((D, S ,  9?), SW) is a P—frame.
> 80  is an element of  3 .  (80 is the “initial world”.)
)» ct is a D-variable assignment, i.e. an assignment of domain elements to D-variable symbols.
> w is a W-variable assignment, i.e. an assignment of world-access functions to W~variable symbols.

Whenever w assigns to a W—variable symbol u an injective world-access function a then w must
assign the inverse function (1)'1 to the associated inverse W—variable symbol u ' l .  I

Now that the meaning of the signature has been defined, we have to say how a term is to be evaluated in
a given interpretation: D-terms must be evaluated to domain elements, W-tenns to world-access functions
and world-paths to compositions of world-access functions.

Definit ion 3 .2 .3  (Evaluation of P-Logic Terms)
Let Sp  = ((I-“p, SW), 30, d ,  11)) be a P-interpretation for the signature EP, where }“P = (1D, S ,  5R).
Sp  can be turned into a strict (c)—extension of a function from D-terms to D and W-terms to SA and
world-paths to 3—) 3.
We define the evaluation Spa) inductively on the structure of the term t.
l .  W-terms: t = w and w is a W-variable symbol: 5p(w) := w(w)

t == g(t1,...,tn): 5p(g(t1,...,tn)) := 8w(g) (5p(t1),...,sp(t„))
2 .  World-paths: t=  [] SP([]) := identity mapping

t = [s . r] 3P([s . r]) :=  Sp(s) o 5p(r)
3 .  D-terms: t== x and x is a D-variable symbol: Sp(x) :=  dot)

t = f(wp,t1,. . ‚an): Sp(f(wp,t1,...,tn)) := Sp(wp)(80)(f) (Sp(t1),...,3p(tn)) I

Since W-terms are interpreted as world-access functions, the interpretation of a world-path - as the
composition of the world-access functions assigned to its components - is a function that maps worlds 5
to other worlds 8 ' which are accessible from S in the transitive closure of ER.

The world 30 determines the “initial world” which is used to “start” the interpretation of a formula. The
initial world is mapped by the function assigned to a world-path to the actual world. Thus for a given
world-path wp, 5P(wp)(80) denotes the world which corresponds to the actual world in M-logic.
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Definition 3.2.4 (Satisfiability of M-Adjusted P-Formulae)
 

The satisfiability relation If-p for the initial world of a P-interpretation is defined inductively over the
 

construction of M-adjusted P-formulae.
 

Let f p := «(lD,~, 9\), 5 w) be a P-frame and let 5 p := (fp, 50' d, w) be a P-interpretation:
 

5 p II-p P(wp, t1, ... ,t ) iff 5 p(wp)(50):;e..L and for i = 1...n 5 p(tj):;e..L and n


Sp(wp)(50)(P) (Sp(t1),···,Sp(tn»·
 

Sp II-p ....,P(wp, t1, ... ,t ) iff Sp(wp) (50):;e..L and fori =1...n Sp(tj):;eol. and
 n

not Sp(wp)(50)(P) (5p(tl), ... ,5p(~».
 

Sp If-p ('J /\ (j) iff 5 p If-p 'J and 5 p If-p (j.
 

S P II-p ('J v (j) iff 5 p II-p 'J or S p If-p (j.
 

5 p If-p "Ix 'Jwhere x is aD-variable iff for every a E D: Sp [x/a] II-p 'J.
 

Spll-p "Iu 'Jwhere u is a W-variable
 

iff for wp := prefix*(u, 1): (The prefix is unique.) 

either Sp(wp)(So) =ol. and Sp II-p 'J. 

Q! Sp(wp)(So) :;eol. and for every <p E S~ with (Sp(wp)o<p)(So):;e..L: Sp[uI<p] If-p 'J. 

Sp satisfies;F iff Splf-p ;F (fp satisfies 'Jin the worLd iT)
 

f p satisfies 'J iff it satisfies ;Fin every world •
 

Remarks 

When the accessibility relation is serial, Sp is a total function on terms. In this case we can greatly 

simplify the satisfiability relation: 

Spll-p P(wp, ti""'~) iff Sp(wp)(So)(P) (Sp(t1), ... ,Sp(ln».
 

Sp 1f-p....,;F iff not Sp If-p ;F
 

Sp If-p ('J /\ (j) iff Sp If-p ;F and Sp If-p (j.
 

Sp If-p ('Jv (j) iff Sp If-p 'Jor Sp If-p (j.
 

S p II-p "Ix .'T where x is aD-variable iff for every a E D: S p[x/a] II-p .'T.
 

$plf-p "Iu .'Twhcrc u is a W-variable ilT for every <p E g~: Sp[uI<p] II-p .'T.
 

Since in serial interpretations all world access functions map worlds to accessible worlds, there need be 

no restriction on the W-variable assignments: "for every <p E S~: Sp[u/<p] II-p 'J." This is different from 

the interpretation of the D-operator in M-logic where an explicit restriction to accessible worlds must be 

included in the interpretation of a formula DJ: 

If the accessibility relation is not serial, satisfiability as defined above would not work for P-Iogic 

formulae which are not M-adjusted. Consider as an example the P-formula "Iv"lu P[uv] which is not 

M-adjusted. The prefix of the outermost variable v is [u]. In order to check Sp([u])(So) the value of u 

must be known, but no value has been assigned to u so far. Even if some default value could be 

assumed, onc can easily construct examples where the two formulae "Iv"lu P[uv] and "Iu"lv P[uv] with 

exchanged quantifiers yield different truth values; and this is of course not acceptable for a decent logic. 
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Definit ion 3 .2 .4  (Satisfiability of M-Adjusted P—Formulae)
The satisfiability relation ”—1) for the initial world of a P—interpretation is defined inductively over the

construction of Mnadjusted P-formulae.

Let fFP := ((D, 3 ,  SR), SW) be a P-frame and let SP  := (E„ 30 ,  d ,  w)  be a P-interpretation:

SP  II—P P(wp‚ t1....,tn) iff Sp(wp)(30) $ .L  and for i = l . . . n  Spui) ¢ .L  and

3 p(WP)(so)(P) (3 p( t1 ) . .  - - . 3  pun»-

Sp  ”'P -1P(Wp. t1,...‚tn) iff 8P(wp) (80) Ju. and for i = l . . . n  Spai) #:.L and
not 3 P(WP)(S 0)(P) (S P( t1 ) , .  . . ,3 p(tn)).

SplI—PCTA 9) iff Spit—PiandSPu—p g.
Spit—p (9W g) iff ESPN—P for ESPN—P g.
Sp  ll—P Vx 9? where x is a D-variableiff for every a e D: 8p  [)(/21]l jr.
Sp  It—P Vu Twhere u is a W-variable

iff for wp := prefix*(u, }): (The prefix is unique.)
@@ 5P(wp)(50) = .L and Sp  |+—p 9'.
Qt Sp(wp)(80) at .L and for every 4» € 3—) with (Sp(wp)o¢)(30) at ..L: SPD/491"? 9".

Sp satisfies ‚'F iff Spit—p T (FP satisfies 9' in the world 8)
PP satisfies :7 iff it satisfies $ in every world I

Remarks
When the accessibility relation is serial, SP  is a total function on terms. In this case we can greatly
simplify the satisfiability relation:

sp n-p P(wp‚ „,. . an) iff sp(wp)(so)(P) (Esp(t1),...,spttn)).
SP ll-p —1T iff not Spll-p 7
Spit—P (}}-A (j) iff ESPN—P grand SPII—P g.
SPII—pwrv 9‘) iff 313t [For SPIt—p (j.
Spit-P Vx frwhcre x is a D-variable iff for every a e JD: Sp[x/a] ”—1) 9'.
ESP ”‘P Vu :? where u is a W-variable il'f for every q) & SL,: sPhl/qfl u-p ?.

Since in serial interpretations all world access functions map worlds to accessible worlds, there need be
no restriction on the W-variable assignments: “for every (|) e S __‚z Sp[u/¢] Il—P T.” This is different from
the interpretation of the CI-operator in M-logic where an explicit restriction to accessible worlds must be
included in the interpretation of a formula E192

If the accessibility relation is not serial, satisfiability as defined above would not work for P-logic
formulae which are not M—adjusted. Consider as an example the P-formula Vv‘v’u P[uv] which is not
M-adjusted. The prefix of the outermost variable v is [u]. In order to check 8P([u])(50) the value of u
must be known, but no value has been assigned to u so far. Even if some default value could be
assumed. one can easily construct examples where the two formulae VvVu P[uv]  and Vq P[uv] with

exchanged quantifiers yield different truth values; and this is of  course not acceptable for a decent logic.
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The next lemma states that the P-satisfiability relation works as expected when applied to M-adjusted
 

formulae.
 

Lemma 3.2.5 (If-p is Well Defined for M-Adjusted P-Formulae.)
 

Let \tu \tv .rand \tv \tu .rbe two M-adjusted P-formulae and let Sp be a P-interpretation.
 

3 p lf-p \tU\tV.r iff 3 p lf-p \tV\tu'.F. 

Proof: The proof is based on a rather technical case analysis. The main arguments arc: Since both 

formulae are M-adjusted, neither u can occur in the (unique) prefix of v (if v is a W-variable) nor v can 

occur in the (unique) prefix of u (if u is a W-variable). Therefore the evaluation of both prefixes is 

independent of the actual order of the variable assignments for u and v in the definition of If-p. • 

The previous lemma does not imply that quantifiers can be arbitrarily exchanged: they can only be
 

exchanged when the accessibility relation is serial or the new formula is still M-adjusted. A definition of
 

the P-satisfiability relation that avoids this effect, would have to ignore quantifications completely and
 

extract the necessary information from the world-paths directly. This is possible, but much more
 

complicated. In particular it is unnecessary, as the translation from M-logic to P-Iogic produces
 

M-adjusted formulae automatically, and it can be shown that the resolution rule preserves this property.
 

Definition 3.2.6 (P-Model)
 

A P-frame is a P-madel for a P-formula 1'iff it satisfies 1'in some world 3.
 
(The corresponding P-interpretation that satisfies .rwill sometimes also be called a P-model for 1'.)
 

A P-formula .ris a tautology iff it is satisfied by every world in every P-frame.
 

It is satisfiable iff a P-model for .rexists.
 

It is unsati,\:fiahle iff no P-model for .rexisls. •
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The next lemma states that the P—satisfiability relation works as expected when applied to M-adjusted
formulae.

Lemma 3.2.5 ( u—P is  Well Defined for M-Adjusted P-Formulae.)
Let Vu Vv 9“ and Vv Vu :? be two M-adjusted P-formulae and let SP  be a P-interpretation.

BPM—p Vu Vv 9? iff Sptt—P Vv Vu 9".
Proof: The proof is based on a rather technical case analysis. The main arguments are: Since both
formulae are M-adjusted, neither u can occur in the (unique) prefix of v (if v is a W-variable) nor v can
occur in the (unique) prefix of u (if u is a W—variable). Therefore the evaluation of both prefixes is
independent of the actual order of the variable assignments for u and v in the definition of Il—P. l

The previous lemma does not imply that quantifiers can be arbitrarily exchanged: they can only be
exchanged when the accessibility relation is serial or the new formula is still M—adjusted. A definition of
the P-satisliability relation that avoids this effect, would have to ignore quantifications completely and

extract the necessary information from the world-paths directly. This is possible, but much more
complicated. In particular it is unnecessary, as the translation from M-logic to P-logic produces
M-adj usted formulae automatically, and it can be shown that the resolution rule preserves this property.

Def in i t i on  3 .2 .6  (P -Mode l )

A P-frame is a P-model for a P-formula fiff it satisfies 1? in some world 8.
(The corresponding P-interpretation that satisfies 1T will sometimes also be called a P—model for 9'.)
A P-formula 9‘ is a tautology iff it is satisfied by every world in every P-frame.
It is satisfiable iff a P—model for 9' exists.
It i s  unsatisfiable iff no  P-model for _T exists. I
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Chapter Four 

Translation from M-Logic to P-Logic 

In this chapter the translation algorithm from M-logic to P-logic is defined and soundness and 

completeness results are presented. Soundness means that whenever an M-formula is satisfiable then the 

translated P-formula is satisfiable too. Completeness means that whenever the translated formula is 

satisfiable, the corresponding original M-logic version of the formula is also satisfiable. Together. these 

results are the basis for a complete proof procedure: In order to prove that an M-logic formula is 

unsatisfiable. it is sufficient to prove that the translated P-Iogic formula is unsatisfiable. 

4. 1 The Translation Algorithm 

Definition 4.1.1 (Translation of M-Formulae into P-Logic Syntax) 

1. Transformation of the signature: 

Given an M-formula with the M-signature 1:M = (VD' If''D' JP) we construct an initial P-signature l:p := 

(VD' If''D'JP. P. p) for the translated formula. That is. we identify the D-variables of the M-signature and 

the D-variables of the P-signature. the D-valued function symbols of the M-signature and the D-valued 

function symbols of the P-signature. and the predicate symbols of the M-signature and the predicate 

symbols of the P-signature. The W-valued function symbols which replace the O-operator, the 

W-variable symbols which replace the D-operator as well as the Skolem functions for the existential 

quantifier are then added to 11> during the translation of the formula. 

2. Translation of terms and formulae: 

We define a translation function IT that takes an M-formula !Fand translates it into a P-formula IT(.?). The 

function IT also updates the P-signature:Ep with the generated W-variables that replace the D-operator 

and the skolem functions for the ::J-quantifier and the O-operator. IT needs an auxiliary function 1t for the 

recursive descent into the M-formulae and terms. The function 1t has three arguments: The first is the 

actual formula to be translated, the second argument records the modal context in form of a world-path 

wp and the third argument collects the universally quantified D-variables in order to generate the appro

priate Skolem terms. 

Somc notational conventions: 

D-vars + x denotes the concatenation of a list D-vars = (xl'" xn) with x yielding (xl'" Xn x). 

r(. .. D-vars) denotes the ternl f( ... Xl' .... xn) where D-vars =(xl'" Xn) 

Jl.x ~ s] means the replacement of all occurrences of X by s in the formula ;r. 
ID-varsl denotes the length of the list D-vars. 
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Chapter Four

Translation from M-Logic to P-Logic

In this chapter the translation algorithm from M-logic to P-logic is defined and soundness and
completeness results are presented. Soundness means that whenever an M-formula is satisfiable then the
translated P-formula is satisfiable too. Completeness means that whenever the translated formula is
satisfiable, the corresponding original M-logic version of the formula is also satisfiable. Together, these
results are the basis for a complete proof procedure: In order to prove that an M—logic formula is
unsatisfiable, it is sufficient to prove that the translated P-logic formula is unsatisfiable.

4 .1  The Translat ion Algorithm

Def in i t i on  4 .1 .1  (Transla t ion  o f  M-Formulae  i n to  P-Logic  Syntax)

1. Transformation of the signature:
Given an M-formula with the M-signature EM = (VD, lFD, IP) we construct an initial P-signature EP :=
(VD, IFD, IP, o ,  o) for the translated formula. That is, we identify the D—variables of the M-signature and

the D-variables of the P—signature, the D-valued function symbols of the M-signature and the D-valued
function symbols of the P-signature, and the predicate symbols of the M-signature and the predicate
symbols of the P-signature. The W-valued function symbols which replace the O—operator, the
W-variable symbols which replace the n-Operator as well as the Skolem functions for the existential
quantifier are then added to EP during the translation of the forrnul a.

2. Translation of terms and formulae:
We define a translation function I'I that takes an M-formula 9’ and translates i t  into a P-formula ITU-'). The

function l'I also updates the P-signature EP with the generated W-variables that replace the n-operator
and the skolem functions for the El-quantifier and the O-operator. IT needs an auxiliary function TC for the
recursive descent into the M-formulae and terms. The function n has three arguments: The first is the
actual formula to be translated, the second argument records the modal context in form of a world-path
wp and the third argument collects the universally quantified D—variables in order to generate the appro-
priate Skolem terms.

Some notational conventions:

D-vars + x denotes the concatenation of a list D-vars = ( "1  xn) with x yielding (it1 x1” x).
[ ( . . .  D-vars) denotes the term f( . . .  x l ,  . . . ,  xn) where D-vars = (x1 xn)
fix <— s] means the replacement of all occurrences of x by s in  the formula 9'.
lD—varsl denotes the length of the list D-vars.
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Now we are ready to give the translation rules. 

The toplevel call is: I1(1):= n(.1; [], (» where 0 is the empty list. 

The translation rules for n are: 

7t( :T 1\ (jJ wp, D-vars) := n(:TJ wp. D-vars) 1\ 7t( (jJ wp, D-vars) 

n( :Tv (jJ wp, D-vars) := n(:T, wp, D-vars) v n( (jJ wp, D-vars) 

n( 'ilx:TJ wp, D-vars) := 'ilx n(1"J wp, D-vars + x) 

n( Cl1"J wp, D-vars) := 'ilu n(1", [wp . uJ. D-vars) 

u is added as a new W-variable symbol to Vw in I.p. 

n( 3xJ"J wp. D-vars) := (n(1"J wp, D-vars»[xf-f(wp, D-vars) I 
f is added as a new D-valued function symbol of type (W --t (DID-varsl --t D» to JFD in ~p. 

n( 0 '.FJ wp, D-vars) := n(1"J [wp . g(D-vars)], D-vars) 

g is added as a new W-valued function symbol of type (DID-varsl --t (W --t W» to JFwin ~. 

n( ±P(tl' ....~), wp, D-vars) where P is an n-place predicate symbol 

:= ±P(wp, n(t1, wp, D-vars) ,... , n(~, wp, D-vars» 

n( f(t1, ... ,t ), wp, D-vars) where f is an n-place function symbol n


:= f(wp, n(t1, wp, D-vars) ,... , n(t , wp, D-vars»
 n
n( x, wp, D-vars) := x where x is a D-variable symbol. • 

Lemma 4.1.2 

When 1"is a wellformed M-formula then TI(1) is a wellformed M-adjusted P-formula. 

Proof: The wellformedness of I1(.?) can be shown by structural induction. The M-adjustedness is an 

immediate consequence of the fact that a new W-symbol is introduced only once in the translation 

algorithm. The new symbol is used to build just one new world-path, and although it may be used as a 

prefix in different world-paths, its own prefixes never change. • 
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Now we are ready to give the translation rules.

The toplevel call is: I107) := RU, [], ()) where () is  the empty list.
The translation rules for 1: are:

1t( am g, wp,  D-vars) :=  ”:(:T, wp, D—vars) A 1t(g,wp,  D-vars)
rt( Tv  g, wp, D-vars) := 7:03 wp, D-vars) v Mg, wp, D-vars)
1t( Vxfl', wp, D—vars) :=  Vx 1t(9‘‚ wp ,  D-vars + x)

7t( :39”, Wp, D-vars) := Vu uw", [wp . u], D-vars)
u is added as a new W-variablc symbol to VW in Xp.

n(  3x:}'‚ wp,  D-vars) :=  (111% wp,  D-vars))[x<—-f(wp, D-vars)]
f is added as a new D—valued function symbol of type (W --> (D'D‘Vars' ——> D)) to IFD in EP.

rt( <> 9‘, wp, D-vars) := My, [wp . g(D-vars)], D-vars)
g is added as a new W-valued function symbol of type (D'D'Vafs' —> (W —> W)) to ]Fw in EP.

rc( iP(t1,.  . . ,t"), wp, D-vars) where P is an n-place predicate symbol
:=  iP(wp, 1t(t1, wp, D-vars) , . . . ,  nun, Wp, D-vars))

1r( f(t1,. . . ,tn), wp, D-v ars) where f is an n-place function symbol
:= f(wp, rt(t1, wp, D-vars) , . . . ,  “(in, wp, D-vars))

n( x ,  wp, D—vars) := x where x is a D—variable symbol. I

Le  m m a 4 . l . 2
When 9‘ is a wellformed M-formula then 11(9) is a wellformed M-adjusted P—forrnula.
Proof: The wellformedness of ITU) can be shown by structural induction. The M-adjustedness is an
immediate consequence of the fact that a new W-symbol is introduced only once in the translation
algorithm. The new symbol is used to build just one new world-path, and although it may be used as a
prefix in different world—paths, its own prefixes never change. I
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The following technical lemma establishes a syntactic invariant for the translation function 1t, which is
 

exploited in the soundness proof for 1t. It states that the wp-argument really collects the prefixes of the
 

newly generated W-variables which are then shifted into the translated formula.
 

Lemma 4.1.3
 

Let .1'be an M-logic term or formula, wp a world-path and D-vars a list of D-variables generated by 1t
 

during the translation.
 

For every W-variable symbol v occurring in 1t(.1', wp, D-vars):
 

v E wp implies prefix(v, 1t(.1', wp, D-vars» = prefix(v, wp) and 

v El wp implies prefix(v, 1t(.1', wp, D-vars» = [wp . v]. 

Proof: By induction on the structure of M-formulae. 

Let v be a W-variable symbol occurring in 1t(!J, wp, D-vars). 

Actually if v El wp thcn !J = Dg. 
In thc rcmaining casc mJalysis it is sufficient to consider only the first case v E wp. 

Base Case: !Jis a D-variable symbol. 

This case is trivial because no W-variable symbol occurs in !F. 

Induction Step: Let !Jbe a compound term or formula. 

By a case analysis on the structure of!J: 

Case.1'= f(tl""'~) is aD-term. 

prefix(v, 1t(!J, wp, D-vars» = prefix(v, f(wp, 1t(t1, wp, D-vars) ,... , 1t(t , wp, D-vars») n

= prefix(v,wp) u prefix(v, 1t(t1, wp, D-vars» u ... u prefix(v, 1t(~, wp, D-vars» 

= prefix(v,wp) u prefix(v,wp) u ... u prefix(v,wp) (induction hypothesis) 

= prefix(v,wp). 

Case!J= ±P(tl""'~)' This case is identical with the previous one. 

Case !J =.1'1 /\!J2 or !J =.1"1 v .1'2' 

prefix(v, 1t(!J, wp, D-vars» = prefix(v, 1t(!J1, wp, D-vars» u prefix(v. 1t(.1"2' wp, D-vars» 

= prefix(v,wp) u prefix(v,wp) (induction hypothesis) 

= prefix(v,wp). 

Case!J= Dg. 
prefix(v, 1t(!J, wp, D-vars» = prefix(v, Vu 1t(g, [wp . u], D-vars» 

= prefix(v, [wp. uD (induction hypothesis) 

Subcase 1: v = u: prefix(u, [wp. uD = [wp . u] 

Subcase 2: v:;e u: prefix(v, [wp. uD = prefix(v, wp). 

Case .1'= Og. 
prefix(v, 1t(!J, wp, D-vars» = prefix(v. 1t(g, [wp . g(D-vars)], D-vars» 

= prefix(v, [wp . g(D-vars))) (induction hypothesis) 

= prefix(v, wp). (v El D-vars) 

Case.1'= Vx g. 
prefix(v. 1t(.1', wp, D-vars» = Vx 1t(Q, wp, D-vars+ x» 

= prefix(v, wp). (induction hypothesis) 

Case .1' = 3x g. 
prefix(v, 1t(!J, wp, D-vars» = prefix(v, 1t«(jJ wp, D-vars)[xf-f(wp, D-vars)]) 

= prefix(v, 1t(y, wp, D-vars» u prefix(v, f(wp, D-vars» 

= prefix(v, wp) (induction hypothesis, x 4 wp) • 
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The following technical lemma establishes a syntactic invariant for the translation function it, which is

exploited in the soundness proof for n. It states that the wp-argument really collects the prefixes of the

newly generated W—variables which are then shifted into the translated formula.

Lemma 4.1.3
Let 9? be an M-logic term or formula, wp a world-path and D-vars a list of D-variables generated by 1:

during the translation.
For every W-variable symbol v occurring in 1c(f£ wp, D-vars):

v e wp implies prefix(v, My, wp, D-vars)) = prefix(v, wp) and

v et wp implies prefix(v, 11:( f, wp, D-vars)) = [wp . v].
Proof: By induction on the structure of M-formulae.
Let v be a W-variable symbol occurring in 1:0", Wp, D—vars).
Actually if v & wp then 9' = mg.
ln the remaining case analysis it is sufficient to consider only the first case v e wp.
Base Case: 9' is a D-variable symbol.
This case is trivial because no W-variable symbol occurs in T.
Induction Step: Let f be a compound term or formula.
By a case analysis on the structure of 7:
Case T :  f(t1,. ..,tn) i s  a D-term.

prefix(v, 1:0”, wp,  D-vars)) = prefix(v, f(wp, 1c(t1, wp, D—vars) , . . . ,  rt:(tn, wp,  D-vars)))

= prefix(v,wp) U prefix(v, rt(t1, wp, D-vars)) U U prefix(v, man, wp, D—vars))

= prefix(v,Wp) U prefix(v,wp) U . . .  U prefix(v,wp) (induction hypothesis)
= prefix(v,wp).

Case T:: :tP(t1, . ..,tn). This case is identical with the previous one.
Case i= f lA9r2  or 93971v

prefix(v, 1cm", wp,  D-vars)) = prefix(v, My], wp, D-vars)) U prefix(v, 1c(9'2, Wp, D-vars))

= prefix(v,wp) U prefix(v,wp) (induction hypothesis)
== prefix(v,wp).

Case 7: CI g.
prefix(v, ROT, wp,  D—vars)) = prefix(v, \7’u 11:( g, [wp . u],  D-Vars))

= prefix(v, [wp . u]) (induction hypothesis)
Subcase l :  v = u: prefix(u, [wp . u]) = [wp . u] .
Subcase 2: v $ u: prefix(v, [wp . u]) = prefix(v, wp).

Case £? = 0g.
prefix(v, MT, wp, D-vars)) = prefix(v, 1c( g, [wp . g(D-vars)], D-vars))

= prefix(v, [ wp . g(D-vars)]) (induction hypothesis)
= prefix(v, wp). (v & D-vars)

Case f = Vx c—j.
prefix(v, My, wp, D-vars)) = Vx Mg, wp, D—vars+ x))

== prcfix(v‚ wp). (induction hypothesis)
Case 9" = 3x @.

prefix(v, MF, wp, D—vars)) = prefix(v,1t(cj, wp, D-vars)[x<—f(wp, D-vars)])
= prefix(v,  Mg, wp,  D-vars)) U prefix(v. f(wp, D-vars))
= prefix(v, wp) _ (induction hypothesis, x € wp) l
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Our second main technical lemma below establishes another invariant for the translation function 1t,
 

which is exploited in the completeness proof for 1t. It states that any P-interpretation ~p satisfying the
 

translated formula 1"p := 1t(1", wp, D-vars) evaluates the world-path wp to a function that maps the initial
 

world ~o to an actual world, and not to _L. The main argument is that wp is a prefix of all world-paths
 

occurring in 1"p. Therefore not a single atom in 1"p could be satisfied if Sp(wp)(So) =..L.
 

Lemma 4.1.4
 

Let 1" he an M-fomlUla, wp a world-path and D-vars a list of D-variablcs as generated during the
 
translation performed by 1t.
 

For every P-interpretation ~p with initial world ~o which satisfies 1"p := 1t(1", wp, D-vars):
 

Sp(wp)(So):/; .L.
 

Proof: By induction on the structure of M-formulae. Assume ~p If--p 1"1"
 

Base Case: 9" = ±P(t1,... ,~) and P is a predicate symbol.
 

~p If--p 9"p =±P(wp, 1t(t1, wp, D-vars) ,... , 1t(t , wp, D-vars» n

=> ~p(wp)(~o):/; .L. (def. 3.2.4) 

Induction Step: We perform a case analysis according to the structure of 'F. 

Case 1" " 1"1 1\ 1"2 

~p If-p 1t(9"1 , wp, D-vars) 1\ 1t(1'2' wp, D-vars)
 

=> ~p If--p 1t(9"1 , wp, D-vars) (and ~p If--p 1t(1"2' wp, D-vars» (def. 3.2.4)
 

=> ~p(wp)(~o):/; .L. (induction hypothesis)
 

Case 1" = 1"1 v 1'2' 

~p If--p 1t(1'I' wp, D-vars) v 1t(1'2' wp. D-vars) 

=> 5p If--p 1t(9"1 , wp, D-vars) or 5 p If--p 1t(1'2' wp, D-vars) (def. 3.2.4) 

=> ~p(wp)(.go):/; .J... (induction hypothesis applied to the positive case) 

Case '.f= oq. The translation rule is: 1t('.f, wp, D-vars) ='iu 1t(q, [wp . u], D-vars). 

Case 1: Sp(prefix*(u, 1t(q, [wp . u], D-vars)))(So) =..L 

=> ~p If--p 1t(q, [wp . uJ, D-vars» (def. 3.2.4) 

=> ~p([wp. u])(~o):/; .L (induction hypothesis) 

=> ~p(wp)(~o):/; ..L. (world-access functions are strict) 

Case 2: ~p(prefix*(u, 1t(q, [wp . u], D-vars»)(~o):/;.L
 

=> ~p(prefix*(u, [wp. u]))(go) =~p(wp)(~o) :/;.L (lemma 4.1.3)
 

Case '.f= Oq. The translation rule is: 1t(1; wp, D-vars) = 1t(q, [wp . g(D-vars)], D-vars) 

~p([wp . g(D-vars)])(~o) :/;.L (induction hypothesis) 

=> ~p(wp)(~o):/; .L. (world-access functions are strict) 

Case '.f= 'ix q. The translation rule is: 1t('.f, wp, D-vars) = 'ix 1t(q, wp, D-vars+ x) 

~p[x/a] If--p 1t(g, wp, D-vars+ x) for any a E D (def. 3.2.4) 

=> ~p[x/a](wp)(~o):/;.L (induction hypothesis) 

=> ~p(wp)(~o):/; ..L. (x et wp) 

Case '.f= 3x q. The translation rule is: 1t(1", wp, D-vars) = (1t(q, wp, D-vars»[x~f(wp, D-vars)] 

Assume ~p(wp)(~o) =.J.., i.e. ~p(f(wp, D-vars» =.L 

=> The fact ~p If-p 1t(3x g, wp. D-vars) does not depend on the assignment to x. 

=> ~p It-p 1t(q, wp, D-vars) 

=> ~p(wp)(~o) :/;.L. 7 (induction hypothesis) 

=> The assumption is wrong, i:e. ~p(wp)(~o):/;.L must hold. • 
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Our second main technical lemma below establishes another invariant for the translation function 1:,
which is exploited in the completeness proof for n. It states that any P—interpretation Sp  satisfying the
translated formula ?? := M 7, wp, D-vars) evaluates the world-path wp to a function that maps the initial
world 80  to an actual world, and not to _L. The main argument is that Wp is a prefix of  all world-paths
occurring in ‚TP. Therefore not a single atom in 7P could be satisfied i f  Sp(wp)(80) = _L.

Lemma 4.1.4
Let {F be an M-formula. wp a world-path and D-vars a list of D-variables as generated during the
translation performed by n.
For every P-interpretation SP  with initial world 30  which satisfies 7? := M }", wp, D-vars):
Sp(wP)(S 0)  # .L.
Proof: By induction on the structure of  M-formulae. Assume SP  "'P TP.
Base Case: j? = iP(t1.. . .,tn) and P is a predicate symbol.

Sp  ”—1; 7P = iP(wp, 1c(t1, wp, D—vars) ‚..., Mtn, wp, D—vars))
=> SP(wP)(SO) == ..L. (def. 3.2.4)

Induction Step: We perform a case analysis according to the structure of af.
Case {F = [Fl A 9V2

5 P Il-p Marl, wp, D-vars) A 1t(f}'2, wp, D—vars)
=> ESP u—p “(71’ wp, D-vars) (and Sp  "'P n(9’2‚ wp, D-vars)) (def. 3.2.4)
=> Sp(wp)(30) ;t _L. (induction hypothesis)

Case f = 71 v 9'2.
SP  "‘P M71, wp, D-vars) v M972, Wp. D-vars)
=> SP  n—p 15071, wp, D-vars) or SP  ll—p M95, wp, D-vars) (def. 3.2.4)
==» 8P(Wp)(50) #: _L. . (induction hypothesis applied to the positive case)

Case f=  mg.  The translation rule is: M}: wp, D-vars) = Vu M g, [wp . u], D-vars).

Case 1: 5p(prcfix*(u, Mg, [wp . u], D-vars)))(30) = L
==> SP  "'P Mg,  [wp . u], D-vars)) (def. 3.2.4)
=> 8p([wp . u])(5 0) at _L (induction hypothesis)
=> 8P(wp)(80) # _L. (world-access functions are strict)

Case 2: 5p(prefix*(u, Mg, [wp . u], D-vars)))(80) at ..L
==> Sp(prefix*(u, [wp . u]))(30) = Sp(wp)(30) := ..L (lemma 4.1.3)

Case 9" = 0g.  The translation rule is: M17, wp, D-vars) = 1c(Cj‚[wp . g(D-vars)], D-vars)

3p([wp . g(D-vars)])(3 0) at .L (induction hypothesis)
= 3P(wp)(30) at _L. (world-access functions are strict)

Case 7 :  Vx g. The translation rule is: 1c(:r,wp, D-vars) = Vx Mg, wp, D-vars+ x)
3p[x/a] "'P Mg, wp, D-vars+ x) for any a e D (def. 3.2.4)
=> 8P[x/a](wp)(5 0)  at J. (induction hypothesis)
=> 8p(wp)(80) == _L. (X € WP)

Case 7 = 3x  g .  The translation rule is: Mfr, wp, D-vars) = (Mg,Wp, D~vars))[x<—-f(wp, D-vars)]

Assume Sp(wp)(3 0) == _L. i.e. Sp(f(wp, D-vars)) = .L
==> The fact SP n—p MEIx g, wp, D-vars) does not depend on the assignment to x.
=> 8 P ”'P M g, wp, D-vars)
=> 3P(wp)(80) $ _L. ? (induction hypothesis)
=> The assumption is wrong, i‘.e. 3p(wp)(80) at _L must hold. I
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4.2 Soundness of the Translation 

In order to establish the soundness of the translation function n, we show that whenever an M-formula 

.1"has an M-model, the translated P-formula nen has a P-model. The essential idea in the (constructive) 

proof is to augment the functionality of the translation functions IT and 1t such that in parallel with the 

translation of an M-formula to a P-formula, an M-frame is translated to a P-frame. If we can then show 

that an M-frame satisfying .1"is translated into a P-frame satisfying n(.1) we are done. 

Since a P-frame f p =(fwSw) consists of an M-frame and the interpretation of the W-valucd function 

symbols, the only thing the augmented translation functions have to do, is to define the interpretation of 

the generated Skolem functions. Just as for the generation of the Skolem terms, information about the 

embracing universal quantifiers wa<; made available with the D-vars argument of the function 1t, for the 

definition of their semantics we need in the augmented translation function an additional argument .7(that 

takes information about the assignment of values to the variables in the current world. This !1(-argument 

takes for a particular world So in the M-frame (the world that satisfies the formula) a set with elements 

(S, d. w) where S is the actual world that is determined by the nesting of the modal operators in .1", d is 

the assignment of values to the D-variables and w is the assignment of values to the generated 

W-variables. 

In the sequel we use the following notational convention: 

rffp = (fw Sw) is the generated P-frame, ~:= (S, d, w) E .7(then 

let ~ := (fw S, d:) denote the corresponding M-interpretation and 

let ~:= «fM' Sw), So' d, w) denote the corresponding P-interpretation. 

Definition 4.2.1 (The augmented translation functions)
 

Let .1"00 a closed M-formula and let f M := (D, 9. 9t) be an M-frame over the signature of.1".
 

We define the augmented toplevel translation function n as follows:
 

The arguments are I1(.1"J fwS o)'
 

IT creates an initial P-frame f p:= (fM' ~) and calls the augmented recursive translation function 1t:
 

1t(.1", l], 0,{(So' ~, ~)}) 

The initial P-frame is updated in parallel with the generation of the skolem functions. 

IT returns the translated formula and the generated and updated P-frame. 

The augmented translation rules realized by 1t are:
 

n( .1"/\ (jJ wp, D-vars, !(l := 1t(.1"J wp, D-vars, !(l/\ 1t( (jJ wp, D-vars, !(l.
 

1t( .1"v (jJ wp, D-vars, !X) := 1t(.1"J wp, D-vars, ~) v 1t«(jJ wp, D-vars, 9\i)
 
where ~:= {~E .7(j I ~II-M.1"} and ~:= {~E ~11<MII-M (j) 

1t( \;;Ix:F, wp, D-vars, ~ := \;;Ix 1t(:F, wp, D-vars + x, £) 

where £ := {~x/a] I ~E ~and a E D}. 

1t( D.1"J wp, D-vars, !X):= \;;Iu n(.1", [wp . u], D-vars, £) 

u is added' as a new W-variable symbol to Vw in~. (see def. 4.1.1) 

£ :={(<I>(S),d:,w[u/<I>])I(S,~,W)E ~<I>E 9~with<l>(S);e.L}. 

1t( 3x.1"J wp, D-vars, 1l\') := (1t(.1"J wp, D-vars. £»[x~f(wp, D-vars)] 

f is added as a new D-valued function symbol of type W ~ (DID-varsl ~ D) to JFD in };p. 
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4 .2  Soundness of  the Translat ion

In order to establish the soundness of the translation function 11, we show that whenever an M-formula

:Thas an M-model, the translated P-formula 1'I( 5}) has a P-model. The essential idea in the (constructive)

proof is to augment the functionality of the translation functions H and 1t such that in parallel with the
translation of an M-formula to a P-formula, an M-frame is translated to a P-frame. If we  can then show
that an M-frame satisfying 9‘ i s  translated into a P—frame satisfying HU) we are done.

Since a P-frame FP = (TMS w) consists of an M-frame and the interpretation of the W-valued function
symbols, the only thing the augmented translation functions have to do, is to define the interpretation of
the generated Skolem functions. Just as for the generation of the Skolem terms, information about the
embracing universal quantifiers was made available with the D-vars argument of the function It, for the
definition of their semantics we need in the augmented translation function an additional argument {that
takes information about the assignment of values to the variables in the current world. This at:-argument
takes for a particular world 80  in the M—frame (the world that satisfies the formula) a set with elements
(3,11, w)  where S is the actual world that is determined by the nesting of the modal operators in f, If is
the assignment of values to the D-variables and w is the assignment of values to the generated
W-variables.

In the sequel we use the following notational convention:
If {PP = (FM, SW) is the generated P-frame, K:: (8 ,  ti, w )  e xthen

let KM := (FM, 8 ,  ti) denote the corresponding M—interpretation and
let {KP := ((i-“„, SSW), 80, d ,  w)  denote the corresponding P-interpretation.

Definition 4.2.1 (The augmented translation functions)
Let 9" be a closed M-formula and let FM := (1D, 3, SR) be an M—frame over the signature of 9'.

We define the augmented toplevel translation function l'I as follows:
The arguments are 11(9', T‘M,30).
l‘l creates an initial P-l‘rame Fp:= (TM, a) and calls the augmented recursive translation function n:

W, l]. ().{(30. a, an)
The initial P-frame is updated in parallel with the generation of the skolem functions.
I'I returns the translated formula and the generated and updated P-frame.

The augmented translation rules realized by It are:
It( TA @ wp, D-vars, 370 := My, wp,  D—vars, 90 A Mg, wp, D—vars, m .
1t( i v  g, wp,  D-vars, 90 := 11:07, wp, D-vars, &) v Mg, wp, D-vars, 1(2)

where x1 := {905 K1|7Q4IFM 9'} and Kg := {Xe  11(2l KMU-M g}
It( a', wp, D-vars, 90 := Vx ICU-3 wp, D—vars + x, L)

where L := {fix/a] I ice Kand a e D}.
7t( Eff, Wp, D-vars,  im := Vu EU", [wp . u] ,  D-vars, L)

11 is added‘ as a new W-variable symbol to VW in 21,. (see def. 4.1.1)
L := {(MS), rt, w[u/¢]) | (3,11€, w)  e x q) e S__,With (MES) ¢_L}.

1t( 3x93 wp, D-vars, 10 := (1t(9'‚ wp, D-vars, L))[xt—f(wp, D—vars)]
f is added as a new D-valued function symbol of type W —> (D'D'VflLrSI —-> D) to IFD in Ep.

27



Among all possible interpretations for f select one that satisfies the following condition and add 

it to the signature interpretations in f p:
 

For every '1(= (g, a, w) E ~
 

Among the a E D with ~[x/a] II-M .1'there is an 1{ with 1(p(f(wp. D-vars» == 1{.
 

L:= {~x/a] I a E D. '1(E !1(, ~[x/a] II-M 1'}. 

1t( 0 .1', wp. D-vars. ~ := 1t(1", [wp . g(D-vars)], D-vars. L) 

g is added as a new W-valued function symbol of type DID-varsl ~ (W ~ W) to lFw in 11>. 
Among all possible interpretations for g select onc that satisfies the following condition and add 

it to the gwcomponent in f p: 

For every '1(= (g. a, w) E ~ 

Among the S' E g with 9t(S, S') and (g', a, W)M II-M .1'lhcre is an g"' with 

1(p(g(D-vars))(g) =g-'. 

L :== {(g-', a, w) 1'1(= (g, a, w) E ~ 9\(g. ~'). (~', a. W)M I~ 1'. Xp(g(D-vars»(g) = ~'} 

1t( ±P(t1, ...• t ). wp, D-vars, ~ where P is an n-place predicate symbol n


:= ±P(wp. 1t(t1, wp, D-vars, ~ •...• 1t(t , wp, D-vars,~)
n

1t( f(t1, ... ,~), wp, D-vars, ~ where f is an n-place function symbol 

:= f(wp. 1t(t1, wp, D-vars, ~ ,...• 1t(~. wp, D-vars,~) 

1t( x, wp, D-vars) := x where x is a D-variable symbol. • 

The lemma below states that the variable assignment and the. actual world in the ~argument of the
 

augmented translation function 1t are well defined, i.e. when the initial M-frame is an M-model for the
 

formula to be translated, then the M-interpretations that can be obtained from the elements of ~satisfy
 

the corresponding subformula that is currently being translated.
 

Lemma 4.2.2: When f M is an M-frame satisfying the M-formula .?lin the world go then
 

for each recursive call Tt(.1', wp. D-vars, ~ during the translation n(J{, f M.gO) the following invariant
 

holds as long as .1'is a formula: For every '1(E ~ 5\MlI-M~'
 

Proof: By induction on the recursion depth.
 

Base Case: Recursion depth = 0: This is just the initial callTt(:H, U, O,{ (go, f1l, f1l)})
 

Since f Mis assumed to satisfy .?lin go' (go. f1l. f1l)M II-M.?l holds by definition.
 

Induction Step: Let the recursion depth be greater than O.
 
Let 1t(!F, wp. D-vars, ~ be the actual call to Tt.
 

The induction hypothesis states: For every 'l(E ~ ~ II-M :F.
 

In order to show that the statement holds for the next recursion step we must perform a case analysis
 

according to the structure of :F and analyze the corresponding translation rule.
 

Case:F== ~1" :F2· The translation rule is:
 

Tt(.1'I" ~2' wp, D-vars. ~ := Tt(.1'I' wp, D-vars, ~ " Tt(:F2' wp, D-vars, ~. 

The statement follwos immediately from the induction hypothesis and deL 2.2.5. 

Case ~ =~1 v '.h The translation rule is: 

1t( 1'}v ~2' wp, D-vars, ~ := 1t(:Fl' wp. D-vars, ~) v Tt(:F21 wp. D-vars, ~) where 

~ :== {'l(E !1(1 5\M II-M :F1} and ~ :== {'l(E ~I a<M II-M ~2}' 

Thus, the condition is explicitly enforced in the definition of Tt. 

Case :F= "i/xq. The translation rul~ for this case is: 

1t("i/Xy, wp, D-vars, ~ == "i/x 1t(y, wp, D-vars + x, L) where 

L := {~x/a] I 'l(E !1(and a E D} 
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Among all possible interpretations for f select one that satisfies the following condition and add
it to the signature interpretations in FP:

For every 9C: (3 .  d ,  w)  e ac
Among the a e D with KM[x/a] n—M 9 there is an 'a with 9(p(f(wp. D—vars)) = a".

L:=  {XIX/a] I ae  1130,9(6 x ,  9(M[x/a] II—M 9'}.

TC( (> 5F, wp, D—vars, 90 := Mm [wp . g(D-vars)], D-vars, L)
g is added as a new W-valued function symbol of type D'D'Vm' —-> (W -—+ W) to l in EP.
Among all possible interpretations for g select one that satisfies the following condition and add
it to the SW component in F1):

For every Ka  (3 .  ti, w)  € an
Among the 53’ e 3 with 93(3, 8 ’ )  and (S“, d,  w)M II-M 9'there is an 3" with

%(g(D-vars))(3) = 3".
L := {(S-', 1:12, w )  | x: (S, dl, w )  e 7G ‘NS, T), ($", 513,1»)M n—M 9', KP(g(D-vars))(3) = 5’}

rc( : tP(t1,. . . . tn),  wp, D-vars, 90 where P is an n-place predicate symbol

:=  :l:P(wp, “ ( ip  wp,  D-vars, 90 ‚ . . . ,  1c(tn, wp, D-vars, 90)

7c( f(t1.....tn), wp, D-vars, 70 where f is an n-place function symbol
:= f(wp, 1:01. wp, D~vars, 70 ‚..., man, wp, D-vars‚ 50)

1c( x, wp, D—vars) := x where x is a D-variable symbol. I

The lemma below states that the variable assignment and theactual world in the tic-argument of the
augmented translation function n: are well defined, Le. when the initial M-frame is an M-model for the
formula to be translated, then the M~intcrpretations that can be obtained from the elements of Ksatisfy
the corresponding subformula that is currently being translated.

Lemma 4.2.2: When FM is an M-frame satisfying the M-formula 9{in the world 30  then
for each recursive call 1c( 9', wp, D—vars, so during the translation HOH; TMSO) the following invariant
holds as long as 9' is a formula: For every are ac acMn—M 9'.
Proof: By induction on the recursion depth.
Base Case: Recursion depth = 0 :  This is just the initial call Evi [], (),{(So, o, o)})
Since {FM is assumed to satisfy % in 80, (30. ü. @)M II—M }! holds by definition.
Induction Step: Let the recursion depth be greater than 0.
Let RU, wp, D-vars, 90 be the actual call to 11:.

The induction hypothesis states: For every Xe  x KMU-M 9'.
In order to show that the statement holds for the next recursion step we must perform a case analysis
according to the structure of 9' and analyze the corresponding translation rule.
Case 9 :  ‚TI/\ 92. The translation rule is:

Mil/x 9'2, wp, D-vars, 90 :=  n:(‚'F1‚wp, D-vars, :10 A “:(9'2, wp, D—vars, 90.

The statement follwos immediately from the induction hypothesis and def.’ 2.2.5.
Case ‚T = 91v 92. The translation rule is:

1|:( 91v 9'2, wp,  D-vars, 90 :=  1c(9'1‚wp, D-vars, 21(1) v no}, wp, D—vars, HQ) where

ag := {ace act ”(MH—M 371] and x2 := {xe  xl KMIi-M 92}.
Thus. the condition is explicitly enforced in the definition of 1c.

Case 9 = n. The translation rule for this case is:
rc(cj, wP, D-vars. 50 = Vx rc( g, wp, D—vars + x, L) where

L :=  {ads/a] l KG Xandae  1D}
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The induction hypothesis implies: For every '1(E !1\: ~[x/a] If-M q, (def. 2.2.5) 

i.e. the condition holds for L. 

Case '.1 =oq. The translation rule for this case is: 

1t( oq, wp, D-vars, '1():= Vu 1t(q, [wp . u]. D-vars, L) where 

L= {(<\>(:3),Ii.w[u/<\>])I(~,Ii,W)E!It<\>E ~L~with<\>(~)#.L}.
 

Let L= (<\>(:3), Ii, w[u/<\>l) E L.
 

Since <1>(5) =I=..L holds and since <I> is a world-access function, 9t(5, <1>(5)) holds.
 

The induction hypothesis therefore implies: .Lr..11f-M q. (def. 2.2.5)
 

Case '.1= 3x g. The translation rule for this case is: 

1t( 3xq, wp, D-vars, '1() := (1t(q, wp, D-vars, L»[x~f(wp, D-vars)l where 

L:= (?(lx/a] I a E D, 'l(E !It, 1<M [x/a] If-M q), 

Le. with" ?\M[x/a] If-M g' the condition is explicitly enforced in the definition of 1t. 

Case '.1 = 0 q. The translation rule for this case is: 

1t(Oq, wp, D-vars. '1() := 1t(q, [wp . g(D-vars)], D-vars. L) 

L := {CS', Ii, w) 1'1(= (:3, Ii. w) E ~ 9t(:3, S'), (S', Ii. W)M If-M q, Xp(g(D-vars»(:3) = g'}, 

Le. with "(S', Ii, W)M If-M g' the condition is explicitly enforced in the definition of 1t. • 

The next lemma ensures that for each element in the ~argument of the augmented translation function 1t
 

there is a coincidence between the actual world as defined by the nesting of the modal operators and the
 

interpretation of the constructed world-path when applied to the initial world.
 

Lemma 4.2.3 When f M is an M-frame satisfying the M-formula :Hin the world 50 then
 

for each recursive call1t('.J, wp. D-vars, ~ during the translation IT(.1f, fM' ~o) the following invariant
 

holds as long as '.1 is a formula:
 

For every '1(= (~.Ii. w) E .7C Xp(wp)(:30) =~.
 

Proof: By induction on the recursion depth.
 

Base Case: Recursion depth = 0: This is just the initial call 1t(J{, U. O. {(:30• ~. l/)}).
 

Therefore Xp([])(:3 o)=:3 0 holds by definition.
 

Induction Step: Let the recursion depth be greater than O.
 

Let 1t(:F, wp, D-vars, ~ be the recursive call to 1t.
 

The induction hypothesis states:
 

For every '1(= (:3, Ii, w) E !1\: Xp(wp)(:30) =:3.
 

In order to show that the statement holds for the next recursion step we must perform a case analysis
 

according to the structure of :Fand analyze the corresponding translation rule.
 

Case:F= :F1/\ :F2' The translation rule is:
 

1t(:F1/\ :F2' wp, D-vars, '1() := 1t(:F1, wp, D-vars, '1() /\ 1t(:F2' wp, D-vars, '1(). 

The statement follows immediately from the induction hypothesis. 

Case :F= 1'\ v :F2' The translation rule is: 

1t( :F1v :F2' wp, D-vars, '1() := 1t(:F1, wp, D-vars, ~) v 1t(:F2' wp, D-vars, ~) where 

~:= {'l(E !ItI ~1f-M:Fd and 9(2:= {'1(E !Jtl ~If-M :F2 }. 

The statement follows immediately from the induction hypothesis. 

Case :F= Vxq. The translation rule for this case is: 

1t(Vxq, wp, D-vars, ~ = Vx 1t(y, wp, D-vars + x, L) where 

L := {~x/a] I 'l(E !Jtand a E D} 

Since formulae are standardized apart, x does not occur in wp and the induction hypothesis can 
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The induction hypothesis implies: For every KG x «MBK/a] u—M g, (def. 2.2.5)

i.e. the condition holds for L.

Case 9? = ag .  The translation rulc for this case is:
1t( ng ,  wp,  D-vars, 90 :=  Vu 1r( 9‘, [wp . u] ,  D-vars, L) where

L= {(¢(S), li, w[u/¢]) I (3,  d ,  w)  e x (1) e 3—) with MES) ¢ J . } .
Let L=  ((MS), d ,  w[u/¢]) e L.
Since (MS) at .L holds and since (1) is a world-access function, 91(9), (MS)) holds.

The induction hypothesis therefore implies: LMU—M @. (def. 2.2.5)
Case T...-= 3x g. The translation rule for this case is:

rc( Ext}, wp ,  D-vars, 90 :=  (11:03, wp,  D-vars, L))[x<—-—f(wp, D—vars)l where

L :=  [fix /a ]  | ae  1D, ice % ,  XMl'x/a] II—M g} ,

i.e. with “awn/a] It—M 9” the condition is  explicitly enforced i n  the definition of  rc.

Case {F = () 9. The translation rule for this case is:
1r((> (j, wp, D-vars, 90 := Mg,  [wp . g(D-vars)], D-vars, L)

:= {(5’, I1, w )  I x :  (3,  ti, w )  e x EMS, 3"), (T, d., w)M II-M g, 9(P(g(D-vars))(3) = 3’},
i.e. with “(5', li, w)M It—M g” the condition is explicitly enforced in the definition of 7:. I

The next lemma ensures that for each element in the x-argument of the augmented translation function rc
there is a coincidence between the actual world as defined by the nesting of the modal operators and the
interpretation of the constructed world-path when applied to the initial world.

Lemma 4.2.3 When FM is an M-frame satisfying the M-formula {Ifin the world 30  then
for each recursive call «(92 Wp, D-vars, 90 during the translation IKM: FM, 80) the following invariant
holds as long as 7 is a formula:
For every 9C= (5,  d ,  w)  e x: Kp(Wp)(30) = 5 .
Proof: By induction on the recursion depth.
Base Case:  Recursion depth = 0 :  This  i s  just the initial call MH, [],  ( ) ,  { (50 ,  p ,  p)}).
Therefore Kp([])(8 0)  = 30  holds by definition.
Induction Step: Let the recursion depth be greater than 0.
Let 1t(9', wp, D-vars, 5'0 be the recursive call to at.

The induction hypothesis states:
For every K :  (3,  di, w)  e FC 9CP(WP)(30) = 3 .
In order to show that the statement holds for the next recursion step we must perform a case analysis
according to the structure of 7 and analyze the corresponding translation rule.
Case 7 = girl/x :72. The translation rule is:

1:( TIA f2, wp, D-vars,  m :=  Jt(9f1,wp, D—vars, 90 A “(773 wp,  D-vars, 90.
The statement follows immediately from the induction hypothesis.

Case 9? = Tlv 72- The translation rule is:
rt( 71v 72, wp ,  D-vars, 90 :=  WU],  wp,  D-vars, 33) v Milz, Wp‚ D-vars, 9(2) where

xl := {905 x l  KMtt-M $1}  and K2 := {ice at! xMtt—M 72}.
The statement follows immediately from the induction hypothesis.

Case 7: Vx g. The translation rule for this case is:
rc(Vx(j, Wp, D-vars, 10 = Vx My, wp, D-vars + x, L) where

L :=  {9([x/a] I Xe Stand a e D}

Since formulae are standardized apart, x does not occur in wp and the induction hypothesis can
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immediately be applied. 

Case 'J =eq. The translation rule for this case is: 

1t( cqJ wp. D-vars. ~ := \iu 1t(q. [wp . u]. D-vars, L) where 

L = {(50' {(l\)(5). d. w[u/l\)D I (5. d. w) e ~ l\) e 9-+ with l\)(5) *.1.} 

Let L = (l\)(5). d, W [u/l\)]) e L. 

£p([wp . uD (50) 

= (£p(wp)ow[u/l\)](u» (50) (def. 3.2.3) 

= l\)(5). (induction hypothesis) 

Case 7'= 3x q. The translation rule for this case is: 

1t( 3xqJ wp, D-vars, ~ := (1t(qJ wp. D-vars, L))[xf-f(wp. D-vars)] where 

L:= {1({x/a] I a e D. ~e 5(, ~[x/a] It-M q}. 
Since x does not occur in wp. the induction hypothesis can immediately be applied. 

Case 'J= Oq. The translation rule for this case is: 

1t(OqJ WP. D-vars, ~ := 1t(qJ [wp . g(D-vars)], D-vars, L) 

L := {(5"', d, w) I ~= (5, d, w) e ~ 9t(5, g-'), (5"', d, W)M It-M q, !Xp(g(D-vars»(5) = g-'} 
LetL=(5'.d.w)e L. 

£p([wp. g(D-vars)])(50> 

= (Lp(wp) 0 £p(g(D-vars») (50) (def. 3.2.3) 

= £p(g(D-vars» (5) (induction hypothesis) 

= g-'. • 

Now we are ready to show the main part of the smmdness proof for the translation: At each level of the
 

translation operation, the generated P-interpretations satisfy the translated subformula.
 

Lemma 4.2.4 When FM is an M-frame satisfying the M-formula .1fin the world 50 then
 

for each recursive call 'Jp := 1t('J. wp, D-varsJ ~ during the translation fI(.?£ FM' 50) the following
 

invariant holds as long as 'Jis a formula: For every ~= (5, d. w) e ~ !Xpll-p 'Jp.
 

Proof: By induction on the structure of M-formulae.
 

First Base Case: J" = P(tl •...•~) is an atom.
 

Let~=(5.d.w)e ~
 

According to the translation rule for the atomic case we must show: 

!Xp II-p P(wp. 1t(tl • wp, D-vars. ~•... , 1t(ln. wp. D-vars. ~).
 

