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ABSTRACT 
In this paper a process is viewed as a labeled graph modulo bisimulation equivalence. Three 
topics are covered: (i) specification of processes using finite systems of equations over the 
syntax of process algebra; (ii) inference systems which are complete for proving the 
equivalence of regular (finite state) processes; (iii) variations of the bisimulation model. 

Introduction 
We will discuss process theory on the basis of a given semantic concept. A process will be a rooted 
directed graph where arcs are labeled with actions. An example may clarify this matter (see Figure 
1.1). 

Figure 1.1 

For instance the process P denotes a process that has two options for initial actions, a and b. After 
the a-step P will tenninate, but after having done the b-step P has again two options, c and d. 

Now obviously the concept of a process should be made independent of its incidental coding 
in a graph. So we must detennine an appropriate equivalence relation on graphs. There are several 
possibilities for such equivalence relations. Relevant references are for instance: Brookes, Hoare & 
Roscoe [84], Hennessy [88], De Nicola & Hennessy [83], and Phillips [87]. However, 
bisimulation equivalence, as introduced in Park [81], stands out, in our view, as the most natural 
identification mechanism on process graphs discovered thus far. 

Having thus established roughly the domain of processes as that of process graphs modulo 
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bisimulation, the next step is to incorporate the major discovery of Milner [80], namely that 

processes have an algebraic structure. Our paper has to balance between two opposite poles: (a) the 

syntax of process algebra and its axioms and proof rules, (b) the extremely rich world of process 

graphs and bisirnulations. The main relations between (a) and (b) are as follows: 

(1) Using the syntax of process algebra we may write down equational axioms and axiom 

schemes that 'specify' bisimulation semantics. These axioms capture the intended process 

semantics in algebraic terms. 
Chapter 1 contains a survey of a possible syntax of process algebra (ACP, Algebra of Communicating 

Processes, and extensions) and its axioms and rules: see Table 22. In this setting one finds the concept of a 

process algebra, i.e. a model of (the axioms of) process algebra: an appropriate class of process graphs, 

together with a definition of the algebraic operators on these process graphs such that bisimulation 

equivalence becomes a congruence relation. The main model is G./t>rco' described in Chapter 1, Section 1.13. 

(2) Equations over the syntax of process algebra having free variables ranging over processes 

can be solved in bisimulation semantics. In particular so-called systems of guarded recursion 

equations turn out to have unique solutions. These systems are used to specify processes. 

Chapter 1 contains several examples of process specifications as well as a general theorem (1.14.2) that 

expresses the adequacy of finite guarded recursive equational specifications for the description of computable 

processes. 

(3) Suppose that a particular class of process specifications in the sense of (2) is given. Then a 

major question is to decide whether or not two specifications specify the same process. This matter 

is undecidable in general, but in some cases positive results can be obtained. 

Chapter 2 discusses the bisimulation equivalence problem for regular processes. For this case a complete 

inference system is presented. 

(4) In the absence of the silent step 't, for each process algebra (based on graphs modulo 

bisimulation equivalence) one can define the corresponding algebra of processes modulo n with n a 

natural number. In this algebra processes are identified whenever the restrictions of their behaviour 

to the first n actions are bisirnilar. 

Complementary to this construction 'modulo n ', there is the construction of projective limits 

of process algebras and processes. Equivalently, such a projective limit can be viewed as a 

topological completion in an appropriate topology. This leads to a topological view of process 

domains related to the work of De Bakker & Zucker [82a,b]. 
In Chapter 3 we study in detail the topological properties of process domains that result from general 

topological constructions on the basis of spaces with process graphs modulo bisimulation. 
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1. Specification and verification in bisimulation semantics 

This chapter is a modified version of Bergstra & Klop [86c]. It serves as an introduction to both 

process algebra and bisimulation semantics. Sections 1-11 provide syntax and defining equations 

for our operator set of process algebra as well as several examples of process specifications 

including counters, bags, stacks and queues. Section 1.12 contains an extended example of a 

specification and verification in process algebra. To this end an alternating bit protocol is verified 

and specified in all detail. Sections 1.13, 1.14 introduce the bisimulation model and describe the 

expressive power of recursive specifications in the context of the bisimulation model. 

1.1. Basic Process Algebra. 

The kernel of all axiom systems for processes that we will consider, is Basic Process Algebra. The 

processes that we will consider are capable of performing atomic steps or actions a,b,c, .. ., with the 

idealization that these actions are events without positive duration in time; it takes only one moment 

to execute an action. The actions are combined into composite processes by the operations + and ., 

with the interpretation that (a+b)·c is the process that first chooses between executing a orb and, 

second, performs the action c after which it is finished. (We will often suppress the dot and write 

(a+b)c.) These operations, 'alternative composition' and 'sequential composition' (or just sum and 

product), are the basic constructors of processes. Since time has a direction, multiplication is not 

commutative; but addition is, and in fact it is stipulated that the options (sumrnands) possible at 

some stage of the process form a set. Formally, we will require that processes x,y, ... satisfy the 

following axioms: 

BPA 
x+y = y+x 
(x+y)+z = x+(y+z) 
x+x =x 
(x+y)z = xz+yz 
(xy)z = x(yz) 

Table 1 

Thus far we used 'process algebra' in the generic sense of denoting the area of algebraic 

approaches to concurrency, but we will also adopt the following technical meaning for it: any 

model of these axioms will be a process algebra .. The simplest process algebra, then, is the term 

model of BPA (Basic Process Algebra), whose elements are EPA-expressions (built from the 

atoms a,b,c,. .. by means of the basic constructors) modulo the equality generated by the axioms. 

We will denote this structure with A00• This process algebra contains only finite processes; things 

get more lively if we admit recursion enabling us to define infinite processes. Even at this stage one 

can define, recursively, interesting processes; consider for instance the counter in Table 2. 



COUNTER 
X =(zero+ up·Y)· X 
Y =down+ up·Y·Y 

Table 2 
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Here 'zero' is the action that asserts that the counter has value 0, and 'up' and 'down' are the 

actions of incrementing, respectively decrementing, the counter by one unit. The process COUNTER 

is now represented by X; Y is an auxiliary process. COUNTER is a 'perpetual' process, that is, all 

its execution traces are infinite. Such a trace is e.g. zero·zero·up·down·zero·up·up·up· .... . A 

question of mathematical interest only is: can COUNTER be defined in a single equation, without 

auxiliary processes? The negative answer is an immediate consequence of the following fact: 

1.1.1. THEOREM. Let a system {Xi = T(X1, ... ,Xn) Ii =l, ... ,n} of guarded fixed point equations 

over BP A be given. Suppose the solutions~ are all perpetual. Then they are regular. 

The solutions are in this case labeled transition graphs-modulo a certain equivalence relation 

which will be extensively discussed in the sequel. Two concepts in this statement need also an 

explanation: a fixed point equation (or recursion equation), like X = (zero+ up·Y)-X is guarded if 

every occurrence of a recursion variable in the right hand side is preceded ('guarded') by an 

occurrence of an action. For instance, the occurrence ofX in the right-hand side of 

X = (zero + up·Y)-X is guarded since, when this X is accessed, one has to pass either the guard 

zero or the guard up. A non-example: the equation X = X + a-X is not guarded. Furthennore, a 

process is regular if it has only finitely many 'states'; clearly, COUNTER is not regular since it has 

just as many states as there are natural numbers. Let us mention one other property of processes 

which have a finite recursive specification (by means of guarded recursion equations) in BPA: such 

processes are uniformly finitely branching. A process is finitely branching if in each of its states it 

can take steps (and thereby transform itself) to only finitely many subprocesses; for instance, the 

process defined by X = (a+b+c)X has in each state branching degree 3. 'Uniformly' means that 

there is uniform bound on the branching degrees throughout the process. 

In fact, a more careful treatment is necessary to define concepts like 'branching degree' 

rigorously. For, clearly, the branching degree of a +a ought to be the same as that of the process 

'a', since a+ a= a. And the process X = aX will be the same as the process X = aaX; in tum these 

will be identified with the process X = aX + aaX. In the sequel we will extensively discuss the 

semantic criterion by means of which these processes are identified ('bisimilarity'). Milner [84] 

has found a simple axiom system (extending BPA) which is able to deal with recursion and which 

is complete for regular processes with respect to 'bisirnilarity'. (See Section 2.3 in Chapter 2.) 

Another non-trivial example is the following specification of the process behaviour of a Stack 

with data 0, 1: 



STACK 
x = o-t..Yx + i-t..zx 
y = ot + o1.YY + 1.J,.zy 

z = 1t + M.Yz + i..l..zz 

Table 3 
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Here 0.1 and Oi are the actions 'push O' and 'pop O', respectively; likewise for 1. Now Stack is 
specified by the first recursion variable, X. Indeed, according to the first equation the process X is 
capable of performing either the action o.i, after which the process is transformed into YX, or 1.i , 
after which the process is transformed into ZX. In the first case we have using the second equation 
YX = (Oi + o.i.YY + Ii.ZY)X = Oi·X + O.i.YYX + li.ZYX. This means that the process YX 
has three options; after perfonning the first one (Oi) it behaves like the original X. Continuing in 
this manner we find a transition diagram or process graph as in Figure 1.2. 

Stack 

Figure 1.2 

Before proceeding to the next section, let us assure the reader that the omission of the other 
distributive law, z(x + y) = zx + zy, is intentional. The reason will become clear after the 
introduction of 'deadlock'. 

1.2. Deadlock. A vital element in the present set-up of process algebra is the process o 
signifying 'deadlock'. The process ab performs its two steps and then stops, succesfully; but the 
process abo deadlocks after the a- and b-action: it wants to do a proper action but it cannot. So o is 
the acknowledgement of stagnation. With this in mind, the axioms to which o is subject, should be 
clear: 



DEADLOCK 

o+x=x 
O·X=O 

Table 4 
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(In fact, it can be argued that 'deadlock' is not the most appropriate name for the process constant 

8. In the sequel we will encounter a process which can more rightfully claim this name: 'tO, where 

't is the silent step. We will stick to the present terminology, however.) 

The axiom system of BP A (Table 1) together with the present axioms for 8 is called BP A0. 

We are now in a position to motivate the absence in BPA of the 'other' distributive law: z(x+y) = 

zx+zy. For, suppose it would be added. Then ab = a(b + 8) = ab + ao. This means that a process 

with deadlock possibility is equal to one without, conflicting with our intention to model also 

deadlock behaviour of processes. 

The essential role of the new process 8 will only be fully appreciated after the introduction of 

communication, below. 

1.3. The merge operator. 

If x,y are processes, their 'parallel composition' x II y is the process that first chooses whether to 

do a step in x or in y, and proceeds as the parallel composition of the remainders of x,y. In other 

words, the steps of x,y are interleaved or merged. Using an auxiliary operator IL (with the 

interpretation that x lL y is like x II y but with the commitment of choosing the initial step from x) 

the operation II can be succinctly defined by the axioms: 

MERGE 

x 11 y 
ax lL y 
a lL y 
(x + y) lL z 

= xl]_y+yll_x 
= a(x II y) 
= ay 
=xlLz+yll_z 

Table 5 

The system of nine axioms consisting of BPA and the four axioms for merge will be called PA. 

Moreover, if the axioms for o are added, the result will be P A0. The operators II and IL will also be 

called merge and left-merge respectively. 

The merge operator corresponds to what in the theory of formal languages is called shuffle. 

The shuffle of the words ab and cd is the set of words { abcd, ac bd, cabd, acdb, cadb, cdab}. 

Merging the processes ab and cd yields the process 

abllcd = abll..cd + cdll..ab = a(bllcd) + c(dllab) = a(b!Lcd + cd!Lb) + c(dll..ab + abll..d) = 
a(bcd + c(dllb)) + c(dab + a(blld)) = a(bcd + c(db+bd)) + c(dab + a(bd+db)), 
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By means of these projections a distance between processes x,y can be defined: d(x,y) = 2-n where 

n is the least natural number such that 1tn(x) if= 1tn(y), and d(x,y) = 0 if there is no such n. If the 

term model Aro of BPA (or PA) as in Section 1.1 is equipped with this distance function, the result 

is an ultrametrical space (AOl' d). By metrical completion we obtain a model of BPA (resp. PA) in 

which all systems of guarded recursion equations have a unique solution. In fact, the guardedness 

condition is exactly what is needed to associate a contracting operator on the complete metrical 

space with a guarded recursion equation. (E.g. to the recursion equation X = aX the contracting 

function f(x) =axis associated; indeed d(f(x),f(y)) ~ d(x,y)/2.) Banach's contraction theorem then 

proves the existence of a unique fixed point. This model construction has been employed in 

various settings by De Bakker & Zucker [82a,b], who also posed the question whether unguarded 

fixed point equations, such as X = aX + X or Y = (aY II Y) + b, always have a solution in the 

metric completion of (AOl' d) as well. This turns out to be the case: 

1.4.1. THEOREM. Let q be an arbitrary process in the metric completion of (AOl' d) and let X = 

s(X) be a recursion equation in the signature of PA. 

Then the sequence q, s(q), s(s(q)), s(s(s(q))), ... converges to a solution q* = s(q*). 

For a proof see Bergstra & Klop [87]. In general, the fixed points q* = s(q*) are not unique. The 

proof of 1.4.1 in Bergstra & Klop [87] is combinatorial in nature; it is not at all clear whether this 

convergence result can be obtained by the 'usual' convergence proof methods, such as invoking 

Banach's fixed point theorem or (in a complete partial order setting) the Knaster-Tarski fixed point 

theorem. In Kranakis [87] the present theorem is extended to the case where s(X) may contain 

parameters. 

1.4.2. REMARK. An alternative way to obtain this model (the metric completion of (Aw, d)) is as 

follows. Let J\i denote Aro modulo the equation x = 1tn(x); so J\i is the initial algebra of BPA u {x 

= 1tn(x)}, containing only processes of depth at most n. Now the family of models and projections 

(J\i, '.ltn: An+l ~An In~ O} has a projective limit A 00
• This structure is isomorphic to the metric 

completion of (AW' d). Therefore we will use A 00 as an alternative notation for the metric 

completion of (Aro, d). 

1.5. Communication. 

So far, the parallel composition or merge Cll) did not involve communication in the process xlly: 

one could say that x and y are 'freely' merged or interleaved. However, some actions in one 

process may need an action in another process for an actual execution, like the act of shaking hands 

requires simultaneous acts of two persons. In fact, 'handshaking' is the paradigm for the type of 

communication which we will introduce now. If A= {a,b,c, ... ,8} is the action alphabet, let us 

adopt a binary communication function I : A x A ~ A satisfying the axioms in Table 7. 
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COMMUNICATION FUNCTION 

alb =bla 
(aib)lc =al(blc) 
oia =o 

Table 7 

Here a,b vary over A, including 8. We can now specify merge with communication; we use the 

same notation II as for the 'free' merge in Section 1.3 since in fact 'free' merge is an instance of 

merge with communication by choosing the communication function trivial, i.e. a I b = 8 for all a,b 

E A. There are now two auxiliary operators, allowing a finite ax:iomatisation: left-merge ([IJ as 

before and I (communication merge or simply 'bar'), which is an extension of the communication 

function in Table 7 to all processes, not only the atoms. The axioms for II and its auxiliary 

operators are given in Table 8. 

MERGE WITH COMMUNICATION 

x II y =xll_y+yll_x+xly 
ax lL y = a(xliy) 
all_y =ay 
(x + y)ll_z = xllz + yllz 
axlb =(alb)x 
al bx =(aib)x 
ax I by =(a I b)(xiiY) 
(x+y) lz = xlz+ y lz 
xl(y+z) =xly+xlz 

Table 8 

We also need the so-called encapsulation operators aH (for every H ~A) for removing 

unsuccessful attempts at communication: 

ENCAPSULATION 

~ (a) = a if a e H 
aH (a) = 0 if a E H 
aH (x+y) = ~ (x) + aH (y) 
aH (xy) = aH (x)·aH (y) 

Table 9 

These axioms express that aH 'kills' all atoms mentioned in H, by replacing them with 8. The 

axioms for BP A, DEADLOCK together with the present ones in Tables 7-9 constitute the axiom 

system ACP (Algebra of Communicating Processes). Typically, a system of communicating 

processes X1, ... ,xn is now represented in ACP by the expression aH(x1ll ... llxn). Prefixing the 

encapsulation operator says that the system x1 ,. .. ,xn is to be perceived as a separate unit with 
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respect to the communication actions mentioned in H; no communications between actions in H 

with an environment are expected or intended. 

