
A Theory of First-Order Built-in's of Prolog

Krzysztof R. Apt, •t Elena Marchiori,• i Catuscia Palamidessi §

Abstract

We provide here a framework for studying Prolog programs with various built-in•s that
include arithmetic opcratiollll, and such metalogical relatio!lll like var and groutatl. To this end
we propose a new, dcc:larative semantics and prove completeness of the P1:olog computation
mechanism w.r.t. this semantics. Finally, we provide a method for proving termination
of Prolog programs with built-in's which uses this semantics. The method is shown to be
modular.

Note: This research was done during the second and third authors' stay at Centre for Math
ematics and Computer Science, Amsterdam. The work of K.R. Apt was parily supported
by ESPRIT Basic Research Action 3020 (Integration). The work of C. Palamidcssi was
partly supported by ESPRIT Basic Research Action 3020 and by the Italian CNR (Con
siglio Nazionale delle Ricerche). The work of E. Marchiori was partly supported by the
Italian CNR under Grant No. 89.00026.69.

1 Introduction

1.1 Motivation

Theory of logic programming allows us to treat formally only pure Prolog programs, that is those
whose syntax is based on Hom clauses. Any formal treatment of more realistic Prolog programs
has to take into account the use of various built-in's. Some of them, like arithmetic relatioDB,
seem to be trivial to handle, as they simply refer to some theory of arithmetic. However,
the restrictions on the form of their arguments (like the requirement that both arguments of <
should be ground) cause complications which the theory oflogic progrmnming does not properly
account for. In particular, in presence of arithmetic relatiowi the independence of the refutability
from the selection rule fails, as the goal +- :z: = 2, 1 < z shows.

Further, the use of metalogical relations (like var, gr0tt.nd) leads to various additional prob
lems. Clearly, var cannot be handled using the traditional semantics based on first-order logic
because var(:z:) is true whereas some instances of it are not. In presence of nonvar another com
plication arises: the well-known Lifting Lemma (see Lloyd [Llo87]) needed to prove completeness
of the SLD-resolution does not hold - for a non-variable term t, the goal +- nonvar(t) can be
refuted whereas its more general version +- nonvar(:z:) cannot.

Finally, study of termination of Prolog programs in presence of the above built-in's calls for
some new insights. For example, the program list

•eentrc for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlauda,
'Fa.cult:r of Ma.thematics and Computer Science, Univerait7 of Amsterdam, Pl&nta.ge Mnidergra.cht. 24, 1018

TV Amsterdam, The Nct.herlancla,
:Dipa.rtiment.o di Ma.tema.tie& Pura ed Applie&ta, Uninrsit.8. di Padava, VJ& Belaoni 7, 35131 Pad.ova., lta.J.;r,
IDipa.rtiment.o di Informatica, Univeraiti. di Pisa, Corso·ltalia 40, 56125 Piae., ltaJ.;r.

list(O) +-.

list([X lls]) +-

nonvar(ls), list(ls).

70

which. recognizes a. list, always terminates, whereas its pure Prolog counterpart obtained by
dropping the a.tom nonvar(X s) may diverge. As a result the methods developed to reason
about termination of pure Prolog programs (see Apt and Pedreschi [AP91] for a short overview)
cannot be used here.

The aim of this paper is to provide a systematic account of the class of the above mentioned
built-in's of Prolog. This class includes the arithmetic relations (like :==, < etc.) and some
metalogical relations (like var,grov.nd etc.). To distinguish them from those built-in's which
refer to clauses and goals (like call and assert), we call them first-order built-in's. Hence the
title.

In Section 2 we introduce a new declarative semantics and prove a completeness result con
necting it with the Prolog computational mechanism. In Section 3 we show how this semantics
can be used to prove termination of Prolog programs with first-order built-in's. We also show
how termination proofs can be constructed in a modular way.

We are aware of two other approaches to define the meaning of Prolog programs with built
in's, namely that of Borger [Bor89] based on so-called dynamic algebras, and that of Deransart
and Ferrand [DF87] based on an abstract interpreter. Their aim is to provide semantics for the
complete Prolog language whereas ours is to extend the declarative semantics to Prolog programs
with built-in's so that one can reason about such programs. In this respect our approach has
the same aim as that of Hill and Lloyd [HL88] where all meta.logical features of Prolog are
represented in a uniform way by means of a representation of the object level in the meta-level,
reminiscent of the Godelization process in Pea.no arithmetic. In contrast, we are not aware of
any work on termination of Prolog programs with built-in's.