Neither wp nor 5(changes during the recursive descent into the terms,
 

therefore. with lemma 4.2.3. !Xp(wp)(50) = 5 holds for the translation of the terms. (*)
 

First of all we must prove by induction on the structure of M-logic terms: 

!Xp (1t(t. wp, D-vars. ~» = ~(t) for t e {tl, ...•ln}. (+) 

Base case: t is a D-variable: ~(1t(t. wp, D-vars. ~» = Xp(t) = d(t) = ~(t). (def. 2.2.4. 3.2.3) 

Induction step: t = f(sl'" .•Srn): 
Xp(1t(t. wp. D-vars. ~» 

= 1\p(f(wp, 1t(sl' wp. D-vars. ~•...•1t(sm' wp, D-vars. ~» (translation rule) 

= 1\p(wp)(50)(t) (Xp(1t(sl' wp, D-vars, ~)•...• Xp(1t(sm' wp. D-vars.~» (def 3.2.3) 

= 5(t) (~(sl)"'" ~(sm» (induction hypothesis and *) 

= ~(t). 
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immediately be applied.
Case 9' = ag.  The translation rule for this case is:

rt:( tag, wp, D-vars, K) :=  Vu 1t( g, [wp . u],  D-vars, L) where

L = {(50. {(MS). I1 ,W[UI¢] ) | ( 3 .  II. 1.12) e x ¢ € 3... With M3) tat-L}

Let L= (M3). d. www) e L
qwp . 11]) (so)

= (Lp(WP)ow[u/¢](U)) (30) (def. 3.2.3)
= ¢(S). (induction hypothesis)

Case 37: 3x  9. The translation rule for this case is:
1r( Ext}, wp, D—vars. m :=(1t(g‚ wp, D—vars, L))[x<—f(wp, D-vars)] where

L::  {XIX/a] | ae  D,  fice x ,  XMDt/a] "'M G}.
Since x does not occur in wp, the induction hypothesis can immediately be applied.

Case 9' = 0g. The translation rule for this case is:
1c(0 g. wp, D-vars, 90 := 1l:( (j, [wp . g(D-vars)], D-vars, L)
L := {(5’, d ,  w) |  x: (S, d,  w)  e x, 91(3, 5"), (3", d ,  w)M n—M @, Kp(g(D—vars))(3) = 3"}
Let L= (3’, d ,  w )  e L.

£p([wp - g(D-varS)])(80)
= (LP(wp) o L1,(g(D-vars))) (50) (def. 3.2.3)

= Lp(g(D—varS)) (3) (induction hypothesis)
= 5’. I

Now we are ready to show the main part of the soundness proof for the translation: At each level of the
translation operation. the generated P—interpretations satisfy the translated subformula.

Lemma 4.2.4 When fM is an M-frame satisfying the M-forrnula H in the world 80  then
for each recursive call TP := 1:0", wp, D—vars, 90 during the translation Hm; FM, 50) the following
invariant holds as long as fis a formula: For every x=  (S, d, w)  e ac KPH—P :FP.
Proof: By induction on the structure of M—formulae.
First Base Case: f = P(t1,...,tn) is an atom.
Let 9C= (S .  d ,  w)  € an

According to the translation rule for the atomic case we must show:
xp ll—P P(wp, “(Ep wp, D—vars, n . . . ,  “(im wp, D-vars, 90).

Neither wp nor atchanges during the recursive descent into the terms,
therefore, with lemma 4.2.3, Kp(wp)($0) = 3 holds for the translation of the terms. ($)

First of all we must prove by induction on the structure of M-logic terms:
Xp (rc(t, wp, D-vars, 9(3)) = XMG) for t e  { t l , . . . , tn} .  (9 )

Base case: t is a D-van‘able: xp(1t:(t, wp, D-vars. x)) = Xp“) = d(t) = KMU). (dcf. 2.2.4, 3.2.3)

Induction step: t = f (s l , .  . .,sm):

KPMG, Wp, D—vars, 90)

== Kp(f(wp‚ “(81. WP, D-vars, Jo,...‚Msm, WP, D-vars. m)) (translation rule)
= %(WPXSOXÜ (Kp(1t(sl, wp, D-vars, 5'0)..." Xp(rc(sm, wp, D—vars, 10)) (def 3.2.3)
= 3(1) (9(M(s1),. . . ,  KM(sm)) (induction hypothesis and *)

= KM“).
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Now we can conclude: 

~ ''""M P(t1,· .. ,fn) (lemma 4.2.2) 

=> S(P) (~(tl)" .. , ~(in» (def.2.2.5) 

=> 1(p(wp)(So)(P) (1(p(1t(t1, wp. D-vars, ~),... , 1(p(1t(in, wp, D-vars, ~» (* and~) 

. => 1(p'~ P(wp, 1t(t1, wp, D-vars, ~,... , 1t(in, wp, D-vars, ~) = .1"p. (lemma 4.2.3, def. 3.2.4) 

Second Base Case: .1" = -,I>(t1,... ,in) is a negated atom.
 

Let X= (S, It, w) e ~
 

According to the translation rule for the atomic case we must show:
 

1(p II-p ...,P(wp, 1t(t1, wp, D-vars, ~,... , 1t(fn, wp, D-vars, ~). 

With the same arguments as in the first base case we can show: 

1(p (1t(t, wp. D-vars,!It» = ~(t) for t e {t1,... ,fn}. 

Now we can conclude: 

~ II-M ...,P(t1" .. ,in) (lemma 4.2.2) 

=> not S(P) (~(tl)'"'' ~(in» (def. 2.2.5) 

=> not 1(p(wp)(SO)(P) (1(p(1t(t1, wp, D-vars, ~), ... , 1(p(1t(in, wp, D-vars, ~» (* and +) 

=> 1(p I~ ...,P(wp, 1t(t1, wp, D-vars, ~, ... , 1t(in, wp, D-vars, ~) =.1"p (lemma 4.2.3, def. 3.2.4) 

Induction Step: Let .1"be an M-formula, but no literal.
 

Let X = (S, It, w) e !It With lemma 4.2.2 we know ~ I'""M .1".
 

In order to show 1G> II-p .1"p we must perform a case analysis according to the structure of .1".
 

Case .1"= .1"1/\ 'Ji The translation rule is:
 

1t(.1"I/\ .1"2' wp, D-vars, ~ := 1t(.1"I' wp, D-vars, ~ /\ 1t(.1"2' wp, D-vars, ~. 

According to the induction hypothesis. we know 

1G> If-p 1t(.1"l' wp, D-vars, ~ and 1(p II-p 1t(.1"2' wp, D-vars, !JO. 
Thus 1(p II-p 1t(.1"l' wp, D-vars, !JO /\ 1t(.1"2' wp, D-vars, !JO =.1"p. (def. 3.2.4) 

Case .1"= .1"1 v .1"2' The translation rule is: 

1t( .1"1v .1"2' wp, D-vars, ~ := 1t(.1"I' wp, D-vars, ~) v 1t(.1"2' wp, D-vars, ~) where 

~ := {Xe ~I ~1f-M.1"tl and ~:= {Xe ~I ~If-M .1"2}'
 

Because of ~ If-M .1"either ~ I'""M .1"1 or ~ I'""M .1"2'
 

According to the induction hypothesis, we know
 

1(p If-p 1t(.1"l' wp, D-vars, !JO or 1(p II-p 1t(.1"2' wp, D-vars, ~
 

and therefore we conclude 1G> II-p !Fp.
 

Case .1"= 'r:Ix(j. The translation rule for this case is: 

1t('r:Ix(j, wp, D-vars, ~ = 'r:Ix 1t«(j, wp, D-vars + x, L) where L := {~x/a] I Xe ~and a e D}. 

According to the induction hypothesis, we know for every a e. D: !A1x1a]p II-p x( (j, wp, D-vars, !JO 
and therefore we conclude 1G> II-p .1"p. 

Case .1" = e(j. The translation rule for this case is: 

x( e(j, wp, D-vars, ~ := 'r:Iu 1t«(j, [wp . u], D-vars, L) where 

L= {(<\l(S),It,w[u/<\lDI(S,It,w)e t<\le S..... with<\l(S);t;.L}. 

1G>(prefix*(u, 'r:Iu 1t«(j, [wp . u], D-vars, L») (So) 

= 1G>(prefix*(u, [wp . uD) (So) (lemma 4.1.3) 

= 1(p(wp) (So) 

= S ;t;.L (lemma 4.2.3) 

=> only the Q! case in def. 3.2.4 need be considered. 
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Now we can conclude:
KM u—M P(t1, . . .,tn) (lemma 4.2.2)
=> S(P)(9(M(t1),..., KM(tn)) (def. 2.2.5)

=> ”@(WPXSOXP) (Kp(1t(t1. wp. D-vars. m. . . ,  xp(1t(tn,wp.D-vars. am) (* and ° )
. => ‘xp ll—P P(wp, 1t(t1, wp, D-vars, am. . .  1c(t.n, wp, D-vars, 90) = $1,. (lemma 4.2.3,  def. 3.2.4)

Second Base Case: :F = —1P(t1,...,tn) is a negated atom.
Let K:  (5, d ,  w)  5 ac
According to the translation rule for the atomic case we must show:

KP Il-P —.P(wp, “ ( Ip  wp, D-vars, mm. ,  Mt“, wp, D-vars, :10).

With the same arguments as in the first base case we can show:
xp (11:0, wp, D-vars. x)) = KMU) for t e {t1,...,tn}.

Now we can conclude:
KM Il—M —1P(t1,. . .  ,t“) (lemma 4.2.2)

=> not 5(P) (9(Ma1),.... aan» (def. 2.2.5)
=> not KP(W13X550)(P) (Kp(1c(t1, wp, D-vars, 30),..., xp(1t(tn, wp, D-vars, 70)) (* and 4°)
=> Xp n—P —.P(wp, 1:01, wp, D-vars, :10,..., “(In. wp, D-vars, 90) = TP (lemma 4.2.3, def. 3.2.4)

Induction Step: Let ‚‘F be an M-formula, but no literal.

Let 9C= (S.  d ,  w)  e sc With lemma 4.2.2 we know «Mn-M 9'.
In order to show xp n-p TP we must perform a case analysis according to the structure of ?.
Case _‘7 = 9'1A $2. The translation rule is:

Marl/\ T2‚wp, D-vars, 90 := 1t(9'1‚wp, D-vars, 70 A 1:(9'2‚Wp, D—vars, at).

According to the induction hypothesis. we know
xpn—P “(71' wp, D-vars, 50 and xp ll-p «(T2, wp, D-vars, SO.

Thus Xp lI—p 1t(9'1‚ wp, D-vars, 310 A Mfg; wp, D-vars, 90 = 7P- (def. 3.2.4)

Case af = flv 972. The translation rule is:
1|:( 71" 9’2, wp, D—vars, so := n(9f1‚wp, D-vars, sq) v «($2, wp, D—vars, HQ) where

X1:={9Ce xl KMIl—M f l}  and X2 := {Xe  xl a—M :72}.
Because of «Mu—M 9’ either KMn—M 9'1 or KMn-M 93,
According to the induction hypothesis, we know

xp "-1, n( 9'1, wp, D—vars, 90 or sq, II—P 1c(9f2‚wP, D-vars, 50
and therefore we conclude KP "-1; 9'1).

Case 9': V1: €. The translation rule for this case is:
1t(Vx g, wp, D-vars, 90 = Vx nu}, wp, D—vars + x, L) where L := {flax/a] I ace stand a e D}.
According to the induction hypothesis, we know for every a e .  D: XIX/ah; "—1) 1r( g, wp, D-vars, 90
and therefore we conclude KP "-1) 9'1).

Case f = ng.  The translation rule for this case is:
1t( ng ,  wp, D-vars, 90 := Vu 1c(g, [wp . u], D-vars, L) where

L=  ((M8),  d ,  w[u/¢]) I (S .  d., w)  e E. e e EL+ with (KS) $ .L} .
xp(prefix*(u, Vu Mg. [wp . u], D-vars, L))) (80)

= 9(P(prefix*(u. [wp . u])) (80) (lemma 4.1.3)
= %(WP) (50)
= S $ J. (lemma 4.2.3)

=> only the m case in def. 3.2.4 need be considered.

31



Let 4> E 9-+ with 4>(~) :;t:.L.
 

~ 1({u/4>]p If-p 1t(g. [wp . u]. D-vars. £) (induction hypothesis)
 

~ ~If-p !Fp. (dei. 3.2.4)
 

Case !F = 3x g. The translation rule for this case is: 

1t( 3xgI wp. D-vars. ~ := (1t(g, wp. D-vars. £»[x+-f(wp. D-vars)] where 

£:= {1({x/a] I a E D. ~E X. ~[x/a] II--M g}. 
Since ~ I~ !Fthere is at least one a E D with ~[x/a] I~ g. 
Therefore for the particular 1[ with ~(f(wp. D-vars» = 1[ 

1({X!lI]p If-p 1t{g, wp. D-vars. ~ holds according to the induction hypothesis. 

Furthermore. since 1({x/1[]p(f(wp. D-vars» =1[ (x 4 f(wp. D-vars) 

~x/1[lp If-p 1t(g, wp. D-vars. ~[x+-f(wp. D-vars)] =1t( 3x(1, wp. D-vars. ~ 

and since x • 1t( 3x V, wp. D·vars. ~. Xi> n-p :rp. 

Case 'f= Oq. The translation rule for this case is: 

1t(O(j, wp. D-vars. ~ := 1t(g, [wp . g(D-vars)]. D-vars. £) 

£ := {(S"'. d, w) I (~. d. w) E ~ 9t(~. S"'). (S"'. d. W)M II--M (j. ~(g(D-vars» (~) = S"'}. 

The induction hypothesis is immediately applicable stating 

~ II--p 1t(g, [wp . g(D-vars)], D-vars. ~ = !Fp. • 

Theorem 4.2.5 (Soundness of the Translation Algorithm) 
If .?lis a satisfiable M-fonnula then TI(!H} is a satisfiable P-fonnula. 

This is now a trivial consequence of the previous lemma. • 

Remark 

The proof shows that the translation from M-logic to P-Iogic does not change the models of the 

formulae. only the way they are described. In M-logic we have the accessibility relation as a relation in 

the usual way whereas in P-Iogic the same relation is described indirectly by the domain-range relation of 

the world-access functions. 
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Let o; e sfi'wim «S) H..
=> flan/41],. II—p 1c( g, [wp . u],  D-vars, L) (induction hypothesis)

=> Xp II-P ip. (def. 3.2.4)
Case 9" = Elx g. The translation rule for this case is:

1t( Sixt}, wp, D—vars, m := (1c( 9, wp, D-vars, L))[x<—f(wp, D—vars)] where
L:= {XIX/a] l ae  1D, xe K.  xM[x/a] Il—M g } .

Since KM lt—M ‚‘F there is at least one a e D with KM[x/a] “'M g.

Therefore for the particular a with flq,(f(wp, D—vars)) = a

$l 311) "'P 1t(Cj‚ wp, D-vars, 90 holds according to the induction hypothesis.
Furthermore, since 9([x/ 'a]P(f(wp, D-vars)) =}! (x e f(wp‚ D-vars)

flax/a]? "-1. Mg,  wp, D-vars, m[x<—-f(wp. D-vars)] = «:( Ext}, wp, D-vars, 90
und since x ( 1c( Ext}, wp, D-vars. 90, KPH-1; 9‘9.

Case T=  0g. The translation rule for this case is:
1c(<>g, wp, D—vars, 90 := 1t( @, [wp . g(D-v—ars)], D-vars, L)
L := {(S".d,w) l (S,c£,w)e xat(3,§'). (3",t1,w)M u-M g, xp(g(D-vars)) (S ) :  3'}.
The induction hypothesis is immediately applicable stating
KP It—p 1t((j,[wp . g(D-vars)], D—vars, 90 = TP. . I

Theorem 4.2.5 (Soundness of the Translation Algorithm)
If .'H'is a satisfiable M-formula then HOH) is a satisfiable P-formula.
This is now a trivial consequence of the previous lemma. I

Remark
The proof shows that the translation from M-logic to P-logic does not change the models of the
formulae, only the way they are described. In M-logic we have the accessibility relation as a relation in
the usual way whereas in P—logic the same relation is described indirectly by the domain-range relation of
the world-access functions.
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4.3 Completeness of the Translation 

In order to demonstrate the completeness of the translation function IT we show that whenever the
 

translated fonnula has a P-model then the original fonnula has an M-model. This proof is easier than the
 

soundness proof because we can discard the additional infonnation contained in the P-frame and show
 

that the M-frame, which is the kernel of the P-frame, is a model for the original fonnula. To this end we
 

show that the P-interpretations for the subformulae of the translated fonnula can be turned into
 

M-interpretations for the corresponding subfonnulae of the original formula. Therefore we again redefme
 

the translation functions IT and 1t. This time IT has as additional parameters the P-frame and a
 

P-interpretation and 1t has the P-interpretations for the corresponding subfonnulae as an additional
 

argument.
 

Definition 4.3.1 (The augmented translation functions.)
 

Let f p := «D, g, 9t), 3 w) be a P-frame and 3 p a P-interpretation with initial world .so'
 

The toplevel call is now: n(~fp,3p):=1t(1", [J, O,{SpD
 

The recursive calls to 1t are:
 

1t( 'f1\ (j, wp, D-vars, Sp) := 1t('f, wp, D-vars, Sp) 1\ 1t((j, wp, D-vars, Sp).
 

1t( 'fv (j, wp, D-vars, Sp) := 1t(~ wp, D-vars, SPI) v 1t( (j, wp, D-vars, Sp2)
 

where SPI := (Sp e Sp ISplf-p 1t(1"I'WP, D-vars)}
 

and SP2 := (3 p e Sp 13p lf-p 1t(1"2' wp, O-vars)}.
 

1t( VX'f, wp. D-vars, Sp) := Vx 1t('f, wp, D-vars + x. g"p)
 

where!fp := {3 p[x/a] 13p e Sp and a e ID}. 

1t( c~ wp, D-vars, Sp) := Vu 1t('f, [wp . u], D-vars, g"p) 

u is added as a new W-variable symbol to Vw inl1>. 

9"p := {.sp[u/C\>] I Sp e Sp and C\> e S-+ with (Sp(wp)oC\»(So) :;t.L}. 

1t( 3x'f, wp, D-vars, Sp) := (1t(~ wp, D-vars, Sp»[xt-f(wp, D-vars)] 

f is added as a new D-valued function symbol of type W ~ (DID-varsl ~ D) to lFD in Ep. 
9"p := (Sp[x/Sp(f(wp, D-vars»] I Sp e Sp with 3 p(f(wp, D-vars»:;t .L}. 

1t( 0 'f, wp, D-vars, Sp) := 1t('f, [wp . g(O-vars)], D-vars, gp) 

g is added as a new W-valued function symbol of type DID-varsl ~ (W ~ W) to lFwin l:p. 

1t( ±P(tl ,.. ,~), wp, D-vars, Sp) where P is an n-place predicate symbol 

:= ±P(wp, 1t(t1, wp. D-vars, Sp) ,.... 1t(~, wp, D-vars, Sp» 

1t( [(l}, ...•In). wp. D-vars, Sp) where [ is an n-place function symbol 

:= f(wp, 1t(ll' wp, D-vars, Sp) ,... , 1t(~. wp, D-vars, Sp» 

1t( x, wp, D-vars) := x where x is a D-variable symbol. • 
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4 .3  Completeness of the Translation

In order to demonstrate the completeness of the translation function II we show that whenever the
translated formula has a P-model then the original formula has an M-model. This proof is easier than the
soundness proof because we can discard the additional information contained in the P-frarne and show
that the M-frame, which is the kernel of the P-frame, is a model for the original formula. To this end we
show that the P—interpretations for the subformulae of the translated formula can be turned into
M-interpretations for the corresponding subformulae of the original formula. Therefore we again redefine
the translation functions 11 and 1t. This time 11 has as additional parameters the P—frame and a
P-interpretation and 1: has the P-interpretations for the corresponding subformulae as an additional
argument.

Definition 4.3.  1 (The augmented translation functions.)
Let 171, := ((D, 3 ,  SR), SW) be a P—framc and Sp a P—interpretation with initial world So.
The t0plevel call is now : HU, fps?) := 11:0", [], (),{SPD
The recursive calls to 1: are:
1t( am (j, wp, D-vars, 31,) := 1:05 wp, D-vars, Sp) A Mg, wp, D-vars‚ 3p).
r:( Tv (j, wp, D-vars, 3p) := uw; wp, D—vars, SP1) v 1c(tj, wp, D—vars. Sm)

where SP1 := {Sp 6 SP I Spit—P n:(9'1‚wp‚ D—vars)}
and SP2 := {Sp 5 Sp | Spit-p 1t(72.wp. D-vars)}.

1r( n'. wp, D-vars. ESP) := Vx nur, wp, D-vars + x. Ep )
where 51;. := {SPIx/a] ISP 5 Sp and a e D}.

1t( :19", wp, D—vars, SP) := Vu nur, [wp . u], D-vars. SP)
u is added as a new W-variable symbol to VW in EP.
S]; := {SPD/d)] | SP e 3p and q: e S__‚ with (3p(wp)o¢)(80) at .L }.

1c( 3x95 wp, D-vars, Sp) := (1t( :7. wp, D-vars, S'P))[x<—f(wp, D-vars)]
f is added as a new D-valued fimction symbol of type w _» 

(D'D-‘faErsI —> D) to IFD in z„
3P := {SP[x/Sp(f(wp, D-vars))] I SP 6. 31; with 8p(f(wp, D—vars)) at .L}.

1t:( 0 9', wp, D-vars, Sp) := KU", [wp . g(D-va1's)], D-vars, Sp)
g is added as a new W-valued function symbol of type DID"WIISI —) (W --> W) to IFW in EP.

1t( :tP(t1 ,t“), wp, D-vars‚ Sp) where P is an n-place predicate symbol
:= :l:P(wp. 1t(t1, wp, D-vars,Sp) . . . . .  nun, wp, D-vars,5p))

1t( ml , .  . . ,t“), wp, D—vars‚ Sp) where f is an n-place function symbol
:= f(wp, 1|:(t1, wp, D—vars.3p) . . . . .  Mt.“, wp, D-vars‚9p))

rt( x, wp, D-vars) := x where x is a D-variable symbol. I
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The next lemma states that the augmented translation functions are well defined. Le. when the input
 

P-frame is a P-model for the translated formula then the generated P-interpretations satisfy the
 

corresponding translated subformulae.
 

Lemma 4.3.2 When f'p is a P-frame satisfying the P-formula Jlin the world So then
 

for each recursive call ~p := 1t(:J, wp. D-vars, SI') during the translation OUr, f' p. 5 p) the following
 

invariant holds as long as :J is a formula: For every 5 pE Zp: 5 p lfJ> :Jp.
 

Proof: By induction on the recursion depth.
 

Base Cuse: Recursion depth =0: This is just the initial callrc(:J. 11. O. (51'})
 

Since ~p is assumed (0 satisfy :I{,lhe slalement holds by definition.
 

Induction Step: Let the recursion depth be greater than O.
 

Let :Jp := rc(:J, wp, D-vars, 51') be the recursive call to 1t.
 

The induction hypothesis states: For every.Gp E 51': .Gplf-p :Jp.
 

In order to show that the statement holds for the next recursion step we perform a case analysis
 

according to the structure of :J and analyze the corresponding translation rule.
 

Case :J= :J}I\. :J2' The translation rule is:
 

rc(:J11\. :JZI wp, D-vars, 51') := 1t(:J}1 wp, D-vars, 51') I\. 1t(:JZI wp, D-vars, 51')'
 

The induction hypothesis implies:
 

For every SI' E 51': gplf-p 1t(.'T} 1wp, D-vars, 51') and Splf-p 1t(:JZI wp, D-vars, 51') (def. 3.2.4)
 

This is just what we need.
 

Case J == ~rl v 'J'2' The translation rule is: 

1t( ;]'1 v :J21 wp, D-vars, Sp) := 1t(:J11wp, D-vars, ~Pl) v 1t(1"21 wp, D-vars, 31'2) 

where SPI := {51' E SI' I .Gplf-p 1t(.'T} 1 wp, D-vars)} 

and Zpz:= {SI' E 31' ISp If-p rc(:JZI wp, D-vars)}. 

Thus with "SI' If-p 1t(:J..." the condition is explicitly enforced in the defmition of 1t. 

Case :J= VX(j. The translation rule for this case is: 

1t( VX(j1 wp, D-vars, SI') := Vx 1t«(j1 wp, D-vars + x, 51') 

where g-p := {5 p[x/a) l.G p E 31' and a E D} 

The induction hypothesis implies: 

For every 51' E 31" Sp[x/a] Irp 1t«(j, wp, D-vars + x, 51') 1 (def. 3.2.4) 

i.e. the condition holds for g-p. 

Case:J =D(j. The translation rule for this case is: 

1t( Dq, wp, D-vars, SI') := Vu rc(q, [wp . u), D-vars, g-p) 

whcre g-p := {5 p[u/<\>J 151' E 31' and <\> E S--+ with (5p(wp)o<\»(So):t:..L}. 

Let gp[u/<\>] E 51" 
5 p(prefix*(u, 1t«(j, [wp. uJ, D-vars, ~p») (50) 

=5 p(prefix*(u, [wp . u] » (50) (lemma 4.1.3) 

=5 p(wp) (go) 

:t: ...L (lemma 4.1.4) 

~ 5 p[u/<\>J If-p 1t«(j, [wp . u], D-vars, S'p) (induction hypothesis and def. 3.2.4, Q[-case) 

Case '.f = 3x (j. The translation rule for this case is: 

1t( 3x(j, wp, D-vars, Sp) := (1t«(j1 wp, D-vars, ~p»[xt-f(wp, D-vars») 

~p := {5 p[x/5 p(f(wp, D-vars»] 151' E 5p with 5 p(f(wp, D-vars» ;;t:...L}. 

Let 5 p[x/gp(f(wp, D-vars»J E. g-p. 

Since 51' (f(wp, D-vars)]) =5 p[x/f(wp, D-vars)))(x) by induction on the structure of P-terms it can 

be shown that 5 p evaluates the terms occurring in 1t(q, wp, D-vars, g-p)[xt-f(wp, D-vars)] to the 
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The next lemma states that the augmented translation functions are well defined. i.e. when the input
P—frarne is a P—model for the translated formula then the generated P-interpretations satisfy the
correSponding translated subforrnulae.

Lemma 4.3.2 When FF is a P—frame satisfying the P-forrnula H in the world SO then
for each recursive call 97], := 1!;(7, wp, D—varsßp) during the translation HUI: FP, Sp )  the following
invariant holds as long as f i s  a formula: For every SP  6 3p :  Spit—P TP.
Proof: By induction on the recursion depth.
Base Case: Recursion depth = (): This isjust the initial call My, |"I, (),[SPD
Since Sp  is assumed to satisfy W. the statement holds by definition.
Induction Step: Let the recursion depth be greater than 0.
Let ‘fp := 1t( {F, wp, D-vars‚ 3P) be the recursive call to n.
The induction hypothesis states: For every SP 6 SP: SPII—p fp.
In order to show that the statement holds for the next recursion step we perform a case analysis
according to the structure of 9? and analyze the corresponding translation rule.
Case {F = flA %. The translation rule is:

1t( 71" EFZ, wp, D-vars, Sp) := 1r( fl, wp, D—vars, 31)) A rt(72,wp, D-vars. Sp).
The induction hypothesis implies:
For every Sp  e Sp :  Spit—p My],  wp, D—vars, Sp )  and Spit—p any? wp, D-vars, Sp)  (def. 3.2.4)
This is just what we need.

Case :P = :rlv frz. The translation rule is:
rt( 9'1 v 9'2, wp, D—vars, SP) := My]. wp, D-vars, SP1) v Mfg. Wp, D-vars, SP2)
where SPI  := {Sp 6 31) l SpIt-p TI:(9'1;WP. D—vars)}
and 3132:: {Sp 6 SP | Spit-P 1:072, wp, D-vars)}.
Thus with “Spit—p 112(7'. . . ”  the condition is explicitly enforced in the definition of re.

Case 7 = n. The translation rule for this case is:
1t( Vx g, wp, D—vars, Sp) := Vx Mg, wp, D—vars + x, SP)
where 5p := {SP[x/a] l ESP & SP  and a e 1D}
The induction hypothesis implies:
For every Sp  6 SP. SPD:/a] lt-P Mg, Wp, D-vars + x, 5p) , (def. 3.2.4)
i.e. the condition holds for SP-

Case 9‘ = ng .  The translation rule for this case is:
1t:( at“,  wp,  D-vars, Sp)  :=  Vu 1c( g, [wp . u] ,  D-vars, 5p)
where Sp := {ESPN/(1)] I Sp  6 Sp and d) e 34  with (Sp(wp)o¢)(30) at .L }.
Let SPÜI/[b] & 5P.

Sp(prefix*(u, TC( g, [wp . u], D—vars, 3p») (5 0)

= 3P(prefix*(u, [wp . u] )) (30) (lemma 4.1.3)

= £3[)(WP) (80)

7;- _L ( l emma  4 .1 .4 )

=> Sp[u/¢] li—P it( g, [wp . u], D-vars. 5?) (induction hypothesis and def. 3.2.4, m—ease)
Case T = 3x 9‘. The translation rule for this case is:

7t( Bxg, wp, D-vars, sp)  := (1t( g, wp, D-vars, §p))[x<——f(wp, D-vars)]
Sp := { sp[x/sp(r(wp, D-vars))] | 3p es 3P with 3P(f(wp, D-vars)) at ...}.
Let sptx/spamp, D-vars))] e. SP.
Since ESP (f(wp, D-vars)]) = 8P[x/f(wp‚ D-vars))](x) by induction on the structure of  P-tenns it can

be shown that Sp  evaluates the terms occurring in 1t( g, wp, D—vars, 3P)[x<-f(wp, D-vars)] to the
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same values as 3 p[xf.3 p(f(wp, D-vars»] does with the corresponding terms in 1t(q,wp, D-vars, ~p). 

Since 31' If-p (1t(y, wp. D-vars, g-p))[x~f(wp, D-vars)] (induction hypothesis) 

we can conclude 3 p[x/Sp(f(wp, D-vars))] If-p 1t(y, wp, D-vars, !Jp). 

Case :F =0 y. The translation rule for this case is: 

1t( Oy, wp, D-vars, SI') := 1t(q, [wp . g(D-vars)], D-vars, 3 p) 

Thus. the induction hypothesis is immediately applicable. • 

Now we are ready to prove the main part of the completeness theorem, namely that the P-interpretations
 

for the subformulae of the translated formula can be turned into M-interpretations for the corresponding
 

subformulae of the original formula.
 

Lemma 4.3.3 When f p := (fM,3 w) is a P-frame satisfying the P-formula .1iin the world 3 0 then
 

for each recursive call1t(:F, wp, D-vars, Sp) during the translation D(.1i;fp) the following invariant
 

holds as long as :Fis a formula:
 

For every 31' := (fp• 3 0, a, w)-E 3 p: 3 M := (fM' 3 p(wp)(So), a) If-M:F.
 

(3Mdenotes the M-interpretation in the world 3 p(wp)(30) that corresponds to the P-interpretation 3 p.)
 

Proof: Let :Fp := 1t(:F, wp, D-vars,3p) be the actual call to 1t, let Sp E 3 p and
 

let 3 Mdenote the corresponding M-intcrpretation in thc world 3 := Sp(wp)(30)::f...1.. (lemma 4.1.4)
 

With lemma 4.3.2 wc know 3 p lf-p Tp.
 

We perform an induction on the structure of M-fonnulae.
 

First Base Case: :F = P(t1.....t ) is an atom.
 n

Since the wp-argument of 1t remains unchanged in the recursive descent of 1t into terms. and since
 

3 p(wp)(go) is the actual world of 3 Mwe can show by induction on the structure of M-logic terms:
 

gM(t j ) =gp(1t(t j • wp. D-vars,Sp» for i = 1, ... ,n.
 

3 p lf-p:Fp implies Sp(tj ) *-.1. for i =1, ... ,n and
 

3 p(wp)(30)(P) (3M(t1)'···· gM(~» =g(P) (gM(t1)... ·, gM(~» holds
 

Thus. gM If-M:F·
 

Second Base Case: :F = -.P(t1,... ,t ) is an atom.
 n 

The proof is analogous to the first base case.
 

Induction Step: Let :Fbe an M-formula which is no M-literal.
 

We perform a case analysis according to the structure of:F.
 

Case :F =:Fj'" :F2' The translation rule is:
 

n(:F1", :F2, wp. D-vars, 3 p) := n(:Fj , wp, D-vars. 3 p) '" 1t(T2' wp. D-vars. Sp). 

The statement follows immediately from the induction hypothesis and def. 2.2.5. 

Case :F= :Fjv :F2' The translation rule is: 

n( :Fj v :F2' wp, D-vars. 3 p) := 1t(:Fj' wp, D-vars. Spl) v 1t(:F2' wp. D-vars, 3 P2) 

where3 pj := {gpE Splgplf-p 1t(Tj,WP, D-vars)} 

and 3 P2 := {gp E ~p I gpll-p n(T2' wp. D-vars)}. 

Since 3 p If-p :Fp, either 3 p E 3 P1 or Sp E 3 p2. 

We can apply the induction hypothesis finding either SM If-M :F1 or gM If-M :F2' thus SM If-M :F. 

Case :F= \lXY. The translation rule for this case is: 

n( \lXy, wp, D-vars. SI') := \Ix 1t(y, wp. D-vars + x, 5 p) 

where g-p := {gp[x/a] I gp E ~p and a E D}. 

Since 3 p If-p :Fp, for every a E D: 3 p[x/a] If-p 1t(y, wp, D-vars + x, 5p). 

We can apply the induction hypothesis finding SM[x/a] If-M y, thus 3 MIf-M :F. 
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same values as Sp[x/Sp(f(wp, D—vars))] does with the corresponding terms in 1t(g‚wp, D-vars, Sp).
Since SP  ll—P (Mg,  wp, D-vars, Sp))[x+-f(wp, D-vars)] (induction hypothesis)

we can conclude Sptx/Spdtwp, D-vars))] rep 1c( g, wp, D-vars, SP).
Case 1F = <) g. The translation rule for this case is:

1c( OC}, wp, D-vars, 3p) := 7t((‘, [Wp . g(D-vars)], D-vars, Sp)
Thus, the induction hypothesis is immediately applicable. I

Now we are ready to  prove the main part o f  the completeness theorem, namely that the P-interprelations

for the subformulae of the translated formula can be turned into M-interpretations for the corresponding
subformulae of the original formula.

Lemma 4.3.3 When FP  :=  (FMS w) i s  a P-frame satisfying the P-formula H in  the world 80  then

for each recursive call 1t( T, wp, D-vars ,SP) during the translation HCI-[, FP) the following invariant

holds as long as ? is a formula:
For every SP  := (FP, 30 ,  d ,  w)~e SP :  SM := (FM, Sp(wp)(30), Ii ) Il-M 7.
(SM denotes the M-interpretation in the world Sp(wp)(30) that corresponds to the P-interpretation SP.)
Proof: Let 71° := RU. wp, D-vars,3p) be the actual call to 1t, let Sp  6 Sp  and
let SM denote the corresponding M-interpretation in the world 8 := 8p(wp)(30) at _L. (lemma 4.1.4)
With lemma 4.3.2 we know Spit-p fl).
We perform an induction on the structure of M-formulae.
First Base Case:  ? = P(t1. . . . , tn)  i s  an atom.

Since the wp-argument of it remains unchanged in the recursive descent of n into terms, and since
3p(wp)(3 0) is the actual world of SM we can show by induction on the structure of M-logic terms:
SMUi) = 5P(1t(li, wp, D-vars,3p)) for i = 1,...,n
ESPN—P TP implies 8130i) $ _L for i = 1,...,n and
$P(wp)(30)(P) (SM(t1),. . . ,  SM(tn)) = 8(P) (SM(t1),. SM(tn)) holds
Thus, SM ll—M 9’.
Second Base Case: T = —.P(t1,...,tn) is an atom.
The proof is analogous to the first base case.
Induction Step: Let ? be an M-formula which is no M-literal.
We perform a case analysis according to the structure of af.
Case 7: flA $2. The translation rule is:

ICCFIA 72, wp, D-vars, Sp )  := 1:071, wp, D-vars, Sp)  A M72: wp, D-vars, 3p) .
The statement follows immediately from the induction hypothesis and def. 2.2.5.

Case :7: 71V ‚72. The translation rule is:
rt( gr] v Tywp, D--vars‚ Sp ) .  = “($11 wp, D-vars, 3P1)  v 1:072, wp, D——vars, Sm)
where 3m:  — {Sp 6 Sp | ESPN—p n(9fl‚wp, D- vars)}
and SP2 .= {SP 6 Sp | Spn—p 11172, Wp, D-vars)}.
Since Sp  ”—1, TP, either Sp  6 3P1  or Sp  6 31,2.
We can apply the induction hypothesis finding either SM Il—M fx or SM Il—M T2, thus SM ”'M 5.

Case 7 = Vx 9. The translation rule for this case is:
7r( n, wp, D-vars, Sp) := Vx rc(Cj, wp, D—vars + x, 3p)
where SP := {SP[x/a] ISP e SP and a e D}.
Since SP II—P 71,, for every a e D: 3P[x/a] ”—1, Mg, wp, D-vars + x, SP).
We can apply the induction hypothesis finding SM[x/a] Il—M (3, thus SM H—M 9F.
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Ca<;e l' = 0 g. The translation rule for this case is: 

n:( 0 gJ wp, D-vars, ~p) := Vu n:(g, [wp . u], D-vars, Z"p) 

where g-p := {Bp[u/$J I 3 p E ~p and $ E ~~ with (3 p(wp)o$)(5 0) :;t.1.}. 

Since Bp If-p 1'p and since 3 :;t.1., for every 3' wi th 9\(3,5 ') there is an $ E ~ ....... wi th $(3) = 3 '.
 

We can apply the induction hypothesis finding (fM' 3', d) II-M YJ thus 5 M II-M 1'. 

Case 1'= 3x g. The translation rule for this case is: 

n:( 3xgJ wp, D-vars, ~p) := (n:((jJ wp, D-vars, g-p»[xf-f(wp, D-vars)] 

gp := {:Jp[x/:JI'(f(wp, D-vars»] I gp E: ~I' with :Jp(f(wp, D-vurs»:;t..L}. 

Since gplf-p ~rp and :Jp(f(wp,D-vars» =gpfx/5p(Hwp. D-vars»I(x) wc have 

gl'lx/Bp(f(wp, D-varS)!lf-p 1t(f;J wp, D-vars, 31')' 

We can apply the induction hypothesis finding 5 M[x/5p(f(wp, D-vars»] II-M g, thus gM II-M1'. 

Case '.T= 0 g. The translation rule for this case is: 

n:( Ogl wp, D-vars, ~p) := n:(gl [wp. g(D-vars)), D-vars, ~p). 

Since :Jp II-p 1'p, according to lemma 4.1.4, :J' := :Jp(g(D-vars)(B) :;t.1.. 

According to def. 3.2.1, 9\(3, :J') holds. 

We can apply the induction hypothesis finding (fM' :J', d) II-M g, thus 3 M II-M '.T. 

Theorem 4.3.3 (Completeness of the Translation Algorithm) 

If O(J{) is a satisfiable P-formula then J{ is a satisfiable M-formula.
 

This is now an obvious consequence of the previous lemma. -


Combining theorem 4.3.3 and theorem 4.2.5 we obtain the main result of this section: 

Corollary 4.3.4 An M-formula 1'is unsatisfiable if and only if D('J) is unsatisfiable. • 
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Case flf = 1:16}. The translation rule for this case is:
11'.( mg, wp, D-vars, SP) := Vu Mg, [wp . u], D-vars, 5P)
where 3? := {ESPN/(1)] | SP e SP and q) E 3—) with (3P(wp)o¢)(80) at .L}.
Since Sp  ""P TP and since S i i ,  for every 8 '  with %(Sß ' )  there is an q) e 3__> with (NS) = 3’.
We can apply the induction hypothesis finding (FM, 8 ', Ii) ll—M @, thus 3M H—M f.

Case 1T = 3x (}. The translation rule for this case is:
7r( 3x93 wp, D—vars, sp) := (rag, wp, D-vars, Sp))[x<—-f(wp, D-vars)]
51, := {3p[x/3p(l'(wp, D-vars))] I Sp  c: 3]. with 8P(f(wp, D~vars)) at .L }.
Since SP  Il-p ‚‘Fp and 3P(l'(wp.D-vars)) == Split /S p( l ' (wp .  D-vars))l(x) we  have

3„lx/8p(f(Wp, D—varsm n—p Mg, wp, D-vars, Sp).
We can apply the induction hypothesis finding SM[x/Sp(f(wp. D-vars))] ”‘M (.3, thus SM Il—M 9'.

Case 9?: 0 (j. The translation rule for this case is:
1c( 09‘, wp, D—vars, Sp)  := Mg,  [wp . g(D-vars)], D-vars, SP).
Since ESP ll—P 9'1), according to lemma 4.1.4, 3 ’ := Sp(g(D-vars))(8) at _L.
According to def. 3.2.1. SMS, S ’) holds.
We can apply the induction hypothesis finding (PM, 5 ' ,  dl) Il—M g, thus SM u—M f. l

Theorem 4.3.3 (Completeness of the Translation Algorithm)
If {ICH ) is  a satisliable P-formula then % is a satisfiable M—formula.

This is now an obvious consequence of the previous lemma. l

Combining theorem 4.3.3 and theorem 4.2.5 we obtain the main result of  this section:

Corollary 4.3.4 An M-l‘ormula ? is  unsatisfiable i f  and only if 11(7) i s  unsatisfiable. I



Chapter Five
 

Tools for P-Logic
 

5.1. Conjunctive Normal Form 

A fonnula in conjunctive nonnal fonn is a conjunction of a disjunction of literals, where all variables are 

taken to be universally quantified. Each disjunction is usually called a clause and is written as a set. Since 

the P-Iogic syntax contains the logical connectives 1\ and v and the universal quantifier, but no existential 

quantifier and no modal operators, a transfonnation of an arbitrary fonnula to a set of clauses is simpler 

than in first-order predicate logic. Therefore only the critical aspects are dealt with in the following. 

Transformation of P-Formulae to Clauses: 

In order to generate the conjunctive normal form of a P-formula the distributivity laws for 1\ and v, laws
 

for moving universal quantifiers over conjunctions and in certain cases over disjunclions and a law for
 

renaming universally quantified variables are necessary. Each transfonnation rule must be verified by
 

proving that a P-interpretation satisfies the original fonnula if and only if it satisfies the transfonned
 

fonnula. As this is fairly straightforward, we only demonstrate it for the rules that move quantifiers for
 

W-variables and consider only those cases, which actually occur.
 

Lemma 5.1.1 (Moving Quantifiers over Conjunctions)
 

Let Vu er1\ g) be an M-adjusted P-fonnula (i.e. the prefix ofu is unique) where the W-variable u occurs
 

both in .'F and g. Let 5 p be a P-interpretation for Vu (.'F 1\ g).
 
Then 5 p IrpVu (.'F 1\ g) iff 5 p Irp Vu .'F 1\ Vu g.
 
Proof: Let 50 bc the initial world of 51"
 

~ P 11-1' Vu (~r 1\ ~i)
 

irf for wp = prdix *(u, 'f 1\ (j) (der. 3.2.4) 

either SI'(wp)(~o)=..L andSl'lr-p.'FI\Y 

ill SI'(wp)(So):;:' ..L and for cvery lj> E ~~with (Sp(wp)olj»(50):;:...1.: 5 p[u/lj>] If--p .'F 1\ g 
iff for wp = prefix*(u, 'f1\ g) = prcfix*(u, 1) = prefix*(u, g) 

~ 5 p(wp)(50) = ..L and 5 p Irp 'fand 5 p If--p g 
ill 5 p(wp)(5 0):;:. ..L and for every lj> E g~with (5p(wp)olj»(50):;:...L: 

5 p[u/lj>] If--p .'Fand 5 p[u/lj>] If--p g 
ifffor wp = prefix*(u, 1) 

~ 5 p(wp)(50) = ..L and 5 p If--p .'F 

ill 5 p(wp)(50):;:. ..L and for every lj> E g~with (5 p(wp)olj»(50) :;:'..1.: 5 p[u/lj>] If--p.'F 

and for wp = prefix*(u, g) 

~ 5 p(wp)(50) = ..L and 5 p If-p g 
QI Sp(wp)(So):;:' ..1. and for every lj> E ~~with (Sp(wp)olj»(50):;:...1.: Sp[U/lj>jlf--p y 

iff Splf-I' Vu:F alld SI'If--p Vu y. 
iff 5 p If--p Vu 'f 1\ Vu g. • 
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Chapter Five

Tools for P-Logic

5 .1 .  Conjunctive Normal Form

A formula in conjunctive normal form is  a conjunction of a disjunction of  literals, where all variables are

taken to be universally quantified: Each disjunction is usually called a clause and is written as a set. Since
the P-logic syntax contains the logical connectives A and v and the universal quantifier, but no existential
quantifier and no modal operators, a transformation of an arbitrary formula to a set of clauses is simpler
than in first—order predicate logic. Therefore only the critical aspects are dealt with in the following.

Trans format ion  o f  P -Formulae  to C lauses :

ln order to generate the conjunctive normal form of a P-formula the distributivity laws for A and v ,  laws
for moving universal quantificrs  over conjunctions and in certain cases over disjunctions and a law for

renaming universally quantified variables are necessary. Each transformation rule mus t  be verified by

proving that a P-interpretation satisfies the original formula if and only if it satisfies the transformed
formula. As this is fairly straightforward, we only demonstrate it for the rules that move quantifiers for
W-variables and consider only those cases, which actually occur.

Lemma 5.1.1 (Moving Quantif iers over Conjunctions)
Let Vu (TA g) be an M-adjusted P-forrnula (i.e. the prefix of u i s  unique) where the W-variable it occurs

both in &" and C}. Let SP be a P-interpretation for Vu (IFA (j).
Then ESP lku (QT/\ g)iff3pI1—P Vu YA Vu g.
Proof: Let 30  be the initial world of SP-

‘3', “'P Vu (ff/x 9‘)
iff for wp := prel'ix*(u, ? A g) (def. 3.2.4)

% 3|‚(Wp)(50) = _L and Sp  I+---p ‚TA g
m S|‚(wp)(80) # .1. and for every e e Sawith (3P(wp)o<p)(80) at .L: SPlu/cb] ll—p ‚TA {;

iff for Wp = prciix*(u, 9'A g) = prefix*(u, T) = prefix*(u, (j)
elm Sp(wp)(30) = .1. and ESPN—P fandSPII—p (}
9_r 5P(wp)(5 0) at .1. and for every e e Sawith (SP(wp)o¢)(30) i .L:

3p[u/¢] "’p 9’ and Sp[u/¢l II—p 9‘
iff for wp = prefix*(u, 9‘)

gm 3P(wp)(50) = _L and Spit—P fr
or 3P(WP)(30) at .1. and for every (b e Sawith (3P(wp)o¢)(30) =: .L: SP[u/¢] li—P 7

and for wp = prefix*(u‚ g)
either 5p(wp)(80)= ..l. and SP  11—]; g
Q; 3P(wp)(50) # .1. and for every q) e Sawith (8P(wp)oq>)(50) ;: _L: Sp[u/¢'] "‘P 9:

iff SPIi—P Vu :r and SPIFP Vu (}
iff SPIt—PVU 7A Vu g. ‘ l
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Lemma 5.1.2 (Moving Quantifiers over Disjunctions)
 

Lcl :;-v\lu (i be an M-adjusted P-fom1ula where the W-variable u docs not occur in '.J.
 

Let 3 (> he a P-interprClal ion for ~) vVu (I. Then ~ p 11-(> ~lvVll q iIT 31' 11-1' Vu (:F v ~i).
 

Proof: Let wp;= prciix'"(u, g) = prefix*(u, 'FvVu (j). Lct ~o be the initial world of~p.
 

"~" Let SI' 11-1' :rv\lu (j.
 

Case 1: SI' 11-1' 'F, thus SI' 11-1' 'Fv (j. (def. 3.2.4)
 

If Sp(wp)(So) = .L then SI' If-p 'Fv yand therefore SI' If-p \lu ('F v g). 
If Sp(wp)(So) =I=.L then Sp[u/<\>J If-p 'Ffor the corresponding world-access functions, 

thus Sp[u/<\>J If-p 'Fv g and therefore SI' If-p VU ('F V g). 
Casc 2; SI' If-p Vu g 

If Sp(wp)(So) =.L then SI' If-p g, thus SI' If-p 'Fv g and therefore SI' If-p \lu ('F v g). 
IrSp(wp)(So) =I=...l. thcn Sp[u/<\>J If-p 'Ffar the corresponding world-access functions, 

thus S p[ u/<\> IIf-p 'F v y and therefore S p If-p VU ('F v 9). 
"(:.:;:" Let ~plf-p Vu ('Fv Q). 

Case 1: Sp(wp)(So)=...l.. 

~ ~I' If-p:.F v 9 
~ S P If-p 'F or g p If-p 9 
~ SI' If-p 'For SI' If-p Vu g. 
~ Splf-p 'FVvu g. 

Casc 2: Sp(wp)(So) =I=...l.. 

~ For thc corresponding world-acccss functions <\>: Sp[u/<\>J If-p 'Fv g. (def. 3.2.4) 

~ For the corresponding world-access functions <\>: gp[u/<\>J If-p :.For Sp[U/<\>J If-p g. 
~ SI' If-p 'For for the corresponding world-access functions <\>: Spfll/<\>J If-p g. 
~ Splf-p :.FvVu g. -

Example for a transformation to conjunctive normal form. 

M-fom1Ula: o3x Px v 0 (Qx 1\ oRx) 

i i i i 
wag v 

~ P-formula: Vw P([wJ, a[w]) v (Q([wgJ, a[w]) 1\ Vv R([wgvJ, a[w))) 

~ Clauses: Vw P([wJ, a[w]) v Q([wg). a[w]) 

Vw' P([w'J. a[w']) v R([w'gv), a[w']). -

Theorem 5.1.3 (Soundness and Completeness of the Transformation into Clauses)
 

a) An M-adjusted P-formula 'Fis satisfiable iff the corresponding conjunctive normal fonn is satisfiable.
 

b) The conjunctive normal form is M-adjusted.
 

Proof: a) This is a consequence of the two previous lemmata and the corresponding lemmata for the
 

variable renaming rule and the distributivity laws (which are obvious.)
 

b) This is a consequence of three facts:
 

1. The transformation into conjunctive nonnal fonn does not change the termstructure. 

2. It is not necessary to change the ordering of quantifiers. 

3. Clauses are completcly variable disjoint. _ 
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Lemma 5 .1 .2  (Mov ing  Quantif iers  over  Disjunctions)
Let y'vVu g; be an M-adjustcd P-fomtula where the W—variable u does not occur in f.
Let Sp  he a P-intcrprctalion for {I'vVu (_‘j. Then Spur-1, TVVu (j ilT Sp  tap Vu (:)-“v ( i ) .

Proof: Let. wp := prefix*(u, g) = prelix*(u, i vVu  g). Let 30 be the initial world ofSp.
“==>” Let SP  u—P :TvVu 9.
Case 1:  Spit—P 9r, thus Spit—p frv g. (def. 3.2.4)

If Sp(wp)(80) = J. then ESP "'P 57V g and therefore SP  tt—P Vu (TV 9“).
If Sp(wp)(80) at _L then ESPN/(1)] "'P 7 for the corresponding world-access functions,

thus ESPN/4)] tt—p ‚')-"v (} and therefore SP  "'P Vu (7v  g).
Case 2: SP  “’P Vu g

If 3P(wp)(50)  = _L then SP  ”“P C}, thus SP  ”‘P i v  g and therefore SP  ll—P Vu (TV 9).

If Sp(wp)(30) # _L then Sp[u/¢] lI—p if for the corresponding world-access functions.
thus  Sp[u/<1>l It—P Tv  (; and therefore Sp  ll—p Vu ( iv  g) .

“C:” Let 3 , ;  It~P Vu (at v (;).

Case 1: Sp(wP)(30) = _L.
=> Spit-P :rv g
==> Spit-p fo r  Sptt—p 9
=> SPIt—P fo r  Sptt—P Vu g.
:> Spit—P _‘TvVu g.

Case 2: Sp(wp)(30) at _L.
=> For the corresponding world-access functions It): Shin/tb] n—P :? v g. (def. 3.2.4)
:> For the corresponding world—access functions 6): SPE/<i>] “—1) :7 or ESPN/6)] It—P @.

=> Sp  tt—p T or for the corresponding world-access functions e: E3 Pin/(9] ”—I) g.
=> ESPN—P vu  g. I

Example for a transformation to conjunctive normal form.
M-fomtula: [fix Px v () (Qx A EtRx)

T T T ’ T
w a g v

—> P-formula: Vw P([w],  a[w])  v (Q([wg],  a[w]) A Vv R([wg.v], a[w]))

—> Clauses: Vw P([w],  a[w])  v Q([wg]‚ a[w])

Vw’  P([w’],  a[w’]) v R([w’gv],  a[w']).  I

Theorem 5.1.3 (Soundness and  Completeness of the Transformation into Clauses)
a) An M-adjusted P—formula ? is satisfiable iff the corresponding conjunctive normal form is satisfiable.
b) The conjunctive normal form is M-adjusted.
Proof: a) This is a consequence of the two previous lemmata and the corresponding lemmata for the
variable renaming rule and the distributivity laws (which are obvious.)
b) This is a consequence of three facts:

1. The transformation into conjunctive normal form does not change the terrnstrueture.
2 .  It is not necessary to change the ordering of quantifiers.
3 .  Clauses are completely variable disjoint. I
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The Semantics of Clauses Without Quantifier Prefix 

The semantics of clauses without a quantifier prefix in first-order predicate logic is: A clause C with free 

variables {xl'" .•Xn} is true in an interpretation ::3 iff::3 [Xl/cl'" .•xn/cn] I~ C for every combination of 

variuble assignments x/ci' The choice of a particular variable assignment is independent of the other 

assignments. This nice property which al10ws to eliminate the quantifier prefix, holds also in P-logic 

when the accessibility relation is serial. Unfortunately it does llilt hold in non-serial interpretations as the 

following example demonstrates: 

Consider the M-formula oOoP and the corresponding P-Iogic version V'u,v P[uav] which is satisfied by 

the following interpretation: 

v 

Only the combination ,gp[u/(h v/(b] satisfies the literal, whereas ,gP[uI$l' v/$3]([uav])(,gO) =.1.. In fact 

this combination would not be considered during the recursive descent of If-p because as soon as 

::3 p[u/$Il has been generated for the quantifier Vu, there is no further world accessible from 

::3 P[uI$I]([ ua])(::30)' Thus ::3 P[u/$I]If-p V'v P[uav] regardless of the structure of the literal. 

In order to eliminate the quantifier prefix in the non-serial case as well and to "Jlatten" the definition of 

the satisfiability relation If-p for clauses, we must consider only those P-interpretations ,g p ';= 

::3 P[x/c l .... ,xr/cn] which are "continuing", i.e. which have the property that for every W-variable Xi 

with wp = prefix*(xi' C): ::3 p '(wp):;I!:.1. => ::3 p '([wP,xi]) :;I!:.1.. The first P-interpretation in the above 

example has this property, the second one has not. This motivates the following definition: 

Definition 5.1.4 (Continuing P-Interpretations) 

A P-interpretation::3p with initial wOrld::30 is called ~F<:ontinuing for an M-adjusted P-formula 1"iff 

for every W-variable u in 1"with wp =prefix*(u, 9): ,gp(wp)(,go):;I!:.1. implies ,gp([wp.u])(::30) :;I!:.1. .• 

Since P-interpretations are total functions on terms when the accessibility relation is serial, all 

P-interpretations are continuing in this case. 

Now a correspondence between a P-model ,gp for a fully quantified clause VVl, ... ,vn C' and 

C'-continuing P-models ::3 p[v /c1"'" vn/en] for C' can be shown. It will be used frequently in the 

soundness proof for the resolution rule in chapter 7. 
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The Semantics of Clauses Without Quantifier Prefix

The semantics of clauses without a quantifier prefix in first-order predicate logic is: A clause C with free
variables {x, ,...,xn} is true in an interpretation 3 iffS[x1/c1,...,xn/cn]tt— C for every combination of
variable assignments xi/ci. The choice of a particular variable assignment is independent of the other
assignments. This nice property which allows to eliminate the quantifier prefix, holds also in P-logic
when the accessibility relation is serial. Unfortunately it does not hold in non—serial interpretations as the
following example demonstrates:
Consider the M-formula BOEIP and the corresponding P—logic version Vu,v P[uav] which is satisfied by
the following interpretation:

0 a

seq, to >o¢3—vep° ¢2U a
u V

Only the combination 8P[u/q>2, v/¢3] satisfies the literal, whereas Slam/$], v/¢3]([uav])(30) = .L. In fact
this combination would not be considered during the recursive descent of ”—13 because as soon as
ESPN/(1)1] has been generated for the quantifier Vu, there is no further world accessible from
S[:[UI¢1](lua])(SO). Thus Spin/431] It—p VvP[uav] regardless of the structure of the literal.

In order to eliminate the quantifier prefix in the non-serial case as well and to “flatten" the definition of
the satisfiability relation It—P for clauses, we must consider only those P-interpretations S P" :
3P[x1/c1,...,xn/en] which are “continuing”, i.e. which have the prOperty that for every W—variable xi
with wp =prefix*(xi, C): 8 P ’(wp) ¢_L => Sp’([Wp.xi]) rt _L. The first P-interpretation in the above
example has this property, the second one has not. This motivates the following definition:

Def in i t ion  5 .1 .4  (Cont inuing P-Interpretat ions)
A P—interpretation SP  with initial world 30  is called T—continuing for an M-adjusted P-fonnula 9’ iff
for every W-variable u in 9? with wp = prefix*(u, 9): SP(wp)(SO) at .L implies SP([wp.u])(30) # _L. I

Since P—interpretations are total functions on terms when the accessibility relation is serial, all
P-interpretations are continuing in this case.