A useful theorem to break down such expressions is the Expansion Theorem (first 

formulated by Milner, for the case of CCS; see Milner [80]) which holds under the assumption of 

the handshaking axiom x I y I z = o. This axiom says that all communications are binary. (In fact we 

have to require associativity of' II' first-see Table 10.) 

1.5.1. EXPANSION THEOREM. 

Here Xk i denotes the merge of x1 , ... ,xk except xi, and xki,j denotes the same merge except xi,xj (k 

2:: 3). For instance, fork= 3: 

xllyllz = xll_(yllz) + yll_(xllx) + zll_(xlly) + (y I z)ll_x + (z I x)ll_y + (x I y)ll_z. 

In order to prove the Expansion Theorem, one first proves by simultaneous induction on term 

complexity that for all closed ACP-terms (i.e. ACP-terms without free variables) the following 

axioms of standard concurrency hold: 

AXIOMS OF STANDARD CONCURRENCY 

(x[Ly)lLz 
(xly)ILz 
xly 
xlly 
xl(yiz) 
xll(yllz) 

=xlL(yllz) 
=xl(ylLz) 
=ylx 
=yllx 
= (xly)lz 
= (xlly)llz 

Table 10 

The defining power of ACP is strictly greater than that of PA. The following is an example 

(from Bergstra & Klop [84b]) of a process U, recursively defined in ACP, but not defmable in PA: 

let the alphabet be { a,b,c,d,8} and let the communication function be given by c I c =a, d Id= b, 

and all other communications equal too. Let H = {c,d}. Now we recursively define the process U 

as in Table 11: 

U = ()H (dcYllZ) 
X=cXc+d 
Y=dXY 
Z=dXcZ 

Table 11 
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Then, we claim, U = ba(ba2)2(ba3)2(ba4)2 .... Indeed, using the axioms in ACP and putting 

for n?. 1, a straightforward computation shows that 

By Theorem 1.3.1, U is not definable in PA, since the one infinite trace of U is not eventually 

periodic. 

We will often adopt a special format for the communication function, called read-write 

communication. Let a finite set D of data d and a set { 1, .. .,p} of ports be given. Then the alphabet 

consists of read actions ri(d) and write actions wi(d), for i = 1,. . .,p and de D. The interpretation 

is: read datum d at port i, write datum d at port i respectively. Furthermore, the alphabet contains 

actions ci(d) for i = 1,. . .,p and de D, with interpretation: communicated at i. These actions will 

be called transactions. The only non-trivial communications (i.e. not resulting in o) are: wi(d) I ri(d) 

= ci(d). Instead of wi(d) we will also use the notation si(d) (send d along i). Note that read-write 

communication satisfies the handshaking axiom: all communications are binary. 

1.5.2. EXAMPLE. Using the present read-write communication format we can write the recursion 

equation for a Bag B12 (cf. Section 1.3) which reads data de D at port 1 and writes them at port 2 

as follows: 

B12 = l:deD rl(d)(w2(d) II Bu). 

In order to illustrate the defining power of ACP, we will now give an infinite specification of 

the process behaviour of a queue with input port 1 and output port 2. Here D is a finite set of data 

(finite since otherwise the sums in the specification below would be infinite, and we do not 

consider infinite expressions), D* is the set of finite sequences cr of elements from D; the empty 

sequence is 'A. The sequence cr*cr' is the concatenation of sequences cr,cr'. 

QUEUE 

Q = QA =I.de D rl(d).Qd 

Oo*d = s2(d).0o- +Lee D rl (e).Qe*cr*d (for all de D and O'E D*) 

Table 12 

Note that this infinite specification uses only the signature of BPA. We have the following 

remarkable fact: 
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1.5.2. THEOREM. Using read-write communication, the process Queue cannot be specified in ACP 

by finitely many recursion equations. 

For the lengthy proof see Bergstra & Tiuryn [87]. It should be mentioned that the process Queue 

can be finitely specified in ACP if the read-write restriction is dropped and n-ary communications 

are allowed; in the next section it is shown how this can be done. In the sequel we will present 

some other finite specifications of Queue using features to be introduced later. 

1.6. Renaming. A useful 'add-on' feature is formed by the renaming operators Pr• where 

f: A~ A is a function keeping 8 fixed. A renaming Pr replaces each action 'a' in a process by f(a). 

In fact, the encapsulation operators a8 are renaming operators; f maps H ~ A to 8 and fixes A - H 

pointwise. The following axioms, where 'id' is the identity function, are obvious: 

RENAMING 

pi{a) 
pi{x+y) 
pi{xy) 
Pid(x) 
(pro Pg)(x) 

=f(a) 
= pr(x) + pr(Y) 
= pr(x)-pi{y) 
=X 

= PcogCx) 

Table 13 

Again the defining power is enhanced by adding this feature. While Queue as in the previous 

section could not yet be finitely specified, it can now. 

The actions are the rl(d), s2(d) as before; there are moreover 'auxiliary' actions r3(d), 

s3(d), c3(d) for each datum d. Communication is given by r3(d) I s3(d) = c3(d) and there are no 

other non-trivial communications. If we let Pc3~82 be the renaming c3(d) ~ s2(d) and p82~83 : 

s2(d) ~ s3(d), then for H = { s3(d), r3(d) I de D} the following two guarded recursion equations 

give an elegant finite specification of Queue: 

QUEUE, FIN11E SPECIFICATION 

Q =I.de D rl(d)-(rc3~s2 ° 0H)(rs2~s3(Q) II s2(d)-Z) 

Z =I.de D r3(d)-Z 

Table 14 

(This specification was inspired by a similar specification in Hoare [84). The present formulation is 

from Baeten & Bergstra [88].) The explanation that this is really Queue is as follows. We intend 
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that Q processes data d in a queue-like manner, performing 'input' actions and 'output' 

actions So p52~53(Q) processes data in queue-like manner by performing input actions 

output actions s3(d). First consider the parallel system Q' = GIH(Ps2~53(Q) II Z): since Z 

accepts s3(d) and transforms these into c3(d), this is just the queue with input rl(d), 

output c3(d). Now the process Q* = dH(Ps2-?g3(Q) II s2(d).Z) appearing in the recursion equation, 

like Q' but with the obligation to perform output action s2(d) before all output actions c3(d); 

this obligation is enforced since s2(d) must be passed before p52-?53(Q) and Z can communicate 

and create the output actions c3(d). So Pc3~s2(Q*) = Qd, the queue loaded with d, in the 

earlier notation used for the infinite specification of Queue (Table 10). But then Q = Lde D rl(d).~ 

and this is exactly what we want. 

In fact, the renamings used in this specification can be removed in favour of a more 

complicated communication format, as follows. Replace in the specification above p524s3(Q) by 

o52(Q ii V) where V = L.d s2*(d)·V and S2 = { s2(d), s2*(d) I de D} with communications 

s2(d)ls2*(d) = s3(d) for all d. To remove the other renaming operator, put 

P = oH(ds2(Q II V) II s2(d)·Z), and replace Pc34s2(P) by dc3(P II W) where W = Ld c3*(d)·W 

and c3(d)lc3*(d) = s2(d) for all d. However, though the renamings are removed in this way, the 

communication is no longer of the read-write format, or even in the hand shaking format, since we 

have ternary nontrivial communications s2(d) = c3(d)lc3*(d) = r3(d)ls3(d)lc3*(d). As we already 

stated in the last theorem, this is unavoidable. 

1. 7. Abstraction. 

A fundamental issue in the design and specification of hierarchical (or modularized) systems of 

communicating processes is abstraction. Without having an abstraction mechanism enabling us to 

abstract from the inner workings of modules to be composed to larger systems, specification of all 

but very small systems would be virtually impossible. We will now extend the axiom system ACP, 

obtained thus far, with such an abstraction mechanism. 

Consider two Bags B 12, B23 (cf. Example 1.5.1) with action alphabets {rl (d), s2(d) I de D} 

and { r2(d), s3(d) I de D}, respectively. That is, B 12 is a bag-like channel reading data d at pon 1, 

sending them to port 2; B23 reads data at 2 and sends them to 3. (That the channels are bags means 

that, unlike the case of a queue, the order of incoming data is lost in the transmission.) Suppose the 

bags are connected at pon 2; so we adopt communications s2(d) I r2(d) = c2(d) where c2(d) is the 

transaction of d at 2. 

2 B 

transparent Bag lB 13 

Figure 1.4 
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The composite system B13 = ClH(B12 II B23) where H = {s2(d), r2(d) I de D}, should, intuitively, 

be again a Bag between pons 1,3. However, from some (rather involved) calculations we learn that 

B 13 = 'LcteD rl(d)-((c2(d)·s3(d)) II B 13). 

So JE 13 is a 'transparent' Bag: the passage of d through 2 is visible as the transaction event c2(d). 

(Note that this tenninology conflicts with the usual one in the area of computer networks, where a 

network is called transparent if the internal structure is not visible.) 

How can we abstract from such internal events, if we are only interested in the external 

behaviour at 1,3? The first step to obtain such an abstraction is to remove the distinctive identity of 

the actions to be abstracted, that is, to rename them all into one designated action which we call, 

after Milner, '!:: the silent action. This renaming is realised by the abstraction operator '1:1, 

parameterized by a set of actions I b A and subject to the following axioms: 

ABSTRACTION 

"I (t) 
"I (a) 
"r (a) 
"r (x+y) 
t 1 (xy) 

='t 
=aifaeI 
=tifae I 
= t 1 (x) + t 1 (y) 
= tr (x)·'tr (y) 

Table 15 

The second step is to attempt to devise axioms for the silent step -c by means of which 't can be 

removed from expressions, as e.g. in the equation a'tb = ab. However, it is not possible to remove 

all 't's in an expression if one is interested in a faithful description of deadlock behaviour of 

processes (at least in bisimulation semantics, the framework adopted in this paper). For, consider 

the process (expression) a+ 'tll; this process can deadlock, namely if it chooses to perform the 

silent action. Now, if one would propose naively the equations -ex= x'C = x, then a+ 'to= a+ o = 

a, and the latter process has no deadlock possibility. It turns out that one of the proposed equations, 

X't = x, can be safely adopted, but the other one is wrong. Fortunately, R. Milner has devised some 

simple axioms which give a complete description of the properties of the silent step (complete with 

respect to a certain semantical notion of process equivalence called r'to-bisimulation, which does 

respect deadlock behaviour; this notion is discussed below), as follows. 

SILENT STEP 

X't = X 

'tx='tx+x 
a('tx + y) =a( tx + y) + ax 

Table 16 
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after absm1ct:on 1hc set of 

(*) 

from which it follows that the Bag defined by 

=I. de D rl(d)(s3(d) B13}. 

Here we were able to eliminate all silent actions, but this will not always be the case. For instance, 

two Stacks (see Figure 1.2) instead of Bags (Figure 1.3) yields a process with 

"essential' 't-steps. Likewise for a Bag followed by a Stack. (Here 'essential' means: 

non-removable in bisimulation semantics.) In fact, the computation above is not as straightforward 

Lts was suggested: io justify the equations marked with (*) and (**) we need additional proof 

As to (**), this equation is justified by the Recursive Specification Principle (RSP) 

that a guarded system of recursion equations in which no abstraction operator '"'i appears, 

has a unique solution. 

1.8. Proof rnies for recursive specifications. We have now presented a survey of ACP"; 

we refer to Bergstra & Klop [85] for an analysis of this proof system as well as a proof that (when 

the hand shaking axiom is adopted) the Expansion theorem carries over from ACP to ACPt 

unchanged. Note that ACP 'I: (displayed in full in Section 1.11) is entirely equational. Without 

farther proof rules it is not possible to deal (in an algebraical way) with infinite processes, obtained 

by recursive specifications, such as Bag; in the derivation above we tacitly used such proof rules 

and these ¥rill be made explicit below. 

(i) RDP, the Recursive Definition Principle: 

Every guarded and abstraction free recursive specification has a solution. 

(ii) RSP, the Recursive Specification Principle: 

Every guarded and abstraction free recursive specification has at most one solution. 

(iii) AIP, the Approximation Induction Principle: 

A process is determined by its finite projections. 

In a more formal notation, AIP can be rendered as the infinitary rule 
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x=y 

As to (i), the restriction to guarded specifications is not very important (for an informal definition of 

'guarded' see Section 1.1); in the process algebras that we have encountered and that satisfy RDP, 

also the same principle without the guardedness condition is true. More delicate is the situation in 

principle (ii): first, 't-steps may not act as guards : e.g. the recursion equation X = 'tX +a has 

infinitely many solutions, namely 't(a + q) is a solution for arbitrary q; and second, the recursion 

equations must not contain occurrences of abstraction operators 't1. That is, they are 

'abstraction-free' (but there may be occurrences of 'tin the equations). The latter restriction is in 

view of the fact that, surprisingly, the recursion equation X = a·'t(a}(X) possesses infinitely many 

solutions, even though it looks very guarded. (The solutions are: a·q where q satisfies 't(a}(q) = q.) 

That the presence of abstraction operators in recursive specifications causes trouble, was already 

noticed in Hoare [85]. 

As to (iii), we still have to define projections 7t0 in the presence of the 't-action. The extra 

clauses are: 

PROJECTION, CONTINUED 

Table 17 

So, 't-steps do not add to the depth; this is enforced by the 't-laws in Table 16 (since, e.g., a'tb = ab 

and 'ta= ta+ a). Remarkably, there are infinitely many different terms 1n (that is, different in the 

term model of ACP 't), built from t and a single atom 'a', such that 1n has depth 1, i.e. t = 7t1 (t). 

The 1n are inductively defined as follows: 

to= a, t1 ='ta, ti = t, t3 = t(a + 't), t4 =a+ ta, 

t4k+i = 't·t4k+i-l for i = 1,3 and k 2:: 0, 

t4k+i = t4k+i-3 + t4k+i-S for i = 0,2 and k 2:: 0. 

In fact, these are all terms (modulo provable equality in ACP 't) with the properties as just stated. 

Furthermore, with respect to the "summand ordering":::; defined by x :::; x + y, the set of these term 

takes the form of the partial order in Figure 1.5, which has the same form (but for one point) as the 

Rieger-Nishimura lattice in intuitionistic propositional logic. 



67 

't(t('t+a) + 't('ta+ t)) 

't('t(t +a)+ 'ta) 

't('ta + t) 

't('t +a) 

't 

Figure 1.5 

The unrestricted form of AIP as in (iii) will tum out to be too strong in some circumstances; 

it does not hold in one of the main models of ACP 't' namely the graph model which is introduced in 

Section 1.13. Therefore we also introduce the following weaker form. 

(iv) AJP" (Weak Approximation Induction Principle): 

Every process which has an abstraction-free guarded specification is determined by its finite 

projections . 

Roughly, a process which can be specified without abstraction operators is one in which there are 

no infinite 't-traces (and which is definable). E.g. the process x0 defined by the infinite 

specification {X0 = bX1, Xn+l = bXn+2 +an}, where an is a·a· ... ·a (n times), contains an infinite 

trace of b-actions; after abstraction with respect to b, the resulting process, Y = 't (b l (X0), has an 

infinite trace of 't-steps; and (at least in the main model of ACP't of Section 1.13) this Y is not 

definable without abstraction operators. 

Even the Weak Approximation Induction Principle is rather strong. In fact a short argument 

shows the following: 

1.8.1. THEOREM. AIP- => RSP. 

As a rule, we will be very careful in admitting abstraction operators in recursive 

specifications. Yet there are processes which can be elegantly specified by using abstraction 

inside recursion. The following curious specification of Queue is obtained in this manner. We 

want to specify Q12, the queue from port 1 to 2, using an auxiliary port 3 and concatenating 
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auxiliary queues Q13, Q32; then we abstract from the internal transaction at port 3. Write, in an ad 

hoe notation, Q12 = Q13*Q32. Now Q13 can be similarly split up: Q13 = Q12*Q32. This gives rise 

to six similar equations: Qab = Qac*Ocb where {a,b,c} = { 1,2,3 }. (See Figure 1.6.) 

Figure 1.6 

These six queues, which are merely renamings of each other, can now be specified in terms of each 

other as in the following table. One can prove that these recursion equations, though not 

abstraction-free, indeed have a unique solution. 