1.2 Preliminaries

In what follows we study logic programs extended by various built-in relatioDJ!. We call the
resulting objects Prolog programs, or simply programs. Prolog programs are executed by means
of the LD-resolv.tion, which. consists of the usual SLD-resolution combined with the leftmost
selection rule, that is appropriately extended to deal with the built-in relatioDJ1.

We often manipulate various sets of variables. In general x, y stands for sequences of different
variables. Sometimes we identify such sequences with sets of variables. Given a substitution 1/

and a set of variables x we denote by 1] Ix the substitution obtained from 1J by restricting its
domain, Dom(11), to x. By Ran(q) we denote the set of variables that appear in the terms of
the range of 1/· A renaming is a substitution that is a permutation of the variables constituting
its domain.

Given an expression (term, atom, goal, ...) or a substitution E we denote the set of variables
occurring in it by Var(E). We often write 1J I E to denote 1/ I Var(E). The set of all variables is
denoted by Var. Atoms of the form p(x) where p is a relation are called elementary atoms and
atoms containing a built-in relation are referred to as built-in atoms. Finally, atoms containing
a relation used in a head of a clause of a program Pare said to be defined in P.

In the context of logic programs, or more generally, Prolog programs, it is convenient to
treat sequences of atoms as conjunctions (sometimes called conjuncts). By the length of such. a
conjuction we mean the number of its atoms. Usually, A, B denote such conjunctions.

It is convenient to associate with each pair of atoms or pair of terms that unify a unique
idempotent and relevant mgu in the sense of Apt fApt90, page 502). Given such a pair A,B

71

we denote it by mgu(A,B). Recall that an mgu 1/ of A and Bis idempotent if 1/11 = 1/ and
is relevant if Var(11) ~ Var(A,B). The relation more general than defined on pairs of atoms,
terms or substitutions is denoted by :::;.

The rest of the used notation is more or less standard and essentially follows Lloyd (Llo87].
In particular c.a.s. stands for computed answer substitution.

2 The declarative semantics

2.1 Motivation

In this section we define a declarative semantics appropriate to describe the operational be
haviour of Prolog programs. First, let us see why it is impossible to achieve this goal by simply
modifying one of the usually considered declarative semantics.

The standard declarative semantics, based on the (ground) Herbrand models due to van
Emden and Kowalski [vEK76], is clearly inadequate to deal with first-order built-in's. Indeed,
in this semantics, in a given interpretation, if an atom is true then all its ground instances are.
However, for every ground term t, 11ar(t) should be fal:ie in every model whereas 11ar(z) should
be true. Therefore we say that 11ar is a non-monotonic relation.

We conclude that any declarative modeling of non-monotonic relations requires an explicit
introduction of non-ground atoms in the Herbrand interpretations, in order to define the truth
value of an atom independently from its ground instances. The non-ground Herbrand semantics
proposed by Clark [Cla79] (called C-semantics in [MP89]) is however not adequate, because it
is monotonic. Namely, if A(z) is true in an interpretation, then also A(t) is true, for every t{In
the same interepretation.

In presence of built-in relations like nonvar, another problem arises: the goal +- nonvar(z)
fails whereas for every non-variable term t, the goal +- non11ar(t) succeeds. Therefore we say that
nonvar is a non-down-monotonic relation. Due to the presence of non-down-monotonic relations
the Lifting Lemma (see Lloyd [Llo87]) does not hold for Prolog programs. In particular, for the
program

p(l) +- nonvar(I).

for every non-variable term t, the goal +- p(t) has a refutation, whereas +- p(:i:) fails.
This example rules out the $-semantics of Fal.aschi et al. [MP89] in which the meaning of

a relation p is identified with the set of computed answer substitutions f7 of the goal +- p(x)
- in a sense, the post-conditions which are verified after the possible succesful computations of
the goal +- p(x). We also need a pre-condition, i.e. information about the substitution fJ by
which the atomp(x) is instantiated before starting the computation. A possible way to do it is
by enriching the domain with another component, thus explicitly representing the substitution
used before starting the computation.

2.2 El-semantics

The considerations made in the previous section lead us to consider objects of the form { 8, p(x), 11},
where (J represents the pre-substitution (or input substitution) and 11 represents the post-substitution
(or output substitution) for the goal +- p(x). For technical convenience we equivalently represent
these triples as pairs of the form {A, q), where A is the atom obtained by applying the input
substitution fJ to the elementary atom p(x), i.e. A = p(x)fJ.

72

Of course, we can restrict our attention to pairs (A, TJ} in which TJ does not affect the variables
that do not appear in A.

First, we deal with built-in relations. For any such relation p we stipulate a set [p] of pairs
defining its operational behaviour. We list here some cases. In the definition below, "=" is the
well-known built-in standing for "is unifiable with".