Now a correspondence between a P-model SP  for a fully quantified clause Vv1,. . . ,vn C' and
C'-continuing P—models Sp[v1/c1,...,vn/en] for C' can be shown. It will be used frequently in the
soundness proof for the resolution rule in chapter 7.
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Theorem 5.1.5 (The Semantics of Clauses)
 

Let C = VVl'" vn C be a fully quantified clause and let 3 p be a P-interpretation for C.
 

::3 p lf--p C iff for cvcry C-continuing P-interpretation 3 p ':= ::3 P[v/cl""'vn!cn]: ::3 p 'lf-p C.
 

Proof: Let::3 0 be the initial world of ::31"
 

"=:>" Let Sp If--p C and let Spn := Sp[vl/cl""'vn/cn] be a C-continuing P-intcrpretation.
 

In order to show ::3 pn If-p C we follow per induction the recursive descent of If--p. Thus we reconstruct
 

3 rn in such a way that at each level i for ::3Pi := ::3 P[v/c1,. .. ,v!ci]:
 

3 Pi lf-p VVi+l",vn C is ensured and therefore finally 3 p[v/c1,... ,vn!cn] If-p C holds.
 

Base Case: gp If-p C is the precondition.
 

Induction Step: Let 3 Pi := 3 p[v/c1,... ,v/ci] and 3 Pi If-p VVi+l, ... ,vn C (*) (induction hypothesis)
 

Case 1: vi+l is aD-variable.
 

Because of (*) we know that 3pi[vi+l/ci+l] =: 3 Pi+1 = ::3p[v1lc1, ... ,vi+/ci+l] If-p\fvi+2, ... ,vn C 

Case 2: vi+l is a W-variable with wp =prefix*(vi+l' C) 

Case 2.1: ::3 Pi(wP)(::3 0) = ..1.. 

=> gPi If-pVvi+2,· .. ,v C and the satisliability does not depend on the variable assignment ofvi+l'n 

=> 3 pi [vi+l!ci+l] =: 3pi+)If-pVvi+2, ... ,vn C 

Case 2.2: gPi(wP)(go):f:...1.. 

Since 3 Pi(wp) =::3 pn(wp) and gPn([w.vi+l])(30):f:...L (gPn is C-continuing) there is a world

access function ci+l with (gPi(wP) 0 ci+l) (30) :f:...L. Therefore and because of (*) we know again 

3 Pi [vi+l!ci+l] =: 3Pi+llf--pVvi+2, ... ,vn C. 

"(::::" Assume for every C-continuing P-interpretation 3 rn := 3 p[vl!c1,... ,vr/cn]: 3 rn If--p C (*) 

In a first step we follow the recursive descent of If-p when applied to the quantifier prefix of C and show 

at each level with gPi=gp[v1!c1, ,v/ci]: 

For every W-variable Vj E {vl, ,vJ and wp := prefix*(vj'C): 

if 3 pi(wp)(3 0):f:...L then 3 p/[wp.vjl)(go) :f:...L. 

This is an immediate consequence of the QI case in the definition of If-p (def. 3.2.4), therefore the proof 

is omitted. 

The result of this induction is that the literal level of the recursion is reached with C-continuing 

P-interpretations gPn := gp[vl!cl'" .,vrlcn] and the assumption (*) states gPn If-p C. 

This is the base case of a second induction, this time "bottom up" proving that at each level either 

g Pi:= ::3 p[v/c), ... ,v!cjJ If-pVVi+2'" vnC when 3 pi(prefix*(vi+l' C»(30) =..L, or 

for every world access function ci+l with (gPi(wP) 0 ci+l) (30) :f:...1.: 3 pi[vi+l!ci+l] If--pVvi+2 ...vn C 

and therefore gPi If-pVVi+l'" vn C. 

This second induction gives the desired result: 3 p If-p C. • 
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Theorem 5 .1 .5  (The  Semantics  of C lauses )

Let C = Vvl . . .vn C' be a fully quantified clause and let Sp  be a P-interpretation for C.
ESPN—P C iff for every C‘—continuing P-interpretation Sp‘ := Sp[v1/c1,...,vn/cn]: SP'It—p C'.
Proof: Let 30  be the initial world of Sp.
“=>” Let 8 P ”'P C and let SPn  := SP[v1/cl.. . „vn/cn] be a C'-continuing P-interprctation.
In order to show Spn Il-P C' we follow per induction the recursive descent of ll—p. Thus we reconstruct
Sp“ in such a way that at each level i for Spi := Sp[v1/c1,. . „vi/ci]:
Spin—P Vvi+1...vn C' is ensured and therefore finally Sp[v1/c1....,vn/cn] “—1) C' holds.
Base Case: SP  ”—1, C is the precondition.
Induction Step: Let 3P i  := 3p[v1/c1,...,vi/ci] and 3P i  ”'P VV
Case 1: vi+1 is a D-van'able.

i +1 ! "a  C' (* )  (induction hypothesis)

Because of (*) we know that SPi[vi+1/ci+1] ==: SPi+1  = Sp[v1/c1,...,vi+1/ci+1] It—PVvi+2,...,vn 0
Case 2: Vi+1  is a W-variable with wp = prefix*(v C')
Case 2.1: Spi(wp)(50) = _L.

=> Spi ll—vi+2,. . „V„ C' and the satisfiability does not depend on the variable assignment of Vi  
+1 .

i+1 ’

=> SPi lv iH/CiHl  =13Pi+1 ""PVVi-f-Z’m‘vn C'

Case 2.2: Spi(wp)(50) at _L.
Since Spi(wp) : Spn(wp) and Spn([w.vi+1])(80) at _L (Spn is C'-continuing) there is a world—
acccss function Ci+1  with (Spi(wp) 0 Ci

+1)  (30) at .L. Therefore and because of (*) we know again
3Pi[Vi+1/Ci+1] == SS1>i+1 "‘vi+2""’vn C'.

“<=” Assume for every C'-continuing P—interpretation SPn := SP[v1/c1,. . . ‚vn/cn]: Spn Il—p C' (iii)
In a first step we follow the recursive descent of ”-1) when applied to the quantifier prefix of C and show
at each level with Spi=3p[v1/c1.. . „vi/ci]:
For every W—variable vj e {v1,...,vi} and wp := prefix*(vj,C’):

ifSPi(wP)(SO) at _L then 8pi([wp.Vj])(So) rt .L.
This i s  an immediate consequence of  the @ case in the definition of Il—P (def. 3.2.4), therefore the proof
is omitted.

The result  o f  th is  induction i s  that the literal level of the recursion i s  reached with C'-continuing

P-interpretations Spn := Sp[v1/c1,. . „vn/cn] and the assumption (iii) states Sp“ "-1) C'.
This is the base case of a second induction, this time “bottom up” proving that at each level either
313 i  := 8P[v1/cl,. . „vi/ci] Il—PVVi+2...VnC' when 3pi(prefix*(vi+1. C'))(SO) = .L. or
for every world access function c i  +1 with (3  Pi(wp)  o Ci  

+1) (80) ¢_L: SPi [Vi+1 /c i+1 ]  ”‘PVVi+2' . ‚vn 0
and therefore 3131 lt—PVvi+1...vn C'.
This second induction gives the desired result: SP "'P C. I
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5.2 Substitutions 

One of our important notions is that of a substitution as a mapping from terms to terms. Substitutions 

must be constructed with respect to two requirements: 

1. The application of a substitution to a term must produce again a wellformed term.
 

In our case this means that D-variables must be mapped to D-terms and W-variables must be mapped
 

either to W-terms or to world-paths. In the latter case the world-path that replaces the W-variable u must
 
be spliced into the world-path containing u such that the result is again a world-path.
 

2. The instance of a true formula should again be true.
 

In our case this means that a W -variable, which is interpreted in P-Iogic as a world-access fimction, can
 

only be replaced by a world-path that can also be interpreted as a world-access fimction, Le. a fimction
 

that maps worlds to accessible worlds. The syntactic restrictions to substitution components for
 

W-variables which guarantee this property depend on the properties of the accessibility relation 9t: In
 

case 9t is transitive, a W-variable can be replaced by every non empty world-path because in transitive
 

relations every world which can be accessed via several other worlds can also be accessed in one step. In
 

all other cases a W-variable can be replaced by one W-term. In case 9t is reflexive, also the empty
 

world-path - which is interpreted as the identity mapping - is admissible..
 

To fix these conditions we introduce the notion of an 9t-admissible world-path. 

Definition 5.2.1 (9t-Admissible World-Paths)
 

Depending on the properties of the accessibility relation 9t, a world-path wp is called 9t-admissible if it
 

satisfies the following properties:
 

In case 9t is transitive: the length of wp may be greater than 1.
 

In case 9t is reflexive: wp may be empty.
 

In the other cases wp consists of exactly one W-term.
 

In case 9t is symmetric: wp may consist of an "inverse" W-term [g-I(SI""'~)]
 

where g-1 is the associated inverse symbol for some symbol g. 

(c.f. def. 3.1.1). • 

Examples and counterexamples for 9t-admissible world-paths 

properties of 9t I 9t-admissible I non-9t-admissible 

no special properties I [al ri, [a bl. ra-') 
reflexive I U, [a] La b], La-I] 

symmetric I [a] [a-I] n. [a b] 

reflexive and symmetric I n, [a], [a-I] [a b] 

transitive I [a], [a b] U, [a-I] 

transitive and reflexive I n, [a], [a b] [a-I] 

Lemma 5.2.2 Given a P-interpretation with an accessibility relation 9t, an 9t-admissible world-path is 

interpreted as a world-access fimction. 

Proof: Obvious. • 
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5 . 2 Subst i tut ions

One of our irnportant notions is that of a substitution as a mapping from terms to terms. Substitutions
must be constructed with respect to two requirements:
1. The application of a substitution to a term must produce again a wellformed term.
In our case this means that D-variables must be mapped to D-tenns and W—variables must be mapped
either to W-terms or to world-paths. In the latter case the world-path that replaces the W—variable u must
be Spliced into the world-path containing 11 such that the result is again a world-path.
2 .  The instance of a true formula should again be true.
In our case this means that a W—variable, which is interpreted in P-logic as a world—access function, can
only be replaced by a world-path that can also be interpreted as a world-access ftmction, i.e. a function
that maps worlds to accessible worlds. The syntactic restrictions to substitution components for
W—variables which guarantee this property depend on the properties of the accessibility relation SR: In
case SR is transitive, a W-variable can be replaced by every non empty world-path because in transitive
relations every world which can be accessed via several other worlds can also be accessed in one step. In
all other cases a W—variable can be replaced by one W—term. In case SR is reflexive, also the empty
world-path - which is interpreted as the identity mapping - is admissible. _

To fix these conditions we introduce the notion of an fli-admissible world-path.

Definition 5.2.1 (ER -Admissible World-Paths)
Depending on the properties of the accessibility relation ER, a world-path wp is called Eli-admissible if it
satisfies the following properties:

In case SR is transitive: the length of wp may be greater than 1.
In case SR is reflexive: wp may be empty.
In the other cases wp consists of exactly one W—tenn.
In case 9% is symmetric: wp may consist of an “inverse” W-tenn [g'1(s1,. . .,sk)]

where g'1 is the associated inverse symbol for some symbol g.
(c.f. def. 3.1.1). I

Examples and counterexamples for Eli-admissible world-paths
properties of ER | 9i-admissible l non-9i-admissible

no special properties l [a] | |]. [a bl .  [3‘1]
reflexive I [J.[a] I [abl.[a“]
symmetric I [a] [a‘l] I [ ] ,  [a b]
reflexive and symmetric l [ ] ,  [a], [a' l ]  I [a  b]
transitive I [a]. [ah] I II]. [a4]
transitive and reflexive I [], [a], [a b] | [a'l]

Lemma 5.2.2 Given a P—interpretation with an accessibility relation SR, an Eli-admissible world-path i s
interpreted as a world-access fimction.
Proof: Obvious. I

41



Definition 5.2.3: (Substitutions) 

.. A substitution 0' is a sort preserving mapping from D-variables to D-terms llnd W-variables to 

9t-admissible world-paths and can be represented as a finite set {Xl H t1•.•• , X H In} of variablen 

term pairs. To emphasize that a particular substitution actually has the property to map W-variables 

only to 9t-admissible world-paths. we sometimes call it an 'It-admissible substitution. 

..	 Substitutions can be turned into mappings from terms to terms, literals to literals and clauses to 

clauses using the inductive defInition of terms and such that the following homomorphic equation for 

all function and predicate symbols F and terms w and lj. hold: 

0'(F(wp,t1, ... ,~» = F(O'(wp), 0'(t1), ... ,0'(t".».
 

We sometimes omit parentheses and write O't instead of O'(t).
 

.. The composition O'o't of two substitutions 0' and't is the usual functional composition. 

We shall omit the o-sign and write O"t instead of O'o't. 

The set of substitutions with the composition 0 is a monoid with identity 111. 

It is easy to verify that the composition of two substitutions maps W -variables to 9l-admissiblc 

world-paths. 

.. O'IV is the restriction of a substitution 0' to a set V of variables, Le. 

O'\V(x) = O'X if x E V 

O'IV(x) = x if x ~ V. 

..	 The domain of a substitution 0' is the set ofvariables which are moved by 0', i.e. 

DOM(O') := {x I0'X:;t: x} . 

.. Thecodomain ofasubstitution 0' is COD(O'):= (O'XIXE DOM(O')} 

.. The variables introduced by 0' are: VCOD(O') := Vars(COD(O'» . 

.. A ground substitution is a substitution with VCOD(O') = 111. 

.. Let t be a term, atom. literal or clause and let 0' be a substitution. 

O't is called an instance of 1. O't is called a ground instance of t if it contains no variables. 

..	 There is an ordering relation :59{ [V] on substitutions: 

For two substitutions 0' and 't and a set V ofvariables: 

0' ~ 't [V] iffthere exists an 9t-admissible substitution ~ such that 'V x E V: O'(x) = ~'t(x). 

..	 A substitution 0' is idempotent iff 0'0' = 0'. • 

An application of a substitution 0' = {Xl H t1,... , X H~} to a term t has the intuitive meaning that all n 
occurrences of D-variables Xi are simultaneously replaced by ~ whereas the application of a substiLution 

component Xj H [gl' oogn] for a W-variable Xj splices the partial world-path [gl' .. gn] into each world

path at the place of an occurrence of Xj' i.e. for example {xi H [gl' .. gn]} [oo. a Xib oo.] = [... a g1" .gn 

boo.]. Furthermore, in symmetric interpretations the rewrite rule [g(a1'"'' lin)g-1(a1 ... ·' lin)] ~ [] will 

implicitly be applied whenever it is possible. 

(We shall see that this is suffIcient to avoid the occurrence of inverse functions in the resolvents.) 

Lemma 5.2.4 (Some useful properties of idempotent substitutions.)
 

a) A substitution 0' is idempotent iff DOM(0') n VCOD(0') = ~.
 

b) For an idempotent substitution 0' and a term t: DOM(O') n Vars(O't) = 11I.
 

c) For two idempotent substitutions 0',9: DOM(O') n VCOD(9) = 11I ~ 0'9 is idcmpotcnt.
 

The proofs are !iimiJar to Ihe proof!! for standard substitutions in predicate logic whkh \.:lUl f()r insllIllce be
 

found in lHerold 83] or [Herold 87]. •
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Definition 5.2.3: (Substitutions)
>— A substitution 0 is a sort preserving mapping from D-variables to D-terms and W—variables to

iii-admissible world-paths and can be represented as a finite set {x1 H (P..., x“ H tn} of variable
term pairs. To emphasize that a particular substitution actually has the prOperty to map W-variables
only to Eli-admissible world-paths, we sometimes call it an iii—admissible substitution.

>» Substitutions can be turned into mappings from terms to terms, literals to literals and clauses to
clauses using the inductive definition of terms and such that the following homomorphic equation for
all function and predicate symbols F and terms w and ti hold:

G(F(wp‚t1,. . .,t.n)) = F(G(wp), 0(t1), . . . ,0(tn)).

We sometimes omit parentheses and write at instead of 0(t).
> The composition cot of two substitutions cr and 1: is the usual functional composition.

We shall omit the o-sign and write 0'1: instead of 001:.
The set of substitutions with the composition 0 is a monoid with identity o.
It is easy to verify that the composition of two substitutions maps W-variables to iii-admissible
world-paths.

> OW is the restriction of a substitution 0 to a set V of variables, i.e.
ow(x) = ox if x e V
G|V(x) = x if x e! V.

The domain of a substitution 6 is the set of variables which are moved by 0, i.e.
DOM(0') := {x  | ox at x}.

The codomain of a substitution 6 is COD(o) := {0x I x e DOM(o)}
The variables introduced by 0 are: VCOD(0') := Vars(COD(c)).
A ground substitution is a substitution with VCOD(o) = a.
Let t be a term, atom, literal or clause and let 6 be a substitution.
at is called an instance of t. 01 is called a ground instance of t if it contains no variables.

V
Y

Y
Y

Y
Y There is an ordering relation Sat [V] on substitutions:

For two substitutions o and t and a set V of variables:
o SSR ? [V] iff there exists an Eli-admissible substitution g such that V x e V: 0(x) = &]:(x).

> A substitution 6 is idempotent iff (so = 0‘. I

An application of a substitution 0 = {xl H „ , . . . ,  xn H tn} to a term t has the intuitive meaning that all
occurrences of D-variables xi are simultaneously replaced by ti whereas the application of a substitution
component xj H [g1...gn] for a W—variable xj splices the partial world-path [ g1...  gn] into each world—
path at the place of  an occurrence of xj, i.e. for example {xp—> [g1...gn]} [ . . . a  xib ...] = [ . . .a  g1...gn
b. . .]. Furthermore, in symmetric interpretations the rewrite rule [g(a1,. . ., an)g'1(a1,..., an)] —> []  will
implicitly be applied whenever it is possible.
(We shall see that this is sufficient to avoid the occurrence of inverse functions in the resolvents.)

Lemma 5.2.4 (Some useful properties of idempotent substitutions.)
a) A substitution 0 is idempotent iff DOM(0) n VCOD(0) = o.

b) For an idempotent substitution 0 and a term t: DOM(O') (\ Vars(6t) = o.

c)  For two idempotent substitutions 6, 9: DOM(6) n VCOD(6) = o => 09 i s  idempotent.

The proofs are similar to the proofs for standard substitutions in predicate leglc which can for instance be

found in [Herold 83] or [Herold 87]. I
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Lemma 5.2.5 Substitutions can be turned into semantic variable assignments: 

a)	 For a P-interpretation Sp with initial world So and a substitution (J ={Xl H tl ,.. ""n H lit} with 

~P(ti) *.L for i = l, ... ,n, the object ~p[(J] := ~P[xl/ ~P(tl)"'" xJ ~p(~)] 

is again a P-interpretation. 

b) Given a substitution (J such that ~p[(J] is a P-interpretation, for every term t: ~p[(J](t) =~p«Jt).
 

Proof: a) This follows immediately from the fact that substitutions map W-variables to 9t-admissible
 

world-paths which are interpreted as world-access functions (lemma 5.2.2).
 

b) We perform an induction on the structure ofterms and world-paths.
 

The two base cases t =[] and t is a variable is trivial.
 

Induction step:
 

Case 1: t =f(wp'sl' ....sn) where fis a D-valued function symbol.
 

Sp[(J](f(wp,sl •...•sn»	 =Sp[(J](wp)(~o)(f)(Sp[ (J](sl)"" .Sp[(J](sl» (def. 3.2.3) 

= ~p«JWP)(~O)(f) (~P«Jsl)'''''~P«Jsl» (ind. hypothesis) 

= ~p«Jt). 

Case 2: t =g(sl" ..•sn) where g is a W-valued function symbol. 

gp[(J](g(sl'" "sn»	 =~w(g)(gp[(J](sl)'" .,gp[(J](sl» (def. 3.2.3) 

= ~w(g) (~P«Jsl),···,gp«Jsl» (ind. hypothesis) 

= ~p(at). 

Case 3: t = [p .s] 

~p[a]([p .s]) =gp[a](p)ogp[a](s) 

= gp(ap)ogp(as) (ind. hypothesis) 

=~p(at). • 
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Lemma 5.2.5 Substitutions can be tinned into semantic variable assignments:
a) For a P-interpretation Sp with initial world So  and a substitution 0 = {x1 I—> t1,. . .,xn H La} with

551,09?= .L for i = 1,. ..,n, the object 8P[0] := Sp[x1/ Sp(t1),.. ., xn/ Sp(tn)]
is again a P-interpretation.

b) Given a substitution 0 such that Sp[o] is a P-interpretation, for every term t: Splo] (t) = Sp(ot).
Proof: a) This follows immediately from the fact that substitutions map W-variables to Si—admissible
world-paths which are interpreted as world-access functions (lemma 5.2.2).

b) We perform an induction on the structure of terms and world-paths.
The two base cases t = []  and t is  a variable is  trivial.

Induction step:

Case 1: t = f(Wp.s1.. . .,sn) where f is a D-valued function symbol.
SP[O](f(wp,s1,. . .,sn)) = SP[G](WP)(50)(f)(5p[G](sl),. . . .3p[o](s1)) (def. 3.2.3)

== 3 p(owp)(5 0)(t) (S p(os1) .  . . . .SP(Os1)) (ind. hypothesis)
= 5P(Gt).

Case 2: t = g(s1,. . .,sn) where g is a W-vaiued function symbol.
3p[6](g(s1,. . .,sn)) = Sw(g)(SP[o](s1),....Sp[o](s1)) (def. 3.2.3)

= Sw(g) (3P(os1).. . .,5 p(os1)) (ind. hypothesis)
= 3p(ot).

Case 3 :  t = [p . s ]
3p[O]( [P  .SD == 3p[O](p)°3p[O](S)

= 5p(6p)o5 p(Os) (ind. hypothesis)
= 3p(ot).  I
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5.3 Prefix-Stability. An Invariant on the Structure of Terms. 

In lemma 4.1.2 we noticed that terms of a translated M-formula have the property that all occurrences of
 

a W-variable have identical subterms (M-adjusted termstructure). A term like f([ w], g[vw]) for example
 

can not be the result of a translation. This property ensures that the unification algorithms for transitive
 

models are finitary, and should therefore be preserved for resolvents also. This property is now formally
 

defined for terms and substitutions and some consequences are shown
 

Definition 5.3.1 (Prefix-Stable Terms and Prefix-Preserving Substitutions)
 

Let s be a term, a world-path, a list or a set of those. Let x be a W-variable and let 0 be a substitution.
 

~ prefix-stable (s) :<=> Vu E W-Vars(s): Iprefix(u, s)1 =1.
 

~ If s is prefix-stable then prefix-preserving (0, s) :<=> prefix-stable (os). •
 

Examples for prefix stable terms and prefix-preserving substitutions.
 

prefix(w, f([w vJ, g[v w])) ={[wJ, [v w]}. This term is not prefix-stable.
 

prefix(w, f([wJ, g[w v])) = {[wl}. This term is prefix-stable.
 

prefix-preserving({ w HI k(a[v J)}. [wl)
 

!llll prelix-prcserving({w .... [k(alvl)}, f([wl, k(a[c vI)),
 

i.e. the a substitution may be prefix-preserving for a prefix-stable term s and not prefix-preserving for 

another prefix-stable term t. • 

Lemma 5.3.2 All subterms of prefix-stable terms are also prefix-stable. 

The proof is obvious. •
 

The next lemma gives the conditions under which a substitution that is prefix-preserving for a set of
 

tem1S (for instance the unified terms in a resolution step) is also prefix preserving for a larger set of terms
 

(for instance alltcrms occurring in the resolvent.)
 

Lemma 5.3.3 (Lifting of the Prefix-Preserving Predicate)
 

Let sand t be terms, world-paths, I ists or a sets of those and let 0 be a substitution, then
 

prefix-stable(s) 1\ prcfix-preserving(0, s) 1\ (Vars(o) \ Vars(s» n Vars(t) =~ 1\ prefix-slable«s,t» ~
 

prefix-preserving(o, (s,t» 

Proof: Let a) prefix-stable(s) and b) prefix-preserving(a,s) and 

c) (Vars(o) \ Vars(s» n Vars(t) =~ and d) prefix-stable«s,t». 

Let u E W-Vars(o(s,t)). 

Case 1: u ~ Vars(o) 

~ u E Vars«s,t» 

~ prefix(u, (s,t» is unique (d) 

~ prefix(u, o(s,t» is unique. (since u ~ Vars(o» 

Case 2: U E Vars(o) 

~ U E COD(o) (since U E W-Vars(o(s,t» 

~ ::3 Yl"'Yk E Vars(S,t): U E 0Yi 

~ {Yl'''Yk} ~ Vars(s) (c) 

~ Vy E {Yl"'Yk}: Y is a W-variable implies prefix(y, s) =prefix(y, (s,t» is unique (d) 
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5 .3  Prefix-Stability - An Invariant on the Structure of Terms.

In lemma 4.1.2 we noticed that terms of a translated M-formula have the property that all occurrences of
a W—vari able have identical subterrns (M-adjusted termstructure). A term like f([w], g[vw]) for example
can not be the result of a translation. This property ensures that the unification algorithms for transitive
models are finitary. and should therefore be preserved for resolvents also. This property is now formally
defined for terms and substitutions and some consequences are shown

Definition 5.3.1 (Prefix-Stable Terms and Prefix-Preserving Substitutions)
Lets be a term. a world-path, a list or a set of those. Let x be a W-variable and let G be a substitution.
> prefix-stable (s) :=» Vu e W-Vars(s): lprefix(u. s)| = 1.
> If 3 is prefix—stable then prefix-preserving (o, s) :=» prefix-stable (as). I

Examples for prefix stable terms and prefix-preserving substitutions.
prefix(w. f([w v], g[v w])) = {[w], [v w]}. This term is not prefix-stable.
prefix(w, f([w], g[w v])) = {[w]}. This term is prefix—stable.
prelix—prcsmvingflw H |k(a[v|)}, [w])
um prelix-prcserving({w m [k(a[v|)},  l'([w]. k(a[c VD),
i.e. the a substitution may be prefix-preserving for a prefix-stable term s and not prefix-preserving for
another prefix—stable term t. '

Lemma 5.3.2 All subterms of prefix-stable terms are also prefix-stable.
The proof is obvious. '

The next lemma gives the conditions under which a substitution that is prefix-preserving for a set of
temis (for instance the unified terms in a resolution step) is also prefix preserving for a larger set of terms
(for instance all terms occurring in the resolvent.)

Lemma 5 .3 .3  (Li f t ing  o f  the  Pref ix-Preserving Predicate )

Let s and t he terms, world—paths. lists or it sets of those and let a be a substitution. then
prefix—stablc(s) A prelix-prcserving(o, s)  A (Vars(o) \ Vars(s)) n Vars(t) = e A prefix-stable((s,t)) =>

prefix-preserving(0’, (5.0)
Proof: Let a) prefix-stable(s) and b) prefix-preserving(o,s) and

e) (Vars(o)\Vars(s)) n Vars(t) = e and d) prefix-stable((s,t)).
Let u e W-Vars(o(s,t)) .

Case 1: u e Vars(o)

=> u e Vars((s,t))
=> prcfix(u, (3.0) i s  unique (d)

=> prefix(u. o(s.t))  i s  unique. (since u e: Vars(o))

Case 2: u e Vars(o)
==> u e COD(O) (since u e W-Vars(0(s.t))

=> El y l . . . yk  e Vars(s‚t): u e oyi

=> {yl -o-yk}  g VarS(S) (C)
=> Vy e {y1...yk}: y is a W-variable implies prefix(y. s) = prefix(y. (_s,t)) is unique (d)
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=} Each occurrence of u in a(s,t) that is caused by a replacement of some y E {yl' .. Yk} 

has a unique prefix. (b) 

In addition the occurrences of u in a(s,t) which stem from (s,t) have to be considered: 

ease2.I: ue Vars(s) 

=}ueV~OO M 
=} Each occurrence of u in a(s,t) is caused by a replacement of some yE Yl" 'Yk 

and has thercfore a unique prefix. 

Case 2.2: II (= Vars(s) 

>prdix(u, (s. I) is uniquc. (d) 

prcl"ix-prescrving(cr, s) implies that cach occurrcncc of u in crs has the same prcfix 

regardless whether it stems from s or from a replacement by cr. 

=} prefix(u, as) = prefix(u, a(s,t». 

=} prefix(u, a(s,t» is unique. 

=} prefix-preserving(a, (s, t». •
 

It is instructive to see what will happen if the disjointness condition (Vars(a) \ Vars(s» n Vars(t) = ~ is
 

not satisfied: Let a:= {w ~ v}, s:= [w] and t:= [a v]. Clearly prefix-stable(s), prefix-preserving(a, s)
 

and prefix-stable«s, t», but as = [v] and at = [a v] and therefore prefix-preserving(a, (s,t» is not true.
 

The disjointness condition therefore forces a unification algorithm to build a unifier either with
 

W-variables from lhe terms lO be unified or with completely new W-variables in the codomain. (This
 

very natural condition is wcll known from theory unification algorithms for associativity for instance.)
 

An important property of prefix-stable terms is that they have no multiple occurrences of a W-variable on
 

the topicvel of a world-path (topicvel linearity). Furthermore a W-variable in a prefix-stable term cannot
 

occur more than once in its own prefix (prefix linearity). Nevertheless it is possible, that a W-variablc
 

occurs a second time behind its first occurrence in a prefix-stable world-path, however only at a deeper
 

level of nesting, as for example in [w g(a[wv])].
 

Definition 5.3.4 (TopJevel and Prefix Linearity)
 

Let wp be a world-path and let s be a term.
 

>- wp is called top/eve/linear iff no variable occurs more than once at the toplevel of wp.
 

s is called toplevcl linear iff each world-path in s is toplevellinear. 

>- wp is called prefix linear iff each toplevel variable u in wp =: [SI' ..sk_l u ... ] does not occur in 

[SI" .sk_l]· 
s is called prefix linear iff each world-path in s is prefix linear. • 

Lemma 5.3.5 (Prefix-Stable Terms are Toplevel and Prefix Linear)
 

Each prefix-stable finite term s is toplcvellinear and prefix linear.
 

Proof: a) Toplevellinearity: If there was a world-path [sI" .sk-l u sk+l" .u ... ] in s with two occurrences
 

of a variable u, then u would have two different prefixes, which contradicts the prefix-stability of s.
 

b) Prefix linearity: If there was a world-path [sl ... f(g([ ...u ... ])) ... sk u ... ] in s where the variable u
 

occurs in its prefix [sl ... f(g([ ....u... ])) ...sk]' this second occurrence must have the same prefix, i.e.
 

again another occurrence of u in its prefix, etc., otherwise s would not be prefix-stable. This is not
 

possible in finite terms. •
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=> Each occurrence of u in 0(s.t) that is caused by a replacement of some y e {y1. . .yk}
has a unique prefix. (b)

In addition the occurrences of u in o(s.t) which stem from (s,t) have to be considered:

Case 2.1: u e Vars(s) '
=> u & Vars(t) (C)
==> Each occurrence of u in o(s.t) is caused by a replacement of some y 6 Y1- . .yk

and has therefore a unique prefix.
Case 2.2: u c: Vttrs(s)

„ :>  prel'ix(u. ( s .  l)) is unique. ((1)

prcl'ix-prescrving(o. s) implies that each occurrence of u in as has the same prefix
regardless whether it stems from s or from a replacement by 0.

=> prefix(u, os) = prefix(u, G(s,t)).

=> prefix(u, o(s,t))  is  unique.

=> prefix-preserving(o, (s, t)). I

It i s  instructive to see what will happen if the disjointness condition (Vars(o) \ Vars(s)) (\ Vars(t) = o i s

not satisfied: Let G := {w H v} , s := [w] and t := [a v]. Clearly prefix-stab1e(s), prefix—preserving(o, s)
and prefix-stablc((s. t)), bu t  os = [v] and Gt = [ a  v ]  and therefore prefix-preserving(o. (5.0) i s  not true.

The disjointness condition therefore forces a unification algorithm to build a unificr either with
W-variables from the terms to be unified or with completely new W-variables in the codomain. (This
very natural condition is well known from theory unification algorithms for associativity for instance.)

An important property of prefix—stable terms is that they have no multiple occurrences of a W-variablc on
the toplevel of a world—path (toplevel linearity). Furthermore a W-variable in a prefix-stable term cannot
occur more than once in its own prefix (prefix linearity). Nevertheless it i s  possible. that a W—variable

occurs a second time behind its first occurrence in a prefix—stable world—path, however only at a deeper
level of nesting, as for example in [w  g(a[w v])].

Definition 5.3.4 (Toplevel and  Prefix Linearity)
Let wp be a world—path and let s be a term.
> wp is called toplevel linear iff no variable occurs more than once at the toplevel of wp.

s i s  called toplevel linear iff each world—path in s i s  toplevel linear.
> wp is called prefix linear iff each teplevel variable u in wp =: [31 . . .sk_1 u . . . ]  does not occur in

[sl...sk_1].

3 is called prefix linear iff each world-path in s is  prefix linear. l

Lemma 5 .3 .5  (Prefix-Stable Terms are Toplevel and  Prefix Linear)
Each prefix—stable finite term 3 is  toplevel linear and prefix linear.
Proof: a) Teplevcl linearity: If there was a world-path [s l  . . .sk_1 u sk+1...u. . . ]  in s with two occurrences
of a variable u, then u would have two different prefixes, which contradicts the prefix-stability of s.
b)  Prefix linearity: If  there was a world-path [31 . . . f (g( [ . . .u . . . ] ) ) . . . sk  u ...] in s where the variable 11
occurs in i ts  prefix [31. . . f(g([ . . . .u. . . ])) . . .sk] ,  this second occurrence must have the same prefix. i.e.
again another occurrence of u in its prefix, etc... otherwise 5 would not be prefix-stable. This i s  not
possible in finite terms. I
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Chapter Six
 

Modal Unification
 

6.1 Introduction 

Unification is the basic operation in resolution based deduction systems. In this chapter we define the 

unification algorithms for atoms, terms and world-paths in P-Iogic. Since there is no equational theory 

for the function symbols, they can be treated like free function symbols in first-order logic and unified in 

the usual way. For the unification of world-paths, however, we need additional algorithms. As we shall 

see in chapter 8, only ~-adrnissible substitutions are allowed as unifiers, consequently for the unification 

of world-paths we need a specialized algorithm for the different accessibility relation types. However, 

the algorithms do not depend on the seriality or non-seriality of the accessibility relation. Only 

reflexivity, symmetry, transitivity and their combinations have to be considered. Before going into 

technical details, let us discuss briefly the characteristics ofeach unification algorithm for world-paths. 

Unification where the Accessibility Relation has no Special Properties 

(Modal Logics K and D) 

~-adrnissible substitutions are allowed to substitute a partial world-path with exactly one W-term for a 

W-variable. Two world-paths like [v a] and [b w] are therefore unifiable with a unifier {v H b, w H aJ, 

whereas the two world-paths [v a] and [bu w] would require a non-~-admissible substitution {v H 

[bu], w H a}. They are not unifiable. 

In general two world-paths are unifiable when they have equal length and the W-terms are pairwise 

unifiable with compatible unifiers. Thus, the world-paths can be treated like ordinary terms and except 

that the argument lists may be of different length, there is no difference to the unification of first-order 

terms. There is at most one most general unifier, which is unique up to variable renaming, for every 

unification problem, i.e. the unification is of type unitary. When an algorithm in the style of Martelli & 

Montanari's algorithm for free first order terms is used, the complexity of the unification is therefore 

linear [Martelli&Montanari 82]. 

Unification where the Accessibility Relation is Reflexive. 

(Modal Logic T) 

The substitution component w H [] represents the assignment of the identity mapping to a W-variable. It 

is ~-admissible, because in reflexive interpretations a world is accessible from itself. Therefore 

~-adrnissible substitutions are al1?wed to substitute a partial world-path with at most one W-term for a 

W-variable. The substitution components w allow to remove a variable completely from a H [] 

world-path such that for example the world-paths [v a] and [b u w] are unifiable with the two indepen
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Chapter Six

Modal Unification

6 .1  In troduct ion

Unification is the basic operation in resolution based deduction systems. In this chapter we define the
unification algorithms for atoms, terms and world-paths in P-logie. Since there is no equational theory
for the function symbols, they can be treated like free function symbols in first-order logic and unified in

the usual way. For the unification of  world-paths, however, we need additional algorithms. As we shall
see in chapter 8, only Eli-admissible substitutions are allowed as unifiers, consequently for the unification
of world-paths we need a specialized algorithm for the different accessibility relation types. However,
the algorithms do not depend on the seriality or non-seriality o f  the accessibility relation. Only

reflexivity, symmetry, transitivity and their combinations have to be considered. Before going into
technical details, let us discuss briefly the characteristics of  each unification algorithm for world-paths.

Unification where the  Accessibility Relation has  no  Special Properties
(Modal Logics K and D)

Eli-admissible substitutions are allowed to substitute a partial world-path with exactly one W-term for a
W-variable. Two world-paths like [v a] and [b w] are therefore unifiable with a unifier {v  H b, w I—> a}  ,

whereas the two world-paths [v  a] and [bu  w]  would require a non-ER-admissible substitution {v  +—>

[b  u], w H a} .  They are not unifiable.

In general two world-paths are unifiable when they have equal length and the W-terms are pairwise
unifiable with compatible unifiers. Thus, the world-paths can be treated like ordinary terms and except
that the argument lists may be of different length, there is no difference to the unification of first-order
terms. There is at most one most general unifier, which is unique up to variable renaming, for every
unification problem, i.e. the unification is of type unitary. When an algorithm in the style of Martelli &
Montanari’s algorithm for free first order terms is used, the complexity of the unification is therefore
linear [Martelli&Montanari 82].

Unification where the Accessibility Relation is  Reflexive.

(Modal Logic  T)

The substitution component w H [] represents the assignment of the identity mapping to a W—variable. It
is Eli-admissible, because in reflexive interpretations a world is accessible from itself. Therefore
Eli-admissible substitutions are allowed to substitute a partial world-path with at most one W—terrn for a
W-variable. The substitution components w I—> [ ]  allow to remove a variable completely from a

world-path such that for example the world-paths [v a] and [b u w] are unifiable with the two indepen—
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dent unifiers {v H b. u H [], W H a} and {v H b, u H a, w H []}. Hence, this kind of unification is akin 

to unification of first order terms with an identity element. 

The unification algorithm enumcrates all possibilities to remove W-variables w by the substitution 

component w H [] and then unifics thc W-tcrms in the rcduced world-paths pairwise. Since there are 

only finitely many variables to be removed. there are at most finitely many most general unifiers for each 

unification problem. Le. the unification is of type finitary. The number of unifiers computed in this way 

is at most 2n where n is the number of W-variables in the terms to be unified. (This is the size of the 

powerset of W-variables.) Therefore the complexity of the unification is exponential and there is no 

chance to do it better. 

Unification where the Accessibility Relation is Symmetric. 

(Modal Logic DB) 

In symmetric interpretations, each W-valued function symbol has an associated inverse function symbol. 

A substitution component w H a-I for example is therefore suitable for collapsing the partial world-path 

[a wJ into [a a-I] = []. 9t-admissible substitutions are allowed to substitute a partial world-path with 

exactly one W-tcrm or an "inversc" W-term for a W-variablc. The "inverse" v-I of a W-variable is also 

allowed. because the interpretation of a W-variable is also a function whose inverse exists in symmetric 

interpretations. For example the two world-paths [v w] and [] are unifiable with a unifier {w H v-I}. 

The unification algorithm must consider all possibilities to collapse a W-variable wand its predecessor t 

in the world-path by the substitution component w H [t-I] to the empty path [] and to unify the W-terms 

in the reduced world-paths pairwise. Since there are only fmitely many variables to be collapsed, there 

are at mostfinitely many most general unifiers for each unification problem. i.e. the unification is again 

of typefinitary. The number ofunifiers is at most 2n/2 where n is the number ofW-variables in the terms 

to be unified. Therefore the complexity of the unification is also exponential. 

This is the first case where the prefix-stability of terms can be exploited: When a W-variable w and its 

predecessor t in a world-path have been collapsed with the substitution component w Ht-I, we know 

that in all other terms in the clause set, t is the predecessor of w. The application of w H t-1 to an 

arbitrary term containing w in the clause set will therefore collapse [t w] to [1. No inverse W-term will 

ever occur in an instantiated term, thus we need not investigate the unification of such terms. 

Unification where the Accessibility Relation is Reflexive and Symmetric. 

(Modal Logic B) 

The two basic techniques for reflexivity and symmetry can now be joined: The unification algorithm 

enumerates all possibilities for the removal ofW-variables w by the substitution component w H [] and 

for collapsing a W-variable w and its predecessor t in the world-path by the substitution component 

wHt- I and then unifies the W-terms in the reduced world-paths pairwise. Since there are only finitely 

many variables to be collapsed or. to be removed, there are at most finitely many most general unifiers for 

each unification problem. 
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dent unifiers {v  H b ,  u H l ] .  w H a}  .and {v  H b, u H a, w H []}. Hence, this kind of  unification i s  akin

to unification of first order terms with an identity element.

The unification algorithm enumerates all possibilities to remove W-variables w by the substitution
component w H [ ]  and then unifies the W-terms in  the reduced world-paths pairwise. Since there are

only finitely many variables to be removed, there are at most finitely many most general umfiers for each
unification problem, i.e. the unification is of type finitary. The number of unifiers computed in this way

is at most 2“ where n is the number of W-variables in the terms to be unified. (This is the size of the
powersct of W-variables.) Therefore the complexity of the unification is exponential and there is no
chance to do it better.

Unification where the Accessibility Relation is Symmetric .
(Modal  Log ic  DB)

In symmetric interpretations, each W—valued function symbol has an associated inverse function symbol.
A substitution component w H a'1 for example is therefore suitable for collapsing the partial world-path
[a w] into [aa‘I] : []. iii-admissible substitutions are allowed to substitute a partial world-path with
exactly one W—terrn or an “inverse” W-term for a W-variable. The “inverse” v" of a W—variable is also
allowed, because the interpretation of a W-variable is also a function whose inverse exists in symmetric
interpretations. For example the two world-paths [v w] and [] are unifiable with a unifier {w H v’l}.

The unification algorithm must consider all possibilities to collapse a W—variable w and its predecessor t
in the world—path by the substitution component w H [ r l ]  to the empty path [] and to unify the W-terms
in the reduced world-paths pairwise. Since there are only finitely many variables to be collapsed, there
are at most finitely many most general um'fiers for each unification problem, i.e. the unification is again
of type finitary. The number of unifiers is at most 2"!2 where n is the number of W-variables in the terms
to be unified. Therefore the complexity of the unification is also exponential.

This is the first case where the prefix—stability of terms can be exploited: When a W-variable w and its
predecessor t in a world-path have been collapsed with the substitution component w H r l ,  we know
that in all other terms in the clause set, t is the predecessor of w. The application of w H t“1 to an
arbitrary term containing w in the clause set will therefore collapse [t w] to I]. No inverse W-tenn will
ever occur in an instantiated term, thus we need not investigate the unification of such terms.

Unification where the Accessibility Relation is Reflexive and  Symmetric .
(Modal  Logic B)

The two basic techniques for reflexivity and symmetry can now be joined: The unification algorithm
enumerates all possibilities for the removal of  W—variables w by the substitution component w H []  and

for collapsing a W—variable w and its predecessor t in the world-path by the substitution component
w H t‘1 and then unifies the W—terms in the reduced world—paths pairwise. Since there are only finitely
many variables to be collapsed or. to be removed, there are at most finitely many most general unifiers for
each unification problem.
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For example the two world-paths [a u v] and [w] are unifiable with the two independent unifiers
 

{u H a-I, v H w} and {v H u-I, w Ha}.
 

The number of unifiers may again be exponential in the number of W-variables.
 

Unification where the Accessibility Relation is Transitive. 
(Modal Logics K4 and D4) 

9\-admissible substitutions may now substitute arbitrary partial world-paths for a W-variable. For 

example a unificr for the two world-paths [v c d] and [a b w et] is {v H [a bJ, w ...... cl. but the 

substitution {v H [a b w'], w H [w' c]} with a new W-variable w· is also a unifier. Thus, we introduce 

a variable splitting technique similar to the splitting technique in the unification algorithm for associative 

functions. This is in general infinitary, but fortunately it turns out that the toplevel linearity of 

world-paths is sufficient to keep this unification finitary. The number of unifiers, however, can be 

extremely large. When for example two world-paths [vl ...v ] = [uI' ..u ] consisting of variables only n rn

are to be unified, all possibilities to assign vI and wI to leading parts of the opposite world-path must be 

enumerated and the corresponding tails of the world-paths must be unified recursively. The number 

f(n,m) of unifiers - without variable splitting - can then be calculated with the following recursive 

formula: 

fen, 0) =f (O,m) = 0, f(n,l) = f(l,m) = 1 

[(n,m) = fen-I,m-I) + ... + f(n-l,l) + [(n-2, m-I) + ... + f(l, m-I). 

The graph of the function [(n,n), i.e. the number of unifiers for world-paths of equal length is drawn 

below: 
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It shows a clear exponential behaviour which is worse than 2n. 

Unification where the Accessibility Relation is Reflexive and Transitive. 
(Modal Logic 84) 

The algorithms for the reflexive case and for the transitive case can be joined without any further 

problems. The algorithm for the transitive case must be augmented by a step that removes W-variables w 

with a substitution component w 1-+ n. There are still at mostfinitely many most general unifiers for each 

unification problem. The number ofunifiers can again be exponential with the number of W-variables. 
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For example the two world-paths [a u v] and [w] are unifiable with the two independent unifiers
{u+——> a ' l ,  VH w}  and {v  +—> u ' l ,  wr—e a} .
The number of unifiers may again be exponential in the number of W-variables.

Unification where the Accessibility Relation is  Transitive.
(Modal  Logics K4 and  D4)

9i-admissiblc substitutions may now substitute arbitrary partial world-paths for a W-variable. For
example a unifier for the two world-paths [v c d] and [a b w (11 is {v I—> [a b], w H c ] ,  but the
substitution {v  +—> [a  b w'], w I—> [w '  c ] ]  with a new W-variable w '  is also a unifier.  Thus,  we introduce

a variable splitting technique similar to the splitting technique in the unification algorithm for associative
functions. This is in general infinitary, but fortunately it turns out that the teplevel linearity of
world-paths is sufficient to keep this unification finitary. The number of unifiers, however, can be
extremely large. When for example two world-paths [v1...vn] = [u1 . . ‚um] consisting of variables only
are to be unified, all possibilities to assign v1 and w1 to leading parts of the opposite world-path must be
enumerated and the corresponding tails of the world-paths must be unified recursively. The number
f(n,m) of unifiers - without variable Splitting - can then be calculated with the following recursive
formula:

f(n, O) =f(0,m) = 0, f(n,1) = f(1,m) = 1
f(n,m) = f(n—l‚m-1) + + f(n—1‚1) + f(n-2, m- l )  + + f ( l ,  m-1).

The graph of the function f(n,n), i.e. the number of  unifiers for world—paths of equal length i s  drawn

below:
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It shows a clear exponential behaviour which is worse than 2“.

Unification where the Accessibility Relation is Reflexive and  Transit ive.
(Modal Logic S4)

The algorithms for the reflexive case and for the transitive case can be joined without any further
problems. The algorithm for the transitive case must be augmented by a step that removes W-variables w
with a substitution component w H []. There are still at most finitely many most general unifiers for each
unification problem. The number of unifiers can again be exponential with the number of W-variables.
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Unification where the Accessibility Relation is an Equivalence Relation 

(Modal Logic SS) 

World-paths for S5 interpretations have a special normal form (of modal degree one) consisting of at
 

most one W-term, Le. they look like [] or [t]. Two world-paths [] and [t] can only be unified when t is a
 

variable, the unifier is t ~ n. Two world-paths [s] and [t] can be unified when s and t are unifiable.
 

Therefore there is at most one most general unifier for each unification problem.
 

The following defmition formally introduces the usual notions of complete and minimal sets of unifiers.
 

Since the accessibility relation plays the same role as an equational theory in equational based unification
 

we adopt the notions of unification under equational theories (c.f. [Schmidt-Schauss 87]).
 

Definition 6.1.1 (Complete and Minimal Sets of 9t-Unifiers)
 
Let r:= {"si = tt I i = I, ... ,D} be a system of equations for prefix-stable D-terms, W-terms, atoms or
 

world-paths.
 

Let ~ be an accessibility relation.
 

a) A substitution cr 9l-unifies riff cr is 9t-admissible and for every equation '\ = ~" in r we have 

crsi = crti' In this case we say cr is an 9t-unifier for r, or simply cr unifies r. 

The set of all 9t-unifiers for r is denoted by U9t(r). 

b) A complete set cU9t(r) of unifiers for r is a set satisfying 

i) cU9t(r) ~ U9t(r) (correctness) 

ii) 'Vcr E U9t(r) 31: E cU9t(r): 1: ~ cr [Vars(r)] (completeness) 

c) A complete set is called minimal or a set ofmost general unifiers (mgus), iff additionally 

Hi) 'Vcr,1: E cU9t(r): 1: ~9t cr [Vars(r)] => 1: = cr (minimally) 

Minimal sets are also denoted as IlU9t(r). • 

6.2 Unification as Transformations on Systems of Equations 

We consider the process of unification as a sequence of - in general nondeterministic - transformations 

on systems of equations that starts with the terms or atoms "p = q" to be unified and terminates in the 

positive case with a system "Xi = tt in solved form. The nondeterministic choice of the trans~ormation 

rules generates a tree like search space where the nodes are the actual state of the equation system. Each 

successful transformation chain computes a unifier for p and q. This follows the ideas in [Herband 30], 

[Martelli&Montanari 82] and others. We shall divide a system ofequations into an unsolved ordered part 

r, an ordered set, that initially contains the single equation {"p == q"} to be solved, and into an initially 

empty solved part cr with components of the form "x = t" such that cr represents an idempotent 

substitution. 

The transformation starts by checking the trivial cases, Le. whether or not the initial system "p = q" is 

already in the form "x = t". 
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Unification where the Accessibility Relation is an  Equivalence Relation

(Modal Logic SS)

World—paths for SS interpretations have a special normal form (of modal degree one) consisting of at
most one W-term, i .e.  they look like [] or [t]. Two world—paths [] and [t] can only be unified when t is a

variable, the unifier is  t H [] .  Two world-paths [s] and [t] can be unified when s and t are unifiable.

Therefore there is at most one most general um'fier for each unification problem.

The following definition formally introduces the usual notions of complete and minimal sets of  unifiers.
Since the accessibility relation plays the same role as an equational theory in equational based unification
we adopt the notions of unification under equational theories (c.f. [Schmidt—Schauss 87]).

Definition 6.1.1 (Complete and Minimal Sets of SR-Unifiers)
Let F:: (“S i  = ti” | i = L...,n} be a system of  equations for prefix-stable D-terms, W—terms, atoms or
world-paths.
Let SR be an accessibility relation.
a) A substitution o SIT-umffles F iff o is Eli-admissible and for every equation "si = ti” in F we have

Os]-l = ati. In this case we say a is an SR—unifier for I", or simply a unifies I“.
The set of all Eli—unifiers for 1" is denoted by U530").

b) A complete set cUgia") of unifiers for F is a set satisfying
i) cUSRa") ; U30“) (correctness)
ii) Vo e U530") 31 e cUgta"): t SSR o [Vars(l")] (completeness)

c) A complete set is called minimal or a set of most general umfiers (mgus). iff additionally
iii) Vox e cUgta"): 1: SSR o [Vars(I')] => '6 = o (minimally)
Minimal sets are also denoted as ttUggI‘). I

6.2 Unification as Transformations on Systems of Equations

We consider the process of  unification as a sequence of - in general nondetenninistic - transformations
on systems of equations that starts with the terms or atoms “p = q” to be unified and terminates in the
positive case with a system “xi = ti” in solved form. The nondetenninistic choice of the transformation
rules generates a tree like search space where the nodes are the actual state of the equation system. Each
successful transformation chain computes a unifier for p and q. This follows the ideas in [Herband 30],
[Martelli&Montanari 82] and others. We shall divide a system of equations into an unsolved ordered part
F, an ordered set, that initially contains the single equation {“p =“ q”} to be solved, and into an initially
empty solved part 0 with components of the form “x = t” such that 0' represents an idempotent
substitution.

The transformation starts by checking the trivial cases, i.e. whether or not the initial system “p == q” is
already in the form “x = t”.
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Each transformation replaces a system r, 0 by a modified system r', 0' as follows: 

~ Pick the Left most equation s::: t E r (depth first, left to right selection, r is ordered). 
Remove s ::: t from r. 

.. Select from the set of admissible transformation rules a rule 'Twhich is applicable to s ::: t or t::: s. 

Ifno rule is applicable then tenninate this branch in the search space with failure . 

.. Apply the rule 'Tto s ::: t (or t ::: s respectively). 

Let SI ::: tl & ...& sn::: tn be the result of the transformation. 

~ Fori:::n... l: 

If Si equals ti then ignore this component (tautology rule). 

If Si and ti are both non-variable terms then push Si ::: ti at the front of r. 
otherwise let w.l.o.g Si be a variable. 

If Si E ti (occurs check) or if Si is a W-variable and ti is a non·9\-admissible world-path 

then temlinate this branch in the search space with failure, 

otherwise replace all occurrences of Si in r and 0 by ti (application rule) and 

insert si::: ti into o. 

It is noted that we imposed a Prolog like depth first, left to right linear selection strategy and an
 

immediate application of the computed substitutions on the control structure of the transformation
 

process. This ensures that an equation is completely solved once it is selected before the next one is
 

attacked. This strategy simplifies the termination proof of the splitting rule (see below) considerably.
 

The following transformation rules are needed to build unification systems for P-Iogic:
 

(The letters written outlined denote - possibly empty - strings ofW-terms.)
 

Definition 6.2.1 (Transformation Rules)
 

The transformation system P-Unify consists of the following rules:
 

f(sl, .. ·,sn)::: f(tl''''~) ~ sI::: t l & ... & sn::: tn (Decomposition) 

[s 5] ::: [t a] ~ s::: t & § ::: t (Separation) 

[§ w §'] ::: t ~ w::: [] & [5 §'] ::: t (Identity) 

[s S w S'] ::: t ~ w::: S-1 & [55'] ::: t (Inverse) 

[w S]::: [H'] ~W:::a&S:::t' (Path-Separation) 

[w s s] ::: [at v n ~ v::: [VI v2] & w::: [at VI] & [s S] ::: [v2 n (Splitting) 

if sand t exist. VI and v2 are new variables. • 

Since the application rule explicitly checks the equations for 9\-admissibility, it is in principle not 

necessary to defme separate rule systems for each type of the accessibility relation. In order to obtain 

more efficient algorithms, however, it seems a good idea to group the unification rules according to the 

type of the accessibility relation such that those rules are eliminated which produce non-9t-admissible 

substitution components. We do this in the following way: 
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Each transformation replaces a system I‘, o by a modified system 1", o ’  as follows:
> Pick the left most equation s = t e F (depth first, left to right selection, F is ordered).

Remove 5 = t from 1".
> Select from the set of admissible transformation rules a rule ‘Twhich is applicable to s = t or t=  s.

If no rule is applicable then terminate this branch in the search space with failure.
> Apply the rule Q‘to s = t (or t = s respectively).

Let s1 = t1 & . . .& s“ = tn be the result of the transformation.
> For i = n...1:

If Si  equals ti then ignore this component (tautology rule).
If si and ti are both non-variable terms then push si = ti at the front of 1".
otherwise let w.l.o.g si be a variable.

If Si  (5 ti (occurs check) or if Si is a W-variable and ti is a non Si-admissible world—path
then temiinate this branch in the search space with failure,

otherwise replace all occurrences of si in F and o by ti (application rule) and
insert si = ti into G.

It is noted that we imposed a Prolog like depth first, left to right linear selection strategy and an
immediate application of the computed substitutions on the control structure of the transformation
process. This ensures that an equation is completely solved once it is selected before the next one is
attacked. This strategy simplifies the termination proof of the splitting rule (see below) considerably.

The following transformation rules are needed to build unification systems for P-logic:
(The letters written outlined denote - possibly empty - strings of W-terrns.)