QUEUE, FIN1TE SPECIFICATION WITII ABSTRACTION 

Q12 =LdeDrl(d)·t3od3(Q13 II s2(d)·032) 

021 = rdE D r2(d)·t3 0 d3(Q23 II sl(d)·031) 

023 =LdeDr2(d)-t1 od1(Q21 II s3(d)·Q13) 

032 =I.deor3(d}t1 od1(Q31 II s2(d}012) 

031 =I.de D r3(d}t2 ° Cl2(Q32 II sl(d)·021) 

Q13 =Lcteorl(d}t2 oa2(Q12 ll s3(d)-Q23) 

Table 18 

Here the usual read-write notation is used: ri(d) means read d at i, si(d): send d at i, 

communications are ri(d)lsi(d) = ci(d); further 'ti = 't(ci(d)ldeD} and oi = d(ri(d),si(d) I deD)· This 

example shows that even with the restriction to read-write communication, ACP t is stronger than 

ACP. 

1.9. Alphabet calculus. In computations with infinite processes one often needs information 

about the alphabet a(x) of a process x. E.g. ifx is the process uniquely defined by the recursion 

equation X = aX, we have a(x) ={a}. An example of the use of this alphabet information is given 

by the implication a(x)nH = 0 ~ dH(x) = x. For finite closed process expressions this fact can 

be proved with induction to the structure, but for infinite processes we have to require such a 
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property axiomatically. In fact, this example will be one of the 'conditional axioms' below 

(conditional, in contrast with the purely equational axioms we have introduced thus far). First we 

have to define the alphabet: 

ALPHABET 

a(B) = 0 
a(t) = 0 
a(a) ={a) 
a(tx) = a(x) 
a(ax) = {a} u a(x) 
a(x+y) = a(x) u a<:J) 
a(x) = u~l a("n(x)) 
a(arr(x) = a(x) - H 
a(t1(x)) = a(x) - I 

Table 19 

To appreciate the non-triviality of the concept a(x), let us mention that a finite specification can be 

given of a process for which the alphabet is uncomputable (see Bergstra & Klop [84b] for an 

example). 

Now the following conditional axioms will be adopted: 

CONDITIONAL AXIOMS 

a(x) I (a(y)11H) \;;;; H => arr(x II y) = aH (x II aJI{y)) 

a (x) I (a(y)11I) = 0 => t 1(xll y) = t 1(x llt1(y)) 

H=H1 uH2 => aH(x) = (aHl o aH2)(x) 

I= r1 u I2 => t 1(x) = (tn o -c12)(x) 

a(x) 11 H=0 => aH(x) = x 

a(x) 11 I =0 => t 1(x) = x 

Table 20 

Using these axioms, one can derive for instance the following fact: if communication is of the 

read-write format and I is disjoint from the set of transactions (communication results) as well as 

disjoint from the set of communication actions, then the abstraction 'tr distributes over merges x II y. 

1.10. Koomen's Fair Abstraction Rule. Suppose the following statistical experiment is 

performed: somebody flips a coin, repeatedly, until head comes up. This process is described by 

the recursion equation X = flip·(tail·X +head). Suppose further that the experiment takes place in a 

closed room, and all information to be obtained about the process in the room is that we can hear 

the experimenter shout joyfully: 'Head!'. That is, we observe the process 't1(X) where I= {flip, 
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tail}. Now, if the coin is 'fair', it is to be expected that sooner or later the action 'head' will be 

perceived. Hence, intuitively, 't1(X) == 't·head. (This vivid example is from Vaandrager [86].) 

Koomen's Fair Abstraction Rule (KFAR) is an algebraic rule enabling us to arrive at such a 

conclusion formally. (For an extensive analysis of this rule see Bateen, Bergstra & Klop [87].) The 

simplest form is 

X ::::: ix + y (i E I) 

'tr(x) == 't· 'tr (y) 

So, KFAR1 expresses the fact that the ''t-loop' (originating from the i-loop) in 't1(x) will not be 

taken infinitely often. In case this '-c-loop' is of length 2, the same conclusion is expressed in the 

rule 

x1 = i1x2 + Y1· xz == izx1 + Y2 Ci1,i2 e I) 

'C1(x1)::::: 't· 't1(Y1+Y2) 

and it is not hard to guess what the general formulation (KFARn, n ~ 1) will be. In fact, as 

observed in Vaandrager [86], KFARn can already be derived from KFAR1 (at least in the 

framework of ACP't#' to be discussed below). 

KF AR is of great help in protocol verifications. An example is given in Section 1.12, where 

KF AR is used to abstract from a cycle of internal steps which is due to a defective communication 

channel; the underlying fairness assumption is that this channel is not defective forever, but will 

function properly after an undetermined period of time. (Just as in the coin flipping experiment the 

wrong option, tail, is not chosen infinitely often.) 

An interesting peculiarity of the present framework is the following. Call the process 't(J) (= 

t·t·'t· .... ) live lock. Formally, this is the process 't{i) (x) where x is uniquely defined by the 

recursion equation X = i-X. Noting that x = i·x == i·x + cS and applying KFAR1 we obtain 't(J) = 

't{i)(x) = 'tO. In words: livelock =deadlock. There are other semantical frameworks for processes, 

also in the scope of process algebra but not in the scope of this paper, where this equality does not 

hold (see Bergstra, Klop & Olderog [86, 87]). 

1.11. ACP/, a framework for process specification and verification. 

We have now arrived at a framework which will be called ACP't#' and which contains all the 

axioms and proof rules introduced so far. In Table 21 the list of all components of ACP 't # is given; 

Table 22 contains the equational system ACP 't' Note that for specification purposes one only needs 

ACP't or ACP't+; for verification one will need ACP't# (an extensive example is given in Section 

1.12). Also, it is important to notice that this framework resides entirely on the level of syntax and 

formal specifications and verification using that syntax--even though some proof rules are 

infinitary. No semantics for ACP/ has been provided yet; this will be done in Section 1.13. The 
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idea is that 'users' can stay in the realm of this formal system and execute algebraical 

manipulations, without the need for an excursion into the semantics. That this can be done is 

demonstrated by the verification of a simple protocol in the next section; at that point the semantics 

of ACP/ (in the form of some model) has, on purpose, not yet been provided. This does not mean 

that the semantics is unimportant; it does mean that the user need only be concerned with formula 

manipulation. The underlying semantics is of great interest for the theory, if only to guarantee the 

consistency of the formal system; but applications should not be burdened with it, in our intention. 

Basic Process Algebra 
Deadlock 
Communication function 
Merge with communication 
Encapsulation 

Silent step 
Silent step: auxiliary axioms 
Abstraction 

Renaming 
Projection 
Hand shaking 
Standard concurrency 
Expansion theorem 

Alphabet calculus 
Recursive Definition Principle 
Recursive Specification Principle 
Weak Approximation Induction Principle 
Koomen's Fair Abstraction Rule 

Table 21 

Al-5 
A6,7 
Cl-3 
CMl-9 
Dl-4 

Tl-3 
TM1,2;TC1-4 
DT; Tll-5 

RN 
PRl-4 
HA 
SC 
ET 

CA 
RDP 
RSP 
AIP-

KFAR 

The system up to the first double bar is ACP; up to the second double bar we have ACP't' and up to 

the third double bar, ACP i: +. 

So ACP/ is a medium for formal process specifications and verifications; let us note that we 

also admit infinite specifications. As the system is meant to have practical applications, we will only 

encounter computable specifications. A finite specification (of which an expression is a particular 

case) is trivially computable; an infinite specification {En I n ~ O}, where En is the recursion 

equation Xn = T(X1, ... ,Xf(n)), is computable if after some coding, in which En is coded as a 

natural number en, the sequence {en I n ~ 0} is computable. Here an important question arises: is 

every computable specification provably equal to a finite specification ? At present we are unable to 

answer this question; but we can state that the answer is affirmative relative to certain models of 

ACP i: #. Before we elaborate this, a verification of a simple protocol is demonstrated. 
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ACP" 
Al X't=X TI 

x+y=y+x 
A2 'tX + X= 'tX T2 

x + (y + z) "" (x + y) + z 
A3 a('tx + y) = a(-i:x + y) + ax T3 

x+x=x 
(x + y)z " xz + yz A4 

(xy )z = x(yz) AS 
X+O=X A6 

OX=O A7 

alb=bia Cl 

(a I b) le= a I (b I c) C2 

ola=l'i C3 

xlly= xll_y + y lL x + x I Y CMl 

alLx=ax CM2 't \lx=tx TMl 

ax lL y = a(xliy) CM3 'tX ll_ Y = 't(xliy) TM2 

(x + y) lL z = x lL z + Y lL z CM4 tlx=o TCl 

axlb=(alb)x CMS xh=o TC2 

al bx= (a b)x CM6 -i:xly=x1y TC3 

ax I by= (a I b)(xliy) CM7 xJty=x y TC4 

(x+y)iz=x1z+ylz CM8 

x I <Y + z) = x y + x I z CM9 ilH ('t) ='t DT 

'tI ('t) ='t Tll 

ilH (a)= a ifaeH Dl 'tI (a)= a ifareI TI2 

iJH (a) =o if aEH D2 'tr (a)='t if aEI Tl3 

ilH (x + y) = ilH (x) + ilH (y) D3 'tI (x + Y) = 'tI (x) + 'tI (y) TI4 

ilH (xy) = ilH (x)·ilH (y) D4 'tI (xy) = 'tr (x)·'tr (y) TI5 

Table 22 

1.12. An algebraic verification of the Alternating Bit Protocol. 

In this section we will demonstrate a verification of a simple communication protocol, the 

Alternating Bit Protocol, in the framework of ACP/. (In fact, not all of ACP't# is needed.) This 

verification is from Bergstra & Klop [86a]; the present streamlined treatment was kindly made 

available to us by F.W. Vaandrager (CWI Amsterdam). 

Let D be a finite set of data. Elements of D are to be transmitted by the ABP from port 1 to port 

2. The ABP can be visualized as follows: 

1 2 

Figure 1.7 
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There are four components: 

A: Reads a Message (RM) at 1. Thereafter it Sends a Frame (SF), consisting of the message and a 

control bit, into channel K until a correct Acknowledgement has been Received (RA) via channel L. 

The equations for A are as follows. We will always use the notations: datum d E D, bit b E { 0, l), 

framefe Dx {0,1) (soaframefisoftheformdb). 
,, 

A =RW 
RMb = 'Lct rl(d)-Spfu 

sFib =s3(db)·RAdb 

RA db = (rS(l-b) + rS(e))·Spib + rS(b)·RMl-b 

K: data transmission channel K communicates elements of D x {0,1}, and may communicate these 

correctly or communicate an error value 'e'. K is supposed to be fair in the sense that it will not 

produce an infinite consecutive sequence of error outputs. 

K = 'Lrr3(f}Kf 

Kf = ('t·s4(e) + 't·s4(f))-K 

The 't's in the second equation express that the choice whether or not a frame f is to be 

communicated correctly, cannot be influenced by one of the other components. 

B: Receives a Frame (RF) via channel K. If the control bit of the frame is OK, then the Message is 

Sent (SM) at 2. B Sends back Acknowledgement (SA) via L. 

B =RFO 

RFb = (I,d r4(d(1-b)) + r4(e))·SA l-b +Id r4(db)·SMdb 

SAb = s6(b)·RFl-b 

s~b = s2(d)-SA b 

L: the task of acknowledgement transmission channel Lis to communicate boolean values from B 

to A. The channel L may yield error outputs but is also supposed to be fair. 



74 

L =lb r6(b)-Lb 

Lb= ('t·s5(e) + 't·s5(b))-L 

Define D = D u (D x { 0, 1}) u { 0, l} u { e}. D is the set of 'generalized' data (i.e. plain data, 

frames, bits, error) that occur as parameter of atomic actions. We use the notation: g e D. Forte 

{ 1,2, ... ,6} there are send, read, and communication actions: 

A= {st(g), rt(g), ct(g) I g E D, t E { 1,2, ... ,6} }. 

We define communication by st(g) I rt(g) = ct(g) for g E D, t e { 1,2, ... ,6} and all other com

munications give o. Define the following two subsets of A: 

H = {st(g), rt(g) It e {3,4,5,6}, g e D} 

I= {ct(g) It e {3,4,5,6}, g e D}. 

Now the ABP is described by ABP = 't1 o aH(A II K II B II L). The fact that this is a correct protocol 

is asserted by 

1.12.1. THEOREM. ACP/ I- ABP = Lct rl(d)·s2(d)·ABP. 

(Actually, we need only the part of ACP't# consisting of ACP't+SC+RDP+RSP+CA+KFAR-see 

Tables 21, 22.) 

PROOF. Let I'= {ct(g) It e {3,4,5}, f e D}. We will use [x] as a notation for 'tr o oH(x). 

Consider the following system of recursion equations: 

(0) x =X10 

(1) xb 
I =Id rl(d)·X2 db 

(2) x db 
2 = t·X3db + 't·Xlb 

(3) x db 
3 = c6(1-b)·Xi db 

(4) x db 
4 = s2(d)·Xsdb 

(5) x db 
5 = c6(b).X6db 

(6) x db 
6 = 't·Xsdb + i:.Xl 1-b 

We claim that ACP/ 1- X =[A llK II B II L]. We prove this by showing that [A II K II B II L] 
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satisfies the same recursion equations (0)-(6) as X does. In the computations below, the bold face 
part denotes the part of the expression currently being 'rewritten'. 

(0) [A II K II B II L] = [RMo II K II RPl II L] 

(1) [RMb II K II RFb 11 L] = 

I.d rl(dH SFdb II K II RFb II L] = 

I.d rl(d)·'t·[RAdb II Kdb II RFb II L] = 

I.deD rl(d)·[RAdb II Kdb II RFb II L] 

(2) [RAdb II Kdb II RFb 11 L] = 

't·[RAdb II s4(e)·K II RFb II L] + 't·[RAdb II s4(db)·K II RFb II L] = 
't·[RAdb II K II SA1-b II L] +'t·[RAdb II K II SMdb II L] 

(3) [RAdb II K II SA1-b II L]= 

c6(1-b)·[RAdb II K II RFb II Ll-b] = 

c6(1-b)·( 't·[RAdb II K II RFb II sS(e)·L] + 't·[RAdb II K II RFb II sS(l-b)·L]) = 

c6(1-b)· 't·[SFdb II K II RFb II L] = 

c6(1-b)· 't· 't·[RAdb II Kdb II RFb II L] = 

c6(1-b)·[RAdb II Kdb II RFb II L ]. 

( 4) [RA db II K II SMdb II L ] = 

s2(d)·[RAdb II K II SAb II L]. 

(5) [RAdb II K II SAb II L]= 

c6(b)·[RAdb II K II RF1-b II Lb]. 

(6) [RAdb II K II RF1-b II Lb]= 
't·[RAdb II K II RFI-b II sS(e)·L] + 1:·[ RAdb II K II RF1-b II sS(b)·L] = 
't·[ spdb II K II RFl-b II L] + 1:·[ RM1-b II K II RF1-b II L ]. 

(7) [ SFdb II K II RF1-b II L] = 

't·[ RAdb II Kdb II RF1-b II L] = 

't·('t·[RAdb II s4(e)·K II RF1-b II L] +1:·[ RAdb II s4(db)·K II RF1·b II L])= 

't·[ RAdb II K II SAb II L ]. 

Now substitute (7) in (6) and apply RSP + RDP. Using the conditional axioms (see Table 20, 

Section 1.9) we have ABP = 't1(X) = 1:1(X 1o). Further, an application ofKFAR2 gives 
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Hence, 

't1(X1b) =Lei rl(d)·'t1(X2db) =Lei rl(d)· 'Cy(X4db) = 
L.d rl(d)·s2(d)· t 1(X5db) = Ld rl(d)-s2(d)-'t1(X1 l-b) 

and thus 

't1(X1°> =Lei rl(d)·s2(d)·Lci· rl(d')·s2(d')· ty(X1°> 

t1(X11) =Lei rl(d)·s2(d)·Lci· rl(d')·s2(d')· 'Cy(X11). 

which finishes the proof of the theorem. D 

More complicated communication protocols have been verified in ACPt# by Vaandrager [86]: 

a Positive Acknowledgement with Retransmission protocol and a One Bit Sliding Window 

protocol. There the notion of redundancy in a context is used as a tool which facilitates the 

verifications. A related method, using a modular approach, is employed in Koymans & Mulder 

[86), where a version of the Alternating Bit Protocol called the Concurrent Alternating Bit Protocol 

is verified in ACP/_ (In fact, also in the verifications in Vaandrager [86] and Koymans & Mulder 

[86) one only needs the part of ACPt# mentioned after Theorem 1.12.1.) Another verification of 

the Concurrent Alternating Bit Protocol is given in Van Glabbeek & Vaandrager [88]. 