[var] = {(var(z),E} I z E Var},

[nonvar] = {(nonvar(s),E} Is f/. Var},

[==] = {(s == t,TJ} I 11 == mgu(s,t)},

[>] == { (s > t, e) I s, tare integers and s > t},

[constant] = {(constant(a),E} I ais a constant},

[compound] = {(compound(s),e} Is is a compound term},

[functor] = {(functor(t,f,n),11),t== (fTJ)(t1 1 ••• ,tn,,) I
Dom(11) !,:;;; {f,n}, n11 is a natural number and for some f1,-· .,t,.,,, or
Dom(11) = {t} and t71 = J(x1, ... , zn) where :c1, ... , Zn are fresh variables},

[:=] = {{:c := s, {x/t}) I :c E Var, sis a ground arithmetic expression with value t},

= {{arg(n, J,t), TJ} I Dom(11) !,:;;; {t}, n is a natural number and
t17 is then - th argument of s, orDom(71) = {s,.} and Sn71 = t}.

We assume that the set of pairs associated with a built-in relation describes co'ITectly its opera
tional behaviour, in the following sense.

Definition Z.1 Let A be an atom with a built-in relation p. Then for every conjunction B, the
goal +-- B11 is a resolvent of+-- A, B iff (A, TJ} E [p]. D

Next, we consider atoms defined by the program. Given a conjunct A of atoms we denote by
l(A) its length. If l(A) = 0 we denote A by true. First we introduce the following generalization
of Herbrand base and Herbrand intepretation ..

Definition Z.Z (<:>-domain and 0-interpretation) Let P be a Prolog program.

• The 0-base f)p of P is the set of all pairs (A, TJ), where A is an atom de.fined in P, and 'f/
is a substitution s.t. Dom(11) ~ Var(A).

• A El-interpretation I of Pisa subset of the 0-base f)p. D

To define the truth in 0-interpretations we ha.ve to model appropriately the proof theoretic
properties of the computed answer substitutions. To this end it is important to reflect on them
first.

Definition Z.3 Let A, B be conjuncts and let 8, er be substitutions. We say that (A,B,8,cr)
is a good tuple if the following conditions are satisfied:

73

• Ran(O) n Var(B) ~ Var(A)

(the variables introduced by 8 that occur in B also occur in A),

• Ran(a') n (Var(A,B) U Ran(O)) ~ Var(BO)

(the variables introduced by u that occur in A,B or in Ran(O) also occur in BO). O

The importance of this, admittedly esoteric, notion is revealed by the following lemma.

Lemm.a 2.4 (Good Tuple) Consider a goal+- A, B. Then 1/ is a c.a.s. of PU {+-A, B} if!
for some 8 and u

• 0 is a c.a.s. of PU {+-A},

• <T is a c.a.s. of PU {+-BO},

• 17 = (Ou)j(A,B),

• (A,B,8,u) is a good tuple. 0

This lemma shows that the c.a.s. 's for a compound goal +- A, B cannot be obtained by
simply composing each c.a.s. 0 for +- A with each c.a.s. u for +- BO. The notion of a good
tuple formalizes the conditions that 0 and u have to satisfy. Both conditions of Definition 2.3
of Good Tuple are needed.

Consider for example the program P: p(Y) +-. and the goal G = +- p(X),p(Y). Then
0 = {X/Y} is a c.a.s. for +- p(X) and u = e is a c.a.s. of PU{+- p(Y)O} but (Ou) IG = {X/Y}
is not a c.a.s. of P U { G}. This shows that the first condition in Definition 2.3 of good tuple is
needed.

Now 8 =Eis also a c.a.s. for +- p(X), u = {Y/X} is a c.a.s. of PU { +- p(Y)O} (rename
the clause with {Y/ X}) but (Ou) I G = {Y/ X} is not a c.a.s. of PU {G}. This shows that the
second condition in Definition 2.3 of Good Tuple is needed.

Since we want to model the meaning of a conjunct w.r.t. a post-substitution T/ in such a way
that a precise match with the procedural semantics is maintained, the notion of a good tuple
will be crucial also for the semantic considerations.

The next step is dictated by the simplicity considerations. We shall restrict our attention to
Prolog programs in a certain {orm. Then, after proving soundness and completeness for these
programs, we shall return to the general case.

Definition 2.5 {Homogeneous Programs)

• A Prolog clause is called homogeneous if its head is an elementary atom.

• A Prolog program is called homogeneous if all its clauses are homogeneous. 0

We now define truth in 0-interpretations for homogeneous programs. It relies on the notion
of a good tuple.

Definition 2.6 (Truth in 0-interpretations) Let 'I be a 0-interpretation of a homogeneous
Prolog program P.