Definition 6.2.1 (Transformation Rules)
The transformation system P-Untj‘y consists of the following rules:

f ( s l , . . . , sn)  = f(t1,. . . tn) -——> 31 = t1 & . . .  & 3n = [n (Decomposition)

[s  s] = [ t  t] —> s = t & s = t (Separation)
[ s  w s ’ ]  = t -—-> w = [ ]  & [ s  s ' ]  = t  (Identity)
[s s w s’] = t —> w = s"1 & [s s’] = t (Inverse)
[w s]  = [t t’] -~> w = t & s = t ’  (Path-Separation)
[w s s ]  = [ t  t v t’] —> v = [v1 v2] & w = [ t  t v1] & [ s  s ]  = [V2 t'] (Splitting)

if s and t exist. v1 and v2 are new variables. I

Since the application rule explicitly checks the equations for Eli—admissibility, it is in principle not
necessary to define separate rule systems for each type of the accessibility relation. In order to obtain
more efficient algorithms, however, it  seems a good idea to group the unification rules according to the
type of  the accessibility relation such that those rules are eliminated which produce non-ER-admissible
substitution components. We do this in the following way:
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Definition 6.2.2 (Logic Dependent Unification Rule Systems) 

Name of I applicable to Iproperties of the I transformation rules 

the system I modal logics I accessibility relation 

K-D K,D I no special properties I Decomposition, Separation 

T T I reflexivity I System K-D, Identity 

DB DB I symmetry I System K-D, Inverse 

B B I symmetry and reflexivity I System T, Inverse 

K4-D4 K4, D4 I transitivity I System K-D, Path-Separation, Splitting 

S4 S4 I reflexivity and transitivity I System K4-D4, Identity 

S5 S5 I equivalence relation I Decomposition • 

Examples 6.2.3 (ror some applications or the unification rules). 

In the following examples we show only the most important transformation branches. 

1.	 Suppose the accessibility relation has no special properties. We apply the rule system K-D. 

We unify [v c a] with [b c w]: 

{[vca]=[bcw]},~ 

•
I 

Separation

{[c a] =[c w]}, {v =b} 

•
I 

Separation c = c is eliminated 

~, {w =a, v =b} 

2.	 Suppose till' accessibility relation is ref1exivc. We apply the rule system T. 

Wc unify Iv al wiLh lb u wJ: 

{lv aJ = [b u w]}, ~ 

•
I 

Separation

{[a] =[u w]}, {v =b} 

S . --- Id I . ~Id·
~aratlOn e.uty entl~ 

~,{u=a,w=[], v=b} ~,{u=[],w=a, v=b} ~,{w=[],u=a, v=b} 

(The third solution is redundant, Le. the algorithm is not minimal.) 
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Definition 6.2.2 (Logic Dependent Unification Rule Systems)
Name of l applicable to l properties of the Itransformation rules
the system I modal logics I accessibility relation I

K-D I K, D | no special properties I Decomposition, Separation
T | T I reflexivity | System K-D, Identity
DB I DB | symmetry I System K-D, Inverse
B | B I symmetry and reflexivity | System T, Inverse
K4—D4 I K4, D4 I transitivity I System K-D, Path-Separation, Splitting
S4 | S4 | reflexivity and transitivity | System K4—D4, Identity
SS | SS I equivalence relation | Decomposition

Examples 6.2.3 (For some applications of the unification rules).
In the following examples we show only the most important transformation branches.
1 .  Suppose the accessibility relation has no special properties. We apply the rule system K-D.

We unify [v c a ]  with [b 0 w]:
{ [vc  a] = [bc  w]},¢

Separlation

{kah4EWNJv=b}
I

Separation c = c is eliminated

¢ ,{w=a ,v=b}

2 .  Suppose the accessibility relation is reflexive. We apply the rule system T.
We unil‘y Iv a l  with [b  u w]:

{Wfl=muwnm

Separlation

{MFHUWHJV=b}
/ I

A/Separation Idestity \Identitk‘

¢ ,{u=a ,w=[ ] ,v=b}  ¢ ,{u=[ ] ,w=a ,v=b}  ¢ ,{w=[ ] ,u=a ,v=b]

(The third solution is redundant, i.e. the algorithm is  not minimal.)
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3. Suppose the accessibility relation is symmetric. We apply the rule system DB 

We unify [a v a] with [a]:
 
Ha v a] = [a]}, lZI
 

Separation ------Inverse....--- --.
 
{Iv a] = la]}, lZI lZI,fv = a,l} 

I 
Separation 

t 
{[a] = lll, {v = a} 

Failure since no further rule
 

is applicable
 

4. Suppose the accessibility relation is symmetric and reflexive. We apply the rule system B. 

We unify [a u v] with [w]:
 

____ Ha u v] I = [wl}, lZI
 

Separation Inverse Inverse.--- . ___ 

-----.. 
{[u v] = []}, {w = a} lZI,{u = a-I, v = w } lZI,{v = u,l, w = a} 

IdeJti;---'Identity. ---... 
lZI, {u = n, v = n, w = a} ~, {v = n, u = n, w = a} 

The algorithm computes again superfluous unifiers. The two most general unifiers are {u ~ a-I, v ~ w} 

and {v H u- l , w Ha}. 

5. Suppose the accessibility relation is transitive. We apply the rule system K4-D4. 

We unify [u b c v] with [a wc]: 

{[u be v] = [a w cl}, lZI 

./ ---Splitting ---... 

~ation {[b cv] = [V2 cl}, {w = [V; ~], u = [a will 

• analogous
{[bcv]=[wcll, {u=a} 

Path s;aration -----Splitting ~ 
lZI,{w = [b cl, v = c, u = a} lZI,{v = rVt cl, w = rh c vd, u = a} 

Only the successful and not redundant branches are drawn. 
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3. Supposc the accessibility relation is symmetric. We apply the rule system DB
We unify [a v a] with [a]:

{[a v a] = [3]}. 9
. A

Separation Inverse

{Iv a l= l . a ]} .¢  ¢.{v=a'1}
Separlation

{[a l=l ] ] .{v=a}

Failure since no further rule

is applicable

4. Suppose the accessibility relation is symmetric and reflexive. We apply the rule system B.
We unify [a u v] with [w]:

{[2111 V] = [W]}. e
Separation / Inverse

{ [ I IV]=[ ]} ,{W=3}  ¢,{u=a"1,v=w} ¢ , [v=u ' ,w=a}
|Identity\ Identity

¢.{u=[l .v=[l .w=a} ¢ .{v=[ l .u=l l .w=al

The algorithm computes again superfluous unifiers. The two most general unifiers are {u H a‘l, v H w}
and {v H u ' l ,  WH a}.

5 . Suppose the accessibility relation is transitive. We apply the rule system K4-D4.
We unify [u b c v] with [a w c]:

{[ubcv} = [aw Cl} .¢

Splitting ...... .

Separation {[bcv]= [w2c1} ,  {w=[wl“§],u=[aw1]}
F

{[b c v] = [w q} ,  {u = a} 
analogous

I \

Path Se aration Splitting ’
€ \}

¢.{W=lbc}.v=c.u=a} ¢.[v=[v1c],w=[bcv1].u=a}

Only the successful and not redundant branches are drawn.
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6. Suppose the accessibility relation is reflexive and transitive. We apply the rule system S4. 

We unify [u b c v] with [a wc]: 

{[u b cv] = [a w cl}, f/I 

./ --Splitting-.... 

Separation {[b c v] = ["2 cD. {w = ["1 ~], u = [a Will 

~""'4a--------;::an:::al:i.o~g::ou::s:-----
{[bcv]=[wcD, {u=a} 

I -~-~ __ 
Separation Path-Separation -Splitting _ 

t --. -----..... 
{[c v] = c}.{w = b. u = a} f/I,{w = [b cl. v = c, u = a} f/I.{v = [vlc], w = [b c VI]. u= a} 

I 
Separation, Identi ty 

t Only the successful and not redundant branches are drawn. f/I,{v = [], w = b, u = a} 

7. Suppose the accessibility relation is an equivalence relation. 

The world-paths are in modal degree one normal form.We apply the rule system SS. 

We unify f([c(x)]. g([], x» with f([u] g([], h[u])): 

{f([c(x)], g([].x» = f([u], g([]. h[u]))}, f/I 
I 

Decomrition 

{g([],x» = g([], h[c(x)])}. {u = c(x)} 
I 

Decom;mtion 

occurs-check failure x =h[c(x)] 

• 

Remark 

The correspondences between the properties of the accessibility relation and the type of the unification 

algorithm was first recognized by L.Wallen [Wallen 87]. Exploiting the prefix stability of terms we were 

however able to optimize the corresponding algorithms for semigroups, monoids etc. 
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6. Suppose the accessibility relation is reflexive and transitive. We apply the rule system S4.
We unify [u b c v]  with [ a  w c]:

{[ub cv} = [aw CI]. p

Separa‘iOn {[bcv]=[v«§ Cl} . [w=[ua“g l . u=[aw1]}

‘7 analogous
{[bCV] = [w c l} .  {W a}

I . \ \  . .

Separation Path-Separatlon Sp11tt1ng
\

{[C V] = CHW = b .  u = a} ¢,{w = [b c], v = c. u = a} ¢,[v =[v1c], w =.- [b c v1], u=  a}
Separation.I Identity

MV = l]. w = b, u ___ a} Only the successful and not redundant branches are drawn.

7. Suppose the accessibility relation is an equivalence relation.
The world-paths are in modal degree one normal form.We apply the rule system SS.

We unify f([C(X)l. g([]. x» with f([u] g([]. h[u])):

{f([c(-X)l. g([].x)) := f([u]. g([l. h[u l ) )} .  a
Dccom ition

{8([].X)) = g([]. ?h[C(x)] )} .  {11 = C(x)}

Decom' 'tion
occurs-check failure x == h[c(x)]

Remark

The correspondences between the properties of the accessibility relation and the type of the unification
algorithm was first recognized by L.Wallen [Wallen 87]. Exploiting the prefix stability of terms we were
however able to optimize the corresponding algorithms for semigroups, monoids etc.
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In the next three sections we prove the soundness, termination and completeness of the unification rule 

system P-Unify as defined in 6.2.1. Since the control algorithm for the transformation explicitly checks 

the equations for 9t-admissibility, it is not necessary to consider the rule systems for each type of the 

accessibility relation separately. 

6.3 Soundness of the Unification Procedure 

First we show that the unification rules compute idempotent, 9t-adrnissible. prefix-preserving unifiers 

for the terms to be unified, i.e. their soundness. 

Lemma 6.3.1 The unification rules P-Unify compute idempotent and 9t-adrnissible substitutions. 

Proof: Idempotence and 9t-admissibility is explicitly ensured in the control algorithm for the 

transformation which is the only place where new equations are inserted into the solved part. The idem

potence follows from the occurs-check and the fact that the application of an equation x =t to the other 

equations removes x completely from the equation system before x =t is inserted into the solved part.• 

Lemma 6.3.2 If the unification rules P-Unify are applied to terms p and q, the resulting substitutions 
actually unify p and q. 

Proof: In order to prove that the substitutions actually unify the terms p and q we must show that no 

transformation r,o -+ r',0' of the equations increases the set of solutions Le. U9t(ruo) :2 Ugt(r'UO'). 

With other words we must analyze each transformation rule in def. 6.2.1 and show that a unifier for 

r'UO' is also a unifier for rua. Since this is trivial, we omit these proofs. By induction on the length 

of a transformation chain we can then conclude that the unifier corresponding to the solved equation 

system unifies the original terms p and q. • 

Lemma 6.3.3 H the unification rules P-Unify are applied to terms p and q, the resulting substitutions 

are prefix-preserving for p and q. 

Proof: The idea for the proof is as follows: At first we modify the transformation system slightly: 

After selecting the initial equation "p =q" from the initial equation system r 0' "p =q" is not removed 

from r such that it is automatically instantiated when a new equation "x =t" is computed. When the 

procedure terminates, "p = q" is then instantiated with the computed unifier a. Obviously the initial 

system r 0 is prefix-stable. Now we show for each transformation r -+ r' that the transformed system 

r' is again prefix-stable. With induction on the length of the computation path, we obtain that the fmal 

system which now contains (Jp =aq is prefix-stable, i.e. a is prefix-preserving for p and q. 

Unfortunately the separation rules remove leading parts of the world-path. Therefore the intermediate 

equation systems are not prefix-stable, just because the unified leading parts of the world-paths are 

removed. For the purposes of this proof we therefore modify the transformation system again by adding 

to each equation "s = t" the removed leading part 11', Le. we manipulate tuples 11', "s = t". 11' has no 

influence on the algorithm, but it is used to prove the invariant that the intermediate equation systems r 
are prefix-stable. JP is automatically instantiated when a new equation "x =a" is computed. The depth 
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In the next three sections we prove the soundness. termination and completeness of the unification rule
system P-Unify as defined in 6.2.1. Since the control algorithm for the transformation explicitly checks
the equations for Eli—admissibility, it is not necessary to consider the rule systems for each type of the
accessibility relation separately.

6.3 Soundness of the Unification Procedure

First we show that the unification rules compute idempotent, Eli-admissible. prefix-preserving unifiers
for the terms to be unified. i.e. their soundness.

Lemma 6.3.1 The unification rules P-Unify compute idempotent and Eli-admissible substitutions.
Proof: Idempotence and Si-admissibility is explicitly ensured in the control algorithm for the
transformation which is the only place where new equations are inserted into the solved part. The idem-
potence follows fiom the occurs-check and the fact that the application of an equation x = t to the other
equations removes x completely from the equation system before it = t is inserted into the solved part. I

Lemma 6.3.2 If the unification rules P-Unify are applied to terms p and q, the resulting substitutions
actually unify p and q.
Proof: In order to prove that the substitutions actually unify the terms p and q we must show that no
transformation Ra -> I".o’ of the equations increases the set of solutions i.e. Uma‘uo) : USR(1"’UO‘).
With other words we must analyze each transformation rule in def. 6.2.1 and show that a unifier for
F’uo’  is also a unifier for FU a. Since this is trivial, we omit these proofs. By induction on the length
of a transformation chain we can then conclude that the unifier corresponding to the solved equation
system unifies the original terms p and q. I

Lemma 6.3.3 If the unification rules P-Unify are applied to terms p and q, the resulting substitutions
are prefix-preserving for p and q.
Proof: The idea for the proof is as follows: At first we modify the transformation system slightly:
After selecting the initial equation “p = q” from the initial equation system 1‘0, “p = q” is  not removed
from F such that it is automatically instantiated when a new equation “x = t” is computed. When the
procedure terminates, “p = q” is then instantiated with the computed unifier 0'. Obviously the initial
system 1'0 is  prefix-stable. Now we show for each transformation 1‘ -> 1” that the transformed system
I" is again prefix-stable. With induction on the length of the computation path, we obtain that the final
system which now contains 0p = oq is prefix-stable, i.e. o is prefix-preserving for p and q.

Unfortunately the separation rules remove leading parts of the world-path. Therefore the intermediate
equation systems are not prefix-stable. just because the unified leading parts of the world-paths are
removed. For the purposes of this proof we therefore modify the transformation system again by adding
to each equation “s = t” the removed leading part p, i.e. we manipulate tuples p. “s = t”. p has no
influence on the algorithm, but it is used to prove the invariant that the intermediate equation systems 1"
are prefix-stable. p is automatically instantiated when a new equation “x = a” is computed. The depth
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first. left to right selection strategy for the rule application ensures that p is always the common unified 

part of the world paths [JPl s] and [p t]. The prefixes of the variables both in s and t are therefore 

computed with respect to p. 

With the modified transfonnation system we can now prove that each transfonnation r ~ r' leaves the 

prefix-stability invariant: 

Decomposition: f(sl .....Sn) = f(tl.···~) ~ SI = t1 & ... & Sn = ~ 

Ifnone of the Si and ~ is a variable. r' is obviously prefix-stable. 

If there are components x = s among the Si = ti we can apply lemma 5.3.3 to {x H s}, 

yielding prefix-preserving ({x H sI. ({x. sI. D). 

With induction on the number of these variable-tenn pairs we obtain that r' is prefix-stable. 

Separation: JPl, [s s] = [t t] ~ s = t & [p s], s = to 

The left to right selection strategy of the rule application ensures that before [p s], s = t is selected 

as the new equation to be transfonned, s and t are unified. Therefore it does not matter if [JP! s] or 

rJPl t] is taken for the new prefix of s = t-

If neiLher s nor t is a variable then r' is obviously prefix-stable. 

W.l.o.g let I be a variable and I ~ s.
 

Then wc have prelix-stablc(11P sJ. nand
 

since I fi! sand t fi! JPl = prefix(t. r): prefix-prescrving({t H sI. ([11' s]. rJPl tJ)).
 

Furthermore Vars({t H s})\ Vars([ps], [JPlt])) =~.
 

Thus, we can again apply lemma 5.3.3 yielding that r' is prefix-stable.
 

Identity: p, [s w s'] = t ~ w:. [] & JPl, [s s'] = t .
 

w vanishes simultaneously from all world-paths in r, therefore r' is again prefix-stable.
 

Inverse: p, [s s w s'] = t ~ w = s-1 & JP!, [s s'] = 1.
 

[sw] vanishes simultaneously from all world-paths in r, therefore r is again prefix-stable.
 

Path-Separation: JP!, [w 5] = [a n ~ w = t & [JPl w], s = t' .
 

With the same arguments as for the separation rule we obtain that r' is again prefix-stable.
 

Splitting: JPl, [w s s] = [t t v n ~ v = [VI v2] & w = [a t VI] & [JPl w], [s s] = [v2 n
 
if both s and t exist. VI and v2 are new variables. 

We can assume w fi! [t t] (otherwise there is an occurs check clash.) 

Let A.:= {v H [VI v2], w H [a t vd} or A.:= {v H [VI s s1. w H [t t VI]} when t' = []. 

We have prefix-stable([JPl w], [p t t vD. 

Since v ~ [p t t] = prefix(v, D and w ~ JPl =prefix(v, D, thus w ~ [JPl t t]. 

Therefore Vars(A.) \ Vars([p w]. [pH vD ~ {VI v2} and {VI v2}n Vars(D = ~ (vI,v2 are new). 

Finally we can apply lemma 5.3.3 once again yielding that r' is prefix-stable. _ 

Corollary 6.3.4 When the transformation system is applied to prefix-stable terms p and q. the 

variables w and v in the splitting rule 

[w s s] =[H v n ~ v =[VI v2] & w =[H VI] & [s s] = [v2 n 
are always different. Furthennore ifw ~ [a t]. w and v do not occur at toplevel of [s s] and a'. 
Proof: Applying the same construction as in the previous lemma. we obtain 

prefix-stable«[JPl w s 51. [JP! at v a'D. 
Since v and w have different prefixes, they cannot be equal. Because of the toplevellinearity of the two 

world-paths (lemma 5.3.5), w cannot occur in [s s] and v cannot occur in a'. If w would occur at the 

toplevel of f. v would occur in the prefix of w, Le. in its own prefix [JPl a] which is impossible (lemma 
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first, left to right selection strategy for the rule application ensures that p is always the common unified

part of the world paths [p s] and [p t ] .  The prefixes of the variables both in s and t are therefore
computed with respect to p.

With the modified transformation system we can now prove that each transformation 1" —> 1" leaves the
prefix-stability invariant:

Decomposition: f(s1,...,sn) = f(t1,...tn) -> $1= t1&. . .  & sn = tn
If  none of the Si and ti is a variable, 1” is obviously prefix-stable.
If there are components x = s among the si = ti we can apply lemma 5.3.3 to {x +—> s} ,
yielding prefix—preserving ({x H s}, ({x, s}, 1")).
With induction on the number of these variable-term pairs we obtain that I" is prefix-stable.

Separation: p,  [ s  s]  = [ t  t] —> s = t & [p s ] ,  s = t.

The left to right selection strategy of the rule application ensures that before [p s], s = t is selected
as the new equation to be transformed, s and t are unified. Therefore i t  does not matter if [p s]  or

[p  t] is taken for the new prefix of s = It.
If neither s nor t is a variable then 1'" is obviously prefix-stable.
W.l.o.g let I. be a variable and t as 3.
Then we have prefix-stablc( |p  s] ,  l") and

since t e s and t e p = prefix(t, l"): prefix-preserving({t H s}, ([p s], [p t])).
Furthermore Vars({t H s} ) \  Vars([p s], [p t])) = n.
Thus, we can again apply lemma 5.3.3 yielding that I" is prefix-stable.

Identity: p, [ sws ’ ]= t  ——> w- - [ ]&p , [ s s ’ ]  = t .
w vanishes simultaneously from all world-paths in l", therefore I" is again prefix-stable.

Inverse: 1p . [ s sws ’ ]= t ->  w=s ‘1&p ,  [s s’] = t .
[sw] vanishes simultaneously from all world-paths in I‘, therefore F is again prefix-stable.

Path-Separation: p, [w s ]  = [t t’] —> w = t  & [p w], s = t ’  .
With the same arguments as for the separation rule we obtain that I" is  again prefix-stable.

Splitting: p, [w s s] = [t t v t’] —> v =[v1v2] & w = [t t v1} & [p w], [s s] = [v2 t’]
if both s and t exist. v1 and v2 are new variables.

We can assume w e [t  t] (otherwise there is  an occurs check clash.)
Let A. := {vr-> [v1 v2], w:—~> [ tn /1 ]}  or ) .  := {vr-+ [V1  s s ] ,  WH [t tv1]}  when t ’=  [].
We have prefix-stable([p w], [p t t v]).
Since v e [p t t] = prefix(v, F) and w e p =prefix(v, I‘), thus w E [p It t].
Therefore VarsOt.) \ Vars([p w], [p t  t v]) ; {V1  V2} and {V1  v2}n  Vars(F) = t2! (v1,v2 are new).
Finally we can apply lemma 5.3.3 once again yielding that 1'" is prefix-stable. I

Corollary 6.3.4 When the transformation system is  applied to prefix-stable terms p and q,  the
variables w and v in the splitting rule

[w s s ]  = [ t t v t ’ ]  —-> V :  [VI vg] &w= [ t t v l ]  & [ss] = [vztt’]

are always different. Furthermore if  w e [t t ] ,  w and v do not occur at toplevel of [ s  s] and t’.

Proof: Applying the same construction as in the previous lemma, we obtain
prefix-stable(([p w s s ] ,  [p t t v t ’]) .

Since v and w have different prefixes, they cannot be equal. Because of the toplevel linearity of the two
world-paths (lemma 5.3.5), w cannot occur in [s s ]  and v cannot occur in It’. If w would occur at the

t0plevel of t’, v would occur in the prefix of W, Le. in its own prefix [p t] which is  impossible (lemma
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5.3.5). Ifv would occur at the toplevel of [s s], w would occur in the prefix of v, i.e. because w ~ [t t] 

w would occur in p which is again impossible. • 

Collecting the results we can finally state: 

Theorem 6.3.5 (Soundness of the Unification)
 

Applied to prefix-stable terms or atoms p and q, the unification rules P-Unify compute idempotent,
 

prefix-preserving and 9\-admissible unifiers for p and q. •
 

6.4 Termination of the Unification Procedure 

In order to prove the termination of the unification process we define a well founded complexity measure 

fJ.(r) for the unsolved part of the equation system and show for each node r,<J in the search space: If fJ. is 

the current measure for r then in each branch below r,<J there is a finite number of transformations after 

which the measure is smaller than fJ.. 

For an equation system r let fJ.(r) =: (V, S) where 

V = Vars(r) and 

S = number of symbol occurrences in r + Lt Iwpl
 
wp=world-path in r
 

i.e. the length of each world-path is added 10 the number of symbol occurrences in r.
 
Wc order f.l lexicographically. Since both components are always non-negative, this is clearly a well
 

founded ordering on r.
 

Theorem 6.4.1 The unification rules P-Unify terminate, if applied to prefix-stable terms or atoms.
 

Proof: We prove for each node r,<J in the search tree: If 1.1. is the current measure at r then in each
 

branch below r,<J there is a finite number of transformations after which the measure is smaller than 1.1..
 

Let r,<J be the current set of unsolved equations and let fJ.(r) =: (V, S) be the current measure
 

We examine each possible transformation.
 

(Remember that equations x=t are immediately applied to all other equations, Le. x vanishes completely.)
 

Decomposition: f(sl,· .. ,sn) = f(t lt ... tn) ~ SI = tl & ... & sn = ~ 

If one of the Si or tj is a variable, V decreases immediately, otherwise S decreases by 2 because 

the two occurrences of f disappear. 

Separation: ls s] =[t t] ~ s = t & s =a 

In case either s or t is a variable, V decreases immediately, otherwise S decreases by 2 because the 

two new world-paths are shorter. 

Identity: [8 w 8'] = t ~ w = [] & [8 s'] =t . V decreases at least by 1.
 

Inverse: [8 s w s'] = t ~ w =s·l & [s s'] =1. V decreases at least by 1.
 

Path-Separation: [w s] =[a n ~ w = a & s =a'. V decreases at least by 1.
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5.3.5). If  v would occur at the toplevel of [s  s], w would occur in the prefix of v ,  i.e. because w e [ t  t]

w would occur in p which is again impossible. I

Collecting the results we can finally state:

Theorem 6.3.5 (Soundness of the  Unification)
Applied to prefix—stable terms or atoms p and q ,  the unification rules P-Unify compute idempotent,

prefix-preserving and Eli-admissible unifiers for p and q. I

6 .4  Terminat ion o f  the Unification Procedure

In order to prove the termination of the unification process we define a well founded complexity measure
MI“) for the unsolved part of  the equation system and show for each node 1",o in the search space: If  u is

the current measure for l" then in each branch below RU there is a finite number of transformations after
which the measure i s  smaller than u .

For an equation system 1" let MI“) = :  (V, S )  where
V = Vars(l") and

S = number of symbol occurrences in I‘ + 2 lwpl
wp=world-path in l"

i.e. the length of  each world-path is added to the number of symbol occurrences in 1".
We order p lexicographically. Since both components are always non-negative, this is clearly a well
founded ordering on l" .

Theorem 6.4.1 The unification rules P-Unify terminate, if applied to prefix—stable terms or atoms.
Proof: We prove for each node 1",o in the search tree: If u i s  the current measure at I‘ then in each

branch below RG there is a finite number of transformations after which the measure is smaller than u.
Let Ro be the current set of unsolved equations and let MI“) = :  (V, S )  be the current measure

We examine each possible transformation.
(Remember that equations x=t are immediately applied to all other equations, i.e. x vanishes completely.)

Decomposition: f(sl,...,sn) = f(tl,.utn) ——> s1=t1 &... & s“ = t.n
If one of the Si or ti is a variable, V decreases immediately, otherwise S decreases by 2 because
the two occurrences of f disappear.

Separation: [s a] = [t t] -—> s = t & s = t
In case either s or t is a variable, V decreases immediately, otherwise S decreases by 2 because the
two new world-paths are shorter.

Identity: [s w s’] = t —> w == [] & [s s’] = t .  V decreases at least by 1.
Inverse: [s s w s’] = t -—> w = s‘1 & [s s’] = t. V decreases at least by 1.
Path-Separation: [w s]  = [t t’] ‘ —> w == t & s = t ’  . V decreases at least by 1.
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Splitting: [w ss] = [t t v n ..-.7 v = [vI v2] & w = [t t vI] & [s s] = [v2 n 
if both s and t exist. vIand v2 are new variables. 

According lO corollary 6.3.4. w is different to v, furthermore neither w nor v occurs at toplevcl of 

8 and t. therefore the substitution of v and w does not change the lenglh of sand t (0) 

~: t' is empty. Since solved variables are immediately applied to r, v and w vanish whereas 

vI is inserted, i.e. the total number of variables deceases by 1. 

~: \I.' is not empty. We exploit the linear selection strategy for the rule application which 

stales that [s s] = [v2 n is to be selected next. In this case each of the transformation rules except 

the splitting rule causes at least one variable to vanish form r in the next step, Le. in these 

branches the number of variables decreases by 1 after one additional transformation. 

The splitting rule can be applied only finitely often to [s s] =[v2 n because of (0) each splitting 

shrinks these world-paths. Therefore the two world-paths will eventually be small enough that 

case 1 applies and the number of variables decreases by 1. 

Since the lexicographic ordering on Il is well founded, no infinite transformation chain is possible. _ 

6.5 Completeness of the Unification Procedure 

A unification algorithm is said to be complete if it computes a complete set cU9t("p =q") of unifiers for
 

the two given terms p and q. To prove this property for a unification algorithm. according to def. 6.1.1
 

we must show that for every 9\-admissible unifier Afor p and q there is a unifier 't E cU9t("p =q") with
 

A ~9t 't [Vars (p, q)].
 

Theorem 6.5.1 (Completeness of the Unification Rules P-Unify)
 

Let p and q be two terms or atoms and let AO be an 9\-admissible unifier for p and q, Le. AOP = Aoq.
 

Then the rule system P-Unify computes a unifier 't which is more general than Ao'
 
i.e. AO ~9t 't [Vars (p, q)]. 

Proof: Let V := Vars (p, q). The idea for the proof is as follows: Starting with the initial node r 0,00 = 
{"p =q"},~, and AO as the initial unifier for ro,oo, we extend AO by substitution components for the 

generated new variables (see the splitting rule) and show for each node r,o in the search tree: if the 

current extended version Aof A.o unifies r,o then there is at least one successor node r',o' = r,o(rule 

application) which is unified by an extended substitution A'. Since Ao unifies the initial equation system 

r 0,00' by induction on the depth of the search tree we can then conclude that there is a successful search 

path such that the last version AO) of A.o unifies the leaf node ~,'t, Le. since 't is 9\-admissible (lemma 

6.3.1), AO) ~9t 't [V]. Since AO)IV =AO therefore AO ~9t 't [V] holds. 

Now let r,o be the current node in the search tree and let A be the current extended version of AO' 

Furthermore let "s =t" E r be the equation to be transformed next. With the induction hypothesis we can 

assume that Aunifies r,o and in particular As =At. The control algorithm of the transformation system 

ensures that neither s nor t is a variable. Therefore the following cases remain to be examined: 

Case 1: "s = t" =: "f(sl" "sn) =£(t l , .. .,~)". 

AS = At implies ASl = At1, ... , A!ln = Atn. Therefore Aunifies r',o' := r,o(decomposition). 

~: "s = t" =: "[SI' .. ,sn] = [t1,.. · ,t ] " are world-paths. ro

Case 2.1 W.l.o.g A collapses a leading part oft, i.e. A[tl, ... ,tk1 =[1. 
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Splitting: [w s s ]  = [ t  t v t’] —) v = [v1 v2] & w = [ t  t v1] & [s  s]  = [v2 t’]

if both s and t exist. V1 and v2 are new variables.
According to corollary 6.3.4, w is different to v, furthermore neither w nor v occurs at toplevel of
s and t .  therefore the substitution of  v and w does not change the length o f  s and t. (o)

gm: t ’  is  empty. Since solved variables are immediately applied to l". v and w vanish whereas

v1 is inserted, i.e. the total number of variables deceases by 1.
Qgsfl: t ’  is not empty. We exploit the linear selection strategy for the rule application which

states that [s s] = [V2 t’] is to be selected next. In this case each of the transformation rules except
the splitting rule causes at least one variable to vanish form 1" in the next step, i.e. in these
branches the number of variables decreases by 1 after one additional transformation.
The splitting rule can be applied only finitely often to [s s] = [v2 t’] because of (©) each splitting
shrinks these world-paths. Therefore the two world-paths will eventually be small enough that
case 1 applies and the number of variables decreases by 1.

Since the lexicographic ordering on u is well founded, no infinite transformation chain is possible. I

6 .5  Comple teness  o f  t he  Un i f i ca t i on  Procedure

A unification algorithm is said to be complete if it computes a complete set cUmC‘p = q”) of unifiers for
the two given terms p and q. To prove this pr0perty for a unification al gorithm, according to def. 6.1.1
we must show that for every Si—admissible unifier 7t for p and q there is a unifier I e cUmC‘p = q”) with
%. SSR I [Vars (p, q)] .

Theorem 6.5.1 (Completeness of the Unification Rules P-Unify)
Let p and q be two terms or atoms and let lo be an Eli-admissible unifier for p and q, i.e. hop = 7L0q.
Then the rule system P-Unify computes a unifier I which is more general than 7‘09

i.e. 2,0 sin I [Vars (p, q)].
Proof: Let V := Vars (p, q). The idea for the proof is as follows: Starting with the initial node F0430 =
{“p = q”}, o. and lo as the initial unifier for Pong, we extend ?LO by substitution components for the
generated new variables (see the Splitting rule) and show for each node EG in the search tree: if the
current extended version % of  X0 unifies Ro then there is  at least one successor node l"',c' = F,o(rule
application) which is unified by an extended substitution 7V. Since 10 unifies the initial equation system
F050, by induction on the depth o f  the search tree we can then conclude that there is  a successful search
path such that the last version K0) of  ko unifies the leaf node o,I, i.e. since I i s  Si-admissible (lemma

6.3.1), kw SSR I [V]. Since 71.l = l0 therefore 7L0 Sm I [V] holds.

Now let RG be the current node in the search tree and let Ä. be the current extended version of ko.
Furthermore let “s = t” e l" be the equation to be transformed next. With the induction hypothesis we can
assume that Ä. unifies RC and in particular ls = At. The control algorithm of the transformation system
ensures that neither s nor t is a variable. Therefore the following cases remain to be examined:

Case 1: “s = t” =: “f(sl...,sn) = f(t1,...,tn)”.
its = Kt implies 2.31 = Ät1,...‚ 7tsn = Mn. Therefore Ä. unifies l"’,o’ := F,o(decomposition).

mg: “s = t"  = :  “[s1...,sn] = [t1,...,tm]” are world-paths.
cam W.l.o.g Ä collapses a leading part o f t .  i.e. Mt] . . . . , tk]  = [].
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(The case that Acollapses a leading part of s is symmetric.)
 

=> Some of the ti in [tl ,... ,tk] must be variables and either Ati = [] or A~ = ti_l-
l .
 

=> Aunifies r',cr' := r,cr(identity or inverse).
 

Case 2.2: Acollapses no leading part of s or t. 

Case 2.2.1: ASl = At l . 

=> A[s2" .sn1 = A[t2... tml 

=> Aunifies r',cr' := r,cr(separation). 

Case 2.2.2: AS l '1= Atl . 

Case 2.2.2.1: A...<;l = A[t l ... tk] for some k > 1. 

=> Ars2· .. sn1 = Artk .. ·tm1 
=> A unifies r',cr' := r,cr(path-separaLion). 

Case 2.2.2.2: Atl = A[s] skJ for some k > 1. This case is symmetric to the previous one. 

Case 2.2.2.3: AS l '1= A[tl tkl and At l '1= A[sl ... sk] for every k > 1. 

=> either SI or tl is a variable anq both s2 and t2 must exist. 

Case 2.2.2.3.1: Both SI and tl are variables. 

Let As l =: [al" .ag] and Atl =: [al" .ah] where w.l.o.g h > g (since ASl '1= Atl , h = g is not possible) 

Since Atl '1= A[sl" .sk] for every k, there must be another variable Si' i >1 such that the situation 

looks as follows: 

s	 = [sI ~ . "Si_l Si Si+l"'] 

I I 1 (vI) I (v2) 1
 

As =[al· .. ag ag+l· ..ajaj+l .. ·ahbl...bl Mi+l"']
 
------1 11-----

At	 = [al" .ag ag+l .... ··· .. · .. ·· ..ah bl ...bI cl'" ]
 

=[tl t2· .. ]
 

Therefore the splilling rule
 

"[ws81=[ttvn~ v=[v]v2J &w=[ttvl] &[S8] =lv2fJ
 

if sand t exist. v] and v2 are new variables,"
 

is applicable for splilling Si'
 

We split Si yielding "Si = [VI v2]" & "tl = [sl· .. si_lvlJ" & "[t2 ... tm] = [v2 si+l· .. snJ"·
 

We define 1..':= {vlH [aj+l' .. ah]' v2 H [bl ...b l]} 0 A and have
 

A'si = [aj+l· .. ah bl· ..bl ] = A' [VI v2] and
 

A'tl = [al· .. ag ag+l · .. ah] = A'[sl" .si_lVI] and
 

A'[t2 · .. lm] = [bl .. ·bI Cl"'] = [A'v2 A'si+l'" A'sn] = A'[v2 si+l .. ·sn]·
 
Thus, A' unifies r'cr' = rcr(splitting).
 

(That this case can be handled by splitting a variable other than SI and tl is one of the main reasons
 

for the termination of the unification process.)
 

Case 2.2.2.3.2: W.l.o.g tl is a variable and SI is not a variable. 

Let At l =: [al' .. ah]' Since Atl '1= A[sl" .sk] for every k, there must be another variable Si' i >1 such 

that the situation looks as follows: 

s	 = [s] ... si_] Si Si+l"'] 

1 I (VI) 1 (v2) 1 

As = [al· .. ag ag+l· .. ahbl· .. bl Asi+l ... ] Le. ASi =[ag+l ...ahbl ... bl] 

------·11----1-----

At	 = [al ah b l · ..bl cl'" ]
 

= [tl t2'" ]
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(The case that 7L collapses a leading part of s is symmetric.)
=> Some of the ti in [t1,. . .,tk] must be variables and either Mi = [] or Mi = ti_1‘1.
:» 7L unifies F ' ,o’  :=  F,o(identity or inverse).

gage 2.2: A collapses no leading part of 3 or t.
Case 2 .2 . ] :  7l = M1.

=> 7t[sz...sn] = 7L[t2...tm]
=> ?L unifies I",o’ := F,o(separation).

M: Äsl :t M1.
gggs Q 2.2.2.1: As] = 2L[t1...tk] for some k > 1.

=> M52...sn] = Mtk...tml
za % unifies l"’,o’ :=  I‘,o(path—separation).

W: Ml = Ms] . . ‚skj for some k > 1. This case is symmetric to the previous one.
gas. e 2.2.2.3: ?l # Ä[t1...tk] and Ml  ;t 7t[sl...sk] for every k > 1.

=> either 51  or t1 is  a variable and both s2 and tz must exist.
gase 2.2.2.3 .1: Both 31 and II are variables.

Let 151 =: [a1 . . .ag] and M1 =: [al.„ah1 where w.l.o.g h > g (since KS1 at M1, h = g is not possible)
Since M1 $ M51. . .81.] for every k ,  there must be another variable si, i >1  such that the situation

looks as follows:
s = [51  $2 ---Si-1 Si Si+1"—-]

| | | (v1) I (v2) | _
As ==[a1 . . . ag  ag+1 . . . a j  a j+1 . . . ah  b1“ 'b l  Mi+ i " ‘ ]  i.e’. Mi“:  [aj.„-‚_1..'.ah b1" ;b l ]  " '

| |

lt = [ a l . . . agag+1  . . . . . . . . . . . . . . . .  ahb l . . . b l c l . . . ]

[ =[ t1  t 2 . . .  ]

Therefore the splitting rule
“ [w  s s ]  = [In v t ' ]  -—) v=  [v]  vg] &w= [ t t v l ]  & [ s s ]  = [vztt'J

if s and t exist. v1 and v2 are new variables.”
is applicable for splitting Si -

We split Si  yielding “Si == [V1  v2]” & “t1 = [31...si_1v1]” & “[t2 . . . tm] = [v2 si+1...sn]”.

We define W:: {VII—> [aj+1...ah], v2 H [b1...bl]} o 7t and have
l’si = [aj+1...ahb1...bl] = 7V[v1v2] and
7L’tl = [a1...ag ag+1...ah] = 7L’[s1...si_1v1] and
71.’[t2 ...tm] = [b1...b1 01...] = [7L’v2 Ä'sifl . . .  Ä’sn] = Ä.’[v2 si+1...sn].

Thus, ?L’ unifies F’o’ = Fo(splitting).
(That this case can be handled by splitting a variable other than s1 and t1 is one of the main reasons
for the termination of the unification process.)

M: W.l.o. g t1 is a variable and s1 is not a variable.
Let M1 =: [a1 . . .ah]. Since M1 #: 7t.[sl...sk] for every k .  there must be another variable si, i >1 such
that the situation looks as follows:

S = [S I  . . .S i_1  Si  Si+1" ' ]

| | (v1) | (v2) I
AS =[a1 . . . ag  ag+1 . . . ah  b1 . . . b l  ÄSi+1 . . . ]  LC.  KSi = [ag+1 . . . ahb1 . . .b1 ]

I 1

A1 = [31 . . . . . . . . . . . . . . .  ahb l . . . b1  C1 . . . ]

t =[ t1  [2 . . . ]

58



Therefore the splitting rule 

"rwss]=rttvn~ v=[vlv2] &w=[ttvl ] &[S8] = [v2(] 

ifs and t exist. VI and v2 arc new variables." 

is again applicable [or splitting Si' 

We split Si yielding "si = [VI v2]" & "t1 = [SI' ..si_lvtl" & "[t2 ... tml = [v2 si+l···sn]"· 

We define A::= {VI H [a +1... ah I, V2 H [bl ...b1] 01.. and have again g


1..\ = [a +1...ah bJ ... bl] = A: IVl v2] and
g


A't1 = [a1···ag ag+1·.. ah] = A:[sl ... si_lvl] and
 

A'[t2 · .. lm] = [bl · .. b1Cl'''] = [A'v2 A'Si+l'" A'sn] =A'[v2 si+l' .. sn]·
 

Thus, A' unifies ["a' = ra(splitting).
 • 

Conclusion We have presented sound, terminating and complete unification algorithms for P-Iogic 

terms. Except for the relatively simple cases where the accessibility relation has no special properties or 

is an equivalence relation, the algorithm is not minimal (see the examples 6.2.3), Le. it may compute 

superfluous unifiers. Since the number of unifiers is still finite, a minimal algorithm may be obtained by 

eliminaling the redundant uniliers in an appropriate postprocessing step, However, because in general 

there may be exponclllially many ullifiers, there is a need for further investigalion into the unification of 

P-logic anyhow in order to find more restrictions during the generation of redundant unifters. 

59
 

Therefore the splitting rule
“[w s s ]  = [ t t v t ’ ]  -—> v=  [v1 v2] &w=[ t t t v1 ]  & [ s s ]  = [vzft’]

if s and I exist. v1 and v2 are new variables.”
is again applicable for splitting si.
Wc split Si  yielding “si  = [V1  v2]"  & “t1 = [s1...si_1v1]” & “[t2 ...tm] = [V2  si+1...sn]”.

We define W:: {v1 H [ag+1 ...ahl, v2 H [b1...b1] 07L and have again
l’si = [ag+1...ah b]...b1] = ?! |v l  v2] and
7&1:  [a1...ag ag+1...ah] = l’[s1...si_1v1] and
it’[t2 ...tm] = [b1...b1c1...] = [?s l’si+1...7t’sn]= 7L’[v2 si+1...sn].

Thus, ?L’ unifies F’G’ = Fo(splitting). l

Conclusion We have presented sound, terminating and complete unification algorithms for P-logic
terms. Except for the relatively simple cases where the accessibility relation has no special properties or
is an equivalence relation, the algorithm is not minimal (see the examples 6.2.3), i.e. it may compute
superfluous unificrs. Since the number of unifiers is still finite. a minimal algorithm may be obtained by
eliminating the redundant unificrs in an appropriate postproccssing step. However, because in general
there may be exponentially many unil'icrs, there i s  a need for further investigation into the unification of
P-logic anyhow in order to find more restrictions during the generation of redundant unificrs.



Chapter Seven 

Modal Resolution 

Two different versions of the resolution rule are necessary. Resolution for interpretations with a serial 

accessibility relation is just like ordinary resolution. The only difference is that the unification may 

produce more than one, but at most finitely many unifiers. When the accessibility relation is not serial a 

more complex theory resolution operation is necessary. The two versions are defined in this chapter and 

their soundness is shown. For the completeness proofs more technical machinery is necessary which 

will be provided in the next chapters. 

7.1 Resolution for Serial Interpretations 

There is no significant difference to the resolution rule for predicate logic. For simplicity wc incorporate 

the factoring rule into the resolution rule. 

Definition 7.1.1 (The Resolution Rule for Serial Interpretations) 

Let C = Ptl l v v Ptl v C' andn
 
D =-,PsII v v -,Psl v D'
m 

be two clauses with no variables in common, the parent clauses, and let cr be a prefix-preserving and 

9\-admissible unifier for the termlists tll, ...,t~ and sll, ... ,slm of the resolution literals {Ptll .... ,Ptln } 

and {-,PsII, ... ,-,Psl } i.e. crtll =...= crtl = crsl l = ... = crslm.m n 

Then the clause crC' v crD' is called a resolvent of the parent clauses C and D. • 

The soundness proof is a special case of the soundness proof for the resolution rule for non-serial 

interpretations which will be given below. 

Examples for resolution operations: 

C =P[va] v Q[v] Let the accessibility relation be reilexive 

D =-,P[buw] v S[bu] cr = {v H b, u H a, W H []} 

Resolvent: Q[b] v S[ba] 

C =P[va] v Q[v] Let the accessibility relation be transitive 

D =-,P[buw] v S[bu] cr= {vH [bu], WH a} 

Resolvent: Q[bu] v S[bu]. • 
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Chapter Seven

Modal Resolution

Two different versions of the resolution rule are necessary. Resolution for interpretations with a serial
accessibility relation is just like ordinary resolution. The only difference is that the unification may
produce more than one, but at most finitely many unifiers. When the accessibility relation is not serial 3
more complex theory resolution operation is necessary. The two versions are defined in this chapter and
their soundness is shown. For the completeness proofs more technical machinery is necessary which
will be provided in the next chapters.

7 .1  Resolution for Serial Interpretations

There is no significant difference to the resolution rule for predicate logic. For simplicity we incorporate
the factoring rule into the resolution rule.

Def in i t ion  7 .1 .1  (The  Resolution Rule  for Serial  Interpretations)

Let C:  Ptl1 v . . .v  Pt lnvC '  and
D = —-1Psl1 v . . . v  —.PslIn v D'

be two clauses with no variables in common, the parent clauses. and let 0 be a prefix-preserving and

Eli—admissible unifier for the termlists [11,....t1n and $11,. . .,s1m of the resolution literals {Pt11,. . .,Ptln}
and {—.Psll,...‚fiPslm} i.e. (nl1 = . . .=  Otln = 6811 = = Oslm.
Then the clause GC' v CD is called a resolvent of the parent clauses C and D. I

The soundness proof is a special case of the soundness proof for the resolution rule for non-serial
interpretations which will be given below.

Examples for resolution operations:
C = P[va] v Q[v]  Let the accessibility relation be reflexive

D=———.P[buw]vS[bu] O={VHb‚uHa‚Wi—>[]}

Resolvent: Q[b] v S[ba]

C = P[va] v Q[v] Let the accessibility relation be transitive
D = —:P[buw] v S[bu] 0' = {v  H [bu], w I—> a }

Resolvent: Q[bu] v S[bu]. l
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7.2 Resolution for Non-Serial Interpretations. 

The execution of a resolution operation usually consists of two steps: 

Step 1: The parent clauses must be instantiated with the unifier. 

Step 2: The contradictory literals must be identified and the remaining literals in the instantiated 

parent clauses must be collected into the resolvent. 

Both steps are not without problems when the accessibility relation is not serial. We shall discuss the 

problems with some examples and then give a solution. 

7.2.1 Conditioned Instantiation of Clauses 

Consider the simple clause C =P[u]. This clause is satisfiable with a P-interpretation consisting of the
 

initial world only, but the instance {u H a}P[u] = P[a] with a non-variable 'a' is not satisfiable in this
 

interpretation. Therefore a straightforward instantiation rule is I!Q1 sound. The reason is that certain
 

P-interpretations may satisfy a quantified formula just by making the quantification empty. Of course this
 

P-interpretation can no longer satisfy the instantiated formula where the variable in question has been
 

replaced by a non-variable term. Thus, we can only create a conditioned instance of the clause where the
 

condition for the instantiated W-variable u expresses somehow "if there is a world accessible from the
 

world denoted by prefix(u, C) then ..." or after rewriting the implication as a disjunction: "either there is
 

no world accessible from the world denoted by prefix(u, C) or ...". In order to express such conditions
 

as literals we need a special predicate 'End' which takes one world-path p as argument and expresses
 

"The world denoted by p is the last one". The correct instance of the example above is then {u Ha} P[u]
 

=End([]) v P[aJ with the informal meaning: Either there is no world beyond the initial world or there is
 

one and P holds in this world.
 

Definition 7.2.1 (The 'End' Predicate)
 

A special predicate symbol 'End' is defined which is distinguished from all other symbols. 'End' takes
 

one world-path (or W-term) as argument. Its semantics is:
 

For a P-interpretation ~p with initial world ~o:
 

~p Ir-p End(p) iff ~p(p)(~o)*-.J.. and there is no world accessible from gp(p)(go). • 

Definition 7.2.2 (Conditioned Instantiation of Clauses) 

Let C =be a clause and let 0' be a prefix-preserving substitution. 

O'tC:= U{ {End(p), End([pad), ... , End([pal ... llnJ)} I 

p =O'(prefix*(u, C» where u E DOM(O') and O'u =[al' .. llnlln+l]} (a) 

u U{ {End([]), ... , End([ ...bm])} I [ ...bmbm+lJ is a subterm in COD(O')} (b) 

ucrC. (c) • 
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7 .2  Resolution for Non-Serial Interpretations.

The execution of a resolution operation usually consists of two steps:
Step 1: The parent clauses must be instantiated with the unifier.

Step 2: The contradictory literals must be identified and the remaining literals in the instantiated
parent clauses must be collected into the resolvent.

Both steps are not without problems when the accessibility relation is not serial. We shall discuss the
problems with some examples and then give a solution.

7 .2 .1  Condi t ioned  Ins tan t ia t ion  of C lauses

Consider the simple clause C = P[u]. This clause is satisfiable with a P-interpretation consisting of the
initial world only, but the instance { u H a}P[u] = P[a] with a non-variable ‘a ’  is  not satisfiable in  this

interpretation. Therefore a straightforward instantiation rule i s  not sound. The reason i s  that certain

P—interpretations may satisfy a quantified formula just by making the quantification empty. Of course this
P-interpretation can no longer satisfy the instantiated formula where the variable in question has been
replaced by a non-variable term. Thus, we can only create a conditioned instance of  the clause where the
condition for the instantiated W—variable u expresses somehow “if there is a world accessible from the
world denoted by prefix(u. C) then or after rewriting the implication as a disjuncüon: “either there is
no world accessible from the world denoted by prefix(u, C) or . . .”. In order to express such conditions
as literals we need a special predicate ’End’ which takes one world-path p as argument and expresses
“The world denoted by p is the last one”. The correct instance of the example above is then [ u H a}P[u]
= End([]) v P[a] with the informal meaning: Either there is no world beyond the initial world or there i s

one and P holds in this world.

Definition 7.2.1 (The ’End’  Predicate)
A special predicate symbol ’End’ is defined which is distinguished from all other symbols. ’End’ takes
one world-path (or W-term) as argument. Its semantics is:
For a P-interpretation Sp with initial world 30:

Sp  "—1, End(p) iff Sp(p)(80) at .L and there is  no world accessible from Sp(p)(30). I

Definition 7.2.2 (Conditioned Instantiat ion of Clauses)
Let C = be a clause and let 0 be a prefix-preserving substitution.
(LLC := U{{End(p)‚ End([pa1]). End([pa1...an])} I

p = c(prefix*(u, C)) where u e DOM(6) and au = [al.„anan+11}  (a)
U U{ {End([]),..., End([...bm])] I [...bmbm+1] is a subtenn in COD(o)} (b)
U 0C. (C) I
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Examples for conditioned instantiation of clauses: 

{v H [cvldJ. w H [ewlw2]' x H y}J. P[a(x)vbw] = 

End([a(y)]) v End([a(y)c]) v End([a(y)cv1]) v 

End([a(y)cvldb]) v End([a(y)cvldbe]) v End([a(y)cvldbewI]) 

v P[a(y)cvldbewlwZ] 

{x H [[ab]} J. Q(n x) =End([]) v End([aJ) v Q([] f[ab])
 

(This looks horribly inefficient. but the number of End-literals can be considerably reduced using the
 

End-reduction rule which is defined below. Furthermore most of the remaining End-literals disappear
 

when the resolvent is generated.)
 

• 

Theorem 7.2.3 (Conditioned Instantiation is Sound)
 

Let C ='v'uI" ..•uk C' be a fully quantified clause. let .sp be a P-model for C with initial world .so. let cr
 

be an 9t-admissible, idempotent and prefix-preserving substitution and let D := 'v'vI"",vn crJ.C be the
 

fully quantified conditioned instance of C. Then.sp Irp D.
 

Proof: Since a is prefix-preserving, D is again an M-adjusted clause.
 

W.l.o.g let DOM(cr) := {xI, ... ,xI} \;; {uI' ...•uk}. 

The correspondences between the different variable sets is as follows: 

Vars(C) ={uI"" ......• uk} 

DOM(cr) = {xI.... ,xI! ~ Vars(C) 

Vars(D) = {vI'....vn} nDOM(a)=j1j (since cris idempotent) 

Thus. Vars(C) \ DOM(a) = Vars(C) n Vars(D). 

In order to apply theorem 5.1.5, let .sp' := .sP[vI/cl ...vr/cn] be a crJ.C-continuing P-interpretation.
 

We must show that .sp' satisfies aJ.C.
 

~: .sp' satisfies one of the generated End-literals.
 

Obviously .sp' satisfies crJ.C. 

~: .sp' satisfies not a single of the generated End-literals. 

Since none of the literals "U{ {End([]), ...• End([ ...bmJ)}1 [...bmbm+IJ is a subterm in COD(cr)}" 

(def. 7.2.2.b) is true in .sp'. obviously .sP'(axi):;t:.1. for i =1,...•1. 
Therefore let .sp" := .sp'[cr] (see lemma 5.2.5). 

Lemma 5.2.5 states in particular 

for every D-term tin C': .sp"(t) *".1. implies .sp"(t) = .sp'(crt) and 

for every world-path p in C: .sp"(p) (.so):;t:.1. implies .sp"(p)(.so) = .sp'(op)(.so). (*) 

The next thing to be show is that .sp" is C'-continuing. Le. 

for every world-path [p.u1E C': if .sp"(p)(.s0) :;t:.1. then .sp"([p.u])(.so):;t: .1.: (def. 5.1.4) 

Therefore let [p.ll ... 1E C with 'sp"(p)('so) ;t:.1.. With (*) wc have 'sp '(ap)('so):;t ...L. 

Case a) u e Dom(a). 

Since ap E aJ.C' and .sp' is aJ.C-continuing• ...L :;t: .sp'([ap.uJ)(,So) = .sp"([p.u])(.so)· 

Case b) u E Dom(a). 

:::) End(ap) E crJ.C' (def. 7.2.2,a) 

Since .sp' does not satisfy End(ap), and therefore .sp" does not satisfy End(p), there is a 

world accessible from .sp"(p)(.so), thus .sp"([p.uJ)(.so):;t:.1.. 

Now. since .sp" is C'-continuing. by theorem 5.1.5, .sp" I~ C. Le. .sp" I~ L for some literal L in 

C. Furthermore. with (*) we get .sp' Irp aL. and therefore again .sp' I~ aJ.C'. 

Applying theorem 5.1.5 now. we conclude 'sp Irp D. • 
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Examples for conditioned instantiation of clauses:
{v  H [cvld] ,  w H [ewlwz],  x H y}.L P[a(x)vbw] ==

End([a(Y)]) V End([a(y)C]) V End([a(y)CV1]) v
End([a(y)cv1db]) v End([a(y)cv1dbe]) v End.([a(y)cv1dbew1])
v P[a(y)cv1dbew1w2]

{x H flabJH Q([] X) = End(ll)  v End([aD v Q([] fiabl)

(This looks horribly inefficient, but the number of End-literals can be considerably reduced using the
End-reduction rule which i s  defined below. Furthermore most of the remaining End-literals disappear

when the resolvent is generated.)
I

Theorem 7.2.3 (Conditioned Instantiation is Sound)
Let C = Vu1,. . .,uk C' be a fully quantified clause, let SP be a P-model for C with initial world So. let G
be an Eli—admissible, idempotent and prefix-preserving substitution and let D := Vv1,...,vn oiC' be the
fully quantified conditioned instance of C. Then SP  ll—P D.
Proof: Since 0' is prefix-preserving, D is again an M-adjusted clause.
W.I.o.g let DOM(O) := {x1,...,x1} ; [u1,...,uk}.
The correspondences between the different variable sets is as follows:

VarS(C) = {1.11, . . . . . . . . .  , uk}

DOM(O) = {x1,. . .,xl} ; Vars(C)
Vars(D) == {v1‚. . . ‚vnl n DOM(G) = e (since 6 is idempotent)
Thus, Vars(C) \DOM(G) = Vars(C) n Vars(D).

In order to apply theorem 5.1.5, let Sp’ := 5P[V1/°1--—Vn/°n] be a CLO-continuing P-interpretation.
We must show that Sp’  satisfies oiC'.
51ml: Sp’ satisfies one of the generated End-literals.

Obviously SP’ satisfies olC'.
Cassi: Sp’ satisfies not a single of the generated End-literals.

Since none of the literals “U{  {End([]),. . ., End([. . .bm])}l [. ..bmbm+1] is a subterm in COD(o)}”
(def. 7.2.2,b) is true in SP’, obviously 3P’(oxi) # _L for i ==1,...,l.
Therefore let Sp" := SPTO] (see lemma 5.2.5).
Lemma 5.2.5 states in particular

for every D-term t in C': Sp"(t) # _L implies SP"(t) = 3p’(0t) and
for every world-path p in C': 8P"(p) (S 0) at _L implies 3p"(p)(3 0) = Sp’(6p)(8 0) .  ($)

The next thing to be show is that SP" is C’-continuing, i.e.
for every world-path [p.u] e 0: if Sp"(p)(80) # .L then Sp"([p.u])(80) at .L: (def. 5.1.4)

Therefore let [p.u...] e. C' with Sp"(p)(30) st _L. With (91°) we have Sp’(0p)(30) at .L.
Case a) u e Dom(o).