1.13. Bisimulation semantics for ACPl: the model of countably branching 

graphs. 
We will now give a short description of what we consider to be the 'main' model of ACP t #. The 

basic building material consists of the domain a. of countably branching, labeled, rooted , 
connected, directed multigraphs. (In the notation of Chapter 3, 6. will be a.a, l:t 1, where ex is the 

alphabet cardinality.) Such a graph, also called a process graph, consists of a possibly infinite set 

of nodes s with one distinguished node s0, the root The edges, also called transitions or steps, 

between the nodes are labeled with an element from the action alphabet; also 8 and 'C may be edge 

labels. We use the notations ~at for an a-transition from node s to node t; likewise s ~t t is a 

t-transition and s~s t is a 8-step. That the graph is connected means that every node must be 

accessible by finitely many steps from the root node. Examples of process graphs where already 

given in Figures 1-3. Regarding &-steps in process graphs, we will suppose that all process graphs 
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are 8-norrnalised; the precise definition follows in Definition 1.13. 3. 

Corresponding to the operations+,·, II, \L, I, aH, 't1, n:n, a in ACP't# we define operations 

in the domain G. of process graphs. Precise definitions can be found in Baeten, Bergstra & Klop 

[87]; we will sketch some of them here. The sum g + h of two process graphs g, h is obtained by 

glueing together the roots of g and h; there is one caveat: if a root is cyclic (i.e. lying on a cycle of 

transitions leading back to the root), then the initial part of the graph has to be 'unwound' first so as 

to make the root acyclic. (In Chapter 2 we will be more precise about 'root-unwinding': see 

Definition 2.1.2 there.) The product g·h is obtained by appending copies of h to each terminal node 

of g; alternatively, one may first identify all terminal nodes of g and then append one copy of h to 

the unique terminal node if it exists. The merge g II his obtained as a Cartesian product of both 

graphs, with 'diagonal' edges for communications. (See Figure 1.8 for the merge of ab and cd, 

with communications blc = g and aid= f.) Definitions of the auxiliary operators IL, I are somewhat 

more complicated and not discussed here. The encapsulation and abstraction operators are simply 

renamings, that replace the edge labels in H and I, respectively, by 8 and 't, respectively. 

Definitions of the projection operators n:n and a should be clear from the axioms by which they are 

specified. As to the projection operators, it should be emphasized that 't-steps are transparent: they 

do not increase the depth. 

Figure 1.8 

The domain a of process graphs equipped with the operations just introduced, is not yet a model of 

ACP 't: for instance the axiom x + x = x does not hold. In order to obtain a model, we define an 

equivalence on the process graphs which is moreover a congruence with respect to the operations. 

This equivalence is called bisimulation congruence or bisimilarity. (The original notion is due to 

Park [81]; it was anticipated by Milner's observational equivalence, see Milner [80].) 
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1.13.l. DEFINITION. Let g Ea. 
(i) Steps s ~u t and S~y t' (where u, v E A~ {'C, o}; s, t, t' are nodes of g) are brothers. A 

step t ~v t' is a son of the step s ~u t. 

(ii) g is said to be 8-normalised if &.steps have no brothers and no sons. 

(iii) End points of &-steps are virtual nodes; all other nodes in g are proper. 

(iv) A node is a deadlock node if all outgoing traces have only edges with labels 'C, o and end all 

in 8. (See Figure 1.9.) 

(v) Nodes from which only infinite 'C-traces start, are livelock nodes. 

(vi) A deadlock-livelock node is a node from which all outgoing traces have as labels only 'C, 8 

and such that there is no succesfully terminating trace. 

deadlock node livelock node deadlock-livelock node 

Figure 1.9 

1.13.2. DEFINITION. A path 1t in g is a sequence 

so ~uo s1 ~ul ··· ~u(n-1) Sn (n;?; 0) 

of proper nodes and labelled edges. The node s0 is begin(1t), the node sn is end(n). The path 7t 

determines a sequence of labels u0u1 ... un-l (ui e A u { 'C }); val(n) is this sequence with all 1:' s 

skipped. Note that val(n) E A*, the set of words over A, including the empty word A. 

1.13.3. DEFIN1TION. Let g, h E fl be 8-normalised. Let R be a relation between the proper nodes 

of g,h. We say that R relates path 7t in g to path 7t1 in h (notation 1t R 1t1) if 

begin(1t) R begin(1t') 

end(n) R end(1t') 

val(n) = val(1t'). 

(s Rt means: s,t are related by R.) If 7t R 7t', we also say that 7t is transfered by R to n', and vice 

versa. 

(ii) Relation R has the transfer property if: 

whenever 1t is a path in g and begin(1t) Rt, t E NODES(h), then 1t is transfered to some path 
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n' in h' with begin(n') = t; 
likewise with the role of g, h interchanged. 

(Note that by definition the end points of 1t, n' are again related.) 

1.13.4. DEFINITION. (i) Let g, h E G. be o-normalised. Then g r:J.rrl h (g, hare rto-bisimilar via 

R) if there is a relation between the proper nodes of g, h such that 

(1) the roots of g, hare related, 

(2) a root may only be related to a root, 

(3) R has the transfer property, 

(4) a deadlock-livelock node may only be related to a similar node. 

(An equivalent definition is obtained by replacing (4) by: 

(4') a node with possibly successful termination may only be related to a similar node. Here a 

node has 'possibly successful termination' if there is an outgoing trace ending succesfully.) 

(ii) g t:::J. rro h if there is an R such that g t:::J. rrl h. 

1.13.5. EXAMPLES. (i) Figure 1.10 contains an example of a bisimulation in which only proper 

atoms (no 't, o) are involved: the cyclic process graph g is bisimilar to the infinite process graph h 

obtained by unwinding. 

g: 

Figure 1.10 

(ii) The two graphs in Figure 1.11 are bisimilar via the bisimulation relating nodes on the same 

level (i.e. joinable by a horizontal line). 
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g: 

(a) (b) 

Figure 1. 11 

(iii) Figure 1.12 demonstrates a bisimulation between process graphs involving 't-steps: nodes of 

the same 'color' are related. 

Example of r-c8-bisimulation: nodes of the same colour are related 

Figure 1.12 

We now are in the fortunate position that rto-bisimilarity is not only an equivalence relation 

on the domain a of process graphs, but even a congruence with respect to the operators on a. Thus 

we can take the quotient Ci./t::tp-tll •notation: G. The following theorem is from Baeten, Bergstra & 

Klop [87]. 
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1.13.6. THEOREM. G is a model of ACPl. 

Remarkably, this graph model (as we will call it henceforth) does not satisfy AIP, the unrestricted 

Approximation Induction Principle. A counterexample is given (in a self-explaining notation) by the 

two process graphs g = Ln;?:l a11 and h = Ln;?:l a11+aro (see Figure 1.13(a)); while g and h have the 

same finite projections 1t11(g) = 1t11(h) =a+ a2 + a3 + ... + a11, they are not (rt&-)bisimilar due to the 

presence of the infinite trace of a-steps in h. It might be thought that it would be helpful to restrict 

the domain G. of process graphs to finitely branching graphs, in order to obtain a model which does 

satisfy AIP, but there are two reasons why this is not the case: (1) the finitely branching graph 

domain would not be closed under the operations, in particular the communication merge (I); (2) a 

similar counterexample can be obtained by considering the finitely branching graphs g' = 't{t)(g") 

where g" is the process graph defined by {Xn = a11 + tXn+l in;;;:: 1} and h' = g' + aro. (See Figure 

l.14(b).) 

Figure 1.13 

g' h' 

't 't 
't 't 

~ 

a a a a a a 

a a a a 

a a ? 

I 
0 

Figure l.14 
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1.13.7. REMARK. It is not hard to see that the validity of AIP" in the model <G is a direct 

consequence of the following general lemma about bisimulations. Here, for a graph g, ttn(g) is the 

n-th projection of g, i.e. what remains of g after cutting off everything below depth n. 

Furthermore, 1:t is the restriction of ~rt8 to the case where not or 3 is present. (For an explicit 

definition, see 2.1.4.l in Chapter 2.) 

1.13.7 .1. LEMMA. Let g, h be process graphs containing only proper steps (not 'tor 3). Let g be 

finitely branching (h may be irifinitely branching). Then: 

'v' n 1tn (g) 1:t 1tn (h) => g ~ h. 

PROOF. We may suppose that g, h are process trees. Suppose g is finitely branching. Define 

relations 5n (n ~ 1) and = between nodes s of g and t of h as follows: s = t iff 'v' n s =n t and s =n t 

iff 7t0 ((g) 8 1:t 7t0((h)t). Here (g)8 is the subtree of g with root s. We will prove that = is a 

bisimulation. 

For the roots s0, to of g, h respectively we have indeed s0 = to; this is just the assumption 'v'n 

~(g) !::I 7t0(h). Next we show the easy half of the bisimulation requirements: let s = t and 

t ~at'. We have to show that there is ans' such that s ~as' and s' = t'. By definition of =n· and 

because we have 'v'n s =n t, for every n there must be a steps ~a sn' such that sn' =n t'. Since s 

has only finitely many successors (g is finitely branching), there must be an s' among the sn' such 

that s ~as' and s' =n t' for infinitely many n. Since the relations =n are decreasing C=o :1 =1 :1 =i 
:2 ... ) this means that s' =n t' for all n, i.e. s' =n t'. 

For the reverse bisimulation requirement, see Figure 1.15. Lets stands ~as'. To show 

that there is at' such that t ~at' and s' = t'. We can find a-successors t1, tz, ... , 1n···· oft such 

that s' =n 1n· As was just proved, for every tn there is an a-successor Sn of s with s0 =1n· Since s 

has only finitely many successors, the sequence {s0 }n is in fact finite. Hence there is an 

a-successors* of s such that s* = 1n for infinitely many n. So, s' =n 1n = s* for infinitely many n. 

Sos'= s*, and s' = t' where t' is one of the 1n with 1n = s*. D 

The general case, where 't and 3 may be present, follows by an entirely similar proof (see 

also Baeten, Bergstra & Klop [87]). Note however that ~(g) now is obtained by cutting away all 

steps that are reachable from the root only by passing n or more proper steps. (So 7t0 (g) may 

contain infinite t-paths.) Thus we have: 

1.13.7.2. LEMMA. Let g, h be process graphs. Let g have finite projections (i.e. every 7t0 (g) is a 
finite graph.) Then: 

'v'n 7tn(g) t:trt81tn(h) => g t:trt8 h. 

Note that the assumption of finite projections is fulfilled for a graph which is defined by a system 
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of guarded recursion equations; hence AIP- holds in G. 

Figure 1.15 

1.14. The expressive power of ACP-c. 

ACP'C is a powerful specification mechanism; in a sense it is a universal specification mechanism: 

every finitely branching, computable process can be finitely specified in ACP'C. We have to be 

more precise about the notion of 'computable process'. First, an intuitive explanation: suppose a 

finitely branching process graph g is actually given; the labels may include 'C, and there may be even 

infinite 'C-traces. That g is 'actually' given means that the process graph g must be 'computable': a 

finite recipe describes the graph, in the form of a coding of the nodes in natural numbers and 

recursive functions giving in-degree, out-degree, edge-labels. This notion of a computable process 

graph is rather obvious, and we will not give details of the definition here (these can be found in 

Baeten, Bergstra & Klop [87)). 

Now even if g is an infinite process graph, it can be specified by an infinite computable 

specification, as follows. First rename all -c-edges in g tot-edges, for a 'fresh' atom t. Call the 

resulting process graph: gt. Next assign to each node s of gt a recursion variable Xs and write 

down the recursion equation for Xs according to the outgoing edges of node s. Let Xso be the 

variable corresponding to the root s0 of gt. As g is computable, gt is computable and the resulting 

'direct' specification E = {Xs = Ts(X) Is e NODES(gt)} is evidently also computable (i.e.: the 

nodes can be numbered as Sn (n ~ 0), and after coding the sequence en of codes of equations En: 

Xsn = Tsn<X) is a computable sequence). Now the specification which uniquely determines g, is 

simply: {Y = 'C{t}(X8o)} u E. In fact all specifications below will have the form {X ='C1(Xo), 

Xn = Tn(X) In~ 0} where the guarded expressions Tn(X) (= TnCXu, ... ,Xin)) contain no 

abstraction operators -c1. They may contain all other process operators. We will say that such 

specifications have restricted abstraction. 
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However, we want more than a computable specification with restricted abstraction: to describe 

process graph g we would like to find a finite specification with restricted abstraction for g. Indeed 

this is possible: 

1.14.2. FINITE SPECIFICATION THEOREM. Let the finitely branching and computable process 

graph g determine g- in the graph model <G of ACP 't· Then there is a finite specification with 

restricted abstraction E in ACP't such that [E] = g~. 

Here [E] is the semantics of E in the graph model. (The proof in Baeten, Bergstra & Klop [87J is 

by constructing a Turing machine in ACP ,6 the 'tape' is obtained by glueing together two stacks. A 

stack has a simple finite specification, already in BPA; see the example :in Section 1.1.) A stronger 

fact would be the assertion that every computable specification with restricted abstraction in ACP 't: 

is provably equivalent (in ACP,/') to a finite specification with restricted abstTaction. At present we 

do not know whether this is true. 

It should be noted that abstraction plays an essential role in this finite specification theorem. 

If f: N 4> ( a,b} is a sequence of a,b, let Pf be the process f(O)·f(l)·f(2)· ... (more precisely: the 

unique solution of the infinite specification {Xn = f(n}Xn+ i In~ 0} ). Now: 

1.14.3. THEOREM. There is a computahlefunction f such that process Pf is not definable by a finite 

specification (in ACP't:) without abstraction operator. 

A fortiori, Pf is not finitely definable in ACP. The proof in Baeten, Bergstra & Kl op (87] is via a 

simple diagonalization argument 

1.14.4. REMARK. As we have seen, the graph model of ACP't# (Section 1.13) does not satisfy the 

unrestricted Approximation Induction Principle which states that every process is uniquely 

determined by its finite projections. It is natural to search for a model in which this principle does 

hold. However, Van Glabbeek [87] proves that such a model does not exist, if one wishes to 

adhere to the very natural assumption that composition of abstraction operators is commutative, and 

if one only allows models in which deadlock behaviour is respected (in which, therefore, the 

equation 'C = 't: + 'tO does not hold). We will consider the following consequence of the axioms in 

Table 20: 't{a) o 'C(b) = 'C{b) o 'C(a) which we will denote by CA (commutativity of abstraction). Now 

Van Glabbeek [87] proves: 

1.14.5. THEOREM. ACP't + KFAR1 + RDP + RSP +CA+ AlP f- 't = 'C +'to. 

So, in every theory extending ACPt, the combination of features AIP, KFAR, CA, RDP+RSP 

is impossible. Among such theories are also theories where the equivalence on processes is much 

coarser, such as in Hoare's well-known failure model (see Hoare [85]). 
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2. Complete inference systems for regular processes 

In the first chapter we have explained a proof system for specification of processes in bisimulation 

semantics (namely, in the graph model G), which is 'complete' in the sense that every computable 

process in G can be finitely specified. In this chapter we will address the issue of completeness in 

the usual sense. In doing so, we restrict our attention to the submodel lR of G consisting of 

processes having only fmitely many 'states', i.e. to 'regular'processes. Silent steps ('t-steps) are 

allowed in these processes. We will present a complete inference system for such processes; it is 

an improved version of the complete inference system in Bergstra & Klop [88]. 

To obtain the complete proof system we first explore various properties of bisimulations 

between process graphs with 't-steps (r't-bisimulation). This leads us to an analysis of 

rt-bisimulation which may be illuminating for its own sake. This part of the present chapter is taken 

from Bergstra & Klop [88]; Sections 2.1 and 2.2 are essentially 1.2-2.4 from Bergsta & Klop 

[88], with some modifications, and with some examples and proofs omitted. 