The tru;th of a conjunct A in 'I w.r.t. a (post-)substitution 1f, denoted by 'I I= (A, 11), is
defined by induction on l(A).

74

• Z(A) = 0. Then A = tru.e.

Zl=(true,71} iff 71=e.

• l(A) = 1. Then A= A for an atom A.

I I= (A, '7) iff (A,71} E [p], where A is a built-in atom with the relation symbolp,

Z I= (A, '7} iff {A, '7) EI, where A is defined in P.

• l(A) > 1. Then A= A,B for an atom A and a non-empty conjunct B .

I I= (A, B, 71) iff there exist 0, u s.t.

· I I= {A,8},

· I I= (BO, u},

- 71 = (Ou)l(A,B),

• (A,B,O,u) is a good tuple.

The truth of a homogeneous clause H +- B of P in 'I, denoted by I I= H +- B, is defined a.a
follows.

• I I= {H +- B,.q) iff for all 8 s.t. Dom(B) = Var(H) and Ran(B) n Var(B) = 0,
Z I= (B0,71) implies I I= (H0,711(H8)) 1

• I I= H +- B iff for all 71 1 Z I= (H +- B, 71).

I is a 0-moclel of P iff all variants of the clauses of Pare true in I.

2.3 0-semantics and LD-resolution

0

The next step is to show that LD-resolution is correct w.r.t. the 0-semantics. The proof relies
on the Good Tu.ple Lemma 2.4. It is convenient to assume that whenever in the LD-resolution
step the selected atom A is unified with the head H of the input clause where H is a pure atom,
then the mgu 8 of A and His s.t. Dom(B) = Var(H). Thus A= HO. By the length Z(!) of a
derivation e we mean here the number of its goals.

Theorem. 2.7 (Soundness I) Let P be a homogeneous Prolog program and A a conjunct. If
'1 ia a c.a.s. for P U {+-A} then for any 0-model Z of P we have I I= (A, 71).

Proof. Fix a 0-model I of P. Let! be a LD-refutation of PU {+-A} with c.a.s. '7· We prove
the claim by induction on the length Z(!) of!· Three cases arise.

Case 1 Z(A) = 0. Then A= tru.e and '1 = e, so the claim follows directly by Definition 2.6.

Case 2 Z(A) = 1. Then A= A for an atom A.
If A is a built-in atom, then the claim follows directly by Definitions 2.1 and 2.6. If A is defined
in p I then consider the resolvent BO of +- A in e obtained using the input clause H +- B and
mgu 8. H is an elementary a.tom and by the standardization apart A and H +- B have no
variable in common, so

Dom(B) = Var(H), Ran(B) n Var(B) = 0, (1)

75

and
A=HO. (2)

Let rl be the c.a.s. for PU { +- BO} computed by the suffix f.' of f. starting at +-BO. Then

11 = (81.,') I A. (3)

We have l(f.') = l(f.) - 1, so by the induction hypothesis I!= (BO, 11'). But I is a model of

P, so H +-Bis true in I and consequently by (1) and Definition 2.6 I!= {HO, rJ'I HO). Thus

by (2) I I= {A,11'IA). However, A a.nd H have no variable in common, so by (1) DIA= E and

consequently by (3) 1/ = (0171) I A= 11'1 A. So we proved I!= {A, 11).

Case 3 l (A) > 1. Then A = A, B for an atom A and a non-empty conjunct B.
By the Good Tuple Lemma 2.4 there exist 0 and u s.t. 1/ = (Ou)IA and

(i) PU {+-A} has an LD-refutation f.1 with c.a.s. 0,

{ii) PU {+-BO} has an LD-refutation f.2 with c.a.s. u,

(iii) (A, B, 0, u) is a good tuple.

Moreover, by the proof of this lemma it follows that we can choose f.i, f.2 to be subderivations

of f.. Then l(f.i) < l(f.) so by the induction hypothesis

I!= {A,0). (4)

Also l(f.2) < I(f.), so by the induction hypothesis

I!= (BO, u). (5)

Thus by (iii), (4) and (5) we get I l= {A, 17) by Definition 2.6. D

In order to prove the converse of Theorem 2. 7 it is helpful to consider a special 0-model

representing all 0-models, in the sense that a conjunction is true in it (w.r.t. a given post

substitution) iff it is true in all 0-models.
The €>-interpretations are naturally ordered by the set inclusion. In this ordering the least

0-interpretation is 0 and the greatest one is 0p. Analogously to standard Herbrand models,

the 0-models are closed under arbitrary intersections, from which we deduce the existence of

the least 0-model.