Since 0p 6 GiC' and SP’  i s  CLO-continuing, _L 4t SP’([O‘p.u])(SO) = 3P"([p.u])(30).

Case b) u e Dom(0).
=> End(op) 6 etc (def. 7.2.2,.a)
Since SP’  does not satisfy End(6p), and therefore SP" does not satisfy End(p), there is a
world accessible from SP"(p)(30), thus 3p"([p.u])(30) at .L.

Now, since Sp" is C'-continuing, by theorem 5.1.5, SP" lI—P C', i.e. Sp" "‘P L for some literal L in
0.  Furthermore, with ($)  we get SP’ "-13 CL, and therefore again Sp’ "'P oiC‘.

Applying theorem 5.1.5 now, we conclude Sp  "—9 D. I
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Theorem 7.2.4 (The End-Reduction Rule)
 

A literal End(p) can be removed from a clause C if there is another literal containing a world-path [p.u... ]
 

with a W-variable u.
 

Proof: Clearly no C-continuing P-interpretation ~p with initial world ~o can satisfy End(p). for
 

otherwise there is no accessible world form ~p(p)(~() such that ~p([p.uJ)(~o) :T- ..L. l-fence, End(p) is
 

false in all C-continuing P-models for C and can therefore be removed. •
 

The next example demonstrates the power of the End-reduction rule:
 

Instantiation without the End-reduction rule:
 

{v H [cvId], W H [ewIwz], x H y}J..P[a(x)vbw] =
 
End([a(y)]) v End([a(y)c]) v End([a(y)cvI]) v
 

End([a(y)cvIdb]) v End([a(y)cvIdbe]) v End([a(y)cvIdbewI])
 

v Pfa(y)cvldbewlwZ)
 

Instantiation and application of the the End-reduction rule: 

{v ..... [cvldJ, w H [ewlwz), x H y}J..Pfa(x)vbwJ =
 
End(la(y)]) v End([a(y)cvl]) v End([a(y)cv1db])
 

v P[a(y)cvIdbewIwz]'
 

7.2.2 Complementary Literals 

Usually two complementary literals, i.e. literals with opposite sign and the same predicate symbol can be 

used as resolution literals. They are removed from the resolvent because they are semantically 

contradictory. We must extend this definition by saying what is complementary to the new 'End' 

predicate. The semantics of the End-predicate obviously enforces that every literal L containing a 

world-path [p.a... ], a:# [] is complementary to a literal End(p). 

Definition 7.2.5 (Complementary Literals) 

Two literals L and K are called complementary if either: 

>- L =Ptl, K =-,Ptl or tl is a termlist 

>- L = ±Ptl, K = End(p), [p.a... ] e tl for some a:to [] or 

>- L =End(s), K =End(p), either s = [p.a... ] or p = [s.a... ] for some a:to [] 

Two sets L and K of literals are called complementary if every literal in L is complementary to each literal 

in K. • 

63
 

Theorem 7.2.4 (The End-Reduction Rule)
A literal End(p) can be removed from a clause C if there is another literal containing a world-path [p.u. . .]
with a W—variable u.
Proof: Clearly no C-continuing P-interpretation Sp  with initial world 80  can satisfy End(p). for
otherwise there is no accessible world form 5p(p)(80) such that 3p([p.uj)(30) $ _L. Hence, End( p) is
false in all C-continuing P-models for C and can therefore be removed. I

The next example demonstrates the power of the End-reduction rule:
Instantiation without the End-reduction rule:

{v H [cvld], w t—> [ewlwz], x I—> y}.LP[a(x)vbw] =
End([a(y)]) v End([a(y)<:]) v End([a(y)cv1]) v
End([a(y)cv1db]) v End([a(y)cv1dbe]) v End([a(y)cv1dbew1])
v P[a(y)cv1dbewlw2]

lnstantiation and application of the the End-reduction rule:
{v H [cvld], w H[ew1w2], x H y}lP[a(x)vbwl =

End( la (y ) l )  v End([a(y)CV1])  V End([a(y)cv1db])

v P[a(y)cv1dbew1w2].

7.2.2 Complementary Literals

Usually two complementary literals, i.e. literals with opposite sign and the same predicate symbol can be
used as resolution literals. They are removed from the resolvent because they are semantically
contradictory. We must extend this definition by saying what is complementary to the new ’End’
predicate. The semantics of the End-predicate obviously enforces that every literal L containing a
world-path [p.a. . .], a 72 [] is complementary to a literal End(p).

Definition 7.2.5 (Complementary Literals)
Two literals L and K are called complementary if either:
> L = Ptl. K = fiPtl or tl is a termlist
>- L = :tPtl, K = End(p), [p.a . . . ]  € t1 for some a at [ ]  or
> L = End(s), K = End(p), either s = [p.a. . . ]  or p = [s.a.  . . ]  for some a at [ ]

Two sets L and K of literals are called complementary if every literal in L is complementary to each literal
in K. I
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Le mma 7.2.6 Two sets C and D of complementary literals are unsatisfiable by a P-interpretation.
 

Proof: Assume there is a P-interpretation gp with initial world go that satisfies a literal L E C and a
 

literal KED.
 

Case 1: L = End(p), i.e. gp(p)(go):;:' .L and there is no world accessible from gp(p)(go).
 

Case 1.1: K::: End([p.a... ]). 

This contradicts the fact gp([p.a])(gO) =.L. 

Case 1.2: K = End(s) and p = [s.a... ], 

i.e. gp(s)(go):;:' .L and there is no world accessible from gp(s)(go). 

This contradicts the fact gp(p)(go):;:' .L. 

Case 1.3: K = ±Ptl, [pa... ] E t1. 

Since there is no world accessible from gp(p)(go), gp([p.a])(go) = .L 

which contradicts gp II-p K. 

Case 2: L = Ptl 

The case that K is an End-literal is symmetric to case 1.3. The only remaining case is K = .....,Ptl. Since 

gp satisfies L, gp(t) :;:'.L for every term tin t1. Therefore gp cannot satisfy Ptl and .....,Pt1. 

In all cases we got a contradiction. Thus, gp cannot satisfy both sets C and D. • 

The previous lemma holds for unquantified literals. It does not imply that two quantified literals Vu P[u] 

and Vu.....,P[u] are contradictory because the P-interpretation consisting of the initial world only satisfies 

both of them. The reason is again that the quantification Vu is empty in this interpretation and in this case 

the structure of the literal is irrelevant for the truth value of the whole formula. If we therefore assume 

that both Vu P[u] and Vu.....,P[u] are true in a P-interpretation, we can deduce that there can't be worlds 

accessible from the initial world, Le. End([]) must be true in this P-interpretation. End([]) is therefore 

implied by Vu P[u] and Vu.....,P[u] and must be inserted as a residue into a resolvent where P[u] and 

-,P[u] are used as resolution literals (see [Stickel 85]). 

In general such residue literals are constructed as follows: 

Definition 7.2.7 (The Residue of Literal Sets)
 
For a literal set C: Residue(C):= {End(p) I p = prefix*(u, C), u E W-vars(C)}
 •
 

Example for residues: Residue({Q[aubcv]}) = {End[a], End[aubc]}. •
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Le  mma  7.2.6  Two sets C and D of complementary literals are unsatisfiable by a P-interpretation.
Proof: Assume there is a P-interpretation SP  with initial world SO that satisfies a literal L e C and a
literal K e D.

Case 1: L = End(p), i.e. 5P(p)(80) $ .L and there is no world accessible from 5P(p)(50).
Case 1.1: K = End([p.a . . . ] ) .

This contradicts the fact 3P([p.a])(30) = J..
Case 1.2: K = End(s) and p = [s .a . . . ] ,

i.e. Sp(s)(30) $ _1_ and there is no world accessible from Sp(s)(8 0) .

This contradicts the fact 3p(p)(80) :: _L.
Case 1.3: K = iPtl, [pa...] e tl.

Since there i s  no world accessible from Sp(p)(80), SP([p.a])(SO) = ..L

which contradicts SP "—1; K.
Case 2: L = Ptl

The case that K is an End-literal is symmetric to case 1.3. The only remaining case is K : —-=Ptl. Since
Sp  satisfies L,  Spa) gt _1_ for every term t in tl. Therefore SP  cannot satisfy Ptl and —-:Ptl.

In all cases we got a contradiction. Thus, Sp  cannot satisfy both sets C and D. I

The previous lemma holds for unquantified literals. It does not imply that two quantified literals Vu P[u]
and Vu—wP[u] are contradictory because the P-interpretation consisting of the initial world only satisfies
both of them. The reason is again that the quantification Vu is empty in this interpretation and in this case
the structure of the literal is  irrelevant for the truth value of the whole formula. If we therefore assume
that both Vu ‚P[u] and Vu—wP[u] are true in a P—interpretation, we can deduce that there can’t be worlds

accessible from the initial world, i.e. End( []) must be true in this P-interpretation. End([]) i s  therefore

implied by Vu P[u] and Vu—.P[u] and must be inserted as a residue into a resolvent where P[u] and
——1P[u] are used as resolution literals (see [Stickel 85]).

In general such residue literals are constructed as follows:

Definition 7.2.7 (The Residue of Literal  Sets)
For a literal set C :  Residue(C) :=  {End(p) | p = prefix*(u. C ) ,  u e W—vars(C)} l

Example for residues: Residue({Q[aubcv]}) = { End[a], End[aubc]}. l



Now we are ready to define the general resolution rule. 

Definition 7.2.8 (The General Resolution Rule) 

Let C:: Cl v C2 and 

D :: DI v D2 be two clauses with no variables in common, the parent clauses, 

and let (J be a prefix-preserving and 9\-admissible substitution such that 

(JJ,C :: (JCI v C3 v (JC v C4 andz 
(JJ,D :: (JDI v D3 v (JD v D4 are the conditioned ("End-reduced") instances z 

where the End-literals C3, C4, D3 and D4 are partitioned such that (JC I U C3 and (JD 1 U D3 are 

complementary. The clause 

Residue«JC1 U ~ U (JDI U D3) v (J~ v C4 v (JD2 v D4 

is called a resolvent of the parent clauses C and D. • 

It is noted that the substitution (J may be a unifier for literals with the same predicate symbol and different 

signs, but (J may also unify the world-path p of an End-literal with the leading part q of a world-path 

[q.a ... ] occurring in the resolution literals of the second clause. The term a following q in this second 

world-path should be a non-variable term, for, otherwise the generated resolvent will be subsumed by 

one of its parent clauses. (It is an exercise for the reader to prove this.) 

Examples for resolution operations with End-reduction in non-serial interpretations. 

a) C = P[avv], Q[avv] 

D =....,Plwbul. S[wbu] (J={wHa,vHb,uHv] 

Instantiation: (JJ,C = PI abv I, End[a], Q[abv I 
(JJ,D = ....,P[abv], End[], End[ab], S[abv] 

End-reduction: (JJ,C = P[abv], End[a], Q[abv] 

(JJ,D = ....,P[abv], End[], S[abv] Residue = End[ab] 

Resolvent: End[ab], Q[abv], S[abv] 

End-reduction: Q[abv], S[abv] 

b) C = P([], x) , Q[] 

D :: ....,P(I], c[au]) (J = {x H c[au]} 

Instantiation: (JJ,C = pm, c[au]), Endrl, End[a], 0[1 
(JJ,D :: -,P(ll, c[auD 

End-reduction: (JJ,C = P(IJ. clau]), End[j, 0[1 
(JJ,D = ....,P(ll. c[auD Residue:: End[a] 

Resolvent: End[a]. Q[] 

c) C = End[vc], Q[v] 

D = S[abcd] (J = {v H [ab]} 

Instantiation: (JJ,e = End[abc], End[], End[a], Q[ab] 

(JJ,D = S[abcd] 

Resolvent: Q[ab] • 
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Now we are ready to define the general resolution rule.

Definit ion 7.2.8 (The  General  Resolution Rule )

Let C = C 1 v C2 and
D = D1 v 02 be two clauses with no variables in common, the parent clauses,

and let c be a prcfix—prcscrving and Eli-admissible substitution such that
etc = oC1 v C3 v oC2 v C4 and
olD = (ID1 v D3 v (5D2 v D4 are the conditioned (‘ ‘End—reduced”) instances

where the End-literals C3, C4, D3 and D4 are partitioned such that GC1 U C3 and oDl  u D3 are
complementary. The clause

Residue(oC1 u C3 U oD1 u D3) v oC2 v C4 v oD2 v D4
is called a resolvent of the parent clauses C and D. I

It is noted that the substitution 0 may be a unifier for literals with the same predicate symbol and different
signs, but 0 may also unify the world-path p of an End—literal with the leading part q of a world-path
[q.a...] occurring in the resolution literals of the second clause. The term a following q in this second
world-path should be a non—variable term, for, otherwise the generated resolvcnt will be subsumed by
one of its parent clauses. (It is an exercise for the reader to prove this.)

Examples for resolution operations with End-reduction in non-serial interpretations.
a) C = P[avv],  Q[avv]

D =-—. lbu] ,  S[wbu] G={w:—>a,v»~>b,u+—>v}
lnstantiation: oiC = PIabv | ,  End[a], Q[abv]

OKLD = —1P[abv], End[], End[ab], S[abv]
End-reduction: olC P[abv], End[a], Q[abv]

GlD = fiP[abv], End[]‚ S[abv] Residue = End[ab]
Resolvent: End[ab]. Q[abv]. S[abv]

End-reduction: Q[abv], S[abv]

b) C = P( [ ] .  X) , Q[]
D = —.P(|_']‚ c[au]) 0 = {x '—> dann

lnstantiation: OlC = P([], c[au]), End[l, End[a], Q[]
OLD == —-1P(I | ,  c[au])

End-reduction: OLC = P(lJ, claul), End“, Q[]
GiD = ——-.P([ | ,  clauD Residue = End[a]

Resolvent: End[a], Q[]

c) C = End[vc], Q[v]

D = S[abcd] o = {v H [abll
Instantiation: oiC == End[abc], End[], End[a], Q[ab]

GJD == S[abcd]
Resolvent: Q[ab] . l
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Theorem 7.2.9 (Soundness of the General Resolution Rule). 

Let C and D be two clauses with no variables in common, and let cr be a prefix-preserving and 

9\-admissible substitution such that cr,J,C =: C u C" and cr,J,D = D' u D" are the conditioned instances 

and E = Residue(C u D') u C" u D" is a resolvent. 

Then every P-model for the fully quantified clauses C and D is also a P-model for the fully quantified 

resolvent. 

Proof: Let :3 p be a P-model for the two fully quantified parent clauses C and D. According to theorem 

7.2.3. g p is also a P-model for the fully quantified instances cr,J,C and cr,J,D. Since cr is 

prefix-preserving. the W-variab1es in the instantiated parent clauses and the resolvent have the same 

prel'ixes. In order to apply theorem 5.1.5, let :3 p ' := gp[v1/cl' .... vn/cnJ be an E-continuing 

P-interpretation. where w.l.o.g {v1 •...•vn} are the variables occurring in the instantiated parent clauses 

and the resolvent. 

Case 1: gp' is not cr,J,C-continuing. 

I.e. there is a variable v with [p.v] = prefix(v, cr,J,C) and :3p'(p) i:.L and :3p'([p.v]) =.L.
 

Since :3 p' is E-continuing, v cannot occur in C" and must therefore occur in C.
 

In this case, the literal End(p) is part of the residue and satisfies :3 p'. Hence, :3 p 'I~ E.
 

~: :3p' is not cr,J,D-continuing. This case is symmetric to the previous one. 

~: :3 p' is cr,J,Cucr,J,D-continuing. 

Since gp satisfies the fully quantified instances cr,J,C and cr,J,D, by theorem 5.1.4, :3p' satisfies 

cr,J,C and cr,J,D, Le. :3 p' satisfies a literal L in cr,J,C and a literal K in cr,J,D. IfL is in C" then 

1(' II-p E as well. Therefore let L E C. Since :3p' cannot satisfy any of the complementary literals in 

D' (lemma 7.2.6), K must be an element ofD" s;; E. Hence, :3 p'll-p E. 

Applying theorem 5.1.5 we can now conclude that gp satisfies the fully quantified resolvent. • 
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Theorem 7.2 .9  (Soundness of the General Resolution Rule).
Let C and D be two clauses with no variables in common, and let G be a prefix-preserving and

Si-admissible substitution such that C&C =: C' U C" and (“J—LD = D' U D" are the conditioned instances
and E = Residue(C' U D') U C" U D" is  a resolvent.
Then every P-model for the fully quantified clauses C and D is also a P-model for the fully quantified
resolvent.
Proof: Let Sp  be a P-model for the two fully quantified parent clauses C and D. According to theorem
7.2.3. 3 P is also a P—modcl for the fully quantified instances (NC and OLD. S ince  0 is
prefix-preserving. the W-variables in the instantiated parent clauses and the rcsolvcnt have the same

prefixes. In order to apply theorem 5.1.5, let S P, :=: 55 p[ .v1 / c1 , . . . , vn / cn j  be an E—continuing
P-interpretation, where w.l.o.g {v1,...,vn} are the variables occurring in the instantiated parent clauses
and the resolvent.
gag: SP,  is not (Sic-continuing.

I.e. there is a variable v with [p.v] = prefix(v‚ (LLC) and SP’(p) $ _L and 3P’([p.v]) = J..
Since SP’ is E-continuing, v cannot occur in C" and must therefore occur in C'.
In this case. the literal End(p) is part of the residue and satisfies SP’. Hence. ESP ’n—P E.

Easel: SP’ is not GlD-continuing. This case is symmetric to the previous one.
Case}: SP’ is OLCUGiD-continuing.

Since SP satisfies the fully quantified instances (NC and ND, by theorem 5.1.4, SP’ satisfies
GlC and GlD, i.e. SP’ satisfies a literal L in (NC and a literal K in OlD. If L is in C" then
9C II-P E as well. Therefore let L e C'. Since SP,  cannot satisfy any of the complementary literals in
D' (lemma 7.2.6), K must be an element of  D" c; E. Hence, Sp’  Il-p E.

Applying theorem 5.1.5 we can now conclude that SP  satisfies the fully quantified resolvent. l
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Chapter Eight 

Term Frames 

The goal of the three subsequent chapters is to prove the completeness of the resolution rules. In lhis 

context completeness means that the empty clause, i.e. 'False', can be deduced from every unsatisfiablc 

clause set by a sequence of resolution operations. The completeness proof we are going to present 

follows the ideas of the completeness proof for the resolution rule in first order predicate logic (c.f. 

[Chang&Lee 73]). The first step is to reduce the defmition of unsatisfiabiIity, such that not all possible 

P-frames need be considered to find out whether a clause set is unsatisfiable, but only certain "term 

frames", or UT-frames" for short, whose domain consists of terms. The second step is to represent all 

possible T-frames in a "semantic tree" and to show that for every unsatisfiable clause set a given 

semantic tree can be cut below a certain depth such that the remaining finite tree still contains enough 

information for determining the unsatisfiabiIity of the clause set. This finite tree can then be used to 

generate the desired sequence of resolution operations terminating with the empty clause. 

Before we come to the definition of term frames, however, we define an algebraic relation between 

P-frames: 

8.1 Frame Homomorphisms 

Frame homomorphisms map the worlds in one frame to the worlds in another frame such that the 

accessibility relations are respected. A frame homomorphism will be used to describe the basic relation 

between an arbitrary model and a term model for a clause set. 

Definition 8.1.1 (Frame Homomorphism)
 

Given two M-frames 1='1 = (]DJ1, SI' 9\1) and 1='2 = (D2, S2' 9\2)' over the same signature, a mapping <I>:
 

1='1 ~ 1='2 is called aframe homomorphism ifit maps the worlds in SI to worlds in S2 with respect to
 

the accessibility relations, i.e.
 

a) forevery gl,g2 E SI: 9\1(gl,g2)~9\2(<I>(gl).<I>(g2))and 

b) forevery gl E ~t andg2'e 52: 9\2(<I>(5 1),g2')=>3g2 E 5 t :g2'=<I>(g2)and9\1(gl,g2) 

Example 

for a frame 

homomorphism 

67
 

Chapter Eight

Term Frames

T hc goal of the three subsequent chapters is to prove the completeness of the resolution rules. In this
context completeness means that the empty clause, i.e. ‘False’, can be deduced from every unsatisfiable
clause set by a sequence of resolution operations. The completeness proof we are going to present
follows the ideas of the completeness proof for the resolution rule in first order predicate logic (c.f.
[Chang&Lee 73]). The first step is to reduce the definition of unsatisfiability, such that not all possible
P-frames need be considered to find out whether a clause set is unsatisfiable, but only certain “term
frames", or “T—frames” for short, whose domain consists of terms. The second step is to represent all
possible T—frames in a “semantic tree” and to show that for every unsatisfiable clause set a given
semantic tree can be cut below a certain depth such that the remaining finite tree still contains enough
information for determining the unsatisfiability of the clause set. This finite tree can then be used to
generate the desired sequence of resolution operations terminating with the empty clause.

Before we come to the definition of term frames, however, we define an algebraic relation between
P-frames:

8 .1  F rame  Homomorph i sms

Frame homomorphisms map the worlds in one frame to the worlds in another frame such that the
accessibility relations are respected. A frame homomorphism will be used to describe the basic relation
between an arbitrary model and a term model for a clause set.

Definition 8.1.1 (Frame Homomorphism)
Given two M-frames F1 = (D1, 31, SKI) and F2 = (D2, 32, 912), over the same signature, a mapping (1):

1’1 -> $2 is called a frame homomorphism if it maps the worlds in 31 to worlds in $2  with respect to
the accessibility relations, i.e.

a) for every 81, 82  e 31: SR1(31, 32) => 9126136031362» and
b) for every 8 ]  e 31 and 32’ e 32: 9i2(<l>(51), 32’) => 3 82 e 31: 32’ = ®(52) and 911631.82)

Example  0
for a frame 8 2 0 —>O
homomorphism T

31  a—bg—bgäg—bg  ——>
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The nextlcmma states that two P-frames correlated by a frame homomorphism evaluate terms in a similar 

way. 

Lemma 8.1.2 

Given two P-rramcs f'J = «D 1, $1' 9t 1), ~Wl) and f'2 = (00)2' $2' 9t2), ~W2) with a frame 

hornoJl1orphism et>: f 1 ~ f 2, [or every P-intcrpretation 5 p= (f l' 5,~, ~): 

For every ground term l: 5 p(t) "i=.L iff cI>(5 p)(t) "i=.L and
 

for every ground world-path t: 5 p(t)(5)"i=.1. iff cI>(5 p)(t)(cI>(5» "i=.L
 

where cI>(5 p) is defined to be (f2' cI>(5), p, p).
 

Proof: Let 5 p =(f'I' 5, p, p) and let t be a ground term or a ground world-path.
 

"=>" Let 5 p(t)"i=.L or 5 p(t)(5)"i=.L respectively.
 

We perform an induction on the structure of l.
 

The single base case t =[] is trivial.
 

The induction steps are:
 

.Q!gU: t =[JP. s] is a world-path.
 

The induction hypothesis states et>(5p)(p)(cI>(5» "i=.l. and et>(5 p)(s) "i=.l..
 

Since 5 p([JP. s])(5) "i=.L, 9i 1(5 p(p)(5), 5 p([p. s])(5» must hold and
 

since cI> is a frame homomorphism, there must be an 9i2-accessible world from cI>(5p)(p)(cI>(5».
 

Finally, because world-access functions are maximally defined (def. 3.2.1),
 

cI>(5p)(t)(cI>(5» = cI>(5 p)(p) 0 cI>(5 p)(s) (cI>(5» "i=.1..
 

~: t is a W-term or a D-term. The statement follows immediately from the induction hypothesis. 

"<=:" Let cI>(5p)(t) "i=.1. or <1>(5 p)(t)(cI>(5» "i=.L respectively.
 

Again we perform induction on the structure of l.
 

The base case t =[] is trivial.
 

The induction steps are
 

~: t =[p. s] is a world-path.
 

The induction hypothesis states 5 p(p)(5) "i=.l. and 5 p(s) "i= .l.
 

Since cI>(5p)([p . s])(cI>(5» "i=.l. there is a world accessible from cI>(5p)(p)(cI>(5», namely
 

52' := cI>(5 p)([p . s])(cI>(5» = (cI>(5 p)(p) 0 cI>(5p)(s» (cI>(5»
 

=> 352 E 3 1: 52' =cI>(5 2) and 9i1(5 p(p)(5), 52) (def.8.1.2)
 

=> (5 p(p)o5 p(s»(5)"i=.1. (def. 3.2.1, world-access functions are maximally defined)
 

=> 5 p(l)(5) "i= .l..
 

~: t is a W-term or a D-term. The statement follows immediately from the induction hypothesis.• 
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The next lemma states that two P-frames correlated by a frame homomorphism evaluate terms in a similar
way.

Lemma 8.1.2
Given  two  P-frames F1  = ( (D] .  $ ] ,  SR1), SW1)  and F2  = ((IIDZ, 82 ,  EKZ), SW2)  with  a frame

homomorphism (I): F1 —-—> 172, for every P-interpretation SP  = (F1, 3 ,  (A. (0):
For every ground term t: Spa) :t _L iff <D(SS P)( t )  := _L and
for every ground world—path t: 3P(t)(S) #: ..L iff (13(3 

p)(t)(<I)(S)) # _L
where (MSP) is defined to be (F2, CMS ), 9 ,  95).

Proof: Let SP  = (F1, S .  e .  (a) and let t be a ground term or a ground world-path.
“=>” Let Spa) $ _L or 3p(t)(3) at .L respectively.
We perform an induction on the structure of t.
The single base case t = [] is  trivial.

The induction steps are:
£21594: t=  [p . 3] i s  a world-path.

The induction hypothesis states d>(8p)(p)(¢(3)) at _L and (MS 
p) ( s )  #: .L.

Since Sp([]p . 3])(3) #: .L, 9i1(8p(p)(8), Sp([p . s])(S)) must hold and
since (I) is a frame homomorphism, there must be an Siz-accessible world from ¢(Sp)(p)(¢(8 )).
Finally, because world-access functions are maximally defined (def. 3.2.1),

¢(3p)(t)(<1>(3)) == ‘1)(3 pm?) ° (13(3 
p)(S) @(5 )) $ L.

9351;: t is a W-term or a D-term. The statement follows immediately from the induction hypothesis.

“<=” Let <D(Sp)(t) at .L or (MS 
P)(l)(d>(3)) == _L respectively.

Again we perform induction on the structure of t.
The base case I = []  is  trivial.

The induction steps are
W: t = [p . s] is a world-path.

The induction hypothesis states SPQpXS) at .L and Sp(s)  $ _L
Since ®(SP)([p . s])(<1)(3)) at .L there is  a world accessible from @(SP)(p)(<D(S)), namely
32’  := c1>(3p)([}p- S])((1>(5)) = (<P(3p)(p) ° ¢(3p)(8)) ((MS))
=> 3 32  e 51: 82 ’  = (1)632) and 9i1(3p(]p)(8), 32)  (def. 8.1.2)
zb (S p(p)oS P ( s ) ) (S )  $.]. (def. 3.2.1 , world-access functions are maximally defined)
=> SPÜXS)  # .L .

Cass; 2: t is a W-term or a D-term. The statement follows immediately from the induction hypothesis. I
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8.2 Construction of Term Frames 

T-frames are the analogue to Herbrand interpretations in predicate logic. The name "T-frame" abbreviates 

"term frame" and suggests that the domain of a T-frame consists of ground D-tcrms over a given 

signatur. In the non-serial case there are not necessarily all possible ground D-terms. Function symbols 

are mapped to term constructor functions. However, since the worlds usually interpret a function symbol 

differently, there must be different term constructor functions for each world. A function symbol f is 

therefore mapped in a world 3 to a term constructor function that takes terms tl ,... ,~ and creates a term 

f(p, tl, ... ,tn) where p is a characteristic term for the world 3. To stay in the P-Iogic syntax, this p must 

be a world-path. Thus, we must construct the possible worlds structure in T-frames such that there is a 

unique correspondence between a ground world-path p and a world gp' In the sequel we shall therefore 

always write worlds in T-frames indexed by their characteristic world-path 

Definition 8.2.1 (T-Frames) 

A T-frame 'FT := ((lD,~, 9\). gw) over a signature:tp is a special P-frame where 

a) The signature interpretations gp E 5 map the D-valued function symbols f to term constructor 

functions. f': tl, ... ,tn H f(p, tl""'~)' 

b) ID is the set of ground D-terms containing world-paths which have a corresponding element in 5. 
c) The accessibility relation 9\ is the corresponding reflexive, symmetric, transitive closure over a 

basic relation which relates worlds 3 p with 3 [p.s]' 

d) 3 w maps W-valued function symbols g to functions g': (sl, ... ,sn) H (gp H g[p.g(Sl .... ,sn)]). 

Since gW(g)(sl" ., ,sn) is always injective. the interpretation of associated inverse function 

symbols in the symmetric case is straightforward (c.r. def. 3.2.2). 

Lemma 8.2.2
 

A T-frarne 'FT := «D, 5, 9\), 3w) establishes the following correspondence between the accessible
 

worlds 9\(gr' gs) which are indexed with the world-paths r and s and the syntactic structure of rand s:
 

a) In case 9\ has no special properties, except seriality, s =Ir. al where a is a single W-term.
 

b) In case 9\ is reOexive. s =r is in addition possible.
 

c) In case 9\ is symmetric, r =[s . a] where a is a single W-term is in addition possible.
 

d) In case 9\ is transitive, s = [r . p] where p is a non-empty world-path.
 

Proof: Obvious. •
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8 .2  Construction of Term Frames

T—frames are the analogue to Herbrand interpretations in predicate logic. The name “T—frame” abbreviates
"term frame” and suggests that the domain of a T-frame consists of ground D-terms over a given
signatur. ln the non-serial case there are not necessarily all possible ground D-terms. Function symbols
are mapped to term constructor functions. However, since the worlds usually interpret a function symbol
differently, there must be different term constructor functions for each world. A function symbol f is
therefore mapped in a world 8 to a term constructor function that takes terms t1.. . .,tn and creates a term
f(p, t1,. ..,tn) where p is a characteristic term for the world 5 .  To stay in the P-logic syntax, this p must
be a world—path. Thus, we must construct the possible worlds structure in T-frames such that there is a
unique correspondence between a ground world-path p and a world Sp.  In the sequel we shall therefore
always write worlds in T-frames indexed by their characteristic world-path

Def in i t ion  8 .2 .1  (T-Frames)
A T-frame FT := ((D, 53, 9?). SW) over a signature Ep is a special P-frame where

a) The signature interpretations Sp e 3 map the D-valued function symbols f to term constructor
functions. f ' :  t1....,tni—> f(p, t1,.. . ,tn).

b) D i s  the set of ground D-terms containing world-paths which have a corresponding element in 5 .
c) The accessibility relation 91 is the corresponding reflexive, symmetric, transitive closure over a

basic relation which relates worlds Sp with Sims].
d) SW  maps W-valued function symbols g to functions g’: ($1,...,sn) H (Sp  i—> S [p .g ( s l , . . . , sn ) ] ) ’

Since 8W(g)(sl‚. . .,sn) is always injective. the interpretation of associated inverse function
symbols in the symmetric case is straightforward (c.f. def. 3.2.2).

Lemma 8.2.2
A T-frame F T := ((D, 3 ,  SR), 3W)  establishes the following correspondence between the accessible
worlds ‘Ji(3r. S s )  which are indexed with the world-paths r and s and the syntactic structure of r and s :
a) In case 91 has no  special properties, except seriality, s = [r . al where a is a single W~tcrm.
b) In case ‘Ji is reflexive, s = r is in addition possible.
c) In case ER is symmetric, r = [s . a] where a is a single W-terrn is in addition possible.
d)  In case ER is  transitive, s = [ r  . p] where p i s  a non-empty world—path.

Proof: Obvious. l
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One of the advantages of Herbrand interpretations in predicate logic is that there is no difference between
 

semantic variable assignments x 1-+ a and syntactic ground substitutions. This is so because the domain
 

elements are just ground terms. In the definition of the satisfiability relation If- (for predicate logic). the
 

case handling the universal quantifier can therefore be expressed simply:
 

For an Herbrand interpretation SH: SH If- \:;Ix :F iff SH[x/a] If- :Ffor every ground term a.
 

That means the semantics of the quantifier can be expressed using syntactic notions only.
 

To regain this nice property also in P-Iogic for term interpretations (P-interpretations built from
 

T-frames) is the subject of the rest of this chapter. There are no problems with quantifications over
 

D-variables because the domain elements in term interpretations are also ground terms, though not
 

necessary all possible ground terms. But what about quantifications over W-variables? Candidates for
 

the syntactic counterpart of the semantic world-access functions are ~-admissible world-paths whose
 

interpretation are actually world-access functions (lemma 5.2.2). But is this enough? Can't there be
 

world-access functions in term interpretations which are not representable as world-paths? In fact. the
 

following example confirms this negative conjecture.
 

Example for a world-access function in a term interpretation which is not representable as a world-path.
 

Consider the following non-serial term-interpretation for a signature with the two W-valued function
 

symbols g and h:
 

k' is a world-access 

function that is not 

representable as a 

world-path. 

• 
Fortunately it can be shown that these additional world-access functions are not necessary for describing 

the semantics of the class of M-adjusted formulae (def. 3.1.6), we are interested in. The reason is that in 

our case W-variables have a unique prefix which denotes in each interpretation one particular world. A 

quantification over a W-variable need therefore range just over the set of worlds which are accessible 

from this particular world (that is the original semantics of the Cl-operator!), and world-access functions 

that correspond to ground world-paths are sufficient for accessing from a given world all accessible 

worlds. 

Definition 8.2.3 (Term-World-Access Functions) 

Given aT-frame f T := «D, g, ~). gw), 

let gT~ := {gW(gl)(sll .... 'slnl)o ... oSW(gk)(skl' ... 'sknk:) I [gl(sll, ... ,slnl) .. ·gk(skl, .. ·,sknk)] is 

an 9\-admissible ground world-path. } 

be the set of "term-world-access f\lnctions". • 

According to lemma 5.2.2, gT~ ~ .5 ~ and, as the above example demonstrates, ST~ "# g ~ in general. 
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One of the advantages of Herbrand interpretations in predicate logic is that there is no difference between
semantic variable assignments x r—> a and syntactic ground substitutions. This is so because the domain
elements are just ground terms. In the definition of  the satisfiability relation „— (for predicate logic), the

case handling the universal quantifier can therefore be expressed simply:
For an Herbrand interpretation SSH: SSH ll— Vx 9' iff SH[x/a]  It- 9' for every ground term a .
That means the semantics of the quantifier can be expressed using syntactic notions only.

To regain this nice property also in P-logic for term interpretations (P—interpretations built from
T-frames) is the subject of the rest of this chapter. There are no problems with quantifications over
D-variables because the domain elements in term interpretations are also ground terms, though not
necessary all possible ground terms. But what about quantifications over W-variables? Candidates for
the syntactic counterpart of the semantic world-access functions are Si-admissible world—paths whose
interpretation are actually world-access functions (lemma 5.2.2).  But  is  this enough? Can’t there be

world-access functions in term interpretations which are not representable as world—paths? In fact, the
following example confirms this negative conjecture.

Example for a world-access function in a term interpretation which is not representable as a world-path.
Consider the following non-serial term-interpretation for a signature with the two W-valued function
symbols g and h:

3 [33]

[g] k' i s  a world-access

function that is not
representable as a3 h

[g ] world—path.

Es[hg]

[h]

i t
/ :

k' 530.11] I

Fortunately it can be shown that these additional world-access functions are not necessary for describing
the semantics o f  the class of M—adjusted formulae (def. 3.1.6), we are interested in. The reason is  that in

our case W-variablcs have a unique prefix which denotes in each interpretation one particular world. A
quantification over a W-variable need therefore range just over the set of worlds which are accessible
from this particular world (that is the original semantics of the Et—operator! ), and world-access functions
that correspond to ground world-paths are sufficient for accessing from a given world all accessible
worlds.

Definit ion 8 .2 .3  (Term-World-Access Functions)
Given a T-frame FT := ((D, 3. SR), 3w).

let ST—> := {5W(g1)(s„‚...,slm)o...oSSW(gk)(sk1,...,sknk) | [g1(s11,...,s1nl)...gk(sk1,...,sknk)] is
an iii-admissible ground world-path}

be the set of “term—world-aceess functions”. I

According to lemma 5.2.2, Sri—_, (; 8 _, and, as the above example demonstrates. {Bj—__, at EL, in general.
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Lemma 8.2.4 (Exhaustiveness of Term-World-Access Functions)
 

Given aT-frame f T := «D. 9. 9t). Sw) and a world Sp E 9. every accessible world Sp' can be
 

accessed by some term-world-access function.
 

Proof: For the basic accessibility relation this is a consequence of conditions b and c in the definition of
 

T-frames (def. 8.2.1). When the accessibility relation is reflexive. the 9t-admissible empty world path []
 

which denotes the identity mapping accesses the world itself. When the accessibility relarion is
 

symmetric. world-paths built with inverse function symbols denote functions which actess the
 

"backwards lying" worlds. Finally when the accessibility relation is transitive. the statement follows by
 

induction on the number of steps which are necessary to access .5p' from.5 p in the basic non-transitive
 

accessibility relation. _
 

The next lemma states that quantification over world-access functions which correspond to world-paths
 

are sufficient for describing the semantics of W-variables.
 

Lemma 8.2.5 (A restriction for Quantifications over W-variables)
 

Given a term interpretation ST with initial world Sr and an M-adjusted formula 'Vu .1"where u is a
 

W-variable and p =prefix*(u.10.
 

ST II-p 'Vu .1"iff
 

~ ST(P) =..L. and ST II-p .1" 

Q[ ST(P) ;t:..L. and for every <\> E ST~ with (ST(P)o<\»(Sr) ;t:..L.: ST[u/<\>] II-p .1".
 

Proof: "=>" This direction of the proof follows immediately from ST~ ~ S ~ and def. 3.2.4.
 

"<:=" The only thing to be proved is that in the Q[ case of the original definition of.5T II-p 'Vu .1" (def.
 

3.2.4) the quantification "for every <\> E .5~" can indeed be reduced to "for every <\> E .5T~".
 

Thus. assume ST(P) ;t:..L. and let <\>' be any world-access function with (.5T(p)o<\>')(Sr);t:..L.. Using
 

lemma 8.2.4 we know that the world (.5T(p)o<\>')(.5 r) can be accessed by some term-world-access
 

function <\>. Le. (.5T(p)o<\>')(.5r) = (.5T(p)o<\»(.5r). Since all occurrences ofu in .1"have the same subterm,
 

namely p, and since we know now .5T[uI<\>']([p.uD = .5T[uI<\>]([p.uD. both term interpretations .5T[u/<\>']
 

and .5T[uI<\>] evaluate every term in .1"to the same value. Thus. since .5T[uI<\>] II-p '.F. .5T[u/<\>'] II-p .1"must
 

hold as well. and fmally, with the definition of II-p we conclude ST II-p 'Vu .1". _
 

Now we are ready to describe the semantics of clauses in term interpretations.
 

Corollary 8.2.6 (Semantics of Clauses in Term Interpretations)
 

Let C = 'Vvl .....vn C be a fully quantified clause and let ST be a term interpretation for C.
 

ST11-p C ifffor every C-continuing term interpretation .5T ':= .5T[vllS~cl).....vtf3T(cn)] where the Cj
 

are either ground D-terms or 9t-admissible ground world-path: .5T 'If-p C.
 

Proof: The prooffollows immediately from theorem 5.1.5 and the previous lemma. _
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Lemma 8.2 .4  (Exhaustiveness of Term-World-Access Functions)

Given a T-frame TT := ((D, 3 .  9i), SW)  and a world Sp  6 3 ,  every accessible world Sp ,  can be
accessed by some term-world-access function.
Proof: For the basic accessibility relation this is a consequence of conditions b and c in the definition of
T—framcs (def. 8.2.1). When the accessibility relation is reflexive, the iii-admissible empty world path []

which denotes the identity mapping accesses the world itself. When the accessibility relation is
symmetric. world-paths built with inverse function symbols denote functions which actess the
“backwards lying” worlds. Finally when the accessibility relation is transitive, the statement follows by
induction on the number of steps which are necessary to access Sp, from Sp in the basic non-transitive

accessibility relation. .

The next lemma states that quantification over world-access functions which correspond to world-paths
are sufficient for describing the semantics of W-variables.

Lemma 8.2.5 (A restriction for Quantifications over W-variables)
Given a term interpretation 8T with initial world 81. and an M-adjusted formula Vu 9' where u is a
W-variable and p = prefix*(u. 9),
3T  It—P Vu 9" if!"
szimq sT(p) =.L and 5T  n—P ?
Qt; EST-(p) at .L and for every (I) e EST-__, with (3T(P)°¢)(Sr) at .L= BTW/tb] "'P ?.

Proof: “=>” This direction of the proof follows immediately from EST-__, (_; S _, and def. 3.2.4.
“<=” The only thing to be proved is that in the or case of the original definition of 5T  ll-P Vu 9' (def.
3.2.4) the quantification “for every 4) e 5__‚” can indeed be reduced to “for every (t) e SPI—_)”.
Thus, assume ST(p) at _L and let qr be any world-access function with (ST(p)o¢’)(S r) # _L. Using
lemma 8.2.4 we know that the world (ST(p)o¢’)(Sr) can be accessed by some term-world—access
function (1), i.e. (ST(p)o¢’)(3r) = (ST(p)o¢)(Sr). Since all occurrences of u in :? have the same subterm,
namely p, and since we know now ST[u/¢’]([p.u]) = ST[u/¢]([p.u]), both term interpretations ST[u/q>’]
and EST—[um] evaluate every term in 9’ to the same value. Thus, since ST[u/¢] II—P 9F, ST[u/¢’] u—P ff must
hold as well, and finally, with the definition of ”—1) we conclude 3T u—P Vu f. l

Now we are ready to describe the semantics of clauses in term interpretations.

Coro l l a ry  8 .2 .6  (Semantics of Clauses in Term Interpretations)
Let C = Vv1,. . .,vn C' be a fully quantified clause and let ST be a term interpretation for C.
3T  ”—1, C iff for every C'—continuing term interpretation ST’:= 8T[v1/31(c1),. ..,vn/3T(cn)] where the ci
are either ground D-terms or Sit-admissible ground world-path: 3T 'It—P 0.
Proof: The proof follows immediately from theorem 5.1.5 and the previous lemma. l
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8 . 3 The Existence Theorem 

The final task to be done in this chapter is to prove that term frames are the right objects to represent 

P-models for clauses, Le. to show that there is a term model for each satisfiable clause set. We first 

define for P-frames associated T-frames which evaluate ground literals to the same truth value as the 

P-frame and then show that each P-model for a clause set has an associated T-model. 

Definition 8.3.1 (Associated T.Frame) 

Given a P-frame f p and a world S in fp, aT-frame f T is said to be S-associated iff 

a) The mapping «1>: f T ~ f p : «1>(Sp) = Sp(p)(S) is a frame homomorphism, 

where Sp is the special P-interpretation with initial world S. 

b) For every world Sp in FT: Sp and cJ>(Sp) assign the same truth values to ground literals _ 

Lemma 8.3.2 (Existence of Associated T .Frames)
 

For every P-frame f p = «D, S, 9t), Sw) and for every world S in f p there is an S-associated T-frame
 

f T = «DT, ST' 9tT), SWT)'
 

Proof: We define ST to be the domain of the mapping cJ>(Sp) = Sp(p)(S).
 

Thus, Sp(p)(S) *-..L. for every ground world-path occurring in Dr.
 
We must show that «1> is a frame homomorphism.
 

Let Sp := (fp, S, f/l, f/l) be the special P-interpretation with initial world S.
 

a) LetSr,SsE 9T with 9tT(Sr' Ss) (def. 8.1.1, a)
 

9t(cJ>(Sr)' cJ>(Ss» = 9t(Sp(r)(S), Sp(s)(S»
 

A case analysis according to the properties of 9t and lemma 8.1.2 confirms the last relation
 

9t(Sp(r)(S), Sp(s)(S».
 

b)	 Let Sr E 'sT and S2' E 9 such that 9t(cJ>(Sr)' S2') holds. 

«1>(Sr) has accessible worlds, therefore there must be a world S[r.s] E 9T with 

cJ>(S[p.s) = Sp([p.s])(St» = S2' and 9tT(Sp' S"[p.s) holds. 

Thus, <I> is a frame homomorphism.	 _
 

Theorem 8.3.3 (Existence of Term Models)
 

A set C of pairwise variable disjoint clauses is satisfiable if and only if it has a term model.
 

Proof: ..~" Let f p be a P-model for C which satisfies C in the world S and let f T be an S-associated
 

T-frame (def. 8.3.1) where cl> is the corresponding frame homomorphism.
 

Let Sp := (fp, S, f/l, f/l) be the special P-interpretation with initial world S = cI>(S[]).
 

The corresponding special T-interpretation is ST:= (fT' S[], f/l, f/l).
 

When vl, ... ,v are the variables ofC and 0' := {vl~ cl, ...,vn~ c } is a ground substitution,
 n	 n 

let 9T[o] := ST[vl"'ST(cl)'" .,vn"ST(cn)] be a C-eontinuing tenn interpretation with ground D-terms and
 

ground world-paths respectively.
 

Since the clauses are pairwise variable disjoint, there are no conflicts.
 

Furthennore, the fact that ST[O'] is a tenn interpretation guarantees S~ci) *-..L. for i =1,... ,n.
 

Lemma 8.1.2 then states Sp(ci) *-..L. for i = 1,... ,n.
 

Therefore we can define the P-interpretation Sp[O'] := Sp[v11Sp(cl)'" .,vnf.3 p(cn)].
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8 .3  The Existence Theorem

The final task to be done in this chapter is to prove that term frames are the right objects to represent
P-models for clauses, i.e. to show that there is a term model for each satisfiable clause set .  We fi rs t
define for P-frames associated T-frames which evaluate ground literals to the same truth value as the
P-frame and then show that each P-model for a clause set has an associated T—model.

Def in i t ion  8 .3 .1  (Associated T-Frame)
Given a P—frame {PP and a world S in $1,, a T-frame FT is said to be S-associated iff

a) The mapping d): TT —> i : (MSP) = Sp(p)(S) is a frame homomorphism,
where Sp  is the special P-interpretation with initial world SS.

b) For every world Sp in FT: Sp and @(Sp) assign the same truth values to ground literals l

Lemma 8.3.2 (Existence of Associated T-Frames)
For every P-frame FP = ((D, 3 ,  SR), SW) and for every world S in FP there is an S—associated T-frame
FT = (CDT, 31‘: 9‘1“), 3W1")-

Proof: We define 3T to be the domain of the mapping @(Sp) = Sp(p)(3).
Thus, Sp(p)(8) at _L for every ground world-path occurring in DT.
We must show that (1) is a fi'ame homomorphism.
Let Sp  := (FP, 5 ,  tat. a) be the special P-interpretation with initial world 5 .
a) Let 8,, 35 e 3T with SKI-(3r, SS) (def. 8.1.1, 3)

9i(‘1’(3r). (“SSD = S"(55p(f)(3), 3p(S)(3 ))
A case analysis according to the properties of SR and lemma 8.1.2 confirms the last relation
9i(3p(r)(8). Sp(S) (S) ) .

b) Let S, e 3T and 32 ’  e 3 such that 9161365,), 32’) holds.
(MSI) has accessible worlds, therefore there must be a world Sm] 6 ST with
(baht-5]) = Sp([p.s])(3b) = 82’  and Eli-[(31), Süd) holds.

Thus, (I) is a frame homomorphism. I

Theorem 8 .3 .3  (Existence of  Term Models)
A set C of pairwise variable disjoint clauses is satisfiable if and only if it has a term model.
Proof: “=>” Let FP be a P-model for C which satisfies C in the world S and let PT be an S-associated
T-frame (def. 8.3. 1) where (I) is the corresponding frame homomorphism.
Let SP  := (fl-”P, S .  e. (ö) be the special P-interpretation with initial world 8 = <I>(8[]).
The corresponding special T—interpretation is ST := (PT, SU, o, c).
When VI,...‚Vn are the variables of C and 6 := {VIH c1,...,vnt-> on} is a ground substitution,
let $1M] := ST[v1/3T(c1),...,vn/ST(cn)] be a C—continuing term interpretation with ground D-terms and
ground world-paths respectively.
Since the clauses are pairwise variable disjoint, there are no conflicts.
Furthermore, the fact that srl—[6] is a term interpretation guarantees 31(ci) # .L for i = l,.  . . ‚n.
Lemma 8.1.2 then states 3P(ci) # .L for i = 1,...,n.
Therefore we can define the P-interpretation SPIO]  := Sp[v1/3p(cl),. . .,vn/Sp(cn)].
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We show that :3 p[cr] is C-continuing: 

Let p := prefix*(wj' C) for the W-variable Wj and assume :3p[cr](p)"I:-...L. 

With lemma 8.1.2 we know :3T[cr](p)"I:- ...L, and since :3T[cr] is C-continuing. :3T[cr]([p.WjJ)"I:- .1... 

Again with lemma 8.1.2 • :3 p[cr]([p.WjJ)"I:- ...L must hold. 

Thus. :3 p[cr] is C-conLinuing. 

Since:3 p satisfies C. for every clause C E C there is a literal L such that :3p [cr] II-p L (theorem 5.1.5).
 

With lemma 5.2.5. we obtain for every term tin C: :3p[cr](t) =:3p(crt).
 

Thus. :3p II-p crL (crL is a ground literal.)
 

=>:3T ll-pcrL (def. 8.3.1. b) 

=> :3T [cr] II-p L (lemma 5.2.5) 

Since :3T[cr] was arbitrarily chosen. corollary 8.2.6 states that:3T satisfies each fully quantified clause in 

C. thus f T is a P-model for C. 

" <=" This direction of the proof is trivial. • 

An obvious consequence of the previous proof is: 

Corollary 8.3.4 
When a formula is satisfiable at all then there is always a T-model satisfying it in the world :3(J. • 

Thus. we need no longer distinguish between a term model for a formula J'; i.e. a T-frame satisfying :r 
in some world, and the special term interpretation with initial wOrld:3(J that satisfies !T. 
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We show that 5p[6] is C-continuing:
Let p := prefix*(wj. C) for the W—variable wj and assume SP[G](p) $ _L.

With lemma 8.1.2 we know ST[O](p) at .L, and since Sri—[G] is C—continuing, ST[G]([p.wi]) $ _L.
Again with lemma 8.1.2 . 8P[O]([p.wi]) at _L must hold.
Thus. Sp[o]  is C-eontinuing.

Since Sp  satisfies C,  for every clause C e C there i s  a literal L such that 5P[G]  ”—1) L (theorem 5.1.5).

With lemma 5.2.5. we obtain for every term t in C: 8p[6](t) = Sp(0t).
Thus. Sp  ”—1) CL (CL is a ground literal.)

=> ST  ”—1) Öl.. (def. 8 .3 .1 ,  b)

=> 81—[0] U—P L (lemma 5.2.5)
Since ELI-[G] was arbitrarily chosen, corollary 8.2.6 states that ST  satisfies each fully quantified clause in
C, thus FT is a P-model for C.

“ <=” This direction of the proof is trivial. I

An obvious consequence of the previous proof is:

Coro l l a ry  8.3 .4
When a formula is satisfiable at all then there is always a T—model satisfying it in the world 3“ .  I

Thus, we need no longer distinguish between a term model for a formula }", Le. a T-frame satisfying 9“
in some world, and the special term interpretation with initial world SH that satisfies f.
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Chapter Nine 

Semantic Trees 

The last step of the preparation for the completeness proof for the resolution rules is to find a 

representation for lhe sel of alllerm interpretations for a given clause set. When the clause set is 

unsatistiable, a finite parL of this datastructure should be sufficientlo prove its unsatisfiability. A tree 

structure, called semantic trees, is used in predicale logic lor this task. A semantic tree in predicate logic 

is a (downward) tree T with an unlabcled root node and subtrees where the nodes are labeled with 

ground atoms as follows: IfN1, ... ,Nk are the tip nodes ofT, then take a new ground atom A and attach 

k copies of the partial tree consisting of the root node and exactly two descendent nodes labeled with A 

and -.A to N1, ... ,Nk. (There are other equivalent definitions.) 