In this chapter (and the next) we will not consider the process constant o, deadlock. This is 

merely a matter of convenience, and in no way essential; all results can easily be adapted for the 

presence of o. On the other hand, the presence of 't is very essential; without 't, complete proof 

systems for regular processes are relatively easy to find. Because o is omitted from our 

considerations, we will refer to r'tO-bisimulation (defined in Chapter 1, Definition 1.13.4) as 

rt-bisimulation. 

2.1. Some properties of r't-bisimulation. 
As in Chapter 1, a is the set of (at most) countably branching process graphs with edge labels from 

Au {o} u {'t}. Here A= {a,b,c, ... } is the set of 'proper' atoms or actions. In the present chapter 

we will consider the set :R. ~ a of finite process graphs in which no o occurs; so the edge labels are 

from Ac= Au {'t}. Notation: u,v, ... vary over Ac· 

2.1.1. Root-unwinding 
It will be convenient to have a canonical transformation of a process graph g e a into an 

'equivalent' root-acyclic one. (Here 'equivalent' is in a sense which will be explained below, in 

Proposition 2.1.4.3.) 

2.1.2. DEFINITION. The map p: a-+ a, root-unwinding, is defined as follows. Let g e '1 have 

root r, then p(g) is defined by the following clauses: 

(i) NODES(p(g)) = NODES(g) u {r'} where r' is a 'fresh' node; 

(ii) the root of p(g) is r'; 

(iii) EDGES(p(g)) = EDGES(g) U {r' -+us I r-+0 s e EOOES(g)}; 

(iv) nodes and edges which are inaccessible from the new root r' are discarded. 
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2.1.3. EXAMPLE. Figure 2.1 gives two examples ofroot-unwinding. 

(a) p(g\>. c b 
a 

c a 

(b) 

~ a b 

a b 

Figure 2.1 

Observe that p is idempotent: p2(g) = p(g). Notation: a.P is the set of all root-unwound graphs in 

a.. 

2.1.4. Bisimulations 
In the previous chapter we have already defined rto-bisimulation; the concepts of 'ordinary' 

bisimulation tt (on a. x Ci.), "t-bisimulation' tt-c (on a. x Ci.) and 'rooted 't-bisimulation' ttrt (on 

a.P x Ci.P) are just restrictions of that of no-bisimulation, but for the sake of clarity we give the 

successive definitions again, in a rephrased way which conforms more to the usual definition .. 

2.1.4.1. Bisimulation: it 

Let g,h e a. The relation R s;;;; NODES(g) x NODES(h) is a bisim:ulationfrom g to h, notation 

R: g tt h, if 

(i) Domain(R) == NODES(g) and Range(R) = NODES(h) 

(ii) (ROOT(g), ROOT(h)) e R 

(iii) if (s,t) e Rands ~us' e EDGES(g) then there is an edge t ~u t' e EDGES(h), such that 

(s',t') e R. 

(iv) if (s,t) e Randt ~u t' e EDGES(h) then there is an edges ~us' e EDGES(g), such that 

(s',t') E R. 

Further, we write g it h if 3R R: g!± h. In this case g,h are called bisimilar. 
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2.1.4.2. EXAMPLE. See Figure 2.2 for a bisimulation between a graph and its root-unwinding; the 

shaded lines denote the bisimulation. 

Figure 2.2 

Bisimilar process graphs have the same sets of traces. The reverse, however, does not hold. 

We mention the following facts without proof: 

2.1.4.3. PROPOSITION. 

(i) Let g e Cl. Then g u p(g). 

(ii) The relation tt (bisimilarity) is an equivalence relation on a. 
(iii) /f g,h e Cl, R: g !± h andfor s e NODES(g), t e NODES(h) we have (s,t) e R, then 

R': (g)8 tt (h)t, where R' is the restriction ofR to the nodes of (g)8 and (h\ 

2.1.4.4. 't-Bisimulation: !± i: 

An equivalent definition for ordinary bisimulation can be given as follows. Replace in the definition 

of 2.1.4.1. clauses (iii), (iv) by: 

(iii)' if (s,t) e R and 7t: s -.. w s' is a path in g (determining the 'word' u1 u2 ... uk (k;:: 0) of labels 

along the edges in 7t), then there is a path 7t': t -"" w' t' in h such that (s',t') e Rand such that 

w = w' (w,w' are identical). 

(iv) likewise with the role of g, h interchanged. 

The definition of tti: now parallels that for tt, with as only alteration that w = w' is replaced by 

w =i: w'. Here w =i: w' (w,w' e Ac* are equivalent modulo t) if w,w' are identical after deletion of 

t's. E.g. t =i: 't't't =i: £(the empty word); ab'tt'tC't =i: ta'tb'tc. Processes g,h e Cl such that 

g !±i: h are called 't-bisimilar. 

2.1.4.5. Rooted t-bisimulation: ft ri: 

Suppose g,h e (lP and R: g !±i: h in such a way that 

(s,t) E R => s = ROOT(g) and t = ROOT(h), or: s ':/:. ROOT(g) and t ':/:. ROOT(h). 

(So a non-root cannot be related in the bisimulation to a root.) Then R is called a rooted 

t-bisimulation between g,h and we write R: g !±rt h or g ttrt R h. Such g,h are called rt-bisimilar 

(via R). Note that g tt h => g !± i: h and g tt rt h => g tt i: h. As before, !±rt and !± i: are 

equivalence relations on (lP and Cl, respectively. Also tti:, !±rt are invariant under p. 



2.1.4.6. EXAMPLES. 

(a) 

Figure 2.3 

Some further obvious facts are: 
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(b) (c) 

2.1.4.7. PROPOSITION. (i) Let g,h e G. be t-bisimilar via R. Let (s,t) e R. Then (g)8 and (h)t are 

t-bisimilar (via the appropriate restriction ofR). (The nodes s,t are called in this case t-bisimilar.) 

(ii) Let g,h e a.P and g ttn Rh. Let (s,t) e R. Then (g)8 ±i:t (h)1 (in general not rt-bisimilar). D 

2.1.4.8. PROPOSITION. Let g,h e G. and suppose R: g tt has well as R': g ±i: h. Then 

RuR': g tt h. Similar for !::!:t and ttn· D 

(Note that the intersection of bisimulations R, R' need not be a bisimulation.) 

2.1.4.9. DEFINITION. (i) A 't-cycle in a process graph g is a cycle 

1t: s0 ~ts1 ~t ... ~t sk= s0 (k ~ 1). 

(ii) A 't-loop is a 't-cycle of length 1: 

1t: so ~t so. 

2.1.4.10. PROPOSITION. Let g e G. contain at-cycle passing through the nodes s,t Then s,t are 

t-bisimilar (i.e. (g)5 !::!'t (g)t). 

PROOF. (See Figure 2.4, next page.) Note that every point in g accessible form s is accessible from 

t and vice versa. Hence the node sets of (g)8 and (g)1 coincide. Now let Id be the identity relation on 

NODES((g)8). Then it is easy to verify that Id u { (s,t)} is a t-bisimulation from (g)5 to (g)1• D 

2.1.4.11. PROPOSITION. (i) Let g e G. contain t-bisimilar nodes s,t. Let g* be the result of adding 
a t-edgejrom s tot. Then g and g* are t-bisimilar. 

(ii) Let g e GP contain non-root nodes s,t which are t-bisimilar. Then g ±i:rt g*. 

PROOF. (i) Let Id be the identity relation on NODES(g) (=NODES( g* )). Then Id u { (s,t)} is a 

t-bisimulation from g tog* as required. (ii) Similar. D 
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g 

NODES(g)8 = NODES(g)t 

Figure 2.4 

This proposition says that adding t-steps between t-bisimilar nodes in a graph g does not 

change the "t-bisimilarity character" of g (and for the same reason, of any node q, or better, 

subgraph (g)q of g). Here the t-bisimilarity character of g is the class of all g' E a which are 

t-bisimilar with g. In particular, the t-bisimilarity character is not disturbed by appending t-loops 

to nodes of g. Vice versa, removing '!:-loops also does not change the t-bisimilarity character. 

2.1.4.12. EXAMPLE. 

Figure 2.5 

Just as all '!:-loops can be removed from g without changing 't:-bisimilarity (which follows 

from the previous proposition, by taking s = t), it is possible to remove all '!:-cycles from g. We 

need a definition first: 

2.1.4.13. DEFINITION. Let g E a contain nodes s,t. Then gid(s,t) is the process graph resulting 

from the identification of s and t, in the obvious sense. 
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2.1.4.14. EXAMPLE. Let g be as in Figure 2.5. Then gid(s,t) is: 

A a 
15 

Figure 2.6 

2.1.4.15. PROPOSITION. (i) Let g e G. and suppose s,t e NODES(g) are 't-bisimilar. Then g and 

gid(s,t) are 't-bisimilar. 
(ii) Let g e al' and suppose the non-root nodes s,t e NODES(g) are 't-bisimilar. Then 

g !±rt gid(s,t)" 

PROOF. Obvious. D 

2.1.4.16. COROLLARY. (i) Every g e G. is 't-bisimilar with some g' e G. without 't-cycles. 

(ii) Every g e G.P is rt-bisimilar with some g' e G.P without t-cycles. 

(iii) Every g e '.R. is t-bisimilar to some g' e '.R. without infinite t-paths. 

PROOF. Follows from considering Figure 2.7. O 

Figure 2.7 

We conclude this section with an observation illuminating the difference between f!i: and 

!±rt. The easy proof is left to the reader (or, see Bergstra & Klop [88]). 

2.1.4.17. REMARK. Let g,h e G. and let 'tg, 'th be the result of prefixing a -c-step. Then: 

g f!'t h <=> 'tg !±rt th. 

2.2. An analysis of r't·bisimulation. 
The main result of this section is that an rt-bisimulation R between g,h e '.R. can be analysed into 
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g 
j, 

t:i.(g) 

j, 

E(t:i.(g)) ti 
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h 

t 
t:i.(h) 

j, 

E(t:i.(h)) 

(Corollary 2.2.4). I.e. g tin: h iff g,h after 'preprocessing' (by means of some simple operations 

t:i., E: a -7 a), are bisimilar in the ordinary sense where 't does not play its special role. This 

analysis is the basis for the completeness theorem in the sequel where axioms are given describing 

r't-bisimulation. 

2.2.l. The operation t:i. 

First we need some terminology: if g E a, then an arcing is a part of the form (a) in Figure 2.9 

(here u E A-c). In case n = m = 0, the arc is a double edge as in (b). Other special cases are in 

Figure 2.9(c), (d): these are called t:i.-arcs. It is not required that the three nodes displayed in (a)-(d) 

are indeed pairwise different. The u-step between nodes s,t is called the primary edge of the arc. 

s 

l> :I> 
t t 

u u 

(a) (b) (c) (d) 

Figure 2.9 

Now the operation t:i.: a ---? a is defined as follows: whenever g E a contains a path 

s1 -7-c s2 ---?u s3 (where s1,s2,s3 need not be pairwise different), an edge s1 -7u s3 is added if not 

yet present. Likewise for every path s1 ---?u 52 -7-c s3. t:i.(g) is the result of this completion of g with 

edges as indicated. 

Further, we say that g E a is t:i.-saturated if t:i.(g) = g. 
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2.2.2. EXAMPLE. 

6 
a 

Figure 2.10 

2.2.3. PROPOSmON. (i) d(g) li'C g if g E a; (ii) A(g) ~rt g if g E aP. 

PROOF. The identity relation R gives a (r)'C-bisimulation. O 

2.2.4. The operation E 

Call a node of g e aP internal if it is not the root, and an edge of g internal if it is between internal 

nodes. Further, call an internal 'C-step s ~'t tinge U.P an e-step if s,t are 'C-bisimilar. Finally, 

consider the set of internal nodes of g e U.P and the equivalence relation on this set given by 

'C-bisimilarity. We will call the equivalence classes: clusters. So e-steps always occur 'inside' a 

cluster (see Figure 2.11). 

(b) 

clusters are indicated with Q 
Figure 2.11 
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2.2.4.1. NOTATION. If s,s' are in the same cluster we write also s- s'. 

The concept of clusters of nodes makes the structure of a process graph more perspicuous. 

In particular, 6.-saturated process graphs g have a local structure as indicated in Figure 2.12: 

cluster y in g 

y' 

Figure 2.12 

Namely, ifyis a clustering and s ~at is an 'incoming' edge, then the endpoint t is carried in the 

direction of the e-steps, thus providing arrows s ~at', s ~at". Vice versa, if t' ~b p is an 

outgoing edge, the starting point t' is carried backwards along E-paths. This is a simple 

consequence of A-saturation and in fact it does not depend on the particular nature of e-steps. 

Moreover, and this does depend on the definition of cluster in terms of tt't, if y has an outgoing 

edge ~ to some cluster y, then from every point in y there is an edge ~ toy. We will need this 

last fact so let us prove it: 

2.2.4.2. PROPOSITION. Let g e W' be A-saturated. Lets ~11 t be an edge of g and lets' - s. Then 

g contains an edges' ~u t'for some t' - t. 

PROOF. Consider an rt-bisimulation R of g with itself relating s to s'. (R can be taken to be the 

union of the identity rela,tion on g and a 't-bisimulation from (g)8 to (g)8 .. ) Now by definition of 

't-bisimulation, given the edges ~u t and s - s' there is a path 1t: s' _,. t' with label 'tnu'tm in g for 

some n,m :2: 0 and some t' with t' - t. By virtue of A-saturation, we now have an edge s' ~u t'. D 

Now we would like, in order to obtain the 'structure theorem' 2.2.4.7 concerning 

(r)'t-bisimulation as well as the completeness result in Section 2.3, to omit all e-steps in a 

A-saturated graph g, resulting in a graph g' which is still r't-bisimilar to g. Here the need for 

A-saturation comes in, for omitting e-steps could make a non-A-saturated graph g disconnected, as 

in Example 2.2.2: there the 't-step in g (which clearly is an e-step) cannot be removed, but it can in 

A(g). 
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2.2.4.3. DEFINITION.Eis the operation from G.P to G.P which removes in g e a,P all e-steps (as 

well as parts of g which become disconnected in that process). If g = E(g), g is called prenormal. 

The straightforvvard proofs of the next two propositions are omitted (they can be found in 

Bergstra & Klop [88]). 

2.2.4.4. PROPOSITION. E preserves fl-saturation. 

2.2.4.5. PROPOSITION. (i) If g e CiP is !!..-saturated, then g it rt E(g). 

(ii) For g E CiP: E(!l.(g) itrt g. 

Now we arrive at a key lemma: 

2.2.4.6. LEMMA. Let g,h e CiP be !!..-saturated and prenormal. Then: 

g ±<rt h ~ g it h. 

PROOF. (1) Let R be an rt-bisimulation between g,h. Then there is no t-step in g which is 

"contracted" by R in h, as in Figure 2.13 (and likewise with g,h interchanged): 

not: 

s' R 

Figure 2.13 

Namely, ifs= r, the root of g, then this claim follows by definition of it rt. Otherwise, s --7" s' is 

an internal step (s' * r since g e CiP) and now by Proposition 2.1.4.7(ii): 

(g)s !:Z't (h)t ±<'t (g)s .. 

That is: s --7t s' is an e-step. But then g is not prenormal. 