Theorem 2.8 Let P be a homogeneous program and M be a class of 0-models of P. Then

M = flxe.MI is a model of P. D

Corollary 2.9 (Least Model) Every homogeneous program P has a least 0-model, Np. D

This 0-model is the intended representant of all 0-models of P in the following sense.

Corollary 2.10 Let A be a conjunct and 1/ be a substitution. Then Np I= {A, TJ) iff for all

0-models I of P we have I I= {A, 17). 0

76

In the theory of Logic Programming the least Herbra.nd model can be generated as the
least fi:x:point of the immediate consequence operator Tp on the Herbrand interpretations. This
characterization is useful for establishing the completeness of SLD-resolution. We now provide
an analogous characterization of the least 0-model Np in order to show the completeness of the
LD-resolution.

First, we introduce the appropriate operator Tp.

Definition 2.11 Let P be a homogeneous program. The immediate consequence operator Tp
on the 0-interpretations is defined as follows:

Tp(I) = {(H0,17jHO)I forsomeB
H +- B is a variant of a. clause from P,
Dom(O) = Var(H), Ran(O) n Var(B) = 0,
I I= (BO, 11)}.

Next, we characterize the 0-models of P as the pre-fixpoints of Tp.

Lemma 2.12 (Model Characterization) I is a 8-model of P iffTp(I) !:::;; I.

0

Proof. The Tp operator is easily seen to be additive, i.e. for every 0-interpretation I we have
Tpup•(I) = Tp(I) U Tp1(I).

Thus it suffices to prove the claim when P consists of just one clause, c. Then for every H,
8 and 7J we have (HO, 1J I HO) E T{c}(I) iff (by Definition 2.11)

H +-Bis a variant of c such that I I= (BO, 17), Dom(O) = Var(H) and Ran(O) n Var(B) = 0.
Since I is a model of {c} then this holds iffI I= (H0,1Jl(H8)), i.e. {H0,1Jl(HO)) EI. D

Now, we characterize Np as the least fi:x:point of Tp. We need the following observation.

Proposition 2.13 (Monotonicity) Tp is monotonic, that is I!:::;; J implies Tp(l) !:::;; Tp(J).
0

Proposition 2.14 {Least Fixpoint) Tp has a least fai:point lfp(Tp) which is also its least
pre-fixpoint. D

We can now derive the desired result.

Corollary 2.15 lfp(Tp) =Np.

Proof. By the Least Fixpoint Proposition 2.14, Least Model Lemma 2.9 and Model Character
ization Corollary 2.12. D

Finally, we provide a more precise characterization of the 0-model. Np that will be used in
the proof of the completeness of the LD-resolution. We need the following strengthening of the
Monotonicity Proposition 2.13.

Proposition 2.16 (Continuity) Tp is continuous, that is for every sequence Ii (i ;?: 0) of
0-interpretations such that Io ~ I 1 ~ ••• we have

0

77

We define now a sequence of 0-interpretations by

Tp j 0 = 0,

Tp j (n + 1) = Tp(Tp j n),

Tp j w = U~oTP j i.

Proposition 2.17 (Characterization) Np= Tp j w. 0

We can now prove the completeness of LD-resolution with respect to the El-semantics for
homogeneous programs.

Theorem 2.18 (Completeness I) Consider a homogeneous program P and a conjunct A.
Suppose that for all El-models I of P we have If= (A,11}. Then there ezists an LD-reju.tation
of P U {+-A} with c.a.s. 11·

Proof. In particular we have Np f= (A, 11}. By the Characterization Proposition 2.17 Tp jw !==
{A, 11). By the monotonicity of Tp we have Tp j 0 ~ Tp j 1 ~ ... , so by the Continuity Lemma
2.16 Tp j k f= {A, 11) for some k > 0.

We now prove the claim by induction w.r.t. the lexicographic ordering < defined on pairs
{k, l(A)} of natural numbers. In this ordering

{n1,n2) < (m1,m2) iffn1 < m1 or (n1 = m1 An2 < m2).

The case when A is empty, i.e. l(A) = 0 (which covers the base case of the induction) is
immediate by Definition 2.6.

Suppose now A= A, B. There exist substitutions fJ, <T such that

Tpjk F (A,fJ),

Tpjk f= (BO,u),

(A, B, 0, u) is a good tuple and 11 =(Ou) I (A, B).
We first prove that PU {+-A} has an LD-refutation with c.a.s. fJ. When A is a built-in

atom this conclusion follows immediately from Definitions 2.1 and 2.6.
When A is defined in P we have k > 0. By Definition 2.11 there exists a variant H +- B' of

a clause from P, a substitution 1/; s.t. Dom('I/;) = Var(H), Ran('I/;) n Var(B') = 0, A= H't/i and
a substitution</> such that Tpi(k -1) f= (B''I/;,</>) and 0 =<PIA.