As an example consider the semantic tree for a signature consisting of a constant symbol 'a', a one place 

function symbol f and a one place predicate symbol P. The sel of ground atoms built with these symbols 

is {Pa, Pf(a), Pf(f(a», ... }. A semantic tree for this signature is: 

Pa 

~ ~
 
Pf(a) -.Pf(a) Pf(a) -.Pf(a) 

~~~~
 
Pf(f(a» -.Pf(f(a» Pf(f(a» -.Pf(f(a» Pf(f(a» -.Pf(f(a» Pf(f(a» -.Pf(f(a»

AAAAAAAA
 
Clearly the set of labels in each branch in the tree represents an Herbrand interpretation. For instance the 

rightrnosl branch represents the Herbrand interpretation assi!,'1ling False to Pa, Pf(a), Pf(f(a» etc. The set 

of all branches gives an exhaustive survey over all Herbrand interpretations. 

The definition of semantic trees in P-logic for serial interpretations is exactly the same as the above 

definition for predicate logic. For non-serial interpretations however, it is necessary to extend the 

definition for incorporating the information about the "end-worlds", Le. the worlds where no further 

worlds are accessible. Therefore we use the special 'End'-predicate (def. 7.2.1) and its negation for 

representing the possibilities to terminate paths in the world structure. Remember that a literal End(p) is 

true in a term frame if ~p exists, i.e. if there is a world denoted by p, and there is no world accessible 

from ~p' We shall further introduce a literal -End(p) (which ncver occurred so far). It is intended to 

represent thc information that the world structure of lhe tcrm fran1c corresponding to tlle path containing 

-End(p) in a semantic tree must have a world ~p and there must be worlds accessible from ~p' That 

means -End(p) is not exactly the negation of End(p). 
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Chapter Nine

Semantic Trees

The last step of the preparation for the completeness proof for the resolution rules is to find a
representation for the set of all term interpretations for a given clause set. When the clause set is
unsatisfiable. a finite part of this datastructure should be sufficient to prove its unsatisfiability. A tree
structure. called semantic trees, is used in predicate logic for this task. A semantic tree in predicate logic
is a (downward) tree T with an unlabeled root node and subtrees where the nodes are labeled with
ground atoms as follows: If N1"  . . ,Nk are the tip nodes of T,  then take a new ground atom A and attach

k copies of the partial tree consisting of the root node and exactly two descendent nodes labeled with A
and —1A to N1....,Nk. (There are other equivalent definitions.)
As an example consider the semantic tree for a signature consisting of a constant symbol ‘a’, a one place
function symbol f and a one place predicate symbol P. The set of ground atoms built with these symbols
is {Pa ,  Pf(a), Pf(f(a)), }. A semantic tree for this signature is :

Clearly the set of labels in each branch in the tree represents an Herbrand interpretation. For instance the
rightmost branch represents the Herbrand interpretation assigning False to Pa. Pf(a). Pf(f(a)) etc. The set

of all branches gives an exhaustive survey over all Herbrand interpretations.

The definition of  semantic trees in P-Iogic for serial interpretations is exactly the same as the above
definition for predicate logic. For non-serial interpretations however, it is necessary to extend the
definition for incorporating the information about the “end-worlds”, i.e. the worlds where no further
worlds are accessible. Therefore we use the special ’End’-predicate (def. 7.2.1) and its negation for
representing the possibilities to terminate paths in the world structure. Remember that a literal End(p) is
true in a term frame i f  Sp  exists, i.e. i f  there is  a world denoted by p ,  and there i s  no world accessible

from Sp .  We shall further introduce a literal -End(p) (which never occurred so far). I t  i s  intended to

represent the in formation that the world structure of the term frame corresponding to the path containing
—End(p) in a semantic tree must have a world Sp  and there must  be worlds accessible from Sp .  That

means -End(p) is not exactly the negation of End(p).
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To illustrate this, consider the partial tree corresponding to the ground atom Q[ab] which looks like: 

~
 
End[] -End[] 

~ 
End[a] -End[a] 

~ 
Q[ab] -.Q[ab] 

The branch ending with End[] represents the information that the world structure of the corresponding 

term frame consists of the initial world only. This interpretation would falsify both Q[ab] and -.Q[ab], 

therefore there is no descendent node. The other branch passing -End[] represents the information that 

the world structure must have at least one further accessible world. Consequently the next layer in the 

tree represents the two possibilities that either the world structure ends with the world denoted by the 

path [a] or that it has further accessible worlds. Only the interpretation corresponding to the second 

possibility can be extended such that either Q[ab] or -.Q[ab] holds. 

The formal definition for semantic trees given below includes the serial case. For the non-serial case
 

some auxiliary notions will be introduced which correspond to partial semantic trees for single
 

worlds-paths and atoms. These partial semantic trees may contain inconsistencies, Le. paths containing
 

contradictory literals. They are removed in the fmal defmition for semantic trees for a signature.
 

Definition 9.1 (Semantic Trees)
 
A world-path tree for a world-path p =[tI ... t ] is a (downward) tree consisting of an unlabeled root
 n

node. two descendent nodes labeled with End([J) and -End([1) respectively, and subtrees which arc
 

defined as follows: If N is a tip node labeled with -End([tI'" tk D where k < n-l then N has two
 

descendent nodes labeled with End([tI' .. tk+ID and -End([t l ... tk+ID respectively.
 

A world-path tree for a set P ={PI'" "Pm} of world-paths is a tree T constructed as follows:
 

Let P' := (PI"" "Pm') be a permutation ofP such that a world-path pin P' precedes all world-paths in q
 

in P' containing p as a subterm.
 

Initialize T with a world-path tree for PI '.
 

For i' =2', ... ,m': Extend T by attaching a copy of a world-path tree for Pi' at each tip node ofT.
 

A pclrtial semantic tree for a ground atom A in a serial interpretation is a tree consisting o[ a rool node and
 

lwo descendent nodes labclcd with A und -,A.
 

A partial semantic tree for a ground atom A in a non-serial interpretation is a tree consisting of a
 

world-path tree for the set of world-paths occurring in A where the tip nodes labeled with -End( ... ) have
 

exactly two descendent nodes labeled with A and -.A.
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To illustrate this, consider the partial tree corresponding to the ground atom Q[ab] which looks like:

End[] —End[]

End[a] -End [a]

Q[ab] lab]
The branch ending with End[] represents the information that the world structure of the corresponding
term frame consists of the initial world only. This interpretation would falsify both Q[ab] and --1Q[ab],

therefore there is no descendent node. The other branch passing —End[] represents the information that
the world structure must have at least one further accessible world. Consequently the next layer in the
tree represents the two possibilities that either the world structure ends with the world denoted by the
path [a] or that it has further accessible worlds. Only the interpretation corresponding to the second
possibility can be extended such that either Q[ab] or —-.Q[ab] holds.

The formal definition for semantic trees given below includes the serial case. For the non-serial case
some auxiliary notions will be introduced which correspond to partial semantic trees for single
worlds-paths and atoms. These partial semantic trees may contain inconsistencies, i.e. paths containing
contradictory literals. They are removed in the final definition for semantic trees for a signature.

Definition 9 .1  (Semantic Trees)
A world-path tree for a world-path p = [t1...tn] i s  a (downward) tree consisting of an unlabeled root
node, two descendent nodes labeled with End([]) and -End([]) respectively, and subtrees which are

defined as follows: If N is a tip node labeled with -End([t1...tk]) where k < n-l then N has two
descendent nodes labeled with End([t1. . .tk+1]) and -End([t1. . .tk+1]) respectively.

A world—path tree for a set P = {p1,. . .,pm} of world—paths is a tree T constructed as follows:
Let P’  := (p1»,.„,pm») be a permutation of P such that a world-path p in P’  precedes all world—paths in q
in P’  containing p as a subtenn.
Initialize T with a world-path tree for P1'-
For i’ = 2’,. . .,m': Extend T by attaching a copy of a world-path tree for Pi ’  at each tip node of T.

A partial semantic tree for a ground atom A in a serial interpretation is a tree consisting of a root node and
two dcscendcnl nodes labeled with A and --A.
A partial semantic tree for a ground atom A in a non-serial interpretation is a tree consisting of a
world-path tree for the set of world-paths occurring in A where the tip nodes labeled with -End(. . .) have
exactly two descendent nodes labeled with A and ——.A.
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A semantic tree for a P-signature ~ is a (downward) tree consisting of the root node and subtrees which 

are constructed in three steps: 

Step 1: Let A be the set of ground atoms which can be constructed with symbols from ~. Starting from 

the empty tree T, select a new atom A from A and extend T by attaching a copy of a partial 

world-path trce for A at cach tip node ofT. 

Step 2: Cut each branch B of T at the first occurrence of a label which is complementary to another label 

at a higher node (closer to the root node) in B. 

Step 3: rr a node N has only one descendent node M, remove M and attach the descendent node of M 

heJow N. 

A semanlic tree T is said 10 be complete for .I:p iff each ground atom, built from symbols in I:p occurs
 

in the labels of T. (A complete semantic tree can be obtained by performing step 1 in the above definition
 

as long as possible .)
 

If B is a branch in T, let literals(B) be the set of all labels of the nodes in B.
 

If N is a tip node in T, let literals(N) be the set of all labels of the nodes in the branch terminating with N.
 

A semantic tree for a clause set C is a semantic tree for the P-signature 11> of C.
 

In case C contains only End-literals. add an artificial predicate symbol to ::f'l)'
 • 

Examples for semantic trees: 

The world-path tree for p =[ab] is: 

~ 
End[] -End[] 

~ 
End[a] -End[a] 

The world-path tree for the set {[ab], [cd]} is: 

End!] -End!] 
~-----------

End[] -End[] 

~ 
End[c] -End[c] 

-End[a] 

End[c] -End[c] End[c] -End[c]
 

The marked parts of the tree will be removed at the steps 2 and 3 when this partial tree is integrated into a
 

complete semantic tree.
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A semantic tree for a P-signature EP is a (downward) tree consisting of the root node and subtrees which
are constructed in three steps:

Step 1: Let A be the set of ground atoms which can be constructed with symbols from EP. Starting from

the empty tree T, select a new atom A from A and extend T by attaching a copy of a partial
world-path tree for A at each tip node o f  T.

Step 2 :  Cut each branch B of  T at the first occurrence of a label which is  complementary to another label

at a higher node (closer to the root node) in B.
Step 3: I!" a node N has only one descendcnt node M, remove M and attach the descendcnt node of M

below N.

A semantic tree T is said to be complete for EP iff each ground atom, built from symbols in EP occurs
in the labels of T. (A complete semantic tree can be obtained by performing step 1 in the above definition
as long as possible .)

If B is a branch in T, let literals(B) be the set of all labels of the nodes in B.
If N is  a tip node in T,  let literals(N) be the set of all labels of the nodes in the branch terminating with N.

A semantic tree for a clause set C is a semantic tree for the P-signature Ep of C.
In case C contains only End-literals, add an artificial predicate symbol to 2‘1). I

Examples for semantic trees:
The world-path tree for p = [ab] is: A

End.[] -End[]

/\
End[a] —End[a]

The world—path tree for the set {[ab], [cd.]} is:

/ \
End[] -Endll

End[]  —End[] End[a] -End[a]

End[c] -End[c] j (End[] End[]/l End[] -End[/_]\]

End[c] -End[c] End[c] ~End[c]

The marked parts of the tree will be removed at the steps 2 and 3 when this partial tree is integrated into a

complete semantic tree.
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A reduced partial semantic tree for the two atoms Q[ab] and S([ab], f[cd]) may look like: 

~ 
End[] -End[] 

~ 
End[a] -End[a] 

En~[CI Q~l 
~
 

End[c] -End[c] 

~ 
S([ab], f[cd]) -,S([ab], f[cd]) 

-
Lemma 9.2 Each branch B in a semantic tree T for a P-signature ~p corresponds to a particular term 

frame f T =: fT(B) for ~p where the possible worlds structure consists only of those worlds gp where 

-End(p) occurs in B and the relations that are assigned to a predicate symbol Q are defmed as follows: 

If Q(p, t1, ...•t ) E literals(B) then assign 'true' to Q(t} •... ,tm) in gpm
 

If -,Q(p, t} .... ,t ) E literals(B) then assign 'false' to Q(tl""'~) in gp'
m
The assignment of values to atoms A where neither A E literals(B) nor -,A E literals(B) is left open. 

f T(B) is said to be a partial frame in this case. _ 

Lemma 9.3 A complete semantic tree T for a P-signature :tp corresponds to an exhaustive survey of all
 

possible term interpretations for 1;>.
 
Proof: This is mainly a consequence of the fact that all possible ground atoms for :Ep are used to
 

construct the tree. The world-paths contained in these ground atoms denote all possibilities to construct
 

worlds in a term interpretation. _
 

Definition 9.4 (Failure Nodes and Closed Semantic Trees)
 

Let T be a semantic tree for a clause set C and let N be one of its nodes.
 

>- f N denotes the partial term frame corresponding to the branch in T which terminates with N.
 

>- N falsijies a literal L if f N does not satisfy L and no predecessor node of N falsities L.
 

Actually N falsifies a literal L if its label is complementary to L. 

.. N is called afaiiure nod,! ifff'N falsifics some ground instance aJ.Cofa clause C in C and no 

predecessor node of N has Lhis properly. 

>- T is called closed iff every branch of T terminates with a failure node. _ 
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A reduced partial semantic tree for the two atoms Q[ab] and S([ab], f[cd]) may look like:

End.[] -End[]

Endla] -End[a]

End[c] -End[c] m]

End[c] -End[c]

/ \
S([ab], f[0d]) —18([ab], flcdl)

I

Lemma 9.2 Each branch B in a semantic tree T for a P-signature EP corresponds to a particular term
frame FT = :  Til—(B) for EP where the possible worlds structure consists only of  those worlds ESP where

-End(p) occurs in B and the relations that are assigned to a predicate symbol Q are defined as follows:
If Q(p, t1....,tm) e literals(B) then assign 'true' to Q(t1,...,tm) in Sp
If ~1Q(p, t1....,tm) e literals(B) then assign 'false' to Q(t1,...,tm) in Sp.

The assignment of values to atoms A where neither A e literals(B) nor ——:A e literals(B) is left Open.
FT(B) is said to be a partial frame in this case. I

Lemma 9.3 A complete semantic tree T for a P-signature Ep corresponds to an exhaustive survey of all
possible term interpretations for EP.
Proof: This is mainly a consequence of the fact that all possible ground atoms for EP are used to
construct the tree. The world—paths contained in these ground atoms denote all possibilities to construct
worlds in a term interpretation. I

Definition 9 .4  (Failure Nodes and  Closed Semantic Trees)
Let T be a semantic tree for a clause set C and let N be one of its nodes.
> FN denotes the partial term frame corresponding to the branch in T which terminates with N.
> N falsifles a literal L i f  }“N does not satisfy L and no predecessor node of N falsifies L.

Actually N falsifies a literal L if its label is complementary to L.
> N is called a failure node ifl' F N falsifies some ground instance (sic of a clause C in C and no

predecessor node of N has this properly.
> T is called closed iff every branch of T terminates with a failure node. I
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Examples for failure nodes and closed semantic trees.
 

Both clause sets in the examples below are unsatisfiable, therefore there is a finite closed semantic tree.
 

Example 1:
 

Clauses:	 closed semantic~ 

A Vu P[u] cr= {u H a} 
B: Vv....,P[v] 't={v H a} End[] -End [] "i:1J falsifies End[) 

C: Q[a] 
failure ~ode /""'. . 

cr.LA = P[a], End[J for C PIal ....,P[a] "i:1J falsIfies P[a] 

't JB = ....,P[aJ, Endl] ~ 
failure node 

~ 
1~lill\rc node 

for't J,B for crJ,A 

Example 2: 

Clauses: closed semantic~ 

A:	 Vu P[au] cr= {u H b} 
failure nodelar End[) -End[]

B: Vv....,P[vb] 't={v a}H 
furcr-l-A ~ 

failure node / " 
cr-l-A = P[ab], End[a] Iar End[a] -End[a] 

fur't-l-B /""'.'t -l-B = ....,P[abJ, End[] 

P[abl --.P[ab] 
~ ~ 

failure node failure node 

for't .LB for cr.LA 

-

The next theorem confirms that for every unsatisfiable clause set there is a closed semantic tree. 

Theorem 9.5 A finite set C of clauses is unsatisfiable if and only if corresponding to every complete 

semantic tree of C, there is a finite closed semantic tree. 

f!Q.Q.[;. "~" Suppose C is unsatisfiable. Let T be a complete semantic tree for C. For each branch B of 

T, let fT(B) be the corresponding term frame. Since C is unsatisfiable, fT(B) must falsify an instance 

cr-l-C of C. However, since cr.LC is finite, there must exist a failure node NB (which is a finite number of 

links away from the root node) on the branch B. Since every branch of T has a failure node, there is a 

closed semantic tree T' for C. Furthermore, since each node has only two immediate descendent nodes, 

T' must be finite. 

"<:=" Conversely, if corresponding to every complete semantic tree T for C there is a finite closed 

semantic tree, then every branch of T contains a failure node. Because the branches of a complete 

semantic tree correspond to an exhaustive survey of all possible term frame, this means that every term 

frame falsifies C. Hence, C is unsatisfiable. _ 
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Examples for failure nodes and closed semantic trees.
Both clause sets in the examples below are unsatisfiable, therefore there is a finite closed semantic tree.
Example 1:

Clauses: closed semantic tree

A- Vu P[u] o: {u H a] _
B: vv  firm I = {v H a} Endl]  —End.[] a falsifies End[]
. b

„C' QM failure node _
OLA =Plal. Endll forc P[a] fima] “” “1'51““ PM

_ , ü b
1 ”LB " “Pf‘fl ’  Endl ]  failure node failure node

for "c ‚LB for o i  A

Example 2:

Clauses: closed semantic tree

A: Vu  P[au] 0-: {u  ‚_, b}  .
failure node -

B: Vv —1P[vb] »: = {v ‚__, a} for GLA w End[] -End|_]

(„A = P[ab], End[a] imlurigwcfi End[a] —End[a]
Of T

T iB  = flpfab ] ,  End l ]

P[ab l  —1P[ab]

€! b
failure node failure node

for“: „LB for O'lA

The next theorem confirms that for every unsatisfiable clause set there is a closed semantic tree.

Theorem 9.5 A finite set C of clauses is unsatisfiable if and only if corresponding to every complete
semantic tree of C, there is a finite closed semantic tree.
moi; “=>” Suppose C is unsatisfiable. Let T be a complete semantic tree for C. For each branch B of
T, let FT(B) be the corresponding term frame. Since C is unsatisfiable, For—(B) must falsify an instance
sic  o f  C .  However, since o lC  i s  finite,  there must exist  a failure node NB (which i s  a finite number o f

links away from the root node) on the branch B. Since every branch of T has a failure node, there is a
closed semantic tree 1“ for C. Furthermore, since each node has only two immediate dcscendent nodes,
T' must be finite.
“<=” Conversely, if corresponding to every complete semantic tree T for C there is a finite closed

semantic tree, then every branch of T contains a failure node. Because the branches of a complete

semantic tree correspond to an exhaustive survey of all possible term frame, this means that every term
frame falsifies C. Hence, C is unsatisfiable. l
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Inference Nodes 

Inference nodes in semantic trees for predicate logic and P-logic with serial interpretations are simply 

nodes whose two immediate descendent nodes are failure nodes for two ground instances of some 

clauses. Given an unsatisfiable clause set and a corresponding closed semantic tree, an inference node N 

suggests a (ground) resolution step that is definitely a step forward towards the deduction of the empty 

clause. The resolution literals for this step are determined just by taking the two literals that are falsified 

by the two failure nodes below N. Since these two literals are instances of literals in the original 

non-ground clause set, there is no problem to lift this resolution step to a resolution step between two 

original clauses. In non-serial interpretations we have the problem that these ground literals may be 

End-literals that are generated by the conditioned instantiation. They are actually not available for a 

resolution step with the uninstantiated clauses. The example below shows a situation where a failure 

node falsifies an End-literal of an instance of a clause which is not contained in the clause itself. 

A: Vu Q([ab I [[cu]) ~ 
ground instance: End[] -End!"] 

B: Q([abJ f[cd]), End[c] ~ 
falsifies Q([ab] [[cd]) IW End[a] -End[a] 

~ 
End[c] -End[cJ "P failure node for B 

falsities End[c] 

The trivial solution, adding an instantiation rule, is unacceptable because instantiation rules generate too 

large search spaces. The other solution is to prove that there is still another resolution possibility that 

uses only directly instantiated literals. ,The above example gives a hint where another resolution step 

might be possible. If the node labeled -End[a] is a failure node, there must be a clause containing a literal 

End[a] and if this is a direct instance of some literal in the original clause set, it can be used to rcsolve 

directly with clause A. In this case the node labelcd -End[] would be the inference node. Our definition 

of inference nodes in serial interpretations coincides therefore with the corresponding definition in 

predicate logic, whereas for the non-serial case it is more general. 

Definition 9.6 Inference Nodes 

Given a finite unsalisriable clause set C and a corresponding finite closed semantic tree, a node N is 

called an inference fUJde iff 

either its two immediate descendent nodes are failure nodes and both falsify some direct instances 

of literals of clauses in C 

or its two immediate descendent nodes N+ and K are labeled End(p) and -End(p) for some p and: 

For N+ there is a clause UC, falsified by some branch containing N+ and a literal K E C 

containing a world-path [p'a... ], a"# [], a is no variable, p =Ap' and AK is falsified by N+. 

R is a failure node and falsifies a direct instance AEnd(p') =End(p) E AC of some C E C. • 

Before we can prove the existence of an inference node, we need some auxiliary lemmata to throw some 

light on the circumstances where nodes labeled with End-literals are failure nodes. They concern only 

non-serial interpretations. 
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Inference Nodes

Inference nodes in semantic trees for predicate logic and P-logic with serial interpretations are simply

nodes whose two immediate descendent nodes are failure nodes for two ground instances of some
clauses. Given an unsatisfiable clause set and a corresponding closed semantic tree, an inference node N
suggests a (ground) resolution step that is definitely a step forward towards the deduction of the empty
clause. The resolution literals for this step are detenninedjust by taking the two literals that are falsified
by the two failure nodes below N. Since these two literals are instances of literals in the original
non-ground clause set, there i s  no problem to lift this resolution step to a resolution step between two

original clauses. In non—serial interpretations we have the problem that these ground literals may be
End-literals that are generated by the conditioned instantiation. They are actually not available for a
resolution step with the uninstantiated clauses. The example below shows a situation where a failure
node falsifies an End-literal of an instance of a clause which is not contained in the clause itself.

A: V u Q([ab] f[cu])

ground instance: End[] —End[]

B: Q(  [ab] f[Cd]), End[c]

falsifies Q([ab] flcdD W End[a] -End.[a]

-End[ c J in failure node for B
falsrfies End[c]

The trivial solution, adding an instantiation rule, is unacceptable because instantiation rules generate too
large search spaces. The other solution is to prove that there is still another resolution possibility that
uses only directly instantiated literals. .The above example gives a hint where another resolution step
might be possible. If the node labeled -End.[a] is a failure node, there must be a clause containing a literal
End[a] and if this is a direct instance of some literal in the original clause set, it can be used to resolve
directly with clause A.  In this case the node labeled -End[] would be the inference node. Our definition

of inference nodes in serial interpretations coincides therefore with the corresponding definition in

End [0]

predicate logic, whereas for the non—serial case it is more general.

Definition 9.6 lnference Nodes
Given a finite unsatisfiable clause set C and a corresponding finite closed semantic tree, a node N is
called an inference node iff
eit_her its two immediate descendent nodes are failure nodes and both falsify some direct instances

of literals of clauses in C
@ its two immediate descendent nodes N+ and N _ are labeled End(p) and —End(p) for some p and:

For N+ there is a clause MC, falsified by some branch containing N+ and a literal K e C
containing a world-path [p’a. ..], a at [], a is no variable, p = Äp' and ÄK is falsified by N +.

N_ i s  a failure node and falsifies a direct instance 7tEnd(p’) == End(p) e XC of some C e C. I

Before we can prove the existence o f  an inference node, we need some auxiliary lemmata to throw some

light on the circumstances where nodes labeled with End-literals are failure nodes. They concern only
non-serial interpretations.
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Lemma 9.7 Let T be a closed semantic tree for a clause set C. Let N be a failure node labeled -End(p) 

and falsifying a ground instance UC of a clause C E C. Then 

~ N falsifies a literal AEnd(p') =End(p) E UC 

ill there is a node M in the branch above N, labeled End(q) and a literal K E C containing a 

world-path [q'a... l, a"# n, a is no variable and q = A.« such that AK is falsified by M. 
Proof: 

Case 1: N falsifies some direct ground instance L of a literal in C. 

L can in principle be a literal End(r) where r is a start sequence of p. If r is a start sequence of 

p, there is a node labeled -End(r) in the branch above N that falsifies End(r) (def. 9.1). That 

contradicts the part of the definition for falsifying nodes (def. 9.4) that requires no node in the 

branch above the current one to falsify the literal. Therefore r =p and L =AEnd(p') =End(p). 

Case 2:	 N falsifies no direct ground instance of a literal in C. 

Since N must falsify at least one literal in UC, with the same arguments as in case I, it can be 

shown that N falsities a literal End(p) E Uc. This time, End(p) must have come into UC by 

conditioned instantiation (def. 7.2.2). Therefore there must be another literal KA. E UC 

containing a world-path [pc ... ], c "# [] which is a direct instance of a literal K E C. Le. KA. = 
AK. Since KA. contains a world-path that has p as a start sequence, KA. cannot be falsified by a 

node labeled just with the negation of KA. because these nodes would occur below N. It can 

also not be falsified by a node labeled End(r) where r is a start sequence of p; there would be 

two contradictory labels in one branch. Since KA. must be falsified by some node in the branch 

of N, the only chance is that there is a node M with a label End(q) and q is a start sequence of 

some world-path wp =[qa... ], a"# [] occurring in KA: 

Suppose wp is an instance of some world-path [s u... ] with UA = [a1" .1lu+1] such that [qa... ] 

= [AS a1 ... ail for some i ~ n. In this case End(q) would be in A.1C (def. 7.2.2,a) which is 

impossible because the branch of M could not falsify UC. Using the same argument it can be 

excluded that wp came into K).. as a codomain term in A (using def. 7.2.2,b). The only 

possibility is now that wp is an instance of a world-path [q'a...] with Aq' = q and a is no 
variable.	 _ 

Lemma 9.8 Let T be a closed semantic tree for a clause set C. Let N be a failure node labeled End(p) 

and falsifying a ground instance UC of a clause C E C. Then 

~ there is a literal L E C containing a world-path [p'a... l, a"# [], a is no variable and p =Ap' 

and N falsifies AL. 

ill there is a node M in the branch above N, labeled End(q) and a literal K E C containing a 

world-path [q'a... l, a"# n, a is no variable and q = Aq' such that A.K is falsified by M. 

Proof: Let L be a literal in UC that is falsified by N, Le. complementary to End(p). (def. 7.2.5) 

Case 1: L = End(r) and r is a start sequence of p. 

This is not possible because -End(r) is a label in the branch above N that already falsifies L. 

Case 2: L contains a world-path wp such that p is a start sequence of wp, i.e. wp =[p c... l, c "# [] 

Case 2.1: L is an instance of a literal in C. 

Suppose wp is an instance of some world-path [s u... ] with AU = [a1... a +1] such that n

[pc ... ] = [AS a1 ... ai] for some i ~ n. In this case End(p) would be in A,J..C (def. 7.2.2,a) 

which is impossible because the branch of N could not falsify A,J..C. Using the same 

argument it can be excluded that wp came into K).. as a codomain term in A (using def. 

7.2.2,b). The only possibility is now that wp is an instance of a world-path [p'c ... ] with 
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Lemma 9.7 Let T be a closed semantic tree for a clause set C. Let N be a failure node labeled -End(p)
and falsifying a ground instance MC of a clause C e C. Then

gm N falsifies a literal End(p’) = End(p) 6 MC
@ there is a node M in the branch above N, labeled End(q) and a literal K e C containing a

world-path [q’a...]. a at [], a is no variable and q = M’ such that AK is falsified by M.
Proof:
Case 1: N falsifics some direct ground instance L of a literal in C.

L can in principle be a literal End(r) where r is  a start sequence of p. If r is a start sequence of
p ,  there i s  a node labeled -End(r) in the branch above N that falsifies End(r) (def. 9.1). That

contradicts the part of  the definition for falsifying nodes (def. 9.4) that requires no node in the
branch above the current one to falsify the literal. Therefore r = p and L = 7tEnd(p’) = End(p).

Case 2: N falsifies no direct ground instance of a literal in C.
Since N must falsify at least one literal in MC, with the same arguments as in case 1, it can be
shown that N falsifies a literal End(p) 6 MC. This time, End(p) must have come into MC by
conditioned instantiation (def. 7.2.2). Therefore there must be another literal Km. e MC
containing a world-path [pc. . . ] ,  c # []  which i s  a direct instance of a literal K e C,  i.e. Kl  =
1K. Since KA contains a world—path that has p as a start sequence, Kl cannot be falsified by a
node labeled just with the negation of KA. because these nodes would occur below N. It can
also not be falsified by a node labeled End(r) where r is a start sequence of p; there would be
two contradictory labels in one branch. Since Kl must be falsified by some node in the branch
of N, the only chance is that there is a node M with a label End(q) and q is a start sequence of
some world-path wp = [qa. . . ] ,  a # [ ]  occurring in K):

Suppose wp is an instance of some world-path [s u...] with uk = [a1...an+1] such that [qa. . .]
= [7ts a lma i ]  for some i S n. In this case End(q) would be in MC (def. 7.2.2.3) which is
impossible because the branch of M could not falsify MC. Using the same argument it can be
excluded that wp came into Kl as a codomain term in %. (using def. 7.2.2,b). The only
possibility is now that wp is an instance of a world-path [q’a...] with M’  = q and a is no
variable. I

Lemma 9.8 Let T be a closed semantic tree for a clause set C. Let N be a failure node labeled End(p)
and falsifying a ground instance MC of a clause C e C. Then

elm there is a literal L e C containing a world-path [p ’a. . .], a # [], a is  no variable and p = Ap’
and N falsifies 7LL.

m there is a node M in the branch above N, labeled End(q) and a literal K e C containing a
world-path [q’a...], a at [], a is no variable and q = M’ such that K is falsified by M.

Pr00f: Let L be a literal in MC that is falsified by N, i.e. complementary to End(p). (def. 7.2.5)
Case 1: L = End(r) and r is a start sequence of p.

This is not possible because -End(r) is a label in the branch above N that already falsifies L.
Case 2: L contains a world-path wp such that p is a start sequence of wp, i.e. wp = [p c .  . . ] ,  c ;t [ ]

Case 2.1: L is an instance of a literal in C.
Suppose wp is  an instance of some world-path [s u . . . ]  with Ku = [a] . . .an+1] such that

[pc...] = [7L8 almai] for some i S 11. In this case End(p) would be in MC (def. 7.2.2.3)
which is impossible because the branch of N could not falsify M C. Using the same
argument it can be excluded that wp came into Kit as a codomain term in it (using def.
7.2.2,b). The only possibility is now that Wp is  an instance of a world-path [p’c...] with
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Ap' =p and a is no variable. This is just the either case we wanted to prove. 

Case 2.2:	 L is not an instance of a literal in C. 

L must be a literal End(wp) that came into AJ..C by conditioned instantiation. Therefore there 

must be another literal K;.. E AJ..C containing a world-path wp =[rb... ] =[pc...b... ], c '# [], 

b '# [] which is a direct instance of a literal K E C, i.e. K;.. =AK. IfK;.. is falsified by N, we 

have case 2.1 and we are ready. IfK;.. is not falsified by N, it must be falsified by some other 

node M above N. Proceeding just like in case 2 of lemma 9.7 we find that there is this node 

M in the branch above N, labeled End(q) and K;.. is the instance of a literal K E C containing 

a world-path [q'a...], a'# [], a is no variable and q = Aq' that is falsified by M. • 

Theorem 9.9 (Existence of Inference Nodes)
 

In every finite closed semantic tree T for an unsatisfiable clause set there exists an inference node.
 

Proof: First of all we notice, that there is at least one node whose immediate descendent nodes are
 

failure nodes, for, if it did not, then every node would have at least one nonfailure descendent. We could
 

then find an infinite branch through T, violating the fact that T is finite.
 

If there is a node whose two immediate descendent nodes both falsify some direct instances of literals in
 

C, we are ready.
 

Therefore, assume for every node whose two immediate descendent nodes are failure nodes, at least one
 

of them falsifies only End-literals generated by conditioned instantiation. That means all pairs of failure
 

nodes must be labeled with literals End(q) and -End(q) for some world-path q. (*)
 

Now we must prove that an inference node N exists that satisfies the m-case in defmition 9.6, Le.
 

its two immediate descendent nodes N+ and N_ are labeled End(p) and -End(p) for some p and: 

For N+ there is a clause UC, falsified by some branch containing N+ and a literal K E C 

containing a world-path [p'a... ], a'# [], a is no variable, p = A.p' and A.K is falsified by N+. 

K is a failure node and falsifies a direct instance A.End(p') = End(p) E A.C of some C E C. 

In order to fmd this inference node, we defme a procedure for searching this node and prove that it must 

successfully terminate. The procedure moves around the tree, but its motions are always into right 

neighbour branches. Because T is fmite, it must therefore terminate. In order to formalize this, we must 

give coordinates to the nodes in the tree which increase when moving to right neighbour branches. The 

coordinates are as follows: If the maximal depth of the tree is n, we take numbers of length n, the first 

digit is for the first level, the second for the second etc. The digit for the left branch becomes the number 

1, the digit for the right branch becomes 2 as the figure below illustrates. 

~ ~ 
~ ~ ~ ~ 

III 112 121 122 211 212 221 222 

Clearly the numbers increase when moving downwards or to right neighbor branches. 

Remember now that our semantic trees have been organized such that a node with label End(p) is placed 

to the left of the -End(p) node. 
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?Lp' = p and a is no variable. This is just the either, case we wanted to prove.
Case 2.2: L is not an instance of a literal in C.

L must be a literal End(wp) that came into MC by conditioned instantiation. Therefore there
must be another literal KK 6 MC containing a world-path wp = [rb. . . ]  = [pc. . .b. . .], c rt [],
b # []  which is a direct instance of a literal K e C, i.e. Ka = ).K. If K1 is  falsified by N ,  we

have case 2.1 and we are ready. If K1. is not falsified by N, it must be falsified by some other
node M above N. Proceeding just like in case 2 of lemma 9.7 we find that there is this node
M in the branch above N, labeled End(q) and Kl is the instance of a literal K e C containing

a world-path [q’a. . .], a at [], a is no variable and q = M’ that is falsified by M. I

Theorem 9.9 (Existence of Inference Nodes)
In every finite closed semantic tree T for an unsatisfiable clause set there exists an inference node.
Proof: First of all we notice, that there is at least one node whose immediate descendent nodes are
failure nodes, for, if it did not, then every node would have at least one nonfailure descendent. We could
then find an infinite branch through T, violating the fact that T is finite.
If there is a node whose two immediate descendent nodes both falsify some direct instances of literals in

C, we are ready.

Therefore, assume for every node whose two immediate descendent nodes are failure nodes, at least one
of them falsifies only End-literals generated by conditioned instantiation. That means all pairs of failure
nodes must be labeled with literals End(q) and -End(q) for some world-path q. (*)

Now we must prove that an inference node N exists that satisfies the gar—case in definition 9.6, i.e.
its two immediate descendent nodes N+ and N_ are labeled End(p) and -End(p) for some p and:
For N+ there is a clause MC, falsified by some branch containing N+ and a literal K e C
containing a world-path [p’a. . .], a # [], a is no variable, p = hp” and KK is falsified by N +.

N_ is a failure node and falsifies a direct instance 7tEnd(p’) = End(p) 6 AC of some C e C.
In order to find this inference node, we define a procedure for searching this node and prove that it must
successfully terminate. The procedure moves around the tree, but its motions are always into right
neighbour branches. Because T is finite, it must therefore terminate. In order to formalize this, we must
give coordinates to the nodes in the tree which increase when moving to right neighbour branches. The
coordinates are as follows: If the maximal depth of the tree is  n, we take numbers of length n, the first
digit is for the first level, the second for the second etc. The digit for the left branch becomes the number
1, the digit for the right branch becomes 2 as the figure below illustrates.

Ä /200\

111  112  121  122  211  212  221  222

Clearly the numbers increase when moving downwards or to right neighbor branches.

Remember now that our semantic trees have been organized such that a node with label End(p) is placed
to the left of the -End(p) node.
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The search procedure works as follows:
 

It starts with a tip node labeled either End(p) or -End(p) that falsifies no direct instance of a literal in C.
 

Let N be the current tip node that falsifies no direct instance of a literal in C.
 

Let n1 ...nk be the coordinate of this node.
 

According to the lemmata 9.7 and 9.8 there exists a node M.labeled End(q) in the branch above N that
 

falsifies some direct instances of literals in C. The coordinates of M are n1" .np.. .0. according to its
 

depth in the tree. Since the nodes labeled with End(q) are in the left branches we know that nj =I.
 

Consider now its right sibling node M' labeled -End(q) and with the coordinates n1" .nj_12D.. .D.
 

Case I: M' is a failure node. 

Case 1.1: M' falsifies some direct instances of literals in C. 

In lemma 9.7. it has been proved that this instance is really End(p) and no End-literal with 

shorter world-path. The common predecessor node is therefore an inference node and the 

procedure can terminate with success. 

Case 1.2: M' falsifies no direct instance ofliterals in C. 

We move from node N with coordinates n1...nj-11nj+1 ... nk to node M' with the greater 

coordinates n1" .nj_12D...0 and continue the search with M'. 

Case 2: M' is no failure node. 

In this case the subtree of M' must again contain a node whose two immediate descendents 

are failure nodes. According to our assumption (*) they must be labeled with End(r). -End(r) 

for some world-path r and at least one of them. say M" does not falsify a direct instance of a 

literal in C. We continue the search with M" whose coordinates n1, ..nj_121j+1 .. .lk are also 

greater than the coordinates ofN. 

We have moved from node to node with ever increasing coordinates. Since the tree is finite, the 

procedure must terminate. Moreover. the only possibility to terminate is the successful case 1.1. • 
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The search procedure works as follows:
I t  starts with a tip node labeled either End(p) or -End(p) that falsifies no direct instance of  a literal in C.

Let N be the current tip node that falsifies no direct instance of a literal in C.
Let nl . . .nk be the coordinate of this node.
According to the lemmata 9.7 and 9.8 there exists a node M, labeled End(q) in the branch above N that
falsifies some direct instances of literals in C. The coordinates of M are n1 . . .nj0. . .0, according to its
depth in the tree. Since the nodes labeled with End(q) are in the left branches we know that nj = 1.
Consider now its right sibling node M’  labeled -End(q) and with the coordinates n1 . . ‚nl-420. . .0.
Case 1 :

Case 1.1:

Case 1.2:

Case 2:

M'  is a failure node.
M’  falsifies some direct instances of literals in C.
In lemma 9.7. it has been proved that this instance is really End(p) and no End-literal with
shorter world-path. The common predecessor node is therefore an inference node and the
procedure can terminate with success.
M’ falsifies no direct instance of literals in C.
We move from node N with coordinates n1. . .n j_ l ln j+1. . .nk  to node M’  with the greater

coordinates n l .  . .nj_120. . .0  and continue the search with M’.
M’  is no failure node.
In this case the subtree of M’  must again contain a node whose two immediate descendents
are failure nodes. According to our assumption (*)  they must be labeled with End(r), -End(r)
for some world-path r and at least one of them. say M“ does not falsify a direct instance of a
literal in C. We continue the search with M" whose coordinates n1...nj_121j+1-"1k are also

greater than the coordinates of N.

We have moved from node to node with ever increasing coordinates. Since the tree is finite, the
procedure must terminate. Moreover, the only possibility to terminate is the successful case 1.1. I
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Chapter Ten 

Completeness of Modal Resolution 

"Completeness of the resolution rules" means that for every finite unsatisfiable clause set C there is a
 
finite sequence of resolution operations terminating with the empty clause. Since there are still some
 

uncertainties concerning variable renamings, we define precisely how this sequence of resolution
 

operations is to be generated.
 

Definition 10.1 (Resolution Refutation Procedure)
 
The resolution refutation procedure works as follows:
 

Given a finite set C of clauses, select as long as the empty clause is not in C two variable disjoint copies
 

of clauses in C which are resolvable with a most general 9t-admissible unifier, generate the resolvent E,
 

replace all variables in E by new ones and add the renamed resolvent to C.
 

More precisely we consider two variable disjoint clauses C and D to be resolvable upon the resolution
 

literals C' ~ C and D' ~ D iff
 

Case I: C' = {Ptl}, ... , Ptln} and D' = {-,psll' ... , -,Pslk} for some predicate P and termIists t1 j and slj'
 

and there is a most general 9t-admissible unifier 0' for {tI}, ... ,tin}' {si}, ... , slk} , Le. 

O'tI} = ... =O'tIn =O'sll =... =O'slk' 

Case 2: (non-serial case), 

C' ={End(pl)' ... , End(Pn)} and D' ={A E D I [q a...] e A, a:# n, a is no variable} and there 

is a most general9t-admissible unifierO' for {Pl,."'Pn} and {q}, ...qk} := {q I [q a... ] e D'}, Le. 

O'pl =... =O'pn = O'ql =... = O'qk' • 

It is noted that this definition allows "self resolution", Le. resolution with two copies of the same clause. 

Although there is a strong conjecture that this is not necessary, it cannot be proved with the methods 

available so far. (A corresponding completeness proof for resolution without self resolution in first-order 

predicate logic exploits the completeness of hyperresolution [Eisinger 87].) 

For an implementation the general resolution operation can of course be split into a factoring operation 

which merges two literals in the same clause and a narrow resolution operation that considers only one 

resolution literal per clause. 
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Chapter Ten

Completeness of Modal Resolution

“Completeness of the resolution rules” means that for every finite unsatisfiable clause set C there is a
finite sequence of resolution operations terminating with the empty clause. Since there are still some
uncertainties concerning variable renamings, we define precisely how this sequence of resolution
operations is to be generated.

Definition 10.1 (Resolution Refutation Procedure)
The resolution refutation procedure works as follows:
Given a finite set C of clauses, select as long as the empty clause is not in C two variable disjoim copies

of clauses in C which are resolvable with a most general Eli-admissible unifier, generate the resolvent E,
replace all variables in E by new ones and add the renamed resolvent to C.

More precisely we consider two variable disjoint clauses C and D to be resolvable upon the resolution
literals C' ; C and D'  (; Diff
Case 1: C’ = {Pu}, . . . ,  Ptln} and D’  = {—tPs11, . . . ,  —1Pslk} for some predicate P and termlists tli and slj,

and there is a most general Eli-admissible unifier o for {t11, ...,tln}, {sll, slk} , i.e.
or]1 == = can = os11=... = O'Slk.

Case 2: (non-serial case),

C’  = {End(p1), . . . ,  End(pn)} and D'  = {A  e D I [q a . . . ]  e A, a st [],  a is no variable} and there

is a most general Eli-admissible unifier o for {p1,...,pn} and [q1,...qk} := [q l  [q a. . .]  e D’}, i.e.
cp1=.„=opn=oq1=„.=oqk. I

It is noted that this definition allows “self resolution”, i.e. resolution with two copies of the same clause.
Although there is a strong conjecture that this is not necessary, it cannot be proved with the methods
available so far. (A corresponding completeness proof for resolution without self resolution in first-order
predicate logic exploits the completeness of hyperresolution [Eisinger 87].)

For an implementation the general resolution operation can of course be split into a factoring operation
which merges two literals in the same clause and a narrow resolution operation that considers only one
resolution literal per clause.
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1(). 1 Preliminaries 

There are some auxiliary lemmata necessary for the final completeness proof. 

For the ordinary (not conditioned) instantiation operation the equation A,(aC) =(A.<J)C holds because the
 

composition operation for substitutions is just defined in this way. It is not at all obvious and must
 

therefore be proved that the corresponding equation U(aJ..C) =(A,a)J..C holds for conditioned
 

instantiation as well.
 

Lemma 10.1.1 ("Associativity" of Conditioned Instantiation)
 

Let C be a prefix-stable clause and let a and A, be two prefix-preserving substitutions, 9\-admissible with
 

non-serial accessibility relations. (That means components u H [] (reflexivity) or u H [a-I] (symmetry)
 

do not occur.) Then U(aJ..C) =(A,a)J..C.
 

Proof: W.l.o.g we assume DOM(a) ~ Vars(C) and DOM(A,) ~ Vars(aJ..C).
 

The situation is as follows:
 

C C C =C=1------==--_1
 
=1-----=.;:;,,----1 ~
mC aC 

U(mc)=1 A.<JC A,aC 1 1 EOA 1 = (A,a HC~~_II A, Eo I [§J 
Eo are the End-literals generated by the conditioned instantiation of C with a.
 
EA are the End-literals generated by the conditioned instantiation of aJ..C with A.
 

EOA are the End-literals generated by the conditioned instantiation of C with A.<J.
 

It is obvious that the A.<JC parts of U(aJ..C) and (A,a)J..C are identical.
 

Therefore AEa U EA = EOA remains to be shown.
 

"c;" Let L =: End(PA) E AEa u EA'
 

Case 1: L E AEa.
 

=> L =End(A,po) for some world-path Po with End(po) E Eo. 

We consider the two different possibilities to generate End-literals (def. 7.2.2 a and b): 

Case 1.1: 3 K E C: Ip u... ] e K and au = [a1"'lln+l1and 

Po =[ap al ... ail for some i E {O•... ,n}. (def. 7.2.2,a) 

=> A.<JU =[Aal ...Alln+ll 

=> End[Aap A.al".A.ai] = End(APo) = L E (Aa)J..C (def. 7.2.2,a) 

Case 1.2: 3 K E C: x E K, x is a variable and Po e ax. (def. 7.2.2,b) 

=> APo e aAx 

=> End(APo) =L E (A.<J)J..C (def. 7.2.2,b) 

Case 2: LE EA 

Case 2.1: 3 Ko E aJ..C: [po v ... ] E Ko and AV = [al ... lln+l] and 

PA =[APo al· .. ail for some i E {O, ... ,n}. (def. 7.2.2,a) 

Case 2.1.1: v ~ Cod(a) 

=> 3 K E C: [p v ...) E K and Po =ap 

=> End[aA,p al".ai] =End[A,po al"'~] = End(p;l) =LE (A,a)J..C (def. 7.2.2,a) 

Case 2.1.2: v E Cod(a) 

Case 2.1.2.1: u H [q v ... lEa for some W-variable u. (q may be empty.) 
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10 .1  Pre l iminar ie s

There are some auxiliary lemmata necessary for the final completeness proof.

For the ordinary (not conditioned) instantiation operation the equation MGC) = (M)C holds because the

composition operation for substitutions is just defined in this way. It is not at all obvious and must
therefore be proved that the corresponding equation M(6.LC) = (ÄGNC holds for conditioned
instantiation as well.

Lemma 10 .1 .1  (“Assoc ia t iv i ty”  of Cond i t i oned  lns tan t ia t ion)

Let C be a prefix-stable clause and let 0 and X be two prefix—preserving substitutions. Si-admissible with
non-serial accessibility relations. (That means components 11 I—> [ ]  (reflexivity) or u i-> [a‘l]  (symmetry)

do not occur.) Then 7L~L(olC) = (KONC.
Proof: W.l.o.g we assume DOM(o) ; Vars(C) and DOMO») ; Vars(olC).
The situation is as follows:

c =— =c
cLC “"-"| °C | | Eo  |

M(oiC)=[ MC I I lFo l  | El l  I me | i EGAJ = (MMC
E0 are the End—literals generated by the conditioned instantiation of C with 0'.
El  are the End-literals generated by the conditioned instantiation of oiC with Ä.
Eck are the End-literals generated by the conditioned instantiation of C with ho:
It is obvious that the MC parts of M(01‚C) and (XGNC are identical.
Therefore KEG u Ex = Eck remains to be shown.

“a:." Let L =: End(px) e REG U EA.-

Case 1: L e KEG.
=> L = EndOLpo) for some world-path po with End(p0) e EO.

We consider the two different possibilities to generate End-literals (def. 7.2.2 a and b):
Case 1.1: 3 K e C: [p u. . .]  e K and ou =[a1...an+1] and

Po  = [0p a lma i ]  for some i & {0 , . . . ,n} .  (dcf. 7.2.2,a)

=> Mu =[2La1nlam1]
=> EndÜkop M1...?Lai] = EndOtpo) = L e (71.6)lC (def. 7.2.2,a)

Case 1.2: 31 K e C: x e K, x is a variable and Po 6 0x. (def. 7.2.2,b)
=> Äpc e 07o:
=> EndOtpo) = L e (71.6)lC (def. 7.2.2,b)

Case 2: L e E}.

Case 2.1: 3 K6 6 (SLC: [po v...] e K(, and M =[a1...an+1] and
PA. = [Äpo a lmai]  for some i e {0,...,n}. (def. 7.2.2,a)

Case 2.1.1: v € Cod(o)
==>3 Ke  C: [pv..._]<—: Kand po=0p
=> End[0'7\.p almai] = EndUtpo almai] = End(pl) = L e (71.0)lC (def. 7.2.2,a)

Case 2.1.2: v € C0d(0)

Case 2.1.2.1: u H [q v. . . ]  e 6 for some W-variable u. (q may be empty.)
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~ 3 K E C: s =[r u .. ,] E K, as = [ar q v ".J, [ar q] =Pu' 

~ End[AO'r Aq al ... ai] =End[A(O'r q) al'''~] =End[pu al ... ai] =End(pA.) =L E (Acr).l,C 

(def. 7.2.2,a) 

Case 2.1.2.2: x H tEa for some variable x and [Puv... ] Et. 

~ X H At E f..a and 3 K E C: x E K 

~ End[f..pu al ... aiJ=End(pA.) =L E (Acr).!.C (def. 7.2.2,b) 

Case 2.2:	 3 Ko E a.!.C: x E Ko, x is a variable and [PA.a... ] E AX, a:F- []. 

~ [PA.a... ] E COD(Acr). 

~ End(pA.) E C.!.(f..a). 

"2" Let L =: End(PUA.) E EUA. 

Case 1: 3 K E C: lp u... ] E K and f..au =[al"'~+l] and 

PUA. = [f..ap al ... ai] for some i E {O, ... ,n}. (case 7.2.2,a) 

Let O'U =: [bl ...b +l ]r

Case 1.1:	 3j E {O, ... ,r} A[bl .. ·bj] =[al ... ad 

~ End[crp bl bj] E Eu 
~ End[f..crp al ai] =End(pOA.) =LE AEo ~ U(a.!.C). 

Case 1.2: V j E {O, ... ,r} A[bl· ..bj]:F- [al ... ai] 

~ all =[bl bj v q], q :F- [] and f..V =[ak' .. ai] such that [f..b1oo .f..bj ak" .ai] =[al" .aJ 

~ End[ap bl bjv] E Eu 
~ End[f..ap Abl ... Abj ak"'~] =EndlAcrp al ...ai] = End(POA.) =LE EA. ~ U(a.!.C). 

Ca<;c 2: x Ht E Aa with [PUA. a... ] e t, a"F- [] (case 7.2.2.b) 

:c) ::J K E C with x E K. 

Case 2.1: x ~ DOM(a) 

~ x E aK E aC and x H t E f.. 

~ End(pu0 E EA. ~ U(a.!.C). (def. 7.2.2,b) 

Case 2.2: x E DOM(0') 

~ x H l' E 0' and f..1' =t and l' E aK E aC. 

Case 2.2.1 3 YEt' with Apu =PUA. 

~ End(PUA.) E EA. ~ U(al.C). 

Case 2.2.2 3 [poa'] E l' with f..pu =POA. 

~ End(po) E Eo (de£. 7.2.2,b) 

~ End(f..po) = End(PUA.) = L E AEo ~ U(a.!.C). 

Casc2.2.1 ]lpuv ... ICI':'Av""lat",ulll.\]sul:hlhatlf..poul ... lId=POA,forsoOlcic (t .....n}. 

~ Endlf..po al" .ai] =End(PUA.) = L E EA. c U(a.!.C). • 
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=>Ei Ke  C: s=  [ru...]e K, os :  [ o rqv  . . .]. [Grq] =p6.
=> Endpwr 7Lq al...ai] = End[?L(or q) almai] = End[p0 almai] = End(pl) = L e (M)iC

(def. 7.2.2,a)

Case 2.1.2.2: x H t e o for some variable x and [povm] e t .

=>xH7Lle Äoand E lKe  C:xe  K
: EndDLp<I al  ...ai] = End(pk) = L e (MNC (def. 7.2.2.b)

Case 2.2: 3 KO e (LLC: x 6 KO, x is  a variable and [plan] 6 M, a # [].
=> [mal...] e CODOw).
=> End(p1)e Ciao).

“:9” Let L =: End(pol) 6 BOA
Case] :  EKG C: lpu. . . ]eKandlou=[al . . .an+1]  and

Pa}. = [Kap almai] for some i e [0....,n}. (case 7.2.2,a)
Let ou =: [b1...br+1]

Case 1.1: Elj & {0,...,r} 7t.[b1...bj]=[a1...ai]
=> End[0'p b1...bj] e EÜ

=> EndMO’p a1 . . .ai] = End(pol) = L e 1E6 g M(O.LC).
Case 1.2: Vj  e {0,...,r} 7L[b1...bj]¢[a1...ai]

=> ou == [b1...bj v q],  q :t [ ]  and RV = [ak...ai] such that [Ablulbj  ak...ai] = [ a lma i ] .
=> End[6p bl . . . i ]  e Es

:> End[7LGp ?Lbl...7&bj ak...ai] = Endlkop almai] = End(pG,L) = L e E). ; M(GLC).
Case 2: x H l e XG with [Pol a...] G l, a #: [] (case 7.2.2,b)

am»?! KG Cwi l hxe  K.

Case 2.1: x es DOM(0)
=>xeoKe  OC andXHte  2.
=> End(pol) e EAL: M(GlC). (def. 7.2.2,b)

Case 2.2: x e DOM(0)
=>XH t ’ e  oand l t ’ z t and t ’ e  GKe  0C.

Case 2.2.1 3 y e t ’  with lpo = Pol

=> End(p6k) e E1 (_: ki(O$C).
Case 2.2.2 3 [pca’] e t '  with Äpo = Pax

=> End(p0) & Eo (def. 7.2.2‚b)
@ Endapo) = End(p6Ä) =1 .  e KEG c; ÄlmiC).

("asc 2.2.3 ?! Ipo v. . . |c  I’: M == Ial warm] such that llpc, a1...ai|= Pol for some i cr.» [l.....n}.
ra Endllp6 a] ...aiJ : End(pcx) = L e EA 9:; KMCLLC).
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The next lemma establishes a very useful correspondence between conditioned instances of the residue of
 

a literal set and the conditioned instances of these literals themselves.
 

Lemma 10.1.2 Let C be a prefix-stable literal set and let A be a ground substitution with Vars(C) ~
 

DOM(A) that is ~-admissible with non-serial accessibility relations. Then UResidue(C) s;;; UC
 

Proof: Let L =: End(p,) E UResidue(C).
 

Case 1: LE AResidue(C)
 

~ L = End(Ap) with End(p) E Residue(C).
 

~ q =[p u... ] E C (def. 7.2.7)
 

~ End(Ap) =L E UC.
 

Ca'ie2:	 L ~ AResidue(C), i.e. L is an End-literal generated by the instantiation with A. 
Case 2.1:	 3 Endl Pv ...bl E. Rcsidue(C) wilh AV ::: IaI' .. un.ttl and 

PA. = lAp al' .. ail for some i E to, ... ,n} (b may be empty.) (del' 7.2.2,a) 

~ [p v ...bw... ] =: [q w... J E C 

~ End[Ap al" .ai] =End(pA.) E UC (def 7.2.2,a) 

Case 2.2:	 ::3 x 1-7 tEA where x is a D-variable and PA. E t. (case 7.2.2,b) 

~ x E End(p) E Residue(C) for some world-path p 

~XE C 

~PA.E UC. (def. 7.2.2,b) • 

In first order predicate logic, the "lifting lemma" states that for each resolvent E' of instances of two
 

clauses there is a resolvent E of the clauses itself with most general unifier that is more general than E.
 

This lemma confirms that whenever there is a resolution deduction of the empty clause with some
 

instances of the original clauses, resolution with most general unifiers does the same job, hence no
 

additional instantiation rule is necessary. The proof of the lifting lemma exploits that every unifier for
 

two terms is an instance of the corresponding most general unifier. Although the original proof assumes
 

the existence of only one most general unifier for two terms (apart from variable renaming) there is no
 

difference in the proof when a complete set of most general unifiers is available. Since this is the case for
 

P-Iogic (theorem 6.3.4), we prove the lifting lemma only for non-serial accessibility relations where all
 

these complicated things like conditioned instantiation and residues must be considered. Actually a proof
 

for the serial case can be obtained from the proof below by forgetting residues and End-literals.
 

Lemma 10.1.3 (Lifting Lemma)
 

Let C and D be two prefix-stable clauses and let 0" be a prefix-preserving substitution such that a'iC
 

and D' ~ a',l.D are ground and the two literal sets C' ~ a',l.C and D' s;;; a',l.D are complementary in one
 

of the following two ways:
 

Case 1: C' ={Aa'} where Aa' is a normal literal (no End-literal) and D' ={-,Aa,}.
 

Case 2: a) C' ={End(Pa')} and End(Pa') is a direct instance of at least one element of C and
 

b) D' s;;; a'D1 := {K I [p a... ] E K, a:f:. [], a is no variable, a'p =Pa'} ~ D and 

c) End(Pa') 4 a',l.D. 

Let E' =(a',l.C\C1 U (0" ,l.D\D1 be the resolvent ofC and D Then there exists a resolvent E of C and 

D with a most general unifier such that an instance of E is a subset of E'. 
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The next lemma establishes a very useful correspondence between conditioned instances of the residue of
a literal set and the conditioned instances of these literals themselves.

Lemma 10.1.2 Let C be a prefix—stable literal set and let 7t be a ground substitution with Vars(C) g
DOMOL) that is iii-admissible with non—serial accessibility relations. Then MResidue(C) ; MC
Proof: Let L = :  End(pl) e AlResidue(C).
Case 1: L e 7tResidue(C)

=> L = EndOLp) with End(p) e Residue(C).
=> q = [p u...] e C (def. 7.2.7)
=> End(7tp) = L € MC.

Case 2: L es csidue(C), i.e. L is an End-literal generated by the instantiation with it.
Case 2 .  l :  :3 End lp  v ...bl e". Residue(C) with 9w == Ial...an_„ | and

Pl' :  [)tp a1 ...ail for some i e {0,...,n} (b may be empty.) (def 7.2.2.3)