(2) Let s --7 u s' (u e ~) be a step in g (see Figure 2.14, next page). By definition of the 

rt-bisimulation R, there is given at such that (s,t) e R, a path t-.. t' with label t 0 utm, for some t' 

such that (s',t') e R. By !!..-saturation of h, there is now a step t --7u t'. (1) and (2) together imply 

that the rt-bisimulation R is in fact an ordinary bisimulation. o 
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t' 

Figure 2.14 

2.2.4.7. COROLLARY. Let g,h E U.P and let g i±rt h. Then E(Ll(g)) i± E(Ll(h)). 

PROOF. By Proposition 2.2.3, Llg i± rt Llh. By Proposition 2.2.4.5, E(L'lg) i± rt E(t..h). By 

Proposition 2.2.4.4, E(L'lg) and E(L'lh) are t..-saturated. Hence by Lemma 2.2.4.6 these two graphs 

are bisimilar in the ordinary sense. o 

2.3. Complete inference systems for r't-bisimulation. 
(This section will be slightly informal and gloss over some details; for these we refer to Bergstra & 
Klop [88].) A corollary of the preceding section (Corollaries 2.1.4.16 and 2.2.4.7) is that an 
r't-bisimulation between two graphs g, h e :R.P can be analyzed in the following parts. (See Figure 

2.15.) 

g 

contraction of\ 
't-cycles ~ 

g' 't-cycle free 

saturation ( "! \ 

t.. (g') 't-cyclefree 
saturated 

pruning I E) \ 

E(L'l (g')) 

Figure 2.15 

r 't 

I 
t.. (h') 

I 
E(Ll (h')) 

So, in order to have a complete proof system for ttrc, it suffices to have: 

h 

I 
h' 
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I. A complete proof system for i::t; 

II. Proof rules which make 'contraction of 't-cycles provable'; 

III. Likewise for saturation (the operation A); 

IV. Likewise for pruning (the operation E). 

First we have to explain the syntax used for regular processes, and the interpretation of 

expressions in that syntax into the semantic domain R = '.ll!:t:trr· Precise syntax definitions can be 

found in Bergstra & Klop (88]; here we will be more informal and give some suggestive examples 

instead. 

Our syntactic expressions, denoting regular processes in R, will be either of the form t where 

t is a closed BPA-term (see Table 1) or recursive expressions <X1 I E> where E = {Xi = 

ti(X 1,. .. ,Xn) Ii= l, .. .,n}. Here ~(X) (= ~(X 1 , .. .,Xn)) is a BPA-term possibly involving formal 

recursion variables from {X1, •. .,Xnl· Moreover, the ti(X) are 'simple' terms, defined as 

follows.*) 

2.3.1. DEF1N1TION. (i) Every u e Ar is a simple term. 

(ii) Let X be a recursion variable and let u e Ar· Then uX is a simple term. 

(iii) Let t, t' be simple terms. Then t + t' is a simple term. 

So, aX + 'tY + c is a simple term, but abX + c, b(aX + c) and aXY + bYY are not. 

The semantics of an expression <X I E> in R is obvious: to <X I E> there corresponds in an 

immediate way, suggested by the next example, a process graph in R, call it g<XIE>; now the 

semantics [<X I E>]R is g<XIE> I :t:trt. 

2.3.2. EXAMPLE. The semantics of 'C·<X IX= -cY + aY, Y = 'tX + b> is the graph gin Figure 

2.19(a), modulo t=trt. The semantics of t-<X IX= aX + b> is h/ :t:trt, h as in Figure 2.16(b). 

Actually, g r:trt h; we will return to this example and show that the two expressions just mentioned 

are provably equal. 

(a) 

Figure 2.16 

b 

0 

h 

a 

(b) 

(*) (Actually, we have to be slightly more liberal w.r.t the form of the 'i. in E = (Xi = Lj(X1 ,. . .,X ) I i = l,. . .,n). In 
fact, we will allow substitutions for variables in the 'i· in order to have equalities like e.g. <X Fx = t(X,Y), y = 
s(X,Y)> = <X IX= t(X,Y), Y = s(t(X,Y),Y)>. For a more precise treatment see Bergstra & Klop (88].) 
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I. Having thus established our syntax and semantics, we turn to the question of finding a 

complete proof system for the easier case of bisimulation, t:t. This question was solved in Milner 

[84b], using the syntax of µ-expressions. Milner's complete proof system 'M' for regular 

processes is given in Table 23. 

M 
x+O=x AO 
x + y = y+ x Al 
(x + y) + z = x + (y + z) A2 
x+x=x M 

µX.T(X)=µY.T(Y) µO 

µX.T(X) = T(µX.T(X)) µ1 

x"' T(x) ,.,., 
---- T(X) guarded .,... 
x=µX.T(X) 

µX(X + 1) "' µX(T) µ3 

Table 23 

2.3.3. EXAMPLE. Consider the µ.-expressions µX. aX and µY. (aY + aµX.aX), denoting the 

graphs g, h (modulo !::t) in Figure 2.17. Since g t:t h, we must be able to prove equality between 

the two µ-expressions. Indeed: abbreviate µX. aX by L, and the other µ-expression by R. Then, in 

M, one proves: L = aL = aL + aL and R = aR + aL. Hence L, R are solutions of the same guarded 

recursion equation X = aX + aL. Therefore L = R. 

h 

Figure 2.17 

In the present framework we have the equivalent proof system BPArec (equivalent, modulo 

some inessential details, discussed in Bergstra & Klop [88]) as in Table 24 below. Here E = {~ = 
Ti(X1, ... ,Xn) I i = l, ... ,n}. The rules Rl,2 correspond to µ1,2 in Table 23. In particular, Rl 

implies the following axiom (which is equivalent to Rl): 

<X1 I E> = T1(<X1 I E>, ... ,~I E>) 

and this axiom corresponds exactly to µ1. 

The axiom µ3 in M has no counterpart in BPArec· The axioms A4, AS come in here since 

multiplication is general (i.e. not merely 'prefix-multiplication'). 

Rule R3 states that 'conversions' in the right-hand sides of the equations in <X I E> are allowed. 



BP.\-ec 

x+y=y+x 
(x + y) + z = x + (y + z) 
x+x=x 
(x + y)z = xz + yz 
(xy)z = x(yz) 

xi = <~ I E>, i=l, ... ,n 
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Al 
A2 
A3 
A4 
AS 

Rl 

xi =Ti( x1 , ... ,xn ), i = l, ... ,n 
-------- Ti( X1····•Xn) is guarded R2 

x1 =<Xi IE> 

E=E' 
R3 

Table 24 

II. Next, we discuss the problem of making the contraction of 't-cycles provable. Of course, we 

start with adopting the 't-laws Tl-3 as in Table 16 or 22. Now, for instance, we want to be able to 

prove 

<X IX = tX +a>= <X IX= 'ta> (=ta) 

in view of the rt-bisimilarity of the corresponding process graphs. Note that a proof rule like 

x = 'tX + a => x = 'ta would not do the job; while it is true that ta is a solution of the equation 

X = 'tX +a (since ta= t(ta) +a, using the t-laws), it is unfortunately the case that also 't(a + q) for 

arbitrary q is a solution: 

t(a + q) = t(a + q) +(a+ q) = t(a + q) +(a+ q) +a= 't(a + q) +a= 't(t(a + q)) +a. 

The solution is the use of the abstraction operator t 1 (renaming every i e I into t, see Table 15 or 

22), and the proof rule KFAR (see Chapter 1, Section 1.10), enabling us to conclude from 

x = ix + a that 't ( i} (x) = ta. This is an instance of the proof rule KF AR1: 

x=ix+y 

t(i}(x) = 'M(i}(y) 

which in tum can be derived from KF~: 
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x = iy + z, y =jx + z' 

The desired equation can now be proved as follows. Put x = <X IX = iX + a>, so x = ix + a. By 

KFAR1: 't(i}(x) = 't·'t{i)(a) ='ta. Furthermore, 't(i}(x) = 't(i}(<X IX= iX +a>)= <X IX= 'tX + 

a>, which proves the result. 

Using KF AR2 we can "contract in a provable way" every 't-cycle in (the graph 

corresponding to) a system <X I E>. That KFAR2 already suffices, and that one does not need 

KFA~ for n > 2, is demonstrated in Example 2.3.7 below. 

III. Making the operation A (saturation) provable is no problem at all: here the 't-laws Tl-3 

suffice. We will not prove this here (see Bergstra & Klop [88]), but refer to the examples below. 

IV. More consideration is required to see that also 'pruning' of internal €-steps (by means of the 

operation E) is provable. Suppose g is a saturated, 't-cycle free graph E RP. Then in order to 

execute operation E, we can successively remove the e-steps. In each such removal the node set of 

g is not affected, since €-steps are internal and g is saturated; furthermore, the "'t-bisimilarity 

character" of all nodes in g remains invariant. Hence also the cluster structure of the initial g 

remains invariant. At the end of the pruning operation, i.e. in E(g), each cluster still is a 

l:::±-c-equivalence class. Moreover, by similar arguments as used in the proof of Corollary 2.2.4.7 

one proves: 

2.3.4. PROPOSITION. Let h 1, h2 E R be saturated, "C-cyclefree, and suppose all €-steps in h 1, h2 

(i.e. 't-steps between 't-bisimilar Mdes) have been removed (including possible ones to or from the 

root). Then: 

Using this proposition we observe that in E(g) with gas above (saturated, 't-cycle free, E '.R.P) 

every cluster only contains nodes s, t which are bisimilar in the ordinary sense ( (g)8 !:::± (g)t ). Here 

(g)s, (g\ are h1, h2 from Proposition 2.3.4. 

Now our way to make the transformation from g to E(g) provable, is to start with E(g) and 

then add €-edges to arrive at g. Using the observation just made this is easy, and instead of a proof 

we just give an example. 

2.3.5. EXAMPLE. Let E(g) and g be as in Figure 2.17. 
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b b 

Figure 2.17 

The corresponding expressions <X I E>, <X' I E'> (written as systems of equations where the first 

recursion variable is the 'designated' one) are: 

E: X=aY+aZ 

Y=bY +bZ 

Z=bZ 

E': X' = aY' + aZ' 

Y' = bY' + 'tZ' + bZ' 

Z' = bZ' 

We now prove <X I E> = <X' I E'> as follows; here we use some of the proof rules from the proof 

system below in Table 25. 
Abbreviating X =<I E>, Y =<YI E>, z = <Z I E> and similarly for X', Y', Z.', we have: 

X=aY+aZ 

Y=bY+bZ 

Z = bZ. 

Now consider the expression Y* = 'tY. Then f- Y* = Y + tY = Y + 'tZ = bY + bZ. + 'tZ = b'CY + bZ. 

+ 'tZ. = b.Y* + bZ + 't,Z. Here we used that f- Y = Z., which follows from the fact that the graphs 

corresponding to Y, Z are bisimilar as stated in Proposition 2.3.4, and from the fact that the proof 

system is complete for ordinary bisimulation. Therefore: 

X = aY + aZ = a'tY + aZ = a.Y* + aZ 

Y* = b.Y* + bZ + 'tZ 

Z=bZ. 

Hence (X, Y*, Z.) satisfies E'. Hence f- X = X'. *) 

The general case, where g and E(g) differ by more than one e-step, is only notationally more 

complicated and left to the reader. 

Table 25 presents the complete inference system BP Ar,rec· 
*)We use here that E' is a guarded system of equations, which enables us to use rule R2 in Table 25. Actually, E' is 
only 'essentially' guarded; the t occurring in E' is not a guard (a guard must be a proper atom), but substituting bZ' 
for Z' we arrive at a guarded system. It is not hard to prove that indeed, in general, the system E' corresponding to 
A(g') as in Figure 2.15 is essentially guarded (i.e. that A(g') is -r-cycle free). 



BPA.r,rec 
x+y = y+x 
(x + y) + z = x + (y + z) 
x+x=x 
(x + y)z = xz + yz 
(xy)z = x(yz) 

xt=x 
tx+x=tx 
a(tx + y) = a(tx + y) + ax 

t1(X)=X 
t1(t)=t 
t 1(a)=tifae I 
t 1(a) =a if a ~ I 
t 1(x + y) = t 1(x) + t 1(y) 
t1(ty) = t· t1(y) 
t 1(ay) = t1(a)" ti(Y) 
t 1(<X1 I E>) = <Xi I t 1(E)> 

xi = <Xi I E>, i = l, ... ,n 
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xi =Ti( x1 , ... ,xn ), i = l, ... ,n 
-------- Ti(X1, ...• ~)isguarded 

X1 =<X1 IE> 

E=E' 

x = iy + z, y = jx + z' 

Table25 

Al 
A2 
A3 
A4 
A5 

Tl 
T2 
T3 

TIO 
Til 
TI2 
TI3 
114 
115' 
115" 
116 

Rl 

R2 

R3 

KFAR 
2 

A very elegant alternative complete proof system, employing the formalism of 

µ-expressions, is given in Milner [88]. It consists of the proof system in Table 23, extended with 

the 't-laws (Tl-3) and the following two axioms, which play the role of KFAR.i: 

µX('tX + E) = µX('tE) 

µX('t(X + E) + F) = µX('tX + E + F). 

Here E, F are arbitrary expressions. 

We conclude this chapter with some examples showing the use of the proof system BP ~,rec· 
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2.3.6. EXAMPLE. We resume the question in Example 2.3.2, to prove 't·<X IX= 'tY + aY, Y = 

'tX + b> = 't·<X IX= aX + b>. (See Figure 2.16.) Abbreviate: 

X. =<XIE>= <X IX= 'tY + aY, Y = 'CX + b>, Y =<YI E>, 

X.i= <X I Ei>=<X IX =iY +aY, Y =iX+ b>,Yi= <YI Ei>. 

So we have X.i = iyi + ayi and yi =~+b. Hence by KFAR2: 

which yields X = 't·(aY +b).Likewise Y = 'C(aY +b).Therefore X. = Y, and so X. = 't(aX. + b). 

Thus 

X. = <U I U = t(aU + b)> = <U I U = 'tV, V = aU + b> = 
<U I U = 'tV, V = a'tV + b> = <U I U = 'tV, V = aV + b>. 

Now abbreviate: ll= <U I U ='tV, V = aV + b>, Y.=<V I U ='CV, V = aV + b>= 

<V I V =a V + b>. So we have proved 'tX = 'Cll = 'C'CY. = 't<V IV= a V + b>, which was our goal. 

2.3.7. EXAMPLE. We want to prove that the expressions corresponding to the graphs in Figure 

2.18 are equal. 

So, to prove: 

Now 

t 

Figure 2.18 

X.=<XI E>= 

t 

f:k 
rt 

<X IX= au, U = 'tV + b, V ='CW+ d, W ='CU+ c> = a(b + c + d). 

<X I E> = <X IX = aU, U = 'tV + b, V = 'C('CU + c) + d, W ='CU + c> = 

<X I X = aU, U ='CV+ b, V = 'C('tU + c) +'CU+ d, W = tU + c> = 

<X IX= aU, U ='CV+ b, V ='CW+ 'CU+ d, W ='CU+ c> = <X I F>. 

The last system corresponds to the graph in Figure 2.19(a). 
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(a) (b) 

Figure 2.19 

We now introduce: 

xiJ = <X I PJ> = <X IX= aU, U = iV + b, V = jW + iU + d, W = jU + c>. 
So: 

Now we apply KFAR2 on the "i-cycle"; that is, from .llij = i.Y.ij + b, yiJ = j,W_iJ + i.llij + d it 

follows thau (i} (!!iJ) = 't·'t{i} (jWJ + d + b) (*). Since 

't(i}(KiJ) = Xj = <X I Fi>= 

<X Ix= au, u = 'tV + b, v = jW + 'tU + d, w = jU + c>, 

we now have: xi = allj, llj = 't(jWj + d + b) (by(*)), Wj = j!J:i +c. Here W = <U I Fi> and Wj = 

<W I Fj>. Therefore 

xi = <X IX= au, U ='t(jW +d+ b), W =jU +c> and 

x = 't{j}QQ) = <X Ix= au, u = 't('tW + d + b), w = 'tU + C> = 

<X IX= aU, U = 'tV, V = 'tW + d + b, W = 'tU + c> = 

<X IX= aV, V = 'tW + d + b, W = 'tV + c>. 

Here the last two recursion expressions correspond to the graphs in Figure 2.19(a,b) respectively. 

(b) 

Figure 2.19 

The remaining 't-cycle of two steps can now be contracted, as in the previous example, by one 

more application of KF AR2. The result is: X = a(b + c + d). 
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3. A comparison of process models related to bisimulation semantics 

In this chapter we compare the class of graph models as defined in Chapter 1 with a class of 

'projective' models as well as with a class of metric models as in the work of De Bakker & Zucker 

[82a,b]. In doing so, we will restrict ourselves to the simple case of pure interleaving, without 

communication; that is, we will consider only models of the axiom system PA, in Tables 1 and 5 of 

Chapter 1. The alphabet involved will be A= {a,b,c, ... }; it does not contain 't nor 8. Hence, the 

notion of bisimulation that is employed is li, defined in 2.1.4.1. Two parameters will play an 

important role in this chapter: the cardinality a of alphabet A, and the branching degree ~ of 

process graphs. 