Since {k-1, I(B''I/;)} < (k, I{A)}, by the induction hypothesis there exists an LD-refutationof
P U { +- B''I/;} with c.a.s. <f>. Therefore there exists an LD-refutation of P U { +-A} with c.a.s.
0, because +- B''I/; is a resolvent of +-A using the mgu 1/; and (since A'I/; =A) 0 = (1/1</>) I A.

Since (k,I(BO)} < (k, l(A)), by the induction hypothesis also there exists an LD-refutationof
P U { +- BO} with c.a.s. u. Since (A, B, 0, u) is a good tuple and 11 = (Ou) I A, B, we can apply
the Good Tuple Lemma 2.4. We conclude that there exists an LD-refutation of PU { +- A} with

c.a.s. 11· 0

Corollary 2.19 Let P be a homogeneous program. Then

Np = {(A,11} I A is defined in P and
there ezists an LD-refutation of P U {+-A} with c.a.s. 11}.

78

Proof. By Definition 2.6, and Theorems 2.7 and 2.18. D

Now, every program can be easily transformed into a homogeneous program with the same

computational behaviour.

Definition 2.20 (Homogeneous Form) Let P be a Prolog program. Let :i:1, :c::i, ••• be distinct
variables not occurring in P. Transform each clause

p(t1, .•• ,t1c) +- B

of P into the clause

Here "=" is the previously defined built-in and interpreted as "is unifiable with". We denote
the resulting program by Hom(P) and call it a homogeneous form of P. D

A Prolog program P and its homogeneous form Hom(P) have the same computational
behaviour.

Theorem 2.21 Let P be a Prolog program and G a goal. Then P U { G} has an LD-refutation
with c.a.s. TJ if! Hom(P) U {G} has an LD-refu.tation with c.a.s. TJ· O

This allows us to reason about the meaning of Prolog programs by transforming them first
to a. homogeneous form. Alternatively, we can extend the definition of the truth to arbitrary
programs by simply defining a clause to be true ilf its homogeneous version is true. By "process
ing" then the meaning of the introduced calls to the built-in "=" we obtain a direct definition
of truth of a clause. Due to space limitations we do not present here these results and refer the
interested reader to the full version of the pa.per.

3 Termination of Prolog Programs

In this section we show that the 0-semantics is helpful when studying termination of Prolog
programs. The presence of built-in's allows us to better control the execution of the programs
and consequently it is not surprising that most "natural" programs with built-in's terminate for
all goals. This motivates the following definition.

Definition 3.1 We say that a Prolog program P is strongly terminating if for all goals G, all
LD-deriva.tions of P U { G} a.re finite. O

Traditionally, the ma.in concept used to prove termination of Prolog programs is that of a
level mapping. In our case it is convenient to allow level mappings defined on non-ground atoms
and yielding values in a well-founded ordering.

Definition 3.2 A level mapping I I is a function from atoms to a well-founded ordering such
that IAI = IBI if A and B a.re variants. O

The following auxiliary notion will be used below.

Definition 3.3 c' is called a head instance of a clause c if c' == cO for some substitution that
instantiates only variables of c that appear in its head. o

79

First we provide a method for proving {strong) termination of homogeneous programs. Our
key concept in establishing termination is the following one.

Definition 3.4 A homogeneous program P is called acceptable w.r.t. a level mapping 11 and a
0-modell of P if for all head instances A+- B1, ... , Bn ofa clause of P, the following implication
holds for i E [1, n]:

if II= (B1, •.. ,B1-1,17) then IAI > IB1T/I·
P is called acceptable if it is acceptable w.r.t. some level. mapping and a 0-model of P. O

The relevance of the notion of acceptability is clarified by the following theorem.

Theorem 3.5 (Soundness II) Lei P be a homogeneous program. Suppose P is acceptable.
Then P is strongly terminating.

The following notion will be useful in the proof.

Definition 3.6

• By the length of a goal we mean the number of its atoms. For a. goal G we denote its
length by I(G).

• Consider an LD-derivation {. Let G be a goal in {. Let k be the minimum. length of a goal
in the suffix of {starting at G and let H be the first goal in this suffix with length k. We
call H the shortest goal of {under G. o

Proof of Theorem 3.5.
Suppose by contra.diction that there exists an infinite LD-derivation of Pu {G}. Call it e.

Denote G by H0 • We first define two infinite sequences G1, G2 , ••• and H1 , H2, •.• of goals of e
by the following formula for j 2: 1:

G; is the shortest goal of {under H;-1,
H; is the direct descendant of G; in e.