=> [pv  . . .bw...]  =:  [q w. . . J  e C
= End[7tp almai] = End(pl) 6 MC (def 7.2.2,a)

Case 2.2: El x H t e it. where x is a D-variable and PA 6 L (case 722,13)
=> x e End(p) e Residue(C) for some world-path p
=> x e C
=> pl € MC. (def. 7.2.2‚b) .

In first order predicate logic, the “lifting lemma” states that for each resolvent E ’  of instances of two
clauses there is a resolvent E of the clauses itself with most general unifier that is more general than B.
This lemma confirms that whenever there is a resolution deduction of the empty clause with some
instances of the original clauses. resolution with most general unifiers does the same job, hence no
additional instantiation rule is necessary. The proof of the lifting lemma exploits that every unifier for
two terms is an instance of the corresponding most general unifier. Although the original proof assumes
the existence of only one most general unifier for two terms (apart from variable renaming) there is no
difference in the proof when a complete set of most general unifiers is available. Since this is the case for
P—logic (theorem 6.3.4), we prove the lifting lemma only for non-serial accessibility relations where all
these complicated things like conditioned instantiation and residues must be considered. Actually a proof
for the serial case can be obtained from the proof below by forgetting residues and End—literals.

Lemma 10.1.3 (Lifting Lemma)
Let C and D be two prefix-stable clauses and let 0 ’  be a prefix-preserving substitution such that G’LC
and D’  ; o’éD are ground and the two literal sets C ’  ; o’iC and D’  g o’lD are complementary in one
of the following two ways:
Case 1: C’ = {AW} where AG, is a normal literal (no End-literal) and D’ = {fiAOI}.
Case 2 :  a) C’  = {End(po:)} and End(pOJ is  a direct instance of at least one element of C and

b) D’  g o’D1 := {K | [p a. . .]  e K, a at [], a is no variable, o’p = pc,} ; D and
c) End(p6‚) a G'iD.

Let E’ = (o’lC\ C') U (o'iD\D') be the resolvent of C and D Then there exists a resolvent E of C and
D with a most general unifier such that an instance of E is a subset of E’.
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Proof: We prove Lhe two cases independently.
 

~: Since C' = {Aa,} and 0' = {-,A '} are complementary but no End-literals, there are literals
 o
Cl ={AI,···,Ak } ~ C and 0 1 ={-,Al', ... ,-,Al'} ~ ° and a most general unifier cr ~ cr' such that 

cr{Al,... ,Ak } =cr{Al ', ... ,A1'} =: {Aa} (theorem 6.5.1). Let E := Residue{Ao' -,Ao } u crC; u Co u 
crOz u Do be a resolvent of C and ° where Cz = C \ Cl' Oz =0\01 and Co and °0 are the 

corresponding End-literals generated by the conditioned instantiation with cr. 

We must show that AJ.E = E' where cr' =: A.<J. 

First of all, using the associativity of the conditioned instantiation (lemma 10.1.1), we know 

cr'J.C =(Acr)J.C = U(crJ.C) and cr'J.O = (A.<J)J.O =U(crJ.O). Therefore the situation is as follows: 

C =ITL] IT2J	 rnLJ[Q2J =D 

= cr,J.OG&]rr:m:1£Icr,J.C =~l,~. ~cr.~~D&a 

A.J.(cr,J.C)= ~ IAcrczl ~ [§;J IA-,Ad IA.<JOzl ~ [KJ = A.J.(cr.j.D)
 

~
 - -	~ = = = - 

(A.cr)J. C ~i2.~ -,Ao ' ~ijj}.k:] = (Aa)J. D= Aa, 

+ Residue == Resovent E ~ == Resolvent E' 

Co' and Do, are the End-literals generated by the conditioned instantiation of C and °wiLh cr'. 

Thus, UE	 = UResidue{Ao' -,Ao ) u U(aC2 u Co u cr02 u Do) 

== UResiduc(Aa) u a'C2 u Co' U cr'02 u Do, 

= UResidue(Ao) u E'. 

= E' (lemma 10.1.2: UResidue(Ao) ~ CA. ~ Co') 

~: Since End(po') is a direct instance of a literal in C (condition a) let Cl := {End(Pl)"'" End(Pk)} 

~ C with aTI = End(po')' Since a' is a unifier for {Pl""'Pk} and {p I [pa... ] E Dl , cr'q = Po'}, there 

is also a most general unifier cr ~ cr' for these sets of world-paths. Let cr' =: M, let Po := <Jpl == ... = crPk 

== .... Let Cz := C \ Cl and Dz := D \ Dl . Let crJ.C :== {End(poH u cr~ u Co and let aJ.D:== crDl u Dcrl 
u crDz u Dcr2 where Ccr and DOl u Dcr2 are the End-literals, generated by the conditioned instantiation 

with cr. 0crl contains those End-literals which are complementary to End(pcr)' It is noted that crDz u 0cr2 

does not contain any world-path [qa...], a;t. [], with A.q = Po" All these literals are collected in crOl U 

DcrI ! (.:.). Let E := Residue({End(pcr)} u crDl u Dol) u crC; u Co u crOz u 0cr2 be a resolvent of C 

and D. We must show that UE ~ E'. 

First of all, using again the associativity of the conditioned instantiation (lemma 10.1.1), we know 

cr'le = (M)J.C == U(crJ.C) and cr'J.C == (A.<J)J.D = U(crJ.D). Therefore the situation is as follows: 

C = I Cl I [£LJ	 01 C!?L] = D 

I crO] Dq ) I	 = cr.j.D 

U(a.j.C)= IAEnd(Bx)IIMczllTIQ] [§J !?;crDJ ADrol 1000lI IAd)z/ ~ =A.j. (<r.j.D) 

== = == '-----y----' UI == In In == 

Q..cr)lC = End(RY') ~ D' ~ ~;;] =o.cr).j.D 

+ Residue == Resolvent E ~ = Resolvent E' 
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Proof: We prove the two cases independently.
Cam: Since C’  = {AG,} and D '  = {—1A6‚} are complementary but no End-literals, there are literals
C1 :  {A1‚.„‚Ak} ; C and D1=  {—-.A1',...,—-.Al'}c; D and a most general unifier o 2 O'  such that
0'{A1,...‚Ak} = 6{A1',.„,A1'} =: {Ac} (theorem 6.5.1). Let E := Residue{Ao, fiAo} U 0C2 U Co U
OD2 U DO be a resolvent of C and D where C2 = C\C1 ,
corresponding End-literals generated by the conditioned instantiation with G.
We must show that ME = E’  where 6 ’ =: M.

D2 = D\D1  and Co and D6  are the

First of all, using the associativity of the conditioned instantiation (lemma 10.1.1), we know
G’LC = OlmlC = lud—LC) and o’lD = (MND = M(oiD). Therefore the situation is as follows:

C =ICJ IC2J  |D1 | |D2 |  =D
we:möxww. _w  Wßm-DWAW 3- Sri/3600314300»???

otC = ag  EDI-“mg = Gil)

M(otC)=-  |xoc2| Lt Col | CL | LxfiAg [701321 mm L m 1 = Mom)
W

— //f;fé/17 I/fiff/ _ /r6:?7f% ”Biff?

= , 0 "IA , =
Own C A" "gr/#1C///A’m:/§ ° /xgrx;/2 ///f/‚%’/ (RON D

in? + Residue= Resovent E IV  = Resolvent E ’" »
:_'::;.‚:;: .;‚"_"-.':‘.:°__-'-.45:

Co and Do are the End- literals generated by the conditioned mstantiation of C and D with 0 .
Thus, ME = MResidudAo, "'1A6} U M(O‘C2 U Co U GD2 U Do)

= MResiducmO) U 6’C2 U Co» U G'Dz U D0,
= KlResidueMo) U E’.
= E ’  (lemma 10.1.2: MResidue(Ac) Q Ca. g CO»)

Easel: Since End(po.) is a direct instance of a literal in C (condition a) let C1 := {End(p1),. . . ,  End(pk)}
; C with G’Cl = End(p6,). Since 6 '  is a unifier for {p1,....pk} and {p | [pa...] 6 DI ,  G’q = pc,}, there
is also a most general unifier 6 2 6’ for these sets of world-paths. Leto’  =: M, let p6 := Cpl = = k
== Let C2 := C \C1  and D2 .'= D\D1. Let o lC . '= {End(p0)} U 0C2 U CO and let olD := (ID1 U DO.1
U CD2 U Do? where C6 and D61 U D02 are the End-literals, generated by the conditioned instantiation1
with o. D01 contains those End—literals which are complementary to End(p6). It is noted that OD2 U Dog
does not contain any world-path [qa. . . ] ,  a at [] ,  with M = pc,. All these literals are collected in (ID1 U
Dal !  (%). Let E :=  Residue({End(po.)} U (5D1 U Dal )  U 6C2 U CO U GD2 U DG2 be a resolvent of C

and D. We must show that ME <; E’.
First of all, using again the associativity of the conditioned instantiation (lemma 10.1.1), we know
G' lC  = (M)—LC =CÄuOlC) and G’iC = (MIND = KKOlD). Therefore the situation is as follows:

C =|  | m

“(cm): llEnd(R1)||7tG2||7LC§|| C; | ßoD, tDmlLLJI “@! l i=u(<nD)
_ U| / |fi

m = Resolvent E ’

87

__ _;;-__ + Residue = Resolvent E



D'd u DA2 arc the End-literals coming from the conditioned instantiation of a.LD by A. Du contains
 

those End-literals in aD2 u D02 with a world-path [po,a... ], a :t:- [], as subtcrm. They would be
 

complementary to End(po') and therefore they would probably be not be part of E' although they are part.
 

ofUE. We must show that this set is empty. The idea is to prove that whenever 0A1 is not empty, there
 

must be a literal End(po') E o'.LD which contradicts the assumption c).
 

Therefore let L = End(q) E DA1 with p' :== [po,a... ] E q.
 

Since q is a A-instance of some term tin aD2 u D02 and because of (.:.) there are two possibilities to
 

instantiate t by Asuch that p' E q =At:
 

Case 1: rp'a ... ] E COD(A).
 

In this case, according to def. 7.2.2,b: End(po') E a' .LD. That contradicts assumption c). 

Case 2: There is a world-path [r u ... ] E a02 u 002 with a W-variable u such that Au == [al" .~J and 

[Aral ... aj] = [po,a] for some i E {l, ... ,n}. 

In this case, according to def. 7.2.2,a: End[M al" .ai-l] = End(pcr') E a'.LD. 

That contradicts again assumption d). 

Thus, DAl = l". 

Let Res: = Residue({End(po)}u aDl u DOl)
 

Now, UE =UResuU(aC2 uC uaD2 uD02)
o
 
~ A.LRes u a'~ u Co' u a'D2 u D
cr, 

= URes u E'. 

According to lemma 10.1.2, UResidue(End(po)) ~ (Aa).LC and UResidue(Dla u Dol) ~ (Aa).LD.
 

Clearly UResidue(End(po):t:- End(po') and therefore UResidue(End(po)) ~ E'.
 

Because of (.:.) and again lemma 10.1.2, A.LResidue(Dla u Dol) does not contain a world-path
 

[pcr,a... ] that is complementary to End(po') and therefore UResidue(Dla u DOl) s:; a'D2 u Do, ~ E'.
 

That proves finally UE ~ E'. •
 

10.2 The Completeness Proof 

The main idea in the completeness proof presented below is the same as in the corresponding 

completeness proof for resolution in first order predicate logic: Given an unsatisfiable set C of clauses, a 

finite closed semantic tree T for C is chosen, which exists according to theorem 9.5. The two failure 

nodes below an inference node N determine two instances a'.LC and a'.LD of clauses in C and two sets 

of literals C' ~ a'.LC and D' ~ a'.1D which are falsified by these failure nodes and by no other node 

closer to the root node in the branch of N. We can show that there is a most general unifier a ~ a' for 

some literals in C and D such that C and D are resolvable and there is an instance of the resolvent 

containing no literal of C' and D'. Therefore the semantic tree T can be cut at least below the inference 

node N yielding a smaller tree T' with a new inference node etc. This process terminates with the empty 

clause after finitely many steps. 

Note that we can only show the existence of a sequence of resolutions that terminates with the empty 

clause. Since the proof for the existence of a finite closed semantic tree is not constructive, it cannot be 

used in an actual implementatioIl to guide a resolution based theorem provcr. To find Ihe right resolution 

sequence therefore, as always, requires search. 
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DM U Du are the End-literals coming from the conditioned instantiation of olD by it. DM contains
those End-literals in 6132 U D62 with a world-path [pa ram] ,  a at [] ,  as  subterm. They would be

complementary to End(pGJ and therefore they would probably be not be part of E’ although they are part.
of ME. We must show that this set is empty. The idea is to prove that whenever DM is not empty, there
must be a literal End(pcv) e o’iD which contradicts the assumption c) .
Therefore let L = End(q) e DM with p ’  :=  [pa/a. . . ]  6 q.
Since q is a Ä—instance of some term t in 6D2 U D02 and because of (°?) there are two possibilities to
instantiate t by % such that p '  (5 q = 7tt:
Case 1: [p’a...] e CODOL).

In this case, according to def. 7.2.2,b: End(por) e o ’ lD .  That contradicts assumption 0).
Case 2 :  There i s  a world-path [r u ...] e ODZ U Dog with a W-variable u such that Ku = [a1 . . .anJ and

[?Lr al...ai] = [pda] for some i e {1,...,n}.
In this case, according to def. 7.2.2,a: End[7tr a l  . . ‚ai_1] = End(po.) e o’iD.
That contradicts again assumption (1).

Thus, DM = e .

Let Res: = Residue({End(p6)}U 1s1 U D01)
Now, ME = MRes U M(0C2 U CO U oD2 U D02)

g MRes U 0’02 U CO, U o’D2 U D0,
= MRes U E’.

According to lemma 10.1.2, MResidueCEnd(pc)) c; (KONG and MResidue(Dlo U Dal )  g (MOLD.
Clearly KiResidue(End(p6) at End(po’) and therefore MResidue(End(p6)) g E’.
Because of ('30) and again lemma 10.1.2,  NLResidue(Dlo U Del )  does not contain a world-path

[poa . .] that is complementary to End(por) and therefore MResidue(D16 U Dal) ; G'D2 U DO, g E’.
That proves finally ME ; E’. '

10 .2  The  Completeness Proof

The main  idea in  the completeness proof presented below i s  the same as i n  the corresponding

completeness proof for resolution in first order predicate logic: Given an unsatisfiable set C of clauses, a
finite closed semantic tree T for C is  chosen, which exists according to theorem 9 .5 .  The two failure

nodes below an inference node N determine two instances o'iC and o'iD of clauses in C and two sets
of literals C’  ; o'iC and D’ g o'iD which are falsified by these failure nodes and by no other node
closer to the root node in the branch of N. We can show that there is a most general unifier o 2 o' for

some literals in C and D such that C and D are resolvable and there is an instance of the resolvent
containing no literal of C ’  and D’. Therefore the semantic tree T can be cut at least below the inference
node N yielding a smaller tree T ’  with a new inference node etc. This process terminates with the empty
clause after finitely many steps.
Note that we can only show the existence of a sequence of resolutions that terminates with the empty

clause. Since the proof for the existence of a finite closed semantic tree is not constructive, it cannot be
used in an actual implementation to guide a resolution based theorem prover. To find the right resolution
sequence therefore, as always, requires search.
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We illustrate the procedure that will be used in the completeness proof with a few examples.
 

In the figures below the inference node in the semantic trees are marked with "S''' whereas the failure
 

nodes are marked with D,n IW denoting the n'th literal in the clause D which is falsified by the label of
 

this node and by no other node above this one.
 

Example 1: The first example is a simple propositional one. 

Clauses: 

A) P[], Q[] 
original closed 

~ 
B) -,P[] 

semantic tree: BS' P -,P ca 

C) -,Q[] 

~ 
CS' Q -,Q ~A, 2 

The inference node suggests a resolution with A and C. 

1. Resolution: reduced semantic tree: 
A,2 & C ~EI: pr] ~ 

Bu:w P -,P caEI 

The next inference node suggests the final resolution yielding the empty clause. 

B &E1 ~E2:;7 

For the same clause set there is another closed semantic tree which generates the second possible 

deduction of the empty clause: 
Clauses: 

another closed 
A) PU, Q[] 

semantic tree: B) -,P[] 

C) -,Q[] 

-,P ~A, I 

I. Resolution: B & A,I ~EI: Q[] 

2. Resolution: El & C ~ E2: ;7. 

Example 2: The second example involves conditioned instantiation and the generation of a residue. 

Assume transitivity and non-seriality of the accessibility relation. 

Clauses: a closed ~ 

A) P[auw] semantic tree: End[] -End[] 

B) -,P[vbz] ~ ./"-.....
d,t.A /" .............


C) Q[xc] End[a] -End[a] 

cr' = {u ~ b, v ~ a, w ~ C,z ~ c, x ~ [ab] } j ~ 
d',t.C,1 End[ab] -End[ab]cr"={x~a} 

j ./"-..... ~ 

if,t.C,1 /" .............<i,t.A = P[abc], End[a], End[ab] 
P[abc] -,P[abc] 

d J,B =-,P[abc], End[], Endrab] 
tll fI

<i.l.C = Q[abcl, End[], End[.a] 0'.l.B,l 0'.l.A,1 
d',t.C = Q[ac], End[] 

(Note that we joined some individual substitutions for variable disjoint clauses into cr'). 
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We illustrate the procedure that will be used in the completeness proof with a few examples.
In the figures below the inference node in the semantic trees are marked with “It?” whereas the failure
nodes are marked with D,n IE" denoting the n'th literal in the clause D which is falsified by the label of
this node and by no other node above this one.

Example l :  The first example is a simple propositional one.

Clauses:
' ‘ l 1 edA) P[]. Q[] “gm? ° °S / \

semantic tree:B) —1P[] Bw P ——.P em
C) fiQl l

The inference node suggests a resolution with A and C.

1-  Resolution: reduced semantic tree: "€“
A,2 & C —>E1:P[]

Base P -.P q l

The next inference node suggests the final resolution yielding the empty clause.
B & El  —> E2: 5

For the same clause set there is another closed semantic tree which generates the second possible
deduction of the empty clause:

Clauses: th 1 ed
A) P[],Q[] ano e r cos  A
B)  "1P[] 83111311t tree. CW Q "1Q in

C) fiQÜ A
BW P ——1P WA,  1

1. Resolution: B & A , ]  —>E1: Q[]

2. Resolution: E1 & C —> E2: .’7.

Example 2: The second example involves conditioned instantiation and the generation of a residue.
Assume transitivity and non-seriality of the accessibility relation.

Clauses: a closed
A) P[auw] semantic tree: End-[] -End.[]
B) App/b2] h
C) Q[xc] “A End[a] -End[a]

é0’={ut—>b,v+->a,Wi—> c,z:-ac,x+—>[ab]} .
O" = {X  H a}  d ‘LC’ I  End[ab] «End[ab]

g a

o’tc.l Ao’iA = P[abc], End[a], End[ab] P[abc] -.P[abc]
0’ „LB = —.P[abc], End[ l .  End[ab] & &
o’iC = QlabCI. Endlfi ] .  Endltd] („13,1 MA, 1
d'iC = QlaC]. End-[l

(Note that we joined some individual substitutions for variable disjoint clauses into G’).
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The inference node suggests resolution with A and B, which is in fact the only possible one. The ground 

resolvent would be E = {End[], End[a], End[ab]} and actually three more ground resolutions of this 

style would be necessary to deduce the empty clause. Resolution with most general unifiers and the 

usage of more complementary literals than the failure nodes suggest, shortens the proof: 

Unification of P[auw] and P[vbz] yields 0 = {u ...... b, v ...... a, z ...... w}. Instantiation with 0 yields: 

(j,J,A = P[abw], End[a] 

o,J,B =---.P[abw], End[]. 

All literals are complementary, however the residue is End[ab], therefore the resolvent is: 

El = End[ab]. 

The corresponding reduced 
~ semantic tree is: End[] -End[] 

~ ~ 
(j,J,A End[a] -End[a] 

~ /""-.....'w;u 
(j",J,C, I ", ............ 

End[ab] -End[ab] 
~ ~ 

(j',J,c,1 El 

According to the new inference node, the literals El = End[ab] and C = Q[xc] must be made 

complementar~. Therefore we unify the world-paths [ab] and [x]. The unifier is t = {x H [ab]}. The 

instances are: 

t,J,EI =End[ab] 

t,J,C =Q[abc], End[], End[a] 

All literals are complementary, thus the resolvent is empty and the corresponding semantic tree is also 

empty. 

Example 3: The last example shows what happens when the two failure nodes below an inference node 

are not tip nodes. 

Clauses:
 

A) Q([ab] f[cuD
 ~ 
B IQ"' End[] -End[]B) R[cd] 

C) End[a] 0= {u H c} .~ 

(j,J,A, IIQ"' End[a] -End[a] "W'lI C
 
(j,J,A =Q([ab] f[cd]), End[c]
 

B = R[cd] ~
 
C =End[a] B IW End[c] -End[c] "W'lI (j,J,A,2
 

Resolution between the literals suggested by the lowest failure nodes is not possible. Therefore the
 

inference node labeled -End[] suggest resolution between A and C. The resolvent consists of the residue
 

only: E =End[c].
 

Both nodes End[a] and -End[a] can now be removed from the tree. (In general more than one resolution
 

is necessary before the tree can be shortened.) The situation is then:
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The inference node suggests resolution with A and B, which is in fact the only possible one. The ground
resolvent would be E = {End[],  End[a], End[ab]} and actually three more ground resolutions of this

style would be necessary to deduce the empty clause. Resolution with most general unifiers and the
usage of more complementary literals than Ihe failure nodes suggest, shortens the proof :
Unification o f  P[auw] and P[vbz] yields 0 = {u  H b,  v H a ,  2 H w}.  Instantiation with 0 y ie lds :

OLA = P[abw],  End[a]

(LLB = -1P[abw], End[].

All literals are complementary, however the residue is End[ab], therefore the resolvent is:
E l  = End[ab].

The corresponding reduced
semantic tree is: End[] -End[]

@
(“A End[a] -End[a]

é @

Gui C, 1 / \
End[ab] -End[ab]

@ &
o’i C, 1 E l

According to the new inference node, the literals E l  = End[ab]  and C = Q[xc]  mus t  be made

complementary. Therefore we unify the world-paths [ab] and [x] .  The unifier i s  't = {x  H [ab]}. The

mstances are:
'clEl = End[ab]
NC = Q[abc],  End[],  End[a]

All literals are complementary, thus the resolvent is empty and the corresponding semantic tree is also
empty.

Example 3 :  The last example shows what happens when the two failure nodes below an inference node
are not tip nodes.

Clauses:
A) Q([ab] flcu])
B)  R[cd] Baar End[] -End[] a

C) End[a] 0'= {u H c}

OLA = Q([ab] f[Cd])‚End.[c] olAJw' End[a] -End[a] Ü C

B = R[cd]
C = End[a] B @ End[c] -End[c] a OlA.2

Resolution between the literals suggested by the lowest failure nodes is not possible. Therefore the

inference node labeled -End[] suggest resolution between A and C. The resolvent consists of the residue

only: E = End[c].

Both nodes End[a] and -End[a] can now be removed from the tree. (In general more than one resolution

is necessary before the tree can be shortened.) The situation is then:
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Relevant Clauses: ~ 
B) R[~.] End[] -End[] 

"iIJlI 

E) End[c] 

~
 
B" End[c] -End[c] "iIJlI E 

Resolution with B and E yields the empty clause. •
 
The proof of the completeness theorem below is mainly a proof for non-serial interpretations. A 

corresponding proof for serial interpretations can be obtained just by ignoring the cases dealing with the 

End-predicate. 

Theorem 10.2 (Completeness of the Resolution Refutation Procedure) 

A finite set C of clauses is unsatisfiable if and only if the resolution refutation procedure deduces the 

empty clause after finitely many steps. 

Proof: "=>" Suppose C is unsatisfIable. Let T be a finite closed semantic tree for C which must exist 

according to theorem 9.5. If T consists only of the root node, then the empty clause must be in C, for no 

other clause can be falsified at the root node of a semantic tree. In this case the theorem is obviously true. 

Assume T consists of more than one node. According to theorem 9.9, T has at least one inference node 

N. Let NI and N2 be the immediate descendent nodes of N. According to def. 9.6 we must distinguish 

two different cases. 

~: NI and N2 are both failure nodes.
 

In this case we assume that NI and N2 are labeled with ordinary literals A and ...,A, not with End-literals
 

The End-literal case will be a trivial subcase of case 2. This case 1 is the usual "predicate logic case" and
 

the only one that can occur when the accessibility relation is serial.
 

The situation around the inference node N can be visualized as follows:
 

inference node N .. 

csJ,D WjlZl~ 'IIl1I falsifies A ...,A falsifies'  ~~ csJ,C 

\! \! 
failure node NI failure node N 2 

E' = wr~ u ~~ falsified by N or some nodes above N 

The two failure nodes falsify the literals ...,A and A of two ground instances csJ,D and csJ,C of two 

variable disjoint clauses C and D in C (we can choose cs to be the same substitution for both clauses 

because they are variable disjoint. If C and D are not variable disjoint, we make copies of them) The 

literals in the resolvent E' =cs.LD u csJ,C\ {A, ...,A} are all falsified by some nodes above NI and N2. 

(The residue is empty because A is ground.) Now we can apply the lifting lemma 10.1.3, case 1 which 

states that there is a resolvent E between C and D such that E' is a ground instance of E. Putting this 

resolvent into C we obtain a unsatisfiable clause set C U {E} with a corresponding closed semantic tree 

T' that is obtained by cutting the branches of T below the first node that falsifies E', at least below N. 

Clearly T' is smaller than T. 
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Relevant Clauses:

B) RlCd] BW Endn -End[] _m
E) End[c] A

B arr End[c] —End[c] '51! E

Resolution with B and E yields the empty clause. I

The proof of the completeness theorem below is mainly a proof for non-serial interpretations. A
corresponding proof for serial interpretations can be obtained just by ignoring the cases dealing with the
End-predicate.

Theorem 10.2 (Completeness of the Resolution Refutation Procedure)
A finite set C of clauses is unsatisfiable if and only if the resolution refutation procedure deduces the

empty clause after finitely many steps.
Proof: “=>” Suppose C is unsatisfiable. Let T be a finite closed semantic tree for C which must exist
according to theorem 9.5. If T consists only of the root node, then the empty clause must be in C, for no
other clause can be falsified at the root node of a semantic tree. In this case the theorem is obviously true.
Assume T consists of more than one node. According to theorem 9.9, T has at least one inference node
N. Let N1 and N2 be the immediate descendent nodes of N. According to def. 9.6 we must distinguish
two different cases.

gm: N1 and NZ are both failure nodes.

In this case we assume that NI and NZ are labeled with ordinary literals A and «A, not with End-literals
The End-literal case will be a trivial subcase of case 2. This case 1 is the usual “predicate logic case” and
the only one that can occur when the accessibility relation is serial.
The situation around the inference node N can be visualized as follows:

inference node N W A

(ND W195] 'n falsifies A —1A falsifiesw m” (LLC

h h
failure node N 1 failure node N 2

E' = 7/199 u “\“ falsified by N or some nodes above N

The two failure nodes falsify the literals —-:A and A of two ground instances (ND and 01C of two
variable disjoint clauses C and D in C (we can choose 0 to be the same substitution for both clauses
because they are variable disjoint. If C and D are not variable disjoint, we make c0pies of them) The
literals in the resolvent E '  = olD U o lC\  [A ,  AA} are all falsified by some nodes above NI and N2-

(The residue is  empty because A is ground.) Now we can apply the lifting lemma 10.1.3. case 1 which
states that there is a resolvcnt E between C and D such that E '  is a ground instance of E. Putting this
resolvent into C we obtain a unsatisfiable clause set C U {E} with a corresponding closed semantic tree
T’  that is obtained by cutting the branches of T below the first node that falsifies E’, at least below N.
Clearly T’ is smaller than T.
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~: Now we consider the case that the inference node N has two immediate descendent nodes NI 

and N2 labelcd End(p) and -End(p). N2 is a failure node and NI mayor may not have further descendent 

nodes. According to def. 9.6 and the lemmata 9.7 and 9.8. for NI there is at least onc ground clausc 

a,J.D falsified by the branch of NI such that D contains literals DI with world-paths lp'a... ], a :t-IJ. a is 

no variable and p = op'. Le. NI falsities oK E o,!,D for each KED I. Let lD be the set of all these 

ground clauses. Clearly D is finite. N2 falsifies a literal End(p) =aEnd(p') E a,J.C where a,J.C is a 

ground instance of a clause C E C. For a particular element ofD the situation is as follows: 

falsified by nodes above NI ~ 
~ ~ oainferencenode N 

a,J.D ~ ~ '" a,J.C 
~Q[pa ... ]IR[pb... ] loa falsifies End(p) -End(p) falsifies IQ" I-E-nd-(p-)~ 

failure node NI # ~ \I!l 

/" " failure node N 2 

falsified by nodes below NI
 

but not containing world-paths [pc...] E' = ~ u ~
 

Obviously a,J.D cannot contain End(p) because it is falsified by the branch of NI. Since the two literal 

sets that are falsified by the two nodes are complementary. a resolvent E' is possible that does not 

contain End(p) and no other literal with a world-path [pc ... ]. C :t- [] that could be falsified by NI. 

Therefore the failure node of a,J.D falsifies E' as well. Applying the lifting lemma 10.1.3. case 2 we get 

again a resolvent E between C and D such that a ground instance ofE is a subset ofE'. We put E into C. 

In this way we resolve all elements of D with C getting finitely many new resolvents such that all failure 

nodes that falsified elements of D now either themselves or some of their predecessor nodes falsify the 

corresponding instances of the new resolvents. None of the resolvents has a literal that is falsified by NI. 

For this new clause set we can obtain a new closed semantic tree T' from T by removing at least N2 and 

lifting NI at the place of N. Clearly T' is again smaller than T. 

The whole process is repeated until the closed semantic tree that consists of the root node only is 

generated. This is possible only when the empty clause is derived. Therefore. there is a deduction of the 

empty clause from C. 

"(:::" Conversely. suppose there is a deduction of the empty clause from C. Let EI •...•Ek be the 

resolvents in the deduction. Assume C is satisfiable. Then there is a P-model f p of C. If a model 

satisfies the parentclauses. it satisfies the resolvent as well (theorem 7.2.9). Therefore f p satisfies 

El' ...•Ek . However. this is impossible because one of these resolvents is the empty clause. Hence. C 
must be unsatisfiable. _ 
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Case}: Now we consider the case that the inference node N has two immediate descendent nodes NI
and N2 labeled End(p) and -End(p). NZ is a failure node and NI may or may not have further descendent
nodes. According to def. 9.6 and the lemmata 9.7 and 9.8, for NI there is at least one ground clause
olD falsified by the branch of NI such that D contains literals D1 with world-paths [p’a. . .] .  a # [], a is
no variable and p = Gp’,  i.e. N1 falsifies GK e (ND for each K e DI .  Let D be the set of  all these

ground clauses. Clearly ID is finite. NZ falsifies a literal End(p) = oEnd(p’) e C&C where o lC  is a
ground instance of a clause C e C. For a particular element 0l the situation is as follows:

falsified by nodes above NI / \
/—_’ W inference node N

ai D / \  otc
Wpa. . . ] |R[pbm] |  "an falsifies End(p) -End(p) falsifiem- _“

failure node NI é &
failure node N 2

falsified by nodes below NI
but not containing world—paths [pc . . . ]  E’=  &% u ‘\\\\

Obviously olD cannot contain End(p) because it is falsified by the branch of N1. Since the two literal
sets that are falsified by the two nodes are complementary, a resolvent E ’  is possible that does not
contain End(p) and no other literal with a world-path [pc...], c #: [] that could be falsified by N1-

Therefore the failure node of (ND falsifies E ’  as well. Applying the lifting lemma 10.1.3, case 2 we get
again a resolvent E between C and D such that a ground instance of E is a subset of  E ' .  We put E into C.
In this way we resolve all elements of JD with C getting finitely many new resolvents such that all failure
nodes that falsified elements of 1D now either themselves or some of their predecessor nodes falsify the
corresponding instances of the new resolvents. None of the resolvents has a literal that is falsified by N1-

For this new clause set we can obtain a new closed semantic tree T ’  from T by removing at least NZ and
lifting N1 at the place of N. Clearly T ’  is again smaller than T.

The whole process is repeated until the closed semantic tree that consists of the root node only is
generated. This is possible only when the empty clause is derived. Therefore, there i s  a deduction of  the

empty clause from C.

“<=” Conversely, suppose there i s  a deduction of the empty clause from C.  Let E1....,Elc be the
resolvents in the deduction. Assume C is satisfiable. Then there is a P-model iFP of  C .  If a model
satisfies the parentclauses, it satisfies the resolvent as well (theorem 7.2.9). Therefore TP satisfies
E1,...,Ek. However, this is impossible because one of these resolvents is the empty clause. Hence, C
must be unsatisfiable. '
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Our fmal theorem gathers all the results of this work and defmes a semidecision procedure for the modal 

logics we have considered. 

Last Theorem The following procedure is a semidecision procedure for first order modal logics with 

the two operators 0 and 0, constant-domain possible worlds semantics and an accessibility relation that 

may have no special properties or it may have any combination of the following properties: reflexivity, 

symmetry, transitivity, seriality. 

Input: A modal logic formula .'Fand an accessibility relation type 1{, 

Output: A resolution proof if the formula is a tautology in the corresponding logic. 

If the formula is no tautology, the procedure may not terminate. 

Step 1:	 Negate .'Fin order to perform a refutation proof. Set .'F:= -..'F. 

Step 2:	 If1{denotes an equivalence relation (SS), generate the modal degree 1 normal form for '.F. 

If 1{= {symmetric, non-serial} or 1{= {symmetric, transitive, non-serial}, 

split the problem into the predicate logic version and the serial modal logic version. 

(See chapter 2.2). Both problems must be solved. 

In the sequel we consider only the modal logic version. 

Step 3: Eliminate implication and equivalence signs and transform .'Finto negation normal form.
 

Step 4: Translate .'Finto the P-Iogic syntax TI(.1).
 

Step 5: Generate the conjunctive normal form for TI(.1).
 

Step 6: Apply the resolution refutation procedure to the clauses.
 

Proof:
 

1. Completeness Suppose .'F is a tautology.
 

Step 1: The negated .'F is unsatisfiable.
 

Step 2: If 1{denotes an equivalence relation, each formula is equivalent to a formula with modal
 

degree I. A proof can for instance be found in [Fitting 83], proposition 13.1.
 

If 1{denotes a symmetric accessibility relation, either the initial world is the only one, that is
 

the predicate logic case, or the relation is serial. In this case a symmetric and transitive
 

relation is an equivalence relation. Thus, .'Fmust be unsatisfiable in both classes ofmodels.
 

Step 3:	 The rules for transforming a formula into negation normal form preserves the equivalence, 

Le. the normalized formula is still unsatisfiable. 

Step 4: Corollary 4.3.4 confirms that TI(.1) is unsatisfiable. 

Step 5: Theorem 5.1.3 confmns that the conjunctive normal form is unsatisfiable. 

Step 6: The completeness theorem 10.2 confmns that the resolution refutation procedure terminates 

with the empty clause. The sequence of resolution operations represents a proof for '.F. 

2. Soundness Suppose .'F is not a tautology.
 

Step 1: The negated .'Fis satisfiable.
 

Step 2: If 1{denotes an equivalence relation, each formula is equivalent to a formula with modal
 

degree I. .'Fmust also be satisfiable in this case. 

If 1{denotes a symmetric accessibility relation, .'Fmust either be satisfied by a predicate 

logic model or by a serial model. In the first case, the soundness of predicate logic 

deduction calculi ensures that a proof fails. In the second case, .'Fis satisfiable in a serial 
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Our final theorem gathers all the results of this work and defines a semidecision procedure for the modal
logics we have considered.

Last Theorem The following procedure is a semidecision procedure for first order modal logics with
the two operators [:1 and 0, constant—domain possible worlds semantics and an accessibility relation that
may have no special properties or it may have any combination of the following properties: reflexivity,
symmetry, transitivity, seriality.

Input:
Output:

Step 1:
Step 2:

Step 3:
Step 4:
Step 5:
Step 6:

Proof:

A modal logic formula _‘F and an accessibility relation type R,
A resolution proof if the formula is a tautology in the corresponding logic.
If the formula is no tautology, the procedure may not terminate.

Negate 9' in order to perform a refutation proof. Set :7 := fif.
If Kdenotes an equivalence relation (SS), generate the modal degree 1 normal form for :7.
If R,: {symmetric, non-serial} or R: {symmetric, transitive, non-serial},
split the problem into the predicate logic version and the serial modal logic version.
(See chapter 2.2). Both problems must be solved.

In the sequel we consider only the modal logic version.
Eliminate implication and equivalence signs and transform }" into negation normal form.
Translate 9' into the P-logic syntax ITU“).
Generate the conjunctive normal form for HUF).

Apply the resolution refutation procedure to the clauses.

1. Completeness Suppose 9? is a tautology.
Step 1:
Step 2:

Swp3:

Step 4:
Step 5:
Step 6:

The negated :7 is unsatisfiable.
If fidenotes an equivalence relation, each formula is equivalent to a formula with modal
degree 1. A proof can for instance be found in [Fitting 83], proposition 13.1.
If Rdenotes a symmetric accessibility relation, either the initial world is the only one, that is
the predicate logic case, or the relation is serial. In this case a symmetric and transitive
relation is an equivalence relation. Thus, ? must be unsatisfiable in both classes of models.
The rules for transforming a formula into negation normal form preserves the equivalence,
i.e. the normalized formula is still unsatisfiable.
Corollary 4.3.4 confirms that HU) is  unsatisfiable.

Theorem 5.1.3 confirm that the conjunctive normal form is unsatisfiable.
The completeness theorem 10.2 confirms that the resolution refutation procedure terminates
with the empty clause. The sequence of resolution operations represents a proof for T.

2. Soundness Suppose 9 is not a tautology.
Step 1 :

Step 2:
The negated 9' is satisfiable.
lf Kdenotes an equivalence relation, each formula is equivalent to a formula with modal
degree 1. f must also be satisfiable in this case.
If xdenotes a symmetric accessibility relation, ? must either be satisfied by a predicate
logic model or by a serial model. In the first case, the soundness of predicate logic
deduction calculi ensures that a proof fails. In the second case, :? is satisfiable in a serial
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model.
 

Step 3: The rules for transforming a formula into negation normal form preserve the equivalence.
 

i.e. the normalized formula is still satisfiable. 

Step 4: Corollary 4.3.4 confrrms that ne!) is satisfiable. 

Step 5: Theorem 5.1.3 confinns that the conjunctive normal form C is satisfiable. 

Step 6: The soundness theorem 7.2.9 confirms that the model for C satisfies the resolvents. 

The empty clause can therefore never be deduced. The semidecision procedure fails. • 

A last example shall illustrate the whole procedure. The example proves that in the modal system K 

(non-serial accessibility relation) USb's Axioms o(oq => q) => oqimply the formula oP => ooP that 

characterizes transitive accessibility relations. L(jb's Axioms axiomatize the modal system G (which we 

have not considered so far) that has a transitive and non-serial accessibility relation 9t with no infinite 

9t-chains. Let q:= P /\ oP. The theorem to be proved is 

if:= (o(o(P /\ oP) => (P /\ oP» => o(P /\ oP)}=> (oP => ooP). 

We apply our new semidecision procedure to if. The accessibility relation type is 1(= non-serial. 

Step I: Negation of J"yields: --,«o(o(P /\ oP) => (P /\ oP» => o(P /\ oP)}=> (oP => ooP». 

Step 2: is skipped 

Step 3: -.«o(o(P /\ oP) => (P /\ oP» => o(P /\ oP)}=> (oP => ooP» 

~	 ... 
~ (O(o(P /\ oP) /\ (-,P V O-,P» v o(P /\ oP)}/\ (oP /\ OO-,P» 

Step 4: Translation into P-Iogic syntax: 

«'Iu (P[au] /\ \;;Iv P[auv]) /\ (--,P[a] v --,P[ab])) v 'Iw(P[w] /\ 'Ix P[wx])) /\ (\;;Iy pry] /\ -,P[ed]) 

Step 5:	 Conjunctive normal form (clause notation): 

Cl: P[au], P[w] C2: P[au], P[wx] C3: P[auv], P[w] 

C4: PI auv] , P[wx] C5: -,P[aj, -,P[ab], P[w] C6: ...,PlaJ. -,PlabJ, P[wxl 

C7: Ply] C8: ...,P[cd]. 

Step 6:	 Resolution refutation procedure: 

1.	 Resolution between C6, literal I and C7 with unifier 0' = {y H a} 

Instantiation ofC7: Pta], End[] 

The two literal sets {--,P[a]} and {Pta], End[]} are complementary. The resolvent RI is: 

RI: ...,P[ab], P[w'x']. 

2.	 Resolution between RI, literal 2 and C8 with unifier 0' ={w' H C, x' H d} 

Instantiation ofRI: --,P[ab], P[cd], End[], End[c] 

The two sets {-,P[cd]} and {P[cd], End[], End[c]} are complementary. The resolvent is: 

R2:	 -,P[ab]. 

3.	 Resolution between R2 and C2, literal 2 with unifier: 0' ={u H b} 

Instantiation of C2: P[ab], End[a], P[wx] 

The two literal sets {P[ab], End[a]} and {-,P[ab]} are complementary. The resolvent is: 

R3:	 P[wx]. 

4.	 Resolution between R3 and C8 with unifier 0' = {w H C. X H d}. 

Instantiation ofR3: P[cd], End[], End[c]. 

The two literal sets {P[cd], End[] , End[c]} and {--,P[cd]} are complementary. 

The resolvent is empty. 

The procedure terminates successfully and actually no End-literal occurred in the resolvents. 
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model.

Step 3: The rules for transforming a formula into negation normal form preserve the equivalence,
i.e. the normalized formula is still satisfiable.

Step 4: Corollary 4.3.4 confirms that HG) is  satisfiable.
Step 5: Theorem 5.1.3 confirms that the conjunctive normal form C i s  satisfiable.

Step 6: The soundness theorem 7.2.9 confirms that the model for C satisfies the resolvents.
The empty clause can therefore never be deduced. The semidecision procedure fails. I

A last example shall illustrate the whole procedure. The example proves that in the modal system K
(non-serial accessibility relation) Löb's Axioms I:I(t:t g :> g) => mg  imply the formula [ZIP => muP that

characterizes transitive accessibility relations. Löb’s Axioms axiomatize the modal system G (which we
have not considered so far) that has a transitive and non—serial accessibility relation “R with no infinite
9i-chains. Let g := P A UP. The theorem to be proved is

‚T:: (n(u(P A CIP) => (P A nP)) => u(P A nP)}==» (DP => DDP).

We apply our new semidecision procedure to ?. The accessibility relation type is x: non-serial.
Step 1 :  Negation of :ryields: —((EI(I:I(P A UP) => (P A DP)) => u(P A L'JP))=> (DP => EDP».

Step 2: is skipped
Step 3:  —-.((|:I(I:I(P A :IP) :> (P A nP)) => ::(P A uP))=> (DP => uaP))

—-> . . .
—> (0(t:(P A UP) A (—-.P v (HP)) v [:(P A nP))A (UP A OO'fiP))

Step 4: Translation into P—logic syntax:
((Vu (P[au] A VV P[auv]) A (—1P[a] v —.P[ab])) v Vw(P[w] A Vx P[wx])) A (Vy P[y] A —.P[cd])

Step 5: Conjunctive normal form (clause notation):
Cl :  P[au],  P[w] C2: P [au ] ,P [wx]  C3 :  P [auv] ,P [w]

C4: P Iauv ] .P [wx |  C5: -—1P[aJ, —-1P[ab], P [w]  C6: ~1PlaJ.—-1P[ab]. P[wxl

C7: P[y] C8: —-1P[cd].
Step 6: Resolution refutation procedure:

1. Resolution between C6, literal 1 and C7 with unifier o = {y H a}
Instantiation of C7: P[a], End[]
The two literal sets {—tP[a]} and {P[a], End.[]} are complementary. The resolvent R1  is:

R1: —-.IP[ab], P[w’x’].
2 .  Resolution between R1, literal 2 and C8 with unifier o = {w’  H c,  x ’  I—> d}

Instantiation ol: —.P[ab], P[cd], End[], End[c‘]
The two sets {—1P[cd]} and {P[cd], End[], End[c]} are complementary. The resolvent is:

R2: —-1P[ab].
Resolution between R2 and C2, literal 2 with unifier: o = {u H b}
Instantiation of C2: P[ab], End[a], P[wx]
The two literal sets {P[ab], End [a]} and {-—.P[ab]} are complementary. The resolvent is:

R3: P[wx].
4 .  Resolution between R3 and C8 with unifier o = {w H c, x H d}.

Instantiation of R3: P[cd], End[],  End[c].
The two literal sets {P[cd], End[], End[c]} and {—.P[cd]] are complementary.

The resolvent is empty.
The procedure terminates successfully and actually no End-literal occurred in the resolvents.

U
)
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Chapter Eleven
 

Conclusion
 

A clause based resolution calculus has been developed for a class of first-order modal logics including 

those with non-serial accessibility relation. The two most significant advantages of this calculus are: 

~ Instantiation and inference across modal operators can be controlled by a uniform and deterministic 

unification algorithm. The extensive search space generated by the usual instantiation rules and 

operator shifting rules in tableau based systems for instance is eliminated. Of course the inherent 

complexity of the underlying logical problem does not vanish: it may surface again in the many 

different unifiers that have to be computed. However here they can be much better controlled than 

with an undiscriminating set of inference rules. 

~	 The method fits into the paradigm of the predicate logic resolution principle. Therefore it is no longer 

necessary to write specialized theorem provers for modal logics and only slight modifications of 

existing predicate logic resolution based theorem provers are sufficient. That means that most of the 

sophisticated implementation and search control techniques, for instance the connection graph idea 

[Kowalski 75, Eisinger 86], which have been developed for predicate logic can immediately be 

applied to modal logic as well. This is an indirect advantage which, however, should not be 

underestimated because it makes more than twenty five years of experience with the resolution 

principle available to modal logic theorem proving. 

Since there are many extensions to the modal systems considered in this work, let us briefly recapitulate 

the whole procedure and point out which part depends on which assumption in order to gain a feeling for 

the limitations of the general ideas and about possibilities for extending the methods to other modal and 

temporal logics. 

The first main step is the transformation of a modal logic formula into negation normal form. 

This step depended on two assumptions about the semantics of the logical connectives: 

I. Every binary logical openllor. such as the implication or equivalence sign can be represented with 1\. v 

and the negation si!:,'Tl. The final conjunctive normal form of the translated P-Iogic formula can be 

generated with these operators only. If non-clausal resolution would be considered. it might be possible 

to relax this requirement. 

2. To be able to move negation signs in front of the atoms. the negation of every operator and quantifier 

must be known. Moving negations into formulae is necessary because the negation normal form 

determines the [mal status of the variables, existential or universal. This gives the information where 

instantiation is allowed and where not. 

The next main step is the translation of a modal logic formula into P-Iogic. 

The restriction to constant-domain interpretations becomes obvious in this step because t.he domain 

variables lose the information about their modal context. On the other hand the definition of P-logic 

itself, the translation function and the soundness and completeness proof, do not depend on the 

properties of the accessibility rela,tion. 
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Chapter Eleven

Conclusion

A clausc based resolution calculus has been developed for a class of first-order modal logics including
those with non-serial accessibility relation. The two most significant advantages of this calculus are:
> Instantiation and inference across modal operators can be controlled by a uniform and deterministic

unification algorithm. The extensive search space generated by the usual instantiation rules and
operator shifting rules in tableau based systems for instance is eliminated. Of course the inherent
complexity of the underlying logical problem does not vanish: it may surface again in the many
different unifiers that have to be computed. However here they can be much better controlled than
with an undiscriminating set of inference rules.

> The method fits into the paradigm of the predicate logic resolution principle. Therefore it is no longer
necessary to write specialized theorem provers for modal logics and only slight modifications of
existing predicate logic resolution based theorem provers are sufficient. That means that most of the
sophisticated implementation and search control techniques, for instance the connection graph idea
[Kowalski 75, Eisinger 86], which have been developed for predicate logic can immediately be
applied to modal logic as well. This is an indirect advantage which, however, should not be
underestimated because it makes more than twenty five years of experience with the resolution
principle available to modal logic theorem proving.

Since there are many extensions to the modal systems considered in this work, let us briefly recapitulate
the whole procedure and point out which part depends on which assutnption in order to gain a feeling for
the limitations of the general ideas and about possibilities for extending the methods to other modal and
temporal logics.

The first main step is the transformation of a modal logic formula into negation normal form.
This step depended on two assumptions about the semantics of the logical connectives:
1. Every binary logical operator, such as the implication or equivalence sign can be represented with A, v
and the negation sign. The final conjunctive normal form of the translated P—logic formula can be
generated with these operators only. If non-clausal resolution would be considered, it might be possible
to relax this requirement.
2. To be able to move negation signs in front of the atoms, the negation of every operator and quantifier
must be known. Moving negations into formulae is necessary because the negation normal form
determines the final status of the variables, existential or universal. This gives the information where
instantiation is allowed and where not.

The next main step is the translation of a modal logic formula into P—logic.
The restriction to constant-domain interpretations becomes obvious in this step because the domain
variables lose the in formation about their modal context. On the other hand the definition of P-logic
itself, the translation function and the soundness and completeness proof, do  not depend on the
properties of the accessibility relation.
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Generation of conjunctive normal form: 

This step relies on the fact that the remaining operators are just /\, V, -, plus the universal quantifier. 

Furthermore, it was possible to move universal quantifiers, even for W-variables, outside the formulae 

and to finally eliminate them altogether. Reasoning with clauses is just easier to implement because the 

data- and control structures are much more simpler. But in first-order predicate logic also resolution 

methods for formulae which are not in conjunctive normal form have been developed. It should be no 

problem to apply these methods to P-Iogic as well and possibly to extend them for formulae with other 

operators, for instance the binary temporal logic "until" operator. 

The resolution operation: 

The basic operation of a resolution step is the unification of the atoms. Unification depends on the 

syntactic structure of the terms as well as on the semantics of the symbols, in P-Iogic in particular on the 

properties of the accessibility relation. We have considered only reflexivity, symmetry and transitivity. 

For different properties other unification algorithms must be developed. The property of an accessibility 

relation to be non-serial found its expression in the fact that a formula can become true in an 

interpretation not because a predicate evaluates to a truth value, but because a quantification 'V u !F about 

an empty set is always considered to be true, regardless of !f. This problem also occurs in many-sorted 

logics when empty sorts are allowed and a formula 'V x:S !Fwith an empty sort S is true. Our solution 

for this problem in P-Iogic is the introduction of the "End"-predicate. The conditioned instantiation and 

the residue seems to be elegant and computationally efficient because in many cases the End-literals 

disappear already during the resolution step. An analogue solution to this problem in many-sorted logics, 

not with an End-predicate, but with an "Empty"-predicate is obvious. 

Future Directions 

My hope is that the basic ideas presented in this work are powerful enough to open the door to efficient 

theorem proving in a much larger class ofnon-standard logics than the relatively simple modal systems I 

have examined so far. Let me therefore sketch some ideas for further work in this area. 

Epistemic Logics 
Hintikka originally had the idea of formalizing the propositional attitude of belief with possible worlds 

rHintikka 62]. The basic concept is that the propositions of an actor's (say A) belief are represented as a 

set of worlds, compatible with A's beliefs. Any member of lhis sel is. according to the way A thinks. a 

candidate for the real world, that is 

A beliefs !Fif and only if for all w E possible-worlds(A), !Fis true in w. 

Levesque, Halpem and Moses, Konolige and others have developed this idea to a formal logic with a 

tableau based deduction calculus [Levesque 84], [Konolige 86], [Halpem&Moses 85]. The syntax of 

this logic is similar to modal logic, except that there are not only the two modal operators C and 0, but 

for each actor A there is an individual pair CA and 0A of operators. cA!Fmay be interpreted: "A beliefs 

rand 0A!Fmay be interpreted "A thinks !Fmight be possible". The semantics is a Kripke semantics 

where an individual accessibility relation 9tA is associated with each pair of modal operators CA and 0A' 

Therefore there is no big conceptual difference to classical modal logics. The basic idea to "skolemize 

modal operators" which allowed to translate a modal formula into predicate logic syntax can be applied 
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straightforwardly to this kind of epistemic logics. A fonnula cA~is translated into \;;Iw(A) 1[w(A)] and 

oA~is translated into 1[c(A)] where the world variables and skolem tenns depend on the actor A. 

To demonstrate this idea let us try solve the wise man puzzle, a famous example from McCarthy that has 

been used to test the representation ability of fonnalisms for knowledge and belief. The traditional fonn 

is: 

Jt certain fjng wisfus w tUtennine wni&Fi. of liis tnru wise men is tn.e wisest. ~ arranges tliem in a circu so 

tliat tliey can see ana liear ea"i otn.er ana teUs tn.em tliat lie wif( put a wliite or 6CacK.. spot on e4cli of tlieir 

!oreIieatfs 6ut at feast one spot wif( 6e wFi.ite. In fact a{[ tnru spots are wliite. ~ tlien offers liis !avor w tIie one 

wFi.o first teas Fi.im tIie coCour of Fi.is spot. !llfter a wFi.ife, tIie wisest announces tliat liis spot is wFi.ite. !JIow MU 

lie fQ.ww? 

(Actually the infonnation that all three spots are white is not necessary to solve the puzzle.)
 

The solution involves the wisest man reasoning about what his colleagues know and don't know from
 

observations and the king's announcement.
 

To axiomatize this puzzle in epistemic logic, assume the three wise man are A, B and C and C is the
 

wisest. Frrst of all we need the three fonnulae:
 

Cl: A*B
 

C2: A::t:-C
 

C3: B*C
 

and assume the symmetry of the *-predicate.
 

At least one of them has a white spot and everybody knows that everybody else knows that his
 

colleagues know this.
 

C4: \;;IS, S', S": Cs cs' cS" W(A) v W(B) v W(C) 

(W(S) means S has a white spot.) 

The three men can see each other and they know this. Therefore whenever one of them has a white or 

black spot, he knows that his colleagues know this and he knows also that his colleagues know this from 

each other. 

CS: \;;IS $: S * S' => cs(-,W(S) => cs.....,W(S»
 

C6: \;;IS,S',S" S * S'A S * S" A S' * S": => Cs Cs' (-,W(S) => Cs..-,W(S»
 

C7: \;;IS,S',S" S ::t:- S'A S * S" AS'::t:- S": => Cs Cs' (-,W(S') => Cs......,W(S·»
 

(We give only the minimum number of axioms which are necessary for the proof.)
 

They can hear each other and they know this. B did not say anything, therefore C knows that B does not
 

know the colour of his own spot.
 

CS: Cc -, CB W(B) (~CC OB -,W(B» 

C knows that B knows that A does not know the colour ofhis spot. 

C9: Cc [lB -, [lAW(A) (~[lc [lB 0A ....,W(A». 

We translate the fonnulae into predicate logic syntax: 

Cl: A*B C2: A*C C3: B*C 

C4: \;;IS,u, S',u', S",u": W([u(S) u'(S') u"(S")], A) v W([u(S) u'(S') u"(S")], B) v 

W([u(S) u'(S') u"(S")], C)
 

C5: \;;IS,u, S',u': S =S' v W([u(S)], S) v ....,W([u(S) u'(S')], S)
 

C6: \;;I S,u, S',u', S",u": S =S'v S =S" vS' =S" v
 

W([u(S) u'(S')], S) v -,W([u(S) u'(S') u"(S")], S» 
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straightforwardly to this kind of epistemic logics. A formula BAT is translated into Vw(A) flw(A)] and

OA?" is translated into ‚‘F[c(A)] where the world variables and skolem terms depend on the actor A.

To demonstrate this idea let us try solve the wise man puzzle, a famous example from McCarthy that has
been used to test the representation ability of formalisms for knowledge and belief. The traditional form
is:

fi certain king wish: to determine wfiicfi of fiis tliree wise men is tlie wisest. He arranges than in a circfe so
tfiat tfiey can see and hear eacli otfier and tells tfiem tliat fie will put a wfiite or 512t spot on eacli of tfieir
fonfieads out at [east one spot will 5e wliite. In fact at! tfiree spots are wflite. .‘He tfien ofl'ers Eis favor to the one
wfio first tells flint the colour d' fiis spot. flftcr a wfiifc, tfie wisest announces tfiat [it's spot is wflite. How does
fie fatow?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)
The solution involves the wisest man reasoning about what his colleagues know and don ’t know from
observations and the king’s announcement.
To axiomatize this puzzle in epistemic logic. assume the three wise man are A, B and C and C is the
wisest. First of all we need the three formulae:

Ch A¢B

C2: AatC

C3: B¢C

and assume the symmetry of the ¢-predicate.
At least one of them has a white spot and everybody knows that everybody else knows that his
colleagues know this.

C4: VS, 8', S": US US'  US"  W(A) v W(B) v W(C)
(W(S) means S has a white spot.)

The three men can see each other and they know this. Therefore whenever one of them has a white or
black spot, he knows that his colleagues know this and he knows also that his colleagues know this from
each other.

CS: VS,S': S at S' => us(—-1W(S) => us.—‚W(SD
C6: VS.S'.S" S # S'A S # S" A S' at S": => ns  us .  (—.W(S) => ns..—1W(S))
C7: VS,S',S" S at S'A S #: S" A S' ;: S": =» US US. (——.W(S') => us..—.W(S'))

(We give only the minimum number of axioms which are necessary for the proof.)
They can hear each other and they know this. B did not say anything, therefore C knows that B does not
know the colour of his own spot.

CS: UC —-. EIB W(B) (<==> DC OB —-.W(B))
C knows that B knows that A does not know the colour of his spot.

C9: EIC EIB —1 UAW(A) («==> UC EIB OA —-:W(A)).

We translate the formulae into predicate logic syntax:
C1: AatB C2: A¢C C3: B¢C
C4: VS,u, S',u', S",u": W([u(S) u'(S') u"(S")], A) v W([u(S) u'(S') u"(S")], B) v

W([U(S) 11'(S') 11"(S")]. C)

C5: VS.u,  S',u': S = S'  v W([u(S)], S) v —-1W([u(S) u'(S')] ,  S)
C6: V S.u, S',u', S".u": S = S'v S = S" v S' = S" v

W([U(S) U'(S')].  S)  V ——.W([u(S) “'(S') U"(S" ) ] .  S))
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Cl: V S,u, S',u', S",u": S =S'v S =S" vS' =S" v 

W([u(S) u'(S')], S') v -,W([u(S) u'(S') u"(S")], S'» 

C8: Vu -,W([u(C) g(B)], B) 

C9: VU,v -,W([u(C) v(B) h(A)], A) 

A deduction of the fact that C knows the colour of his own spot, i.e. DC W(C) is now a trivial exercise 

for any resolution theorem prover. The following UR-proof was found by our system 

IEisingcr&Ohlhach 861: 

C I.C2,C:~,C7 ,CB ~ RI: VU,u" -,W(lu(C) g(B) u"(A)], B) (c."? DC OB DA -.,W(B» 

C9, RI,C4 ~ R2: Vu W([u(C) g(B) h(A)], C) (~DC OB 0A W(C» 

CI,C2,C3,R2,C6 ~ R3: Vu, W([u(C) g(B)], C) (~DC OB W(C» 

C3,R3,C5 ~ R4: Vu W([u(C)], C) (~DC W(C» • 

Equality Reasoning in Modal Logics 

Equality can either be explicitly axiomatized with the corresponding Set of equality axioms or it can be 

built into a deduction calculus with a special inference rule like paramodulation [Robinson&Wos 69]. 

Since pararnodulation sharply increases the efficiency of reasoning systems for predicate logic [Wos 88], 

it is desirable to build paramodulation also into a reasoning system for modal logic. To see the difficulties 

consider the formula 'F: a =b 1\ DP(a). Since the second occurrence of 'a' is in the scope of the 

D-operator and may therefore be interpreted different to the first occurrence, it is not possible to replace 