3.1. DEFINITION. (i) Process graphs without cycles and without 'shared sub graphs' are process 

trees. (In Milner [80] these are called 'synchronisation trees'.) More precisely: a process graph is a 

process tree if every node has exactly one incoming arrow where the small root arrow also counts 

as an arrow. A process graph is finite if it contains finitely many edges and nodes. 

(ii) If g is a process graph, and s e NODES(g) is a node of g, then the branching degree of sis 

the number of arrows leaving s. The branching degree of g is the maximum of the branching 

degrees of the nodes in g. 

(iii) Cia.,~ is the set of process graphs 'over' an alphabet of cardinality a and with branching 

degree< [3. Here a;?: 1 and~;?: ~ 0. (The bound 13 on the branching degree must be infinite since 

otherwise the process graph domains below would not be closed under '+', as defined in 1.13.) On 

Cia.,~ we define operations+,·, II, lL ,( )n (n ~ l); see Section 1.13 with the understanding that 

merge II is now simply the Cartesian product graph, without 'diagonal' edges representing 

communications as in Chapter I. Furthermore, in this chapter we employ the alternative notation 

( >n instead of 1tn( ).This projection (g)n (n;;::: 1) is defined for trees g: it is the tree obtained by 

cutting away all nodes reachable from the root by a path of length > n. The corresponding edges are 

also left away. If g is not a tree, then (g)n is defined as (g')n where g' is the tree obtained by 

unwinding g. 

As in Chapter 1, it turns out that bisirnilarity !;:!; is a congruence on Ila.,~ with respect to the 

operations just defined. Hence we can talce the quotient 

The quotient structures are models of PA, i.e. process algebras for PA. Using the usual distance 

function d, defined by 
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d(x,y) = 2-m if3n (x)n '#: (y)n; m = min{n I (x)n '#: (y)n} 

0 otherwise, i.e. 'v'n (x)n = (Y)n 

we have that Ga,l3 is a pseudo-metric space but not yet a metric space. (For instance, in IG 1 .~ 1 the 

elements determined by the process graphs ~1 an and Ln.:i an+ aro in Figure 1.13 are different 

but have distance 0.) It becomes a metric space after dividing out the congruence induced by the 

Approximation Induction Principle (AIP), discussed also in Chapter 1: 

x=y 

The result of 'dividing out' AIP is 

The 0° a,l3 have been defined as a 'double quotient' by first dividing out tt and next AIP. The 

same result can be obtained by defining a suitable equivalence relation at once; this is done in 

Golson & Rounds [83] where 'weak equivalence' is divided out In Milner [80], p.42 this notion is 

called 'observation equivalence'. It is defined as follows: 

3.2. DEFINITION. (i) Ifs e NODES(g), then (g)8 is the subgraph of g with root s, and nodes: all 

nodes in g reachable from s, and edges as induced by g. 

(Warning: the notation (g)8 should not be confused with (g)n for the n-th projection of g.) 

(ii) On a process graph domain G.a,l3 we define transition relations ~a for each atom a: ifs ~at 

is a step (edge) in g e G.a,13• then (g)8 -+a (g)i-

(Note the difference in notation: open arrows stand for transitions between process graphs, normal 

arrows denote steps between nodes in one process graph.) 

3.3. DEFINITION. On G.a,!3 we define equivalences =n for each n <? 0: 

(i) g =o h for all g,h; 

(ii) g =n+l h if 

(1) 

(2) 

whenever g 4a g' there is a transition h 4a h' with g' =n h'; 

as (1) with the roles of g,h interchanged. 

Furthermore, g = h if g =n h for all n :::::: 0. 
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An alternative, equivalent definition is: 

3.4. DEFINITION. Let g,h e a.o..P be process graphs. Then g =n h if (g)n tt (h)n (n ~ 1). 

Furthermore, g = h if g =n h for all n ~ 1. 

The proof that these definitions are indeed equivalent is left to the reader. We also omit the 

routine proof of the next proposition, where= denotes isometry. 

3.5. PROPOSffiON. 0° a,p : U.a.~=· D 

3.5.1. REMARK. For finitely branching graphs (i.e.~= No) and arbitrary alphabet, we have in fact 

11a,Nol= = aa,No/!c!. 

That is, weak equivalence (or observational equivalence) coincides with bisimulation equivalence. In fact, the proof 
follows from Lemma 1.13.7.1. We give an alternative proof for the present simpler case here: Suppose g,h are 
finitely branching process graphs and suppose g = h, or equivalently: Vn (g)n !c! {h)n. Now consider 

Bn = {R I Risa bisimulation from (g)n to {h)nl. 
B =U12:I Bn. 

This collection of 'partial' bisimulations between g,h is ordered by set-theoretic inclusion (!;;;). In fact, B' = B u 
{(s0,to)J where SO•to are the roots of g,h respectively, is a tree w.r.t s;:. Because g,h are finitely branching, this tree 
is also finitely branching: there are only finitely many extensions of a bisimulation between (g)n• (h)n to a 
bisimulation between (g)n+l• (h)n+l· Moreover, because Vn (g)n !c! (h)n, the tree B' has infinitely many nodes. 
Therefore, by K(Snig's Lemma, B' has an infinite branch. This infinite branch is a chain of partial bisimulations ~ 
(~I): 

such that Riis a bisimulation from (g)i to {h)i. Now R = U~1Ri is a bisimulation from g to h. 

The structures G0cx,~ are also process algebras for PA. While all of the 0° a.,p are metric 

spaces, they are not all complete. An example is given in Golson & Rounds [83]: G 0 1,N 0 is 

incomplete. (Consider the approximations of ~1 an.) Another example is as follows. 

3.6. EXAMPLE. G0 Nco Ncois an incomplete metric space. 
' 

PROOF (sketch). The alphabet is {llj Ii< K00 }. Define a sequence of process graphs gn (n 2! 1) by 

Let brd(g) be the branching degree of process graph g, defined as follows: ifs is a node of g, then 

brd(s) is the (cardinal) number of arrows leavings; furthermore, brd(g) is the cardinal sum of the 
brd(s), s e NODES(g). We claim: 
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(i) brd(gn) = ~n for gn as defined above, 

(ii) brd((g)n) ~ brd(g) for all g e G.a,l3• 
(iii) h tt gn => brd(h) ~ brd(gn) for gn as defined above. 

Claim (ii) is trivial; the inductive proofs of the other two claims are left to the reader. Using these 

claims, one shows immediately that there is no limit g/= for the sequence of elements gn/= in 

0° N co, N co as this would require a process graph g with branching degree at least Ln<co ~ n = ~or D 

We will now define projective models A 00 a,l3 of PA for arbitrary a.~ 1and13 ~ ~ 0. These 

will all be complete metric spaces. Furthermore, modulo isometry A 00 a,l3 is an extension of 0° a.l3• 
so the projective model can be considered as the metric completion of 0° a.l3· (In case 0° a.l3 is also 

complete, it is of course isometric to the projective model.) The projective models defined below 

differ from the ones in Kranakis [86,87); there an element of a projective sequence is a sequence of 

terms (modulo derivable equality), below it is a sequence of finitely deep process graphs (modulo 

bisimilarity). 

3.7. DEFINITION. (i) 6.0 a,13 = {g E G.a,131 g = (g)0 }. 

(iii) Let gi e on a,l3 (i ~ 1). Then the sequence (g1,g2, ... ) is projective if for all i: gi = (gi+l)i. 

(iv) A 00 a.l3 is the projective limit of the Gil a,l3 (n ~ 1); the elements of A 00 a.13 are the projective 

sequences. The operators+,·, II, IL are defined as follows: ify= (g1,g2, ... ) and 1 = (g1',g2', ... ) 

then y · "( = ((gl · gi')1, (g2 · g2')2, ... ) and likewise for the other operators. 

3.8. THEOREM. A00 a,~ is a complete metric space. 

PROOF (sketch). Consider a converging sequence 'Yi= (gil, gi2, ... ), i:::?: 1. For growing i and 

fixed k, the sequence gik will eventually be constant, say after N(k) steps. We may suppose that N 

is a monotonic function. Now y = (gN(l),l• gN(2),2, ... ) is the required limit. D 

Van Glabbeek (personal communication) remarked that for finite a, there is no need to 

consider uncountably branching process graphs, see statement (i) in Corollary 3.12. His 

observation can be generalized to infinite a. First some notation. 

3.9. NOTATION. Let a. be a cardinal number (finite or infinite). Then a*= Ln<co <Xii• where <Xo = 
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ex, an+ 1 == 2an. For finite ex, we have a.* = M 0. For ex = M 0, the numbers exn are known as the 

beth-numbers :::in and ex* == :J.m. The cardinality of a set X is card(X). If 1C is a cardinal, then ic+ 
denotes the least cardinal larger than 1C. 

3.10. PROPOSmON. (i) For infinite a: card( G11 a,a*) =<Xii· 
(ii) card( U n:<:l on a.a*) = a*. 
(iii) For any a,K: 011 a,a*:: on a,a*+K· 

PROOF. (i) Induction on n. For n = 1 the statement is clear, since the process graphs g1 =Lael a 

for arbitrary non-empty I i;:: A are mutually non-bisimilar, and since every process graph in Ci.1 a,a* 

is bisimilar with some g1. Suppose the statement has been proved for n. Let 'XP c a.n a,a* be a set 

of representatives of the <Xii bisimulation equivalence classes of an+l a,a*• so card(X.n) =an. 

Now every element of(i.n+la,a* is bisimilar to one of the process graphs 

gh,I,f = h + Lae I Lxe f(I) ax 

where he 'XP, Ii;:: A (possibly empty) and f: I-+ p(X.n). Moreover, for different triples h,I,f 

the corresponding gh,I,f are not bisimilar. Hence card( on a.a*)= an·a.1 ·a.n+l = an+l · Here the 
factor <Xii stems from the variation in h, a.1 from the variation in I while for each I the choice off 
contributes a factor (zcard(Xn))card(I) = 2CJJJ. =<Xii+ 1. 

Part (ii) is by definition; (iii) is left to the reader. o 

3.11. THEOREM. A 00 a,a* = A 00 a,a*+ K for any cardinal 1C. 

PROOF. The isometry follows at once from Proposition 3.lO(iii). o 

3.12. COROLLARY. 

(i) For finite ex: A00 a,KO = A 00 a.,lt.O+ Kfor any cardinal 1C. 

(ii) For countably irifinite alpha.bet: A""' No,::lcn :A00 NO, :J.0> +Kfor any cardinal K. D 

We will now turn our attention to the models 0° a,~ in order to compare them with the 
projective models. 

3.13. PRorosmoN. If 13 is siif.ficiently large, 0° a,p is complete. 

PROOF. We will try to prove that G0a,p is isometric to A00 cx,p and deduce from that attempt a 
requirement on 13. 
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We will drop the subscripts a.,13. So let us try to establish an isometry cp from 0° to A°0 • 

Let g e 0°. Then <p(g) = ((g)1,(g)i, ... ). It is easy to prove that this is a projective sequence. The 

hard part is to prove that <p is a surjection. Consider an element (g1, g2, ... ) e A"°. Let gibe a 

representing process graph of gi (i;;::: 1). We would like to find a graph g such that (g)i tt gi for all 

;;::: 1. (Cf. the construction in Theorem 3.5 of Golson & Rounds [83] by 'blowing up' trees; we wil 

use another construction.) For the rest of this proof, we will suppose that all process graphs are 

trees. Let gi' be (gi+l)i. So gi tt gi'; say~ is a bisimulation from gi tog( Let Si: NODES(gi') ~ 

NODES(gi+l) be the obvious embedding function, obtained by the projection mapping. Now ifs is 

a node of depth kin gk (so sis 'appearing' for the first time in gk), we define some sequences 

starting with s, which we will call.fibres, as follows. Any sequence 

where Si E NODES(gj), si' E NODES(gi'), (si,si') E ~ and Si(si') = Si+l (i ~ k) is a fibre. We will 

say that this fibre starts in gk. If O','t are fibres, starting in gk and gk+l respectively, we define 

transitions CJ ~a 't if there are a-steps between the elements of these sequences: 

cr: sk,sk',sk+ 1•sk+1 '.sk+2•sk+2' , ... 

ta ta ta ta ta 

't: tk+l•tk+l 1
• tk+2• tk+21

•"' 

Now we construct the process graph 'Y with as nodes the fibres and transitions as just defined. 

More precisely: the root of yis the fibre through the roots of g1,g1',g2, ... , and the other nodes ofy 

are those fibres reachable from the root ofyvia transitions between fibres. 

We claim that the projection ('Y)n is bisimilar to gn- A bisimulation Pn is given as follows: ifs 

e NODES(gn) and o e NODES((y)n) then (s,cr) e Pn iff s is an element of cr. The verification of the 

claim is easy. An illustration is given in Figure 3.1 where yis 'reconstructed' from the sequence of 

process graphs a, a+a2, a+a2+a3, .... Interestingly, the result is not Ln:<:l an but Ln:<:l an+ aro. 

(See the 'black fibers' in Figure 3.1.) 

However, the problem is now to prove that the branching degree of 'Y is strictly bounded by 

f3. We claim that this is so if f3 > (a.*)~rn. Proof of the claim: let us take the gi (i;;::: 1) above as small 

as possible with respect to the cardinalities of their node sets. From the proof of Proposition 3.lO(i) 

it is clear that we can take the gi such that card(NODES(gi)) ::=:;; a.i (in fact we can even take 

card(NODES(gi)) ::=:;; a.i_1). Hence we may suppose that the union of the node sets of the gi, gi' (21) 

is bounded by a.*. Now every fibre (a node of the tree y) is an ro-sequence of nodes of the gi, gi'· 

Hence there are at most 1C = (a.*) NO such fibres; soy has at most K nodes, so the branching degree 

of 'Y is bounded by 1C. D 
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Figure 3.1 

3.14. REMARK. (i) In the example above, in Figure 3.1, the process graph y is closed (see 

Definition 3.23.1 for the definition of 'closed process graph'). In general, this needs not to be the 

case: e.g. if in the proof of Proposition 3.13, gi = (~1 an)i for i ~ 1 (so g1 consists of infinitely 

many a-steps attached at the root) then y = ~1 an and this graph is not closed. 

(ii) Another way of constructing a process graph g with projections (g)n bisimilar to gn as in the 

proof above, is by taking gas the canonical process graph of the projective sequence (g1, g2, ... ) 

e A00
• See Definition 3.23.2. One can prove that this graph is closed indeed, for 13 >(a*) !'to. 

3.15. DEFINmON. Let X,X' !;:;; Cl.a,13· (i) Then (X)n = { (g)n I g e X}. 

(ii) X =n X' if V' ge X 3g'e X' g =n g' and \7' g'e X' 3ge X g =n g'. 

(iii) X = X' if X =n X' for all n. 

3.16. DEFINITION. Let g e Cl.a,~· The a-derivation of g is the set of all subgraphs of g reachable by 

an a-step from the root. Notation: g/a. 

3.17. PROPOSITION. Let g,h e a.cx,j3· Then g,h determine the same element in 0° cx,!3 if! for all a, 
g/a=h/a. 

PROOF. Routine. 0 
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3.18. PRorosmON. Let X ~ Cia,~· Then there is an X' s;;; Cia,~ such that X = X' and card(X') s; 
a*. 

PROOF. Consider the collection U~1 (X)0 of finitely deep process graphs. We will construct a 

graph (not a process graph) with node set U~1(X)0, and arrows g-+ h forge (X)0 , he (X)n+l 

whenever g = (h)n. See Figure 3.2. 

Figure 3.2 

The boxes in Figure 3.2 are the tt-equivalence classes. We note (Proposition 3.IO(i)) that there are 

at most <X.n boxes at level n, hence at most a* boxes in total. Now every g e X corresponds with a 

path in this huge graph (not necessarily vice versa). We now construct X' as follows. If g e X is 

finitely deep (i.e. determines a terminating path in the graph of Figure 3.2), then g e X'. 