Fix j 2: 1. Let A+- B1 , ... , Bn be the input clause and 0 the mgu used to obtain H; from G;.
By the choice of G; and H; we have l(G;) ~ l(H;), son~ 1. G; is of the form +-C1, ... ,C1c
where k ~ 1 and H; is of the form +-(B1 , • •• ,Bn,C2, ..• ,C1c)O. By definition, no goal of e
under G; is of length less thank, so G;+1 is of the form +-(Bi, ... , Bn, C2, ... , C1c)OTJ for some
17, where i E [1, n-1]. This means that there exists an LD-refutationof PU{+- (B1, ... , Bi-1)8}
with c.a.s. 11· This refutation is obtained by deleting from all goals of e between and including
H; and G;+i all occurrences of the instantiated versions of BiO, ... , BnO, C28, ... , CnO.

By the Soundness Theorem 2. 7 we have I I= ((B1 , ••• , Bi-I)8, TJ). By the acceptability of P

(6)

By the assumption stated at the beginning of Section 2.3 the mgu µ. used to obtain H;+1

from G;+1 does not bind the variables of the selected atom BiOTf. Thus BiOTf = B,Ortµ and
consequently

(7)

So, assuming j > 1, we have
(8)

80

(C1 is the first atom of Gj and B;Oq is the first a.tom of Gi+d· But 8 unifies A and C1, so

JC1BI = jAOj. (9)

By (6), (8), and (9) we conclude, assuming j > 1,

IG1l > JB;OqJ.

Thus applying the level mapping I I to the first atoms of the goals G2, G3, ... we obtain an
infinite descending sequence of elements of a. well-founded ordering. This yields a contradiction.

D

We now prove a converse of the Soundness II Theorem 3.5. For a strongly terminating
Prolog program Panda. goal G, we denote by nodesp(G) the number of nodes in the LD-tree
of PU { G}. The following lemma summarizes the relevant properties of nodesp(G).

Lemma 3. 7 (LD-tree) Let P be a strongly terminating Prolog program. Then

(i) nodesp(G) = nodesp(H) if G and H are variants,

{ii) nodesp(H) < nodesp(G) for all non-root nodes Hin the LD-tree of PU {G},

(iii) nodesp(H) :S nodesp(G) for all prefizes H of G.

Proof. (i) By a simple generalization of the Variant Lemma 2.8 of Apt [Apt90] to the class
of Prolog programs, an isomorphism between the LD-trees of PU {G} and PU {H} can be
established.
(ii), (iii) Immediate by the definition. D

We are now in position to prove the desired result.

Theorem 3.8 (Completeness II) Let P be a homogeneous program. Suppose P is strongly
terminating. Then P is acceptable.

Proo£ Put for an atom A

JAI = nodesp(A).

By Lemma 3.7 (i) 11 is a level mapping. We now prove that P is acceptable w.r.t. 11 and
Np, the least 0-model of P. To this end consider a clause c with head Ao and its head instance
cB =A._ B1 , ... , Bn where Dom(B) ~ Var(A0). Let us assume that cO is disjoint with c. Then
A is disjoint with A0 , A= A00 and Dom(O) ~ Var(A0), so 8 is idempotent and AO= A. Thus 0
unifies A and Ao and it is easy to see that in fact 8 is an mgu of A and Ao. Thus +- B1, ... , Bn
is a resolvent of .._A with the input clause c. By Lemma 3.7 (ii)

nodesp(-A)> nodesp(~ B1, ... ,Bn)· (10)

This conclusion was reached under the assumption that cO is disjoint with c but Lemma 3.7 (i)
allows us to dispense us with this assumption. Suppose now that Np f= (B1, ... , Bi-1 • TJ) for
some i E [l, n] and substitution q. Then by the Completeness Theorem 2.18 there exists an

81

LD-refutation of ._ B1, .. . ,Bi-l with c.a.s. TJ, so +-(Bi, ... ,Bn)TJ is a node in the LD-tree of
PU { ._ B1, ... , Bn}· By Lemma 3. 7 (ii)

nodeap(._ Bi, ... , Bn) ;:: nodeap(+- (B;, ... , Bn)11)

and by Lemma 3.7 (iii)

nodeap(+- (B,, ... , Bn)11);:: nodeap(+- B,17).

By (10), (11), and (12) we now conclude

nodesp(+-A) > nodeap(+- Bi17),

i.e. IA! > jB;TJI·
This shows that P is acceptable.

{11)

(12)

D

This establishes equivalence between the notions of acceptability a.nd strong termination for
homogeneous programs. For arbitrary programs we note the following result.