'a' by 'b' and to deduce DP(b). Thus, an unrestricted application of a replacement operation in the modal 

logic syntax is not sound. In P-logic syntax, the modal context is available at each term and can be used 

to influence a deduction operation. The translated formula IT(.1): a[] =bl] 1\ V U P([u], a[uD therefore 

can safely be paramodulated when the accessibility relation is reflexive, the unifier for a[] and a[u] is 

{u H [H, and the paramodulant is P([]. bm. (We assume the equality predicate to be rigid!) Thus, 

equality reasoning by paramodulation should be no problem in P-Iogic. The paramodulation rule need 

not be changed, just the accessibility relation dependent unification algorithms must be applied for 

unifying one side of an equation, which is always a D-term, with the subterm of the literal 10 be 

paramodulated. The application of the unifier must of course be performed by conditioned instantiation in 

non-serial interpretations. 

Many-Sorted Modal Logics 

Resolution and paramodulation calculi for sorted first order predicate logic have been developed for 

instance by [Walther 871 and ISchmidt-Schauss 85, 881. They have shown that only two slight 

modifications of the unification algorithm and onc modification of the paramodulation rule are necessary 

for handling hierarchical sort structures: A variable x of sort SI and a variable y of sort S2 can only be 

unified when there is a common subsort of 51 and 52. A variable x of sort S I can only be unified with a 

term t of sort 52 if 52 = 51 or 52 is a subsort of 51. The paramodulation rule must take care that a 

paramodulation operation with an equation whose two sides have different sorts does not increase the 

sort of the paramodulated term. ~dapting these ideas to P-Iogic should be no problem when the sort 

structure and the sort declarations for the function symbols do not depend on the modal context. This is 

the case in most applications where only fixed sorts like "Integer", "Real" etc. occur. 
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C7: v S.u, S'‚u'‚ S",u": s = S'v s = s" v s' = s“ v
W([U(S) U'(S')]‚ S') V fiW([U(S)  U'(S') “"(S")]‚ S'))

C8: vu —-1W([u(C) g(B)], B)
C9: Vu,v —-.W([u(C) v(B) h(A)], A)

A deduction of the fact that C knows the colour of his own spot, i.e. DC W(C) is now a trivial exercise
for any resolution theorem prover. The following UR-proof was found by our system
lliisinger&0h'|bach 86 I:

C I .C2,C3,C7,C8 —-> R]: Vu.u" —-‚W(|u(C) g(B) u"(A)]‚ B) («:.-> mc <>B aA -——.W(B))
C9, R1,C4 *9 R2: vu W([u(C) g(B) h(A) J, C) (c: mc OB <>A W(C))
C1‚C2‚C3,R2‚C6 ——> R3: vu, W([u(C) g(B)], C) (@ ac  OB W(C))
C3  ,R3,C5 —> R4: Vu W([u(C)]‚ C) (© UC W(C)) '

Equality Reasoning in Modal Logics
Equality can either be explicitly axiomatizcd with the corresponding set of equality axioms or it can be
built into a deduction calculus with a special inference rule like paramodulation [Robinson&Wos 69].
Since paramodulation sharply increases the efficiency of reasoning systems for predicate logic [Wos 88],
it is desirable to build paramodulation also into a reasoning system for modal logic. To see the difficulties
consider the formula T: a = b A nP(a) .  Since the second occurrence of  ‘a ’  is  in  the scope o f  the

EJ-Operator and may therefore be interpreted different to the first occurrence. it is not possible to replace
‘a’ by ‘b’ and to deduce uP(b). Thus, an unrestricted application of a replacement operation in the modal
logic syntax is not sound. In P-logic syntax, the modal context is available at each term and can be used
to  influence a deduction Operation. The translated formula HUF): a[] = blj] A V u P([u] ,  a[u]) therefore

can safely be paramodulated when the accessibility relation is  reflexive. the unifier for a [ ]  and a[u] i s

{u H []}, and the paramodulant is P([], b[]). (We assume the equality predicate to be rigid!) Thus.
equality reasoning by paramodulation should be no problem in P-logic. The paramodulation rule need
not be  changed, just  the accessibility relation dependent unification algorithms must  be applied for

unifying one side of an equation, which is always a D—term, with the subterm of the literal to be
paramodulated. The application of the unifier must of course be performed by conditioned instantiation in
non-serial interpretations.

Many-Sorted Modal  Logics
Resolution and paramodulation calculi for sorted first order predicate logic have been developed for
instance by [Walther 87] and |Schmidt-Schauss 85, 88]. They have shown that only two slight
modifications of the unification algorithm and one modification of the paramodulation rule are necessary
for handling hierarchical sort structures: A variable x of sort 8 ]  and a variable y of sort SZ can only be

unified when there is a common subsort of S I  and 82. A variable x of sort 81  can only be unified with a

term t of sort 82  if 82  = 31  or 82  is a subsort of 81. The paramodulation rule must take care that a
paramodulation operation with an equation whose two sides have different sorts does not increase the
sort of the paramodulated term. Adapting these ideas to P-logic should be no problem when the sort
structure and the sort declarations for the function symbols do not depend on the modal context. This is

the case in most applications where only fixed sorts like “Integer”, “Real" etc. occur.
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Varying-Domain Modal Logics 

In varying-domain interpretations there is no universal domain, but each world has its own domain 

which mayor may not intersect with the domain of other worlds. That means universally quantified 

domain variables depend on the modal context. At least for monotonically increasing domains the idea is 

now to modify the translation function 11 such that the W-term that characterizes the modal context is 

attached to the domain variables as well. Unification of such a world-depending D-variable x[p] with a 

D-term f([q),t l ,. '.,in) is possible only when the world-paths p and q are unifiable. To demonstrate this, 
let us try to prove the Barcan formula 'VxcPx => c'VxPx which does not hold in varying-domaitt 

models. If the proof fails, we have some evidence that the idea is sufficient. The P-Iogic clause form of 

the negated Barcan fonnula VxcPx 1\ 03x---,Px is: Cl: P([u] x[]) C2: ~([a]fla]) 

In fact, the two world-paths [] and [a] of the variable x and the symbol f are not unifiable and no 

refu~ation is possible. In constant domain interpretations on the other hand, where x has no world-path, 

there is the unifier {u ~ a, x ~ f[a]}. 

In case the domains vary arbitrarily, there is no satisfactory solution so far because tenns and atoms 

containing variables may have no interpretation at all in a world where the domain element bound to a 

variable does not exist. 

Modal Logics with Linear Accessibility Relations 

Linear means that there is just one sequence of worlds. The interesting case, where the interpretation of 

the two modal operators is not identical is when the accessibility relation ~ is transitive, Le. a total 

ordering. In this case for two given worlds it can always be determined which one is farer away from the 

initial world. The consequence is that for example a formula like OCP 1\ OC'"lP is unsatisfiable when in 

addition R is serial. The reason is that for the two worlds denoted by the two O-operators, all worlds 
; 

"behind" that one which is farthest away from the initial world, are also accessible from the other world.
 

In other words there is no linear and serial interpretation where the intersection of the worlds denoted by
 

the two c-operators is empty, and the fonnula requires P and ...,P to hold in these worlds.
 

We present an idea which should be capable to reason explicitly about the order of the worlds in linear
 

Kripke structures and illustrate it with the following example:
 

The formula O(c(P v Q) 1\ R) 1\ O((-,P I\...,Q) 1\ c...,R)
 

is unsatisfiable when the accessibility relation is linear, reflexive and transitive.
 

The corresponding clause set in P-Logic is:
 

Cl: P[au] v Q[au] 

C2: R[a] C4: ...,Q[b] 

C3: -,P[b] CS: ..,R[bv] 

In order to resolve between C2 and CS we unify [a] and [bv]. The unifier is (J:= {v ~ (b - a)} with the 

intended meaning: (b - a) maps 'b' to 'a', provided 'b' lies before 'a' or b = a (reflexivity): 
b- a •linear Kripke structure 

b a 

Thus, the conditioned a-instance of CS is: aJ,C5 : = (b :S a => -,R[b(b - a)]) = (b > a v -.R[aD, where 

[b(b - a)] has been rewritten to [a] with an appropriate rewrite rule. 

The resolvent between C2 and CS is now: C2&CS ~ RI: b > a. 

In the same way we unify [au] and [b] of Cl and C3 and obtain a unifier {u ~ (a - b)}. 
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Varying-Domain Modal Logics
In varying-domain interpretations there is no universal domain, but each world has its own domain
which may or may not intersect with the domain of other worlds. That means universally quantified
domain variables depend on the modal context. At least for monotonically increasing domains the idea is
now to modify the translation function H such that the W-term that characterizes the modal context is
attached to the domain variables as well. Unification of such a world-depending D-variable x[p] with a
D-term f([q].t1,. . .,tn) is possible only when the world-paths p and q are unifiable. To demonstrate this,
let us try to prove the Barcan formula Vax :o aPx which does not hold in varying-domain
models. If the proof fails, we have some evidence that the idea is sufficient. The P-logic clause form of
the negated Barcan formula Vax AOEIx—t is: C l :  P([u] x[]) C2: —P([a] f[a])
In fact, the two world-paths []  and [a] of the variable x and the symbol f are not unifiable and no

refutation is possible. In constant domain interpretations on the other hand, where x has no world-path,
there is the unifier {u H a, x H f[a]}.
In case the domains vary arbitrarily, there is no satisfactory solution so far because terms and atoms
containing variables may have no interpretation at all in a world where the domain element bound to a
variable does not exist.

Modal Logics with Linear Accessibility Relations
Linear means that there is  just one sequence of worlds. The interesting case, where the interpretation of
the two modal operators is not identical is when the accessibility relation 9i is transitive, i.e. a total
ordering. In this case for two given worlds it can always be determined which one is farer away from the
initial world. The consequence is that for example a formula like OnP A Ola-:P is unsatisfiable when in
addition R is  serial. The reason is that for the two worlds denoted by the two O-operators, all worlds
“behind” that one which is farthest away from the initial world, are also accessible from the other world.
In other words there is no linear and serial interpretation where the intersection of the worlds denoted by
the two n-operators is empty, and the formula requires P and —wP to hold in these worlds.

We present an idea which should be capable to reason explicitly about the order of the worlds in linear
Kripke structures and illustrate it with the following example:
The formula 0(n(P v Q) A R) A 0((—.P A -—.Q) A n—wR)
is unsatisfiable when the accessibility relation is linear, reflexive and transitive.
The corresponding clause set in P-Logic is:

C1: P[au] v Q[au]

C2: R[a] C4: --.Q[b]
C3: -—:P[b] C5: --.R[bv]

In order to resolve between C2 and C5 we unify [a] and [bv]. The unifier is  O := {v H (b + a)] with the
intended meaning: (b + a) maps ‘b’ to ‘a’, provided ‘b’ lies before ‘a’ or b = a (reflexivity):

b +— a
linear Kripke structure I ‚L

| l
b a

Thus, the conditioned o—instance of C5 is: olCS : = (b S a ::.» fiR[b(b + a)]) = (b > a v fiR[a])‚ where
[b(b + a)] has been rewritten to [a] with an appropriate rewrite rule.
The resolvent between C2 and C5 is now: C2&C5 -> R1: b > a.
In the same way we unify [au] and [b] of C1 and C3 and obtain a unifier {u  H (a + b)}.
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The next resolvents are now: 

Cl,1&C3 ~ R2: a>b v Q[b] 

R2&C4 ~ R3: a>b 

R1&R3 ~ R4: empty. • 
This finishes my current collection of extensions to the basic modal logics where the translation method 

presented in this work should be immediately applicable. To extend this method also to more complex 

modal and temporal logics with Kripke semantics is subject of ongoing work. 

Cornparison with other Deduction Calculi for Modal Logics. 

Classical Methods 
The classical approaches to develop proof systems for logics are usually based on tableau systems, 

Gentzen sequent calculi and natural deduction calculi. Calculi of this kind are very flexible when applied 

to a new logic because they need not be based on a model theoretic semantics. An axiomatic semantics is 

completely sufficient to transform the axioms of the logic into inference rules. Therefore these were the 

first proof systems developed for modal logics before Kripke discovered a model theoretic semantics. A 

very good overview of the classical methods and further references are given in [Fitting 83]. Since a 

straightforward instantiation rule is not sound in the presence of flexible constant and function symbols, 

the classical methods can only be applied to the restricted case with rigid constant and function symbols 

only. Furthermore, from an implementation point of view, the classical methods are nol very suitable for 

developing an automated reasoning system. The objects they are manipulating are, compared to clauses, 

very complicated things. Algorithms which make resolution theorem provers efficient are therefore not 

easily available, such as fast indexing techniques, fast tautology and subsumption recognition, macro 

operations like hyperresolution which avoid the generation of intermediate formulae, etc. Furthermore 

these calculi usually contain an instantiation rule for universally quantified variables which blows up the 

search space. The resolution rule on the other hand applies a unification algorithm to compute - and not 

to search - the necessary instantiation. Its search space has therefore always a fmite branching rate which 

makes it clearly superior to methods with an uncontrolled instantiation rule. 

Matrix Proof Methods 
The matrix methods, pioneered by Prawitz [Prawitz 60], and further developed by Andrews [Andrews 

81] and Bibel [Bibel 81] for predicate logic have recently been extended to modal logics without flexible 

constant and function symbols by Lincoln Wallen [Wallen 87]. The major features of this method may be 

summarized with Lincoln's words as follows. Validity within a logic is characterized by the existence of 

a set of connections (pairs of atomic formula occurrences: one positive, one negative) within a formula, 

with the property that every so-called atomic path through the formula contains (as a subpath) a 

connection from the set. Such a set of connections is said to span the formula. For classical propositional 

logic this condition suffices. For first-order logic a substitution must be found under which the (then 

propositional) connections in the spanning set are complementary. For modal logic additional conditions 

must ensure that, semantically, the two atomic formulae of a connection can be interpreted as inhabiting 

the same world. 
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The next resolvents are now:

C1,1&C3 —-> R2: a>b  v Q[b]
R2 & C4 —> R3: a > b
R1&R3 —> R4: empty. I

This finishes my current collection of extensions to the basic modal logics where the translation method
presented in this work should be immediately applicable. To extend this method also to more complex
modal and temporal logics with Kripke semantics is subject of ongoing work.

Comparison with other Deduction Calculi for Modal Logics.

Classical Methods
The classical approaches to develop proof systems for logics are usually based on tableau systems,
Gentzen sequent calculi and natural deduction calculi. Calculi of this kind are very flexible when applied
to a new logic because they need not be based on a model theoretic semantics. An axiomatic semantics is
completely sufficient to transform the axioms of the logic into inference mles. Therefore these were the
first proof systems deveIOped for modal logics before Kripke discovered a model theoretic semantics. A
very good overview of the classical methods and further references are given in [Fitting 83]. Since a
straightforward instantiation rule is not sound in the presence of flexible constant and function symbols.
the classical methods can only be applied to the restricted case with rigid constant and function symbols
only. Furthermore. from an implementation point of view. the classical methods are not very suitable for
developing an automated reasoning system. The objects they are manipulating are, compared to clauses.
very complicated things. Algorithms which make resolution theorem provers efficient are therefore not
easily available, such as fast indexing techniques, fast tautology and subsumption recognition, macro
operations like hyperresolution which avoid the generation of intermediate formulae, etc. Furthermore
these calculi usually contain an instantiation rule for universally quantified variables which blows up the
search space. The resolution rule on the other hand applies a unification algorithm to compute - and not
to search - the necessary instantiation. Its search space has therefore always a finite branching rate which
makes it clearly superior to methods with an uncontrolled instantiation rule.

Matrix Proof Methods
The matrix methods, pioneered by Prawitz [Prawitz 60], and further developed by Andrews [Andrews
81] and Bibel [Bibel 81] for predicate logic have recently been extended to modal logics without flexible
constant and function symbols by Lincoln Wallen [Wallen 87]. The major features of this method may be
summarized with Lincoln’s words as follows. Validity within a logic is characterized by the existence of
a set of connections (pairs of atomic formula occurrences: one positive. one negative) within a formula,
with the property that every so—called atomic path through the formula contains (as a subpath) a
connection from the set. Such a set of connections is said to span the formula. For classical propositional
logic this condition suffices. For first-order logic a substitution must be found under which the (then
pr0positional) connections in the spanning set are complementary. For modal logic additional conditions
must ensure that, semantically, the two atomic formulae of a connection can be interpreted as inhabiting
the same world.
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The formula to be proved is represented as a formula tree in the usual way, but additional labels are 

attached to the nodes containing information about the polarity of the subformula and names for the 

positions of the subformula inside the formula. 

An example: The annotated formula tree for our introductory example 

OO\fx(OPx /\ oQx) => O(\fyPy /\ \fzQz) 

(which actually stems from L. Wallen) is: 

ao- => 

~
 
+ 0 al - 0 a9 

I I 
+ 0 a2 - /\ alO 

I ~------+\f x a3 - \f y all - \f z al2 

a4,1 _ Py - Qz 

+ 0 a7,1 

I 
+ Px a6 + Qx as+ PXla6,1 + QXlaS,l 

(Since the universal quantifier in \fx(OPx /\ oQx) is not moved over the conjunction and renamed, we 

need two copies of the subformula (OPx /\ oQx).)
 

The corresponding matrix with the two possible paths and the four potential connections is:
 

+ /\ 

~~ 
+ 0 a 5,1 

I 

connection 

[ Px QxJ [ Px, ~J~~~PQzy] 

Wallen uses strings consisting of position names ai to represent the modal context information for the 

subformulae.The modal contexts of the six atoms are: 

Px at position ai [aaa2a3a6] Px at position a7, 1: [aaa2a3a6,l] 

Qx at position as: [aaa2a~S] Qx at position as,l: [aa~a3.i!g,1] 

Py at position al2: [aaalO] Qz at position a14: [ao.alO] 

According to the polarity and the modal operators, some of the ~ have the status of a constant and some 

have the status of a variable. The underlined names ~s, ~S,l and .illO in this example have the status of a 

variable. 

Note that from the domain variables only x and Xl have the status of a universally quantified variable. y 

and z have, due to the negative polarity of the quantifier, the status of an existential variable. 

In order to determine which of the potential connections form a spanning set, one possibility is to unify 

the atoms Px and Py as well as.Qx and Qz simultaneously. This is not possible because y and z are 

different. The second possibility is to unify Px and Py as well as QXl and Qz simultaneously yielding 

{xH y, Xl H z}. In addition the corresponding modal contexts [aOa2a3a6] and [aa.illO] as well as 

[aOa2a3-fI,S 1] and [~1O] must be unified. In case the accessibility relation is transitive, this is possible 
, 101 

The formula to be proved is  represented as a formula tree in the usual way, but additional labels are
attached to the nodes containing information about the polarity of the subformula and names for the
positions of the subformula inside the formula.

An example: The annotated formula tree for our introductory example
OOVx(OPx A EIQX) => 0(VyPy A VzQz)

(which actually stems from L. Wallen) is:

" => 3.0

+ <> a1 - <) a9

+ (|) a2 - A a10

+VX a3  ' Vy an  -VZ 312

/+Aa4\ 
+A 341  - Py 313 _ QZ 314

+i>a5  +Ta7+ i>am +aa7‚1

+ PX 86  + Qx a8+  Px136 ,1  + QXlag'l

(Since the universal quantifier in Vx(<>Px A DQX) is  not moved over the conjunction and renamed. we
need two e0pies of the subformula (OPx A I::l).)
The corresponding matrix with the two possible paths and the four potential connections is:

connectionT— [h _ _
pa @ Py /—-" @ Py

=EPx =Qx31El=Qx [PX Qx] [ l  Qxl-J

_ QZ J _ Qz

Wallen uses strings consisting of position names ai to represent the modal context information for the
subformulae.The modal contexts of the six atoms are:

Px at position a7: [a0a2a3a6] Px at position 37.1: [30323336.1]

Qx at position as: [a0a2a3a8] Qx at position 38.1: [a0a233g&1]
Py at position 3123 [aoalo] Qz at position a14: [30.3.10]

According to the polarity and the modal operators, some of the ai have the status of  a constant and some
have the status of a variable. The underlined names as, @8,1 and 310 in this example have the status of a
variable.
Note that from the domain variables only x and x1 have the status of a universally quantified variable. y
and z have, due to the negative polarity of the quantifier. the status of an existential variable.
In order to determine which of  the potential connections form a spanning set .  one possibility i s  to unify

the atoms Px and Py as well as and Q2 simultaneously. This is not possible because y and z are
different. The second possibility is to unify Px and Py as well as Qxl  and Q2 simultaneously yielding
{Ju—> y, x1 »—> 2}. In addition the corresponding modal contexts [aoaza3a6] and [30am] as well as

[a0a2a3a8 1]  and [30am] must be unified. In case the accessibility relation is transitive, this is possible
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and the unifier is LalO ~ ~a3a6' ilg ~ a6' is.1 ~ a6}. The predicate logic part and the modal part of the 

unifier. however. are not independent of each other but correlated over the formula tree. The 

substitutions determine new "is subterm of' relations which must be added to the original formula tree. 

The fact that x is mapped to y for example relates node a12 with node a4 (the nodes below the 

corresponding quantifiers) and the other component Xl ~ z relates node a14 with node a4.1. Thus. the 

following "is subterm of' relations between the various nodes are obtained: 

a6 a8 a6,l as,1 

Since this graph contains a cycle. the predicate and modal parts of the unifier are not compatible and the 

unification therefore fails. 

The example has shown that Wallen's method to represent the modal context information explicitly as 

terms and to unify these terms is very similar to the method I presented in this monograph. The only 

difference is that no skolemization is performed. Neither the existential quantifiers nor the names 

denoting those worlds which depend on other variables are replaced by skolem functions. Therefore 

instead of an occurs check in the tenns. a complicated cycle test in the fonnula tree must be perfonned. 

Summarizing one can say that for the restricted case without flexible constant and function symbols 

Wallen's method is essentially to my one as Andrews's and Bibel's matrix methods are to the resolution 

calculus in predicate logic. The matrix methods for predicate logic have always the choice to work on ~e 

initial structure of the formula or on a clause form and to benefit from all the redundancy removing 

algorithms which work on clauses. To have a similar choice for the modal case one must skolemize the 

existential quantifiers as well as the O-operator. thus, one must translate modal fonnulae into P-Iogic. In 

this case the original matrix methods should - at least for the serial case - be immediately applicable. At 

the time being it is undecided which of these methods are to be preferred. 

NoncIausal Modal Resolution 
After earlier attempts of Farifl.as del Cerro [Farifi.as 85]. Abadi and Manna have developed a resolution 

system for modal logics which works on the original modal syntax. but replaces uncontrolled 

instantiation by unification [Abadi&Manna 86]. 

The nonclausal resolution for classical propositionallogic is: 

A(1", ...•1). B(1",...•1) -+ A[l1true] v B[.1"/false] 

That is, if the formulae A(1", ...•1) and B(.1"•...•1) have a common subformula 1", then we can derive a 

resolvent A[.1"/true] v B[.1"/false] by substituting 'true' for certain (one or more) occurrences of .1"in 

A(.1", ...•1) and 'false' for certain occurrences of .1"in B(.1"•...•1). and taking the disjunction of the 
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and the unifier is {310 |_» a2a3a6, as H a6‚ 38.1 H a6}. The predicate logic part and the modal part of the
unifier, however, are not independent of each other but correlated over the formula tree. The
substitutions determine new “is subterrn of" relations which must be added to the original formula tree.
The fact that x is mapped to y for example relates node 312  with node a4 (the nodes below the
corresponding quantifiers) and the other component x l  H 2 relates node 314 with node 34,1' Thus, the
following “is subtenn of" relations between the various nodes are obtained:

/ \  / \
a a6.1 8,1

Since this graph contains a cycle, the predicate and modal parts of the unifier are not compatible and the
unification therefore fails.

The example has shown that Wallen’s method to represent the modal context information explicitly as
terms and to unify these terms is very similar to the method I presented in this monograph. The only
difference is that no skolemization is performed. Neither the existential quantifiers nor the names
denoting those worlds which depend on other variables are replaced by skolem functions. Therefore
instead of an occurs check in the terms, a complicated cycle test in the formula tree must be performed.

Summarizing one can say that for the restricted case without flexible constant and function symbols
Wallen’s method is  essentially to my one as Andrews’s and Bibel’s matrix methods are to the resolution
calculus in predicate logic. The matrix methods for predicate logic have always the choice to work on the
initial structure of the formula or on a clause form and to benefit from all the redundancy removing
algorithms which work on clauses. To have a similar choice for the modal case one must skolemize the
existential quantifiers as well as the O-operator, thus, one must translate modal formulae into P-logic. In
this case the original matrix methods should - at least for the serial case - be immediately applicable. At
the time being it is undecided which of these methods are to be preferred.

Nonclausal Modal Resolution
After earlier attempts of Fariilas del Cerro [Farifias 85], Abadi and Manna have developed a resolution

system for modal logics which works on the original modal syntax, but replaces uncontrolled
instantiation by unification [Abadi&Manna 86].

The nonclausal resolution for classical propositional logic is:
A(9',...,9’), B(9',...,:F) -—> A[97true] v REF/false]

That is, if the formulae A(‚‘F‚...,9) and B(9’,. my) have a common subformula „T, then we can derive a
resolvent AU'ltrue] v BU'lfalse] by substituting ‘true’ for certain (one or more) occurrences of 9' in
A(9r,...,9‘) and ‘false’ for certain occurrences of :T in B(:F,...,:T), and taking the disjunction of the
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modal context. To bring potential resolution partners into the same modal context, additional move rules 

for modal operators are necessary, for example 01'. O(j ~ 0(1' A (j). These rules introduce new 

formulae, thus wrecking the advantages of working in nonclausal form and avoiding the multiplication 

into conjunctive normal form. 

Abadi and Manna defined a system for quantified modal logics which consists of the appropriate 

restricted resolution rule for the first-order case. rules for moving modal operators and quantifiers and 

rules for simplifying formulae containing 'true' or 'false'. The move rules for operators can be applied 

nondeterministically, Le. they require additional search. In the modal resolution calculus I presented in 

this work exactly this additional amount of search is replaced by the deterministic unification algorithm 

for world-paths which computes the modal context for a sound resolution operation. 

To compare both methods from a practical point of view, Abadi and Manna's proof for the Barcan 

formula is listed below [Abadi&Manna 86]: 

"We prove that o(V'x P(x» ~ (V'x oP(x» 

in the resolulion system for K. We will derive 'false' from 

-,(--,o(V'x P(x» v (V'x oP(x») 

By the negation rules we first get 

o(V'x P(x» A (::Ix 0 -,P(x» 

The rule for moving quantifiers of existential force yields 

::Ix' (o(V'x P(x» A 0 -,P(x '» 

The modality rule in the system K yields 

::Ix '(o(V'x P(x» A 0 -,P(x ') A O«V'x P(x» A -,P(x '))) 

Weakening reduces this sentence to 

::lx' O«V'x P(x» A -,P(x'» 

Take A = -,P(x '). B=P(x), vI = P(x '), v2 = P(x). Resolution yields 

::Ix' O«V'x P(x» A -,P(x ') A (-,true v false» 

true-false simplification yields 'false·... 

In the P-logic resolution calculus we get instead: 

We prove that o(V'x P(x» ~ (V'x oP(x» 

Negation normal form of the negated theorem: 

o(V'x P(x» A (::Ix O-,P(x» 

Translation into P-logic: 

V'w.x P([w]. x) A -,P([a]. f[aD 

Conjunctive normal form: 

Cl: P([w],x) 

C2: -,P(la], na]) 

(Up to this step. the transformations are perfectly deterministic. No search is necessary.) 

Resolution: CI&C2 ~ empty clause. 
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modal context. To bring potential resolution partners into the same modal context, additional move rules
for modal operators are necessary, for example DT, 0g  —-> ()(T A 5). These rules introduce new
formulae, thus wrecking the advantages of working in nonclausal form and avoiding the multiplication
into conjunctive normal form.
Abadi and Manna defined a system for quantified modal logics which consists of the appropriate
restricted resolution rule for the first-order case, rules for moving modal operators and quantificrs and
rules for simplifying formulae containing ‘true’ or ‘false’. The move rules for Operators can be applied
nondetetministically, i.e. they require additional search. In the modal resolution calculus I presented in
this work exactly this additional amount of search is replaced by the deterministic unification algorithm
for world—paths which computes the modal context for a sound resolution operation.
To compare both methods from a practical point of view, Abadi and Manna’s proof for the Barcan
formula is listed below [Abadi&Manna 86]:

“We prove that t:I(Vx P(x)) ==> (Vx  mP(x))
in the resolution system for K. We will derive ‘false’ from

—-.(-fil:l(Vx P(x)) v (Vx DP(x)))
By the negation rules we first get

D(Vx P(x)) A (3x 0 -1P(x))
The rule for moving quantifiers of existential force yields

3x’  (D(Vx P(x)) A <> —-nP(x’))
The modality rule in the syStem K yields

Elx’(t:t(Vx P(x)) A () fiP(x’) A 0((Vx P(x)) A -;P(x’)))
Weakening reduces this sentence to

3x ’  0((Vx P(x)) A —.P(x'))
Take A = ——‚P(x'), B=P(x),  V1 = P(x'), V2 = P(x). Resolution yields

3x ’  0((Vx P(x)) A —tP(x’) A (filme v false))
‘ l l .true-false simplification yields ‘false .

ln the P—logie resolution calculus we get instead:
We prove that EI(Vx P(x)) => (Vx DP(x))
Negation normal form of the negated theorem:

I:(Vx P(x)) A (3x 0—1P(x))
Translation into P-logic:

vx P( [W] ,  X) A -1P([a]. flal)

Conjunctive normal form:
C1:  P([w],  x )
C2:  —1P(|al‚flal)

(Up to this step, the transformations are perfectly deterministic. No search is necessary.)
Resolution: C1&C2 —> empty clause.



Nonclausal Resolution for Epistemic Logics 

Kurt Konolige has defined various calculi for his version of epistemic logics which are also applicable to 

modal logics [Konolige 86]. Among these calculi there is a theory resolution calculus with a so called 

B-resolution rule (some technical details are omitted): 

[Si] ~1 v Yl 

[Si] ~n V Yn
 
-, [Si] ~v Y
 

egv O(jlv ...v eYn 
[Si l is the "knowledge operator" for the agent i-corresponding to (he o-operator for an accessibility 

relation '.Ri' "~11'''' J"n I--i,e T" means that 81" is derivable from corresponding 8-instances of the 1"j with 

the reasoning system for agent i, which mayor may not be again a resolution system. The substitution 8 

is to be obtained by an answer extraction mechanism during the proof of '.F. 

The B-resolution rule is very flexible in combining different deduction systems for different agents. 

However, instead of a simple unification, it requires a separate proof of a subproblem to enable a single 

resolution operation on the higher level. This rises considerable scheduling problems to avoid getting lost 

in a nonterminating proof attempt for an irrelevant subproblem. 

Clausal Modal Resolution 

Man-chung Chan has published a resolution method which, in its kernel, contains already the idea to 

skolcmize the O-operaLOr in order to allow a transformation into conjunctive nomlal fOlTn [Chan 87]. It is 

only defined for the propositional case where it is not necessary to consider dependencies of the 

O-operator from universally quantified variables. (Actually so far Chan considered only S4.) The main 

obstacle that prevents the generation of a conjunctive normal form is that the O-operator cannot be moved 

over a conjunction, i.e. O(~ 1\ (j) is not equivalent to O~1\ O(jbecause the information that there is only 

one world in which (~I\ g) holds is lost. However, if each occurrence of a O-operator is marked with a 

unique index, we can safely move an indexed operator over a conjunction without losing the information 

that there is only one world, i.e. 0i(!J1\ (j)~ 0i!J1\ 0i(j. All modal operators can now be pushed far 

enough into the formulae to enable multiplication into clause form. A resolution rule can be defined 

where the modal operator prefixes of the literals are unified to get a common modal context for both 

resolution partners. 

The correspondence of this method to resolution in P-Iogic is that the indices of the literals' modal 

operator prefixes are actually the world-paths in P-Iogic. For the propositional case, there is therefore 

neither a big conceptual difference nor a difference in the search behaviour. 
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Nonclausal Resolution for Epistemic Logics
Kurt Konolige has defined various calculi for his version of epistemic logics which are also applicable to

modal logics [Konoli ge 86]. Among these calculi there is  a theory resolution calculus with a so called
B-resolution rule (some technical details are omitted):

[S i ]  71 V (}1

[SijI ynv  gr:

-w [Si] 9W C} 9511"a He 9r

egv  091v  . . .v  ag„
[Si] is the “knowledge operator” for the agent i - corresponding to the IJ-opcrator for an accessibility
relation ‘Ri. “III,. an Fifi [I‘means that 69? is derivable from corresponding 9—instances of the fi with
the reasoning system for agent i, which may or may not be again a resolution system. The substitution 8
is to be obtained by an answer extraction mechanism during the proof of ff.
The B-resolution rule is very flexible in combining different deduction systems for different agents.
However, instead of a simple unification, it requires a separate proof of a subproblem to enable a single
resolution operation on the higher level. This rises considerable scheduling problems to avoid getting lost
in a nonterminatin g proof attempt for an irrelevant subproblem.

Clausa l  Modal  Reso lu t ion

Man—Chung Chan has published a resolution method which, in its kernel, contains already the idea to
skolcmizc the O-operator in order to allow a transformation into conjunctive normal form [Chan 87]. It is
only defined for the propositional case where it is not necessary to consider dependencies of the
O-operator from universally quantified variables. (Actually so far Chan considered only 84.) The main
obstacle that prevents the generation of a conjunctive normal form is that the O—operator cannot be moved
over a conjunction, i.e. <>( 7 A g) is  not equivalent to 09%. OG because the information that there is only
one world in which ( f A g) holds is lost. However, if each occurrence of a 0-0perator is marked with a
unique index, we can safely move an indexed operator over a conjunction without losing the information
that there is only one world , i.e. 0i( 9' A QJ—a OiTA Gig. All modal operators can now be pushed far
enough into the formulae to enable multiplication into clause form. A resolution rule can be defined
where the modal operator prefixes of the literals are unified to get a common modal context for both
resolution partners.
The correspondence of this method to resolution in P-logic is that the indices of the literals’ modal
operator prefixes are actually the world-paths in P-logic. For the propositional case, there is therefore
neither a big conceptual difference nor a difference in the search behaviour.
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Naive Translation into Predicate Logic. 

There is a very simple method for translating a modal formula into a predicate logic formula [Moore 80]: 

A special predicate ~is introduced which represents the accessibility relation. A formula c,r is then 

translated into 'r:Iw ~a,w) => !F{w] where 'a' denotes the current world and !F{w] means adding 'w' as 

an additional argument to the literals and terms. Analogously O,ris translated into 3w 1((a,w) 1\ !F{w]. 

The properties of the accessibility relation can be expressed by simply adding the corresponding axioms 
for ~to the formulae. This method is very flexible because all kinds of accessibility relations can easily 

be axiomatized. To see its drawbacks, let us try to prove the introductory example: 

OO'r:lx(OPx 1\ cQx) => O('r:IyPy 1\ 'r:IzQz) 

The translated formula is: 

3a ~O,a) 1\ 3b 1((a,b) 1\ 'r:Ix (3c 1((b,c) 1\ P(c, x) 1\ 'r:Iw 1{(b,w) => Q(w, x» 

=> 3v 1((O,v) 1\'r:Iy P(v, y) 1\ 'r:IzQ(v,z» 

The clause form of the negated formula is: 

Cl: 1((O,a) C2: 1((a,b) C3: ~b,c(x» 

C4: P(c(x), x) 

CS: -,1{(b,w) v Q(w, x» 

C6: -,1((O,v) v -.P(v,f(v» v -,Q(v,g(v» 

In addition we need the transitivity law for ~and a formula expressing its seriality: 

Cl: -,~u, v) v -,~v, w) v ~u, w) 

C8: ~u, h(u» 

With these clauses there are 15 resolution possibilities of level 0 and there is no chance that the resolution 

process ever stops and proves the satisfiability of the clause set. In chapter one, however, we have seen 

that after the translation into P-Iogic, there is only one resolution possibility. The process then stops and 

shows the satisfiability. The difference between these two methods is therefore essentially like the 

difference between equality handling with equality axioms and equality handling with paramodulation. 

Full First-Order Clausal Modal Resolution 

The basic idea for a clause based modal resolution technique is to skolemize the modal operators and then 

to translate modal formulae into predicate logic syntax. The earliest work in this spirit seems to be 

Nakamatsu and Suzuki's method for translating modal formulae into two-sorted predicate logic. They 

considered mainly the S4 and SS case [Nakamatsu&Suzuki 82, 84]. 

In the last year two further groups have developed almost the same skolemization technique for modal 

operators as I did. They are Luis Farlfias del Cerro and Andreas Herzig from Toulouse and Patrice 

Enjalbcrt from Caen together with Yves Auffray from Saint-cloud [Farifias&Herzig 88], 

[Enjalbert&Auffray 88]. Although the technical details are different, the net effect, a clause form with an 

explicit term representation of the modal context, is almost the same. Both groups, however, did not yet 

consider the non-serial case which is the real hard one. Furthermore they did not yet consider the effects 

of prefix-stability which allows to restrict the variable splitting rule in the transitive case and to obtain a 

terminating unification algorithm. On the other hand, Enjalbert and Auffray gave a purely predicate logic 

semantics for the transformed syntax which allows - in the serial case - to benefit from the results 

obtained for predicate logic. 
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Naive Translation into Predicate Logic.

There is a very simple method for translating a modal formula into a predicate logic formula [Moore 80]:

A special predicate xis introduccd which represents the accessibility relation. A formula :|:? is then
translated into Vw flaw) = flw] where ‘a’ denotes the current world and flw] means adding ‘w’  as

an additional argument to the literals and terms. Analogously <> 9" is translated into Elw Exam) A ‚‘;[w].
The properties of the accessibility relation can be expressed by simply adding the corresponding axioms

for Quo the formulae. This method is very flexible because all kinds of accessibility relations can easily
be axiomatized. To see its drawbacks, let us try to prove the introductory example:

00Vx(OPx A Cl) => 0(VyPy A VzQz)
The translated formula is:

Ba 9((0,a) A 3b flab) A Vx (Sc flbß) A P(c, x) A VW flow) => Q(w, x))
=> Elv 9((0,v) AVy P(v, y) A VzQ(v,z))

The clause form of the negated formula is:
C1: £03) C2: flab) C3: Mb,c(x))
C4: P(c(x), x) "
C5: —-19E(b,w) v Q(w, x))

C6: —-«£(0,v) v —.P(v,f(v)) v ——.Q(v,g(v))

In addition we need the transitivity law for Rand a formula expressing its seriality:
C7: —u£(u, v) v -——.x(v, w) v Mu, w)

C8: 9((u, h(u))

With these clauses there are 15 resolution possibilities of level 0 and there is no chance that the resolution
process ever stops and proves the satisfiability of the clause set. In chapter one, however, we have seen
that after the translation into P-logic, there is only one resolution possibility. The process then stops and
shows the satisfiability. The difference between these two methods is therefore essentially like the
difference between equality handling with equality axioms and equality handling with paramodulation.

Full First-Order Clausal Modal Resolution

The basic idea for a clause based modal resolution technique is to skolemize the modal operators and then
to translate modal formulae into predicate logic syntax. The earliest work in this spirit seems to be
Nakarnatsu and Suzuki ’s method for translating modal formulae into two-sorted predicate logic. They
considered mainly the S4 and SS case [Nakamatsu&Suzuki 82, 84].

In the last year two further groups have developed almost the same skolemization technique for modal
operators as I did. They are Luis Fariflas del Cerro and Andreas Herzig from Toulouse and Patrice
Enjalbert from Caen together with Yves Auffray from Saint—cloud [Farifias&Herzi g 88],
[Enjalbert&Auffray 88]. Although the technical details are different, the net effect, a clause form with an
explicit term representation of the modal context, is almost the same. Both groups, however, did not yet
consider the non-serial case which is the real hard one. Furthermore they did not yet consider the effects
of prefix—stability which allows to restrict the variable splitting rule in the transitive case and to obtain a
terminating unification algorithm. On the other hand, Enjalbert and Auffray gave a purely predicate logic
semantics for the transformed syntax which allows - in the serial case - to benefit from the results
obtained for predicate logic.
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Appendix A Procedural Version of the Unification Algorithms 

In order to obtain implementable unification algorithms for P-Iogic terms the unification rules as defined 

in chapter 6 must be provided with a control structure. This section therefore contains a proposal for a 

control structure which is suitable for an immediate implementation. 

Only a few parts of the unification algorithms for P-Iogic terms actually depend on the accessibility 

rclation. Therefore only om~ algorithm is defined that gets the accessibility relation type 'R.. where the 

information about the scriality of the accessibility relation is ignored. as an additional parameter and 

branches internally to the 'R.~depending algorithm for world-paths. (Note Ihat the accessibility relation 

type is just a list of key words like 'reDexive', 'symmetric' or 'transitive'.) The main control loop of the 

algorithm is similar to the Robinson algorithm for first-order terms. 

There are two toplevelfunctions for unifying terms and termlists. Internally there is a function for 

unifying world-paths that branches to the 1{.-depending parts. In addition there are some auxiliary 

functions which arc called from different places inside the main functions. 

Function Unify-terms (s, t, 1() 

Input: sand t are either empty lists or two prefix-stable terms or atoms. 

.?lis the accessibility relation type. 

Output: A complete set of idempotent and prefix-preserving unifiers for s and t. 

If s = t 1!ll<n B&tw:n {~} 

If s is a variable 1hm B&tw:n If set 1hm ~ ~ {{s H t}} 

If t is a variable 1hm Return If t e s then ~ ~ {{t H s}} 

If Vars(s, t) = ~ or S = 0 or t = 0 or topsymbol(s) "# topsymbol(t) lhgJ, Return~.
 

If sand t are CW-terms 1hm B&lYm Unify-termlists(arguments(s). arguments(t), 1()
 

1&1 s =: f(v,sl, ... ,sn) and t =: f(w,t 1.... ,t )
n
1&1 3:= Unify-world-paths (v. w, 1() 

&w.un u~E:::(~e leE Unify-termlists (~(sl .....sn)' ~(tl.· .. ,tn)' 2{)} 

Function Unify-termlists (s. t. 2{)
 

Input: Two prefix-stable termlists s =: (SI" .sn) and t =: (t1·· .t ).
m

!l(is the accessibility relation type. 

Output: A complete set of prefix-preserving idempotent unifiers for s and t. 

If s =t lbm RruI.m {~}. 

1&13 := Unify-terms (sI' t1• 1() 

R.llliun U~E:::{(~O)IVars(s.l) leE Unify-termlists (~(s2· .. sn)' ~(t2···tn)' 9{)}. 
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Appendix A Procedural Version of the Unification Algorithms

In order to obtain implementable unification algorithms for P-logic terms the unification rules as defined
in chapter 6 must be provided with a control structure. This seetion therefore contains a proposal for a

control structure which is suitable for an immediate implementation.

Only a Few parts of  the unification algorithms for P-logic terms actually depend on the accessibility
relation. Therefore only one algorithm is defined that gets the accessibility relation type at, where the
information about the seriality of the accessibility relation is ignored, as an additional parameter and
branches internally to the fli:dcpending algorithm For world-paths. (Note that the accessibility relation
type is  just a list ol‘key words like ’reflexive', ’symmetric’ or 'transitive’.) The main control loop o f  the

algorithm is similar to the Robinson algorithm for first—order terms.

There are two t0p1evel functions for unifying terms and termlists. Internally there is a function for
unifying world-paths that branches to the aft-depending parts. In addition there are some auxiliary
functions which are called from different places inside the main functions.

Function Unify-terms (s, t. at)
Input: s and t are either empty lists or two prefix-stable terms or atoms.

Ris the accessibility relation type.
Output: A complete set of  idempotent and prefix-preserving unifiers for s and t.
I_f s = t m Rim {9!}
_I_f sisavariable m my  sa t  mend gisgusr—atn
1f t i savariablc  then 13n t e s  mend  else {{tt—>S}}
l_f Vars(s. t) = a or s = ( )  or t = () or topsymbol(s) # topsymbol(t) & BM o.

If s and t are CW-terrns men Rem Unify-term]ists(arguments(s), arguments(t), R)
Lg], s = :  f(v,s l . . . . .sn)  and t= :  f(w,t1,...,tn)

Let E := Unify-world-paths (v, w, K)
39mm Ugeatge  I 9 e Unify-termlists (§(s1,...,sn), §(t1,...,tn), R)}

Funct ion  Unify—termlists (s ,  t, LR)
Input: Two prefix-stable tennlists s = :  (s l . . . sn)  and t =: (t1...tm).

Kis the accessibility relation type.
Output: A complete set of  prefix-preserving idempotent unifiers for s and t.
It s = t then Return {rt}-
LQL E. := Unify-terms(s1, t1, 90

Return U§63{ (g9 ) |Vars ( s . t )  | 6 e Unify-termlists (§(sz...sn), §(t2...tn). 90}.
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Function Unify-world-paths (s, t, 10
 
Input: Two world-paths and an accessibility relation type 1{,
 

Output: A complete set unifiers for s and t.
 

If s =t then RmYm {~}.
 

Return ~~is
 

~ lillm Unify-termlists (s, t, 'Rj
 

{reflexive} or {symmetric} or both then Unify-world-paths-reflexive-or-symmetric (s, t, 1{)
 

{transitive} .tlli<n Unify-world-paths-transitive (s. t, 1{)
 

{reflexive, transitive} 1.ill<n Unify-world-paths-transitive (s, t, 1{)
 

{rcllexivc. symmctric, transitive} 1Mn Unily-world-paths-equivalencc (s. t, 1{).
 

Function Unify-world-paths-reflexive-or-symmetric (s, t, 'Rj
 

Input: Two world-paths s =: [sI'" snl and t =: [t1 ... t ] and jj"j:. ~~ {reflexive, symmetric}.
 m
Output: A complete set of unifiers for s and t. 

1&1 A:= Unify-instantiated-wps (Unify-terms (SI' t1, q(), [s2···snl, [t2"'lml, q() 

If ~= {reflexive} then n':= 1, m' := 1 ~ n' := n, m' := m. 

.EQr i = I, , n' A:= A u Unify-instantiated-wps (Unify-collapse ([sI" .si], 'Rj, [si+1 snl, t,1O. 

.Eill: i = I, m' A:= A u Unify-instantiated-wps (Unify-collapse ([t1... til, q(), S, [ti+1 tml, q(). 

.!kLu.m A. 

Function Unil'y-world-paths-lransitive (s, t, q()
 

Input: Two world-paths s =: [SI'" sn] and t =: [t1 ... tm]
 

~= {transitive} or ~= {reflexive, transitive}. 

Output: A complete set of unifiers for s and t. 

1&1 A :=fIl 

Em: i=O, ... ,m (i =°is the collapsing case when reflexive E 1{,) 

1&1 3 := Unify-prefix (SI' [t1·.·til, q() 

A:= A u Unify-instantiated-wps (3, [s2.··snl, [ti+1 ...~l, q(). 

A:= A u Unify-split (s, t, i, 'Rj. 

~ the For loop with s and t exchanged. 

fuili.!!:n PWars(s,t) I A EA}. 

Function Unil'y-world-paths-equivalence (s, t, 1{)
 

Input: Two world-paths s and t, and ~= {reflexive, symmetric, transitive}.
 

Output: A complete set of unifiers for s and t.
 

Return Case (s, t) =
 
m,m !hro {fIl} 

m, [wJ) or ([wl, mwhere w is a variable then {{ w H []} }
 

([], er]) or ([rl, m .thro jj
 

([rl, [q]) 1hsm Unify-terms (r, q, 1{).
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Function Unify-world-paths (s, t. X)
Input: Two world-paths and an accessibility relation type it,

Output: A complete set unifiers for s and t.

if s = t mm gram {(3}-
13m glass Kis

(as then Unify-termlists (s ,  t ,  fi)

{reflexive} or {symmetric} or both men Unify—world-paths-reflexive-or-symmetric (s, t, R)
{transitive} then Unify-world-palhs-transitive (s, t, ‘10
{rcllcxivc, transitive} 111m Unil'y-world-palhs—transitivc (s, t, 90
{rcllcxive, symmetric,  transitive} then UniI'y-world-paths—equivalcncc (s. t,  at).

Funct ion Unify-world-paths—reflexive—or—symmetric (s, t, “X)
Input: Two world-paths s = :  [51  sn] and t = :  [t1 tm] and 9 at au; {reflexive, symmetric}.

Output: A complete set of unifiers for s and t.
Let A :=  Unify—instantiated-wps (Unify-terms ( s l ,  t1, at), [s2...sn], [t2. . .tm], LR)

fix :  {reflexive} m n' := 1, m' :=1  else n' := n, m' := m.
m i :  1 ,  n '  A:: A U Unify—instantiated-wps (Unify-collapse ( [s l . . . s i ] ,  at), [si+1...sn], t, R).

Egg i = 1. m’ A:= A u Unify-instantiated-wps (Unify-collapse ([tl...ti], X), s, [tm ...tm], 90.
Raum/\ .

Function Unil'y-world—paths-transitive (s, t, at)
Input: Two world—paths s =: [51  Sn] and t =: [t1 tm]

at: {transitive} or at: {reflexive, transitive}.
Output: A complete set of unifiers for s and I.

Let. A := o
£9; i = 0, m (i = 0 is the collapsing case when reflexive e K.)

l._.e_t E := Unify-prefix ( s l ,  [t1...ti], 90
A:=  A U Unify—instantiated—wps (E,  [s2...sn], [ti+1...tm], R).

A:=  A u Unify-split (s, t ,  i, :R).

m the For loop with s and t exchanged.

Bil-um {"—lvm(s‚a) ' 7“ € A}-

Funct ion  Unify-world-paths-cquivalence (s,  t,  LR)
Input: Two world-paths s and t, and K,: { reflexive, symmetric, transitive}.
Output: A complete set of unifiers for s and t.
Emm Cass (s, t )  =

(ll. ll) mm {ID}
([], [w]) or ([w], []) where w is a variable [11213 {{w I—> []} }

([], [I‘D or ([r]‚ []) m a
([r]. [(11) m Unify-terms (Mt, St).
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Auxiliary Functions 

Function Unify-instantiated-wps (S, s, t, 10 
Input: S is a set of substitutions. s and t are two world-paths. 1(is the accessibility relation type.
 

Output: A complete set of unifiers for s and t which are smaller than some element of 2.
 

Return U~E:=:{(Se)IVars(s.t) leE Unify-world-paths (ss. st, 10.
 

Function Unify-collapse(t. 10
 
Input: t =: [t l .....'n] is a world-path and ~ 7:-1(~ {reflexive, symmetric}.
 

Output: A complete set ofunifiers which collapse t into [].
 

~ n=O &lli!m f~}.
 

n>O .1.&1 A := ~ 

If reflexive E ~and t l is a variable ~ 

't:= {t l H []}; A:= A u {'te leE Unify-collapse('t[t2.....l I.1O)n 

If symmetric E ~and n > 1 then 

!:ill: i = 2•...•n 

If ti is a variable then 

't := {ti H [t l -
l ]}; S:= {'te leE Unify-collapse([t2•·· .•ti_l ]. 10) 

A := A u U~E:=: {Se leE Unify-collapse(S[ti+l .....'nl.lO) 
Relurn A. 

Function Uni fy-prefix (SI' t. 10
 
Input: A W-lerm sI' a world-path t =: [t1... ln] and '1(= {transitive} or ~= {reflexive. transitive}
 

OUlpUl: If either SI is a variable or n =1: A complctc sct ofunifiers for [81 1and [t1... ln l.
 
~ l[ n = I 1.hm Unify-terms (81' t1• ~.
 

~ SI is a variable and SI 4 t and either n > 0 or reflexive E 1l 

l!:!rn {{sI Ht }}. 

otherwise ~. 

Function Unify-split (s. t. i. 10 
Input: Two world-paths s =: [SI" .sn] and t =: [tl ... lm]. a positive integer 

and ~={transitive} or ~={reflexive. transitive}. 

Output: A complete set of unifiers for s and t. 

If i> 1 and ti is a variable and ti_1 is no variable and SI 4 [tl" .tiJ 1lli<n 
1&1	 S:= {SI H [t l ... ti_Iu], ti H [u v]} where u and v are new variables
 

Return {eIVars(s,t) leE Unify-instantiated-wps ({s}, [s2... snJ. [v ti+l · .. lm], 1{)}
 

~	 .Iillw:!l~. 
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Auxiliary Functions

Function
Input:
Output:

Unify-instantiated-wps (E, s, t, K)
E. is a set of substitutions, s and t are two world-paths, Ris the accessibility relation type.
A complete set of  unifiers for s and t which are smaller than some element of E.

m Uge  3{(E->9)|Vars(s‚t) | 6 e Unify-world-paths (gs, at, LK).

Funcüon
Input:
Output:

Unify-collapse(t, 9?)

t =: [t1,. . .,ln] is a world-path and a :t at; {reflexive, symmetric}.
A complete set of  unifiers which collapse t into [].

Qasc n=0  Baum {9}.
n>0  LeLA:=¢

Funcfion

input
(hupuu

Benita

Funcfion

Input:

Output:

1f reflexive e Rand t1 is a variable then
1: := {tl H [ ] } ;  A := A U {1:6 I 9 e Unify—collapse('r[t2,..win], R))

H symmetric e ‚Rand n > 1 meg
Egg i = 2‚. . . ,n

Ll ti is  a variable m

"c := {til—> [t1'1]}; E := {1:9 l 9 e Unify-collapse([t2,...,ti_1], 90)

A := A U Uges. {&} | 6 e Unify-collapse(§[ti+1,...,tn], R))
m A.

Unify-prefix (sl, 1, 9'0
A W-term s l ,  a world-path t =: [t1...tn] and x: {transitive} or K= {reflexive. transitive}

[reithcr s1 is a variable or n = l: A complete set ot‘unitiers for [sl] and [t1...tnl.
L[ n = l men Unify-terms ($1.11, !R).

M 81 is a variable and s1 Q t and either It > 0 or reflexive e !(
m {{51 H t }  }.

etherwise t3-

Unify-split (s, t, i, 90
Two world-paths s = :  [$1 . . .511] and t =:  [t1 . . .tm], a positive integer

and K: {transitive} or K: {reflexive, transitive}.
A complete set of unifiers for s and t.

if i > l and ti is a variable and t“ is no variable and 81¢  [t1...ti] men
Lair : {3 ]  H [[1 ...ti_1u], ti H [u v]}where u and v are new variables

Return {B IVars (s , t )  | 6 e Unify-instantiated-wps ( [ i ] ,  [52...sn], [v ti+1...tm], R)}
else Retem o.
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Rectification 

The translation from M-Logic into P-Logic (def. 4.1.1) contains a strong Skolemization rule for the 

O-operator. Its Skolem functions depend on the universally quantified domain variables only, but not 

on the W-variables generated from embracing o-operators. A counterexample from Patrice Enjalbert, 

however, has shown that at least for the first-order case when the accessibility relation is symmetric 

this is not sound. 

The example is 0 3x (P(x) /\ oO-,P(x». 

The formula is satisfiable, but the translated formula \iu P([u] a[u]) /\ \iv -,P([u v c] a[u]), where the 

Skolem function c for the O-operator does not depend on u and v, is unsatisfiable in P-logic and 

would be refuted by the modal resolution calculus (The unifier is {u f-+ C, V f-+ c-1}.) There is a strong 

conjecture that this effect occurs only in the first-order case when the accessibility relation is 

symmetric. However, as long as the correct condition is not known, it is therefore safer to generate in 

any case Skolem functions for the O-operator which depend also on the embracing W-variables. In 

order to preserve prefix stability, however, instead of the W-variables themselves, their prefixes can 

be taken as arguments of the Skolem functions. The above formula has then to be translated into 

\iu P([u] a[u]) /\ \iv -,P([u v c([u], [u vD] a[uD. 

Unification of the two literals produces now an occur check clash, i.e. the formula is not refutable. 

Rect i f ica t ion

The translation from M-Logic into P-Logic (def. 4.1.1) contains a strong Skolemization rule for the
O-operator. Its Skolem functions depend on the universally quantified domain variables only, but not
on the W-variables generated from embracing EI-operators. A counterexample from Patrice Enjalbert,
however, has shown that at least for the first-order case when the accessibility relation is symmetric
this is  not sound. '
The example is El 3x (P(x) A EIOfiP(x)).
The formula is satisfiable, but the translated formula Vu P([u] a[u]) A Vv —-1P( [u v c] a[u]), where the
Skolem function c for the O-operator does not depend on u and v, is unsatisfiable in P—logic and
would be refuted by the modal resolution calculus (The unifier is {u H c ,  v I—> 0'1}.) There is a strong
conjecture that this effect occurs only in the first—order case when the accessibility relation is
symmetric. However, as long as the correct condition is  not known, it is therefore safer to generate in
any case Skolem functions for the 0—0perator which depend also on the embracing W—variables. In
order to preserve prefix stability, however, instead of the W—variables themselves, their prefixes can

be taken as arguments of the Skolem functions. The above formula has then to be translated into
Vu P([u] a[u]) A VV —\P([u v C([u], [u v])] a[u]).

Unification of the two literals produces now an occur check clash, i.e. the formula is not refutable.
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