
King, Andy and Soper, Paul (1992) Serialisation Analysis of Concurrent
Logic Programs. In: Kirchner, Hélène and Levi, Giorgio, eds. Algebraic
and Logic Programming. Lecture Notes in Computer Science, 632 . Springer,
pp. 322-334. ISBN 3-540-55873-X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21031/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21031/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Serialisation Analysis of Concurrent Logic Programs

Andy King and Paul Soper

Department of Electronics and Computer Science�

University of Southampton� Southampton� S�� �NH� UK�

Abstract

Serialisation analysis reduces the time a concurrent logic program spends communicating

and scheduling� It �ts granularity analysis and schedule analysis into a single uni�ed framework

for partitioning a program into grains for parallel evaluation and ordering grains for sequential

evaluation� Serialisation analysis is simple� avoids the complexity of thresholding� and unlike pre�

vious proposals for controlling granularity� is based on threads� The threads avoid the creation

of suspensions and therefore reduce scheduler activity� Threads also act as indivisible units

of work� and therefore inhibit the parallel evaluation of �ne�grained processes� Furthermore�

serialisation analysis incurs no extra run�time overhead�

� Introduction

The concurrent logic languages apply a process model of Horn clauses which is� in principle� well
suited to multi�processor implementation� The execution of a concurrent logic program and query
divide naturally into abstract processes for parallel execution� If this division is carried too far�
however� the gains due to parallel execution can be outweighed by the overheads associated with
process creation and communication� Serialisation analysis combines into a uni�ed framework the
two main techniques for reducing these overheads�

Partitioning and scheduling are two of the main obstacles to achieving an e�cient mapping
of a program to a multi�processor� Granularity analysis is a way of partitioning a program into
grains �King and Soper� �		
� Tick� �		
� Debray et al�� �		
� and schedule analysis is a way of
dividing a program into threads of totally ordered atoms �King and Soper� �		�a�� Granularity
analysis decreases the time spent communicating and schedule analysis decreases the time spent
scheduling� Each analysis breaks a program into fragments satisfying distinct constraints� For
granularity analysis� the set of constraints depend on the time complexities of processes� whereas
for schedule analysis� the set of constraints relate to the data�dependencies between processes�

Granularity analysis aims to coalesce processes �or goals in the case of logic programs� into
larger grains� to be executed on a single processor� when it would be less e�cient to evaluate
them in parallel� Tick ��		
� describes a simple heuristic algorithm for estimating granularity�
This analysis is crude and does not satisfactorily model recursive predicates� Recursive predicates
present di�culties because the quantity of computation is data dependent and therefore is di�cult
to determine at compile�time� Debray et al� ��		
� explain how to deal with recursive predicates
by deriving complexity functions for predicates at compile�time� The complexity functions are
the solutions of di
erence equations on argument sizes� formulated as functions of the size of the
data� Once the size of the data is known at run�time� the complexities can be simply calculated�
Speci�cally� size of the data is checked against a threshold to determine whether or not the goal
should be evaluated in parallel� King and Soper ��		
� independently proposed the use of complexity
functions to control granularity� the complexity functions again derived as the solutions of di
erence
equations on argument sizes� Instead of checking a complexity function to a threshold at run�time�
King and Soper argued that coalescing decisions should be made at compile�time� pointing out that
in some circumstances the overhead of thresholding can actually give a net slow�down� The idea was
to coalesce processes together if the complexity of their communication dominated the complexity
of the computation on all sizes of the possible data�

�

Schedule analysis is concerned with deducing at compile�time a partial schedule of processes� or
equivalently the body atoms of a clause� which is consistent with the program behaviour� Program
termination characteristics are a
ected if an atom which binds a shared variable is ordered after an
atom that matches on that variable� In order to avoid this� an ordering of the atoms is determined
which does not contradict any data�dependence of the program� The data�dependencies between
processes can be inferred by producer and consumer analysis �King and Soper� �		�� Foster and
Winsborough� �		�� or alternatively by the mode algorithm proposed by Ueda and Morita ��		
��
Producer and consumer analysis does not infer the instantiation states of an atom� as described
by Debray ��	�	�� but rather deduces which processes are responsible for the construction of which
parts of a term �produce� and which processes match on which parts of a term �consume�� In general
processes cannot be totally ordered and thus the analysis leads to a division into threads of totally
ordered processes� In this way the work required of the run�time scheduler is reduced to ordering
threads�

Serialisation analysis makes explicit the relationship between the granularities and the data�
dependencies among a set of processes� Originally King and Soper ��		�a� suggested a two step
serialisation� �rst granularity analysis is used to partition a program into grains� second schedule
analysis is used to generate threads for each grain� This procedure has the right basic ingredients�
but applies them in the wrong order� Serialisation analysis� as presented in this paper� is a one step
procedure� schedule analysis is used to generate threads which simultaneously satisfy the granularity
constraints� The basic idea is to divide a program into threads which are allocated to queues for
scheduling� Each queue is considered to be accessible to all processors of a multi�processor� Two
sets of constraints are used to generate threads� First� a thread must not contradict any data�
dependence in a program� Second� since a thread may be evaluated in parallel with other threads�
atoms of a program which are su�ciently coarse�grained processes must be allocated to di
erent
threads� A further important aspect of serialisation analysis is that it avoids the introduction of
spurious coroutining activity between threads� The threads generated by serialisation analysis satisfy
all these sets of constraints and are therefore taken to be the basic grains of parallelism�

Serialisation analysis is superior to the previous proposals for controlling granularity in four
important respects� First� it avoids the complexity of thresholding �Debray et al�� �		
� and
possesses much of the simplicity of the granularity analysis suggested by Tick ��		
�� Second�
unlike the granularity analysis of Tick� serialisation analysis produces threads� The threads avoid
extra suspensions and therefore scheduler activity is reduced� Third� the threads act as indivisible
units of work� and therefore inhibit the parallel evaluation of �ne�grained processes� In contrast�
the analysis of Tick permits �ne�grained processes to be evaluated on remote processors� Fourth�
serialisation analysis incurs no extra run�time overhead�

The paper is organised as follows� Section � illustrates serialisation analysis with a simple
example� The formal description of serialisation analysis is presented in two parts� Section � de�nes
a classi�cation scheme from which granularity constraints are derived� Section � reviews schedule
analysis and de�nes a procedure for generating threads which satisfy schedule and granularity
constraints� It includes a proof that the procedure cannot a
ect termination properties of the
program� Section � outlines implementation details� Sections � and � present future work and the
concluding discussion�

� Serialisation by example

Example � Consider the recursive clause of the fib�� predicate listed in �gure �� Granularity

analysis will classify the comparison and arithmetic atoms as too �ne�grained to warrant parallel

evaluation� so the only remaining atoms which might possibly be worth evaluating in parallel are the

two recursive fib�� atoms� Since only one of the fib�� atoms should be evaluated on a remote

processor� the atoms of the clause might be divided into two threads� each thread containing one of

the fib�� atoms�

Serialisation analysis also endeavours to construct threads which reduce the number of cyclic
data�dependencies between threads� Such data�dependencies engender coroutining� By avoiding

�

fib�N� F� ��

N �� � 	 F � �

fib�N� F� ��

N � � 	 N� is N � �� N� is N � ��

fib�N�� F��� fib�N�� F��� F is F�
 F�

Figure �� The fib�� predicate�

cyclic data�dependencies� fewer suspensions are likely to be created� and thus scheduling is further
improved�

Example � Returning to the recursive clause of the fib�� predicate listed in �gure �� two threads

might be generated� One thread might include the atoms N� is N � �� N� is N � �� fib�N�� F��

and F is F� 	 F�� placed in that order� leaving the fib�N�� F�� atom for the other thread� Al�

though the partition is valid� a cyclic data�dependency is introduced between the threads� since the

evaluation of fib�N�� F�� has to suspend until N� is calculated and the evaluation of F is F� 	 F�

has to suspend until F� is computed� The cyclic data�dependency does not originate in the clause

but is induced by the partition�

In the frequently occurring case of a clause which does not possess any cyclic data�dependencies�
threads are formed and are themselves ordered so that the data�dependencies between the threads
�ow left�to�right� Threads are added to the end of the queue in reverse order� By interpreting the
queue as a stack� depth��rst scheduling can be performed on the local processor� Since the threads
are allocated to the queue in reverse order� threads are deallocated from the stack in the right order�
and thus when evaluated sequentially� the threads are ordered and atoms ordered within each thread�
so as avoid the creation of suspensions� Depth��rst scheduling is also likely to improve cache locality
and reduce the need for garbage collection� Furthermore� since threads are composed of �ne�grained
processes� and often a single coarse�grained process� each thread is also likely to warrant parallel
evaluation� Thus a remote processor can steal a thread for parallel evaluation� with the thread itself
acting as the granularity control� without incurring any extra scheduling overhead� �In practice�
however� a variant of the tail recursive optimisation can be employed to hold the �rst thread ready
for evaluation and only place the following threads� in the case of the recursive fib�� clause just
the second� on the stack� This further reduces references to the queue and the scheduler��

Example � Continuing with the fib�� predicate listed in �gure �� to alleviate cyclic data�dependencies

between the threads� allocate the N� is N � �� N� is N � � and fib�N�� F�� atoms� in that order�

to the �rst thread and the fib�N�� F�� and F is F� 	 F� atoms� in that order� to the second thread�

The data�dependencies �ow left�to�right between threads and are not contradicted within each thread�

Thus by placing the threads in the queue in reverse order� the second thread �rst and the �rst thread

second� when the queue is interpreted as a stack for depth��rst scheduling� the �rst thread is selected

�rst for evaluation and the second thread is selected second� Hence scheduler activity is reduced�

Note too that both threads are suitable for parallel evaluation�

� Classifying atoms for threads

Processes are classi�ed as constant� linear or non�linear according to how the cumulative di
erence
between the computation and communication grows over the lifespan of the process� The following
treatment is based on the formulation of granularity analysis set out by King and Soper ��		
��
Processes in the constant class correspond to predicates which are de�ned as builtins� or are de�ned
in terms of constant atoms� Processes which are linear correspond to a sub�class of the linearly
recursive predicates� A linearly recursive predicate is a recursive predicate such that each of its
clauses is either non�recursive or linearly recursive� A linearly recursive clause is one composed
of atoms which correspond to non�recursive predicates and� in addition� includes a single atom

�

which coincides with the predicate itself