Theorem 3.9 Let P be a Prolog program and G a goal. Then the LD-tree of P U { G} is finite
iff the LD-tree of Hom(P) U { G} is finite. D

Corollary 3.10 Let P be a Prolog program. Then P strongly terminates iff Hom(P) strongly
terminates. D

This allows us to reason about termination of Prolog programs by transforming them first
to a homogeneous form and then using the notion of acceptability. An alternative, direct way
of reasoning about termination can be found in the full version of the paper.

The introduction of homogeneous programs allows us to draw the following conclusion.

Theorem 3.11 Let P be a Prolog program. Then P strongly terminates iff Hom(P) is accept
able.

Proo£ By the Soundness I Theorem 3.5 and Completeness I Theorem 3.8 applied to Hom(P)
and Corollary 3.10. D

Finally we show how this approach to termination can be modularized. First, we need a
notion of an extension.

Definition 3.12 We say that a relation p is defined in a Prolog program P if p occurs in a head
of a clause from P. O

Definition 3.13 Let P1 and P2 be two Prolog programs. We say that P2 eztends Pi, and write

Pi< P2, if

• Pi and P2 define different relations,

• no relation defined in P2 occurs in P1 . 0

Informally, P2 extends Pi if P2 defines new relations, possibly using the relations defined
already in P1• The following theorem formalizes our modular approach to termination.

82

Theorem 3.14 {Modularity) Suppose P2 e:i:tends P1. Assume that

(i) Pi is acceptable,

(ii) P:i is acceptable w.r.t. a 0-model I of P1 U P2 and a level mapping 11 such that IAI = 0 if
A contains a relation defined in P1.

Then P1 U P2 is strongly terminating.

Proo£ P2 extends Pi. Thus Pi U P2 is strongly terminating iff P1 is strongly terminating and
P2 is strongly terminating when the relations defined in Pi are treated as built-in's defined by

(p] = {{A, 77) I A contains p and there exists an LD-refut.ation of P1 U {+-A} with c.a.s. 'I/}.

Now, by (i) and the Soundness I Theorem 3.5 P1 is strongly terminating. To deal with the
other conjunct consider Np1up2 , the least 0-model of Pi U P2. By (ii) and Corollary 2.10 P2 is
acceptable w.r.t. Np1uJ>.a and the level mapping [I. Moreover, by Corollary 2.19 and the fact
that P2 extends P1 we have for all atoms A containing a relation p defined in P1

Thus by the Soundness I Theorem 3.5 P2 is strongly terminating when. the relations defined in
Pi are treated as built-in's defined as above.

This concludes the proof of the theorem.. D

We applied this approach to prove termination of the list program from the introduction, of
the typed version of the append program and of both versions of the unify program of Sterling
and Shapiro [SS86). Modularity Theorem 3.14 allowed us to present these proofs in a modular
way, by proving termination of various program parts separatly.

We believe that the approach to the semantics and termination presented here can be ex
tended to general programs, i.e. programs admitting negative literals in the body. To this end
some of the ideas of Apt and Pedreschi [AP91] could be of use.

Acknowledge:ments. We thank Annalisa Bossi and Kees Doets for helpful discussions on the
subject of the Good Tuple Lemma 2.4 and the referees for useful suggestions concerning the
presentation.

References

[AP91] K. R. Apt and D. Pedreschi. Proving termination of general Prolog programs. Iu
T. Ito and A. Meyer, editors, Proceeding of the International Conference on Theoretical
Aspects of Computer Software, Lecture Notes in Computer Science 526, pages 265-289,
Berlin, 1991. Springer-Verlag.

[Apt90) K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

[Bor89] E. Borger. A logical operational semantics of full Prolog, Part ill: Built-in predicates
for files, terms, arithmetic and input-output. Iu Y.Moschovakis, editor, Proceedings
Workshop on Logic from Computer Science. Springer MSRI Publications, 1989.

83

[Cla79] K.L. Clark. Predicate logic as a computational formalism. R'es. Report DOC 79/59,
ico, London, 1979.

(DF87] P. Deransart and G. Ferrand. An operational formal definition of Prolog. In Proceedings
of the .Ith. Symposium on Logic Programming, pages 162-172. Computer Society Press,
1987.

[HL88] P.M. Hill and J.W. Lloyd. Analysis of meta-programs. In H.D. Abr&ID11on and M.H.
Rogers, editors, Proceedings of the Meta88 Workshop, pages 23-52. MIT Press, 1988.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[MP89] M. Martelli M.Fal.aschi, G. Levi and C. Palamidessi. Declarative modeling of the
operational behaviour of logic languages. Theoretical Computer Science, 69:289-318,
1989.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a program
ming language. Journal of the ACM, 23:733-742, 1976.