Furthermore, in each box we select one node (i.e. a process graph g e (X)0 for some n) and 

choose an arbitrary path through this node. This path (which in fact is a projective sequence of 

process graphs) determines a process graph, call it g-. Now we put g- e X'. Obviously, card(X') 

s; a* and it is not hard to prove that X = X'. O 

3.19.PROPOSITION.Foralla,JC: G 0 a,(a.*)+:: G 0 a.,(a.*)++x: 

PROOF. Consider a process graph g e G.a.,(a*)+ +x:· We must show that g can be pruned to a g' e 

Cia.,(a.")+ such that g and g' determine the same element after dividing out tt and AIP (or dividing 

out= at once). This follows directly from the preceding two propositions. O 

3.20. COROLLARY. For all a,JC,A.: A 00 a.,a.* + ic = G 0 a,(a*)+ +A. 

PROOF. This follows from Theorem 3.11 and Propositions 3.13 and 3.19. o 

The cardinality of the models constructed above is for infinite alphabets quite large (this was 

already noticed in Golson & Rounds [83] for the process model of De Bakker & Zucker [82a,b]; 
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see our remarks below). In fact: 

3.21. PROPOSITION. (i) For finite cx: card(A00 cx,ltO) = 21tO 

(ii) For countably infinite alphabet: card(A00 NO, :i,00 ) = .1m+l 

(iii) For general a: card( A00 cx,a*) = 2<a*) = (a*)No. 

PROOF. (We will assume the Axiom of Choice in our calculations with cardinals.) Statements (i) 

and (ii) follow from (iii). Proof of (iii): Let A. be card(A00 a,a*) . Using Proposition 3.10 and noting 

that every element of A 00 a,a* is a map from co into the union of the on a,cx*• we have A. S (a.*) ito. 
In view of the isomorphism with the graph models (Corollary 3.20), we find A.~ 2<a*). The 

argument is as follows: there are a* finitely deep process graphs which are mutually not bisimilar. 

(This is in fact Proposition 3. lO(ii).) Let f' be the set of these process graphs. For every subset 'X 

of '.F we define a process graph g'.X. as Lge'.X. a.g for a fixed atom a. Now ~ tt gy iff'X = y. 
Moreover, for different 'X,lJ the corresponding graphs are not identified after dividing out AIP. So 

we now have: 

We also have: z<a*) = (a.*)cx* ~(ex*) NO (here AC is used, in the equality step). Hence the result 

follows. D 

3.22. QUESTIONS. At present we do not know the answers to the following questions. For what 

a.,p is G 0 o:,f3 a complete metric space? What is the cardinality of G0 cx,f3 and A 00 a.,f3? If 0° a.,f3 is a 
complete metric space, is G0 cx.W for P' > p also complete? 

It is interesting to compare the projective model A00 a,a.* with the process model lP a as 

constructed by De Bakker & Zucker [82a,b] as a solution of the domain equation 

In lP a' processes can terminate with Po or with 0 ('successfully' or 'unsuccesfully'). Leaving this 

double termination possibility aside (one can extend PA to PA0 and have the same double 

termination possibility) or using a variant of the domain equation: 

P::: Pc( Au (Ax P)), 
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we can state that our projective model A 00 a.a* is isometric to the process domain 1? a: For finite ex, 

this follows from the proof in Golson & Rounds [83] that 1? a is isometric to the graph domain 

0° cx,litl; hence it is also isometric to A00 a.Ko• by Corollary 3.20. For infinite a. the proof is similar. 

(The proof proceeds by noting that our spaces of finitely deep processes on a.a* are isometric to the 

P n in De Bakker & Zucker [82a..b] or Golson & Rounds [83]; hence the completions of 

U ~1 on a.,a* and U ~1 P n• respectively, must also be isometric.) So the cardinality statements in 

Proposition 3.21 apply also to the models in De Bakker & Zucker [82a,b]. 

For a systematic (category-theoretic) treatment of De Bakker-Zucker domain equations like 

the two above, showing that they have unique solutions modulo isometry, we refer to America & 

Rutten [88]. 

3.23. Closed process graphs 

We conclude with some remarks about a trade-off between closure properties of processes and the 

Approximation Induction Principle used in the construction of 0°.a.,a*· These remarks are 

suggested by the fact that the model of De Bakker and Zucker is a solution of their domain 

equation; loosely speaking this means that the elements of that model can be perceived as 

'hereditarily closed sets'. (Note, however, that these 'sets' are not well-founded. For a treatment of 

non-well-founded sets, including the connection with bisimulations, see Aczel [87].) One may ask 

whether the closure property can replace, when constructing a model from process graphs such as 

0° a,a*• taking the quotient with respect to AIP. We will make this question more precise using the 

definition of 'closed process tree' which was suggested to us by R. van Glabbeek (personal 

communication). 

3.23.1. DEFINITION. (i) For process trees g,h e G.a,p we define the distance 3(g,h) as follows: 

3(g,h) = if3n g~nh; m=min{nlg~nh} 

0 otherwise, i.e. g = h. 

(ii) Let ff: !:; G. a,p be a set of process trees. Then :K is closed if every Cauchy sequence (gi)~1 

with respect to 3 in :K converges to a limit g in K (i.e. 'v'k 3N 'v'n>N g =ic gn). 

(iii) Let g e G. R be a process tree. Then g is closed if all its nodes s are closed; and a node s in a,.., 
g is closed when (g)Ja is a closed set of trees for every a e A. Here (g)8 is the subtree of g at s. 

Futhermore, a process graph is closed if its tree unwinding is closed. The set of all closed process 

graphs is a.c a,p· 

3.23.1.1. REMARK. Note that the closure property of process graphs is invariant under 
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bisimulation equivalence: if g .tl h and g is closed, then h is closed. 

3.23.2. DEFINITION. Let M be a a process algebra for PA. 
(i) From the elements x,y,z,. .. of M we construct a transition diagram (i.e. a 'process graph' 
without root and not necessarily connected) as follows. Whenever x = ay + z there is a transition 
x-7 a y. In the case that x = ay we have the same transition. If x = a, then there is a transition 
x-7a0 where o is the termination node. More concisely, we have X-7a y iff x = ay + x and x-7a0 

iff x = a + x. (To see this, use the axiom x + x = x.) 

(ii) The canonical process graph of x in Mis the process graph with root x, and as nodes all the 
elements ofM reachable from x in zero or more transition steps as just defined, including possibly 
the termination node. Notation: canM(x) or just can(x) when it is clear what M is meant. (See 

Figure 3.3 for the canonical process graph of (Ln;?:l an )/s. in 0° a,j3·) 

Figure 3.3 

3.23.3. PROPOSITION. Let g/= be an element ojG0 a,j3. Then: 
(i) can(g/=) = g. 

(ii) can(g/::) =n can(h/=) <=> g =n h. 
(iii) can(g/=) is a closed proces graph. 

a 

PROOF. (i) With induction on n we prove that g =n can(g/=) for n ~ 0 (see Definition 3.3). The 
basis of the induction, n = 0, is trivial. Suppose (induction hypothesis) that we have proved 
Vg g =n can(g/::). In order to prove g =n+l can(g/::), we have to show (1) and (2): 

(1) for every transition g _..a g' there is an initial step in can(g/=): g/s. -?a hi= such that 

g' =n (can(g/=))(bl=) = can(h/:=). 

(Remember that g/=, hi= are nodes in can(g/::).) Now g/= -7 a hi= is (by definition of canonical 
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process graph) the same as: g/= = a(h/=) + r/= for some graph r. Or, equivalently: g = ah + r. So, 

given the transition g --?; a g' we have to find h,r with g = ah + r and g' =n can(h/=.). This is 

simple: take h = g' and r as given by g --?; a g' (i.e. g = a·g' + r for some r). Now apply the 

induction hypothesis. 

(2) For every initial step in can(g/=.): g/= ~a hi= there is a transition g ~a g' such that 

g' =n can(h/=). 

So, let g/= ~a hi= be given. This means g =ah+ r for some r. In particular, g =n+l ah+ r, i.e. 

(g)n+I JZ (ah+ r)n+l = a(h)n + (r)n+l · (*) 

From the induction hypothesis we know that h =n can(h/=.), i.e. 

(**) 

Combining (*),(**) we have 

(***) 

Now we have to find a step g ~a g' such that g' =n can(h/=), i.e. (g')n JZ (can(h/=))n. This is 

easily obtained from(***): consider the a-occurrence displayed in the right-hand side of(***). By 

definition of JZ, this a-step is matched in (g)n+ 1 by an a-step (g\+ 1 ~a (g')n with (g')n !± 

(can(h/=))n. 

(ii) Write g* = can(g/=). To prove({::), suppose g =n h. Then g* = g =n h = h*, using (i).So 

g* =n h*. The proof of(~) is similar. 

(iii) Consider can(g/=). (See Figure 3.4.) Let s be a node of this graph (so s e 0° a,B). Consider 

the a-derivation of s, i.e. the set of subgraphs of can(g/=.) determined by the a-successors of s. 

Clearly, this a-derivation is the set of canonical graphs of some elements 1i (i e I) of 0° ex,~· 

Suppose this set { can(4) Ii e I} contains a Cauchy sequence (with respect to c as in Definition 

3.23.1): 

can(tw), can(til), ... , can(~n), ..... 

We claim that the elements ~o·1iI•··.,~,. .. form a Cauchy sequence in G0cx,~· This follows at once 
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from (ii) of this proposition. So there is a limit t e 0° «.!3 of the last Cauchy sequence. Now can(t) 

is easily seen (using again (ii) ) to be a limit (in the S-sense) for the Cauchy sequence can(tw), 

can(tn ), .... 

We still have to prove that s ~at, or equivalently (see Definition 3.23.2(i)) s =at+ sin 

G 0 a,() . Let li denote a representing process graph from the =-equivalence class s, and likewise for t 

etc. Then we must prove that .s. = at + .s.. To this end, take 1nc: such that !ik =n 1. Since §. = altk + §. we 

have .s. =n a! + .s_. Hence .s. = at + .s.. D 

Figure 3.4 

The preceding proposition enables us to define the closure of a process graph g E aa.,p• 

notation gc, as can(g/s) w.r.t. 0° a..~· such that g = gc. Next, we define operations +c, .c, lie, \I_ c 

on ctc a..~ as follows: g llc h = (g II h)C and likewise for the other operators. Here 11 is the merge 

operation on aa.~· 

5.4. REMARK. If ac a.,p would have been closed under the operations +, ·, II. lL the preceding 

ciosure operation in (g II h)c (etc.) would not have been necessary. However, for an infinite 

alphabet a,c ex.,() is not necessarily closed under II. as the following example shows. (We conjecture 

that for finite alphabets ac o:,p is closed under the operations II etc.) 

Let the alphabet be {ai Ii~ 1} u {b,c }. We define process graphs H, G, gn (n ~ 1): 

H=li~1 a,.00 

gn =~II bn 

G = Lu;:.:1 c·gn. 
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Now H is a closed process graph. This can be easily seen, noting that H is a deterministic process 

graph, i.e. a graph where two different edges leaving the same node must have different label, and 

noting that deterministic graphs are always closed. Also G is closed: the c-derivation 0/c, 

consisting of the graphs gn, does not contain a Cauchy sequence since the graphs gn are already 

different in their first level, due to the 'spoiling effect' of the~ in gn. Now G II His, we claim, not 

closed. For, consider the c-derivation 

(G II H)/c = {H II gn In~ l}. 

Since H II au tt H, we have 

(G II H)/c = {H II bn In~ 1}, 

modulo tt which does not affect the closure properties (as remarked in 5.1.1). The last set is a 

Cauchy sequence: in general, if {qi I i ~ l} is a Cauchy sequence of process graphs, then {p II qi I 

i ~ 1} is again a Cauchy sequence for arbitrary p. However, there is no limit for this sequence in 

the set (G I\ H)/c, and hence it is not closed. So G II His not closed. 

This counterexample may seem somewhat surprising in view of a related result in De 

Bakker, Bergstra, Klop & Meyer [84], where it is stated (Theorem 2.9) that the collection of closed 

trace languages (containing possibly infinite traces) is closed under the merge operation, for 

arbitrary alphabet. Here a trace language is obtained as the set of all maximal traces of a process (or 

process graph). Note however that closure of processes does not very well correspond to closure 

of the corresponding trace sets; cf. also Example 4.4 in De Bakker, Bergstra, Klop & Meyer (84] 

of a closed process graph with a trace set which is not closed. 

Next, we de.fine the quotient structure 

nc _nc / .. 
IUJ a.,~ - u. a.,~ - . 

Here ac a.~ is supposed to be equipped with the operations as just defined. It is left to the reader to 

show that tt is indeed a congruence with respect to these operations. Now there is the following 

fact, showing that indeed taking the quotient with respect to the congruence induced by AIP can be 
exchanged for the restriction to closed process graphs: 

3.23.5. THEOREM. Ge a.,[3 := 0° a,~· 
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PROOF. Remember that oc ex.~= a.c a.P / tt and 0° a.I>= 6.a,~ I=· Define the map 

by cp(g/ tt) = (gl=). Here g e a.c a,p and g/tt is the equivalence class modulo tt; likewise g/= is the 

equivalence class of g modulo =. 

(1) To prove that cp is injective, let g,h e a,c a,!l and suppose g =h. We must prove g tt h. 

Define R !:;;:; NODES(g) x NODES(h) as follows: (s,t) E Riff (g)s = (g)t. We claim that Risa 

bisimulation from g to h. Proof of the claim: The roots are related, by the assumption g = h. 

Further, suppose (s,t) e Rand suppose there is a step s °"'as' in g. (See Figure 3.5.) 

Figure 3.5 

Since (g)8 = (h)t we have for all n ~ 1: (g)8 =n (h)t" This means that there are 1Ji such that (g)8• =n 

(h)tn for all n ~ 1. The 1Ji (or rather the (h)tn) form a Cauchy sequence with respect too, hence 

there is, since his closed, a node t' such that t ~at' and (h)1• is a limit for the Cauchy sequence 1li• 
n ~ 1. So (h)t• =n (h)trn for some m ~ n. Therefore (h)t• =n (h)trn =m (g)8., and since m :<?'. n, (h)t• =n 

(g)8•. This holds for all n :<?'. 1, so (h)t• = (g)8., i.e. (s',t') e R. 

The same argument shows that if (s,t) e Rand there is a step t ~at' in h, then there is a step 

s ~as' with (s',t') e R. 

This shows that Risa bisimulation from g to h, and ends the proof of (1). 

(2) To prove that cp is surjective, we have to show that 

""' t:?c 3 ' t:?c - , v g e u- cx,p g e u- cx,!l g = g . 

This follows by taking g' = can(g/:) and applying Proposition 3.23.3(iii). O 
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In the case that 13 is large enough, so that oc a.l3 is isometric to the process model Pa of De 

Bakker and Zucker, this isometry leads to an 'explicit representation' of Pa• as follows. First a 

definition: 

3.23.6. DEFINITION. (i) A process graph g is minimal if 

'v's,te NODES(g) (g)8 tt (g)1 ~ s = t 

(ii) A process graph is normal if 

'v' s,t,t'e NODES(g) \;/ ae A s ~a t & s ~a t' & (g)8 tt (g)1 ~ s = t. 

Clearly, normality is implied by minimality. Also note that a process tree can never be minimal, 

unless it is linear (has only one branch); this is the reason for introducing the concept 'normal'. 

It is not hard to prove that if g,h are minimal process graphs and g tt h, then g,h are in fact 

identical. Moreover, the canonical process graphs (of elements of 0° a.l3) are precisely the closed 

and minimal process graphs in G.a,l3· Thus every element in lP a can be represented by a closed, 

minimal process graph with branching degree at most ex*, and the operations in lP a can be 

represented by the corresponding operations in ac a.l3 followed by minimalisation (collapsing all 

bisirnilar subgraphs). Another explicit representation can be given, using trees instead of graphs 

and observing that normal, bisimilar process trees are identical. Then the elements of lP a 

correspond to closed, normal process trees with branching degree at most a.*. This representation 

is closer to the idea of elements of l? a as 'hereditarily closed and possibly not well-founded sets'. 

Summarizing our comparisons with lP a we have established isometrics (for all x:): 

lP - Aco _ ,,.,,_o 
a = a,a*+K = u a,(cx*)+ +K· 

Furthermore, writing a.cm a,l3 for the set of closed minimal graphs in G.a,l3 and Ten a.l3 for the set of 

closed normal trees in G.a,~· there are the isometries 

lP - ""'-C - n.cm -Ten 
a = u cx,(a*)+ +K = "' a, (a*)+ +K = a, (a•)+ +K • 

where the last two complete metric spaces can be seen as •explicit representations' of lP a· 
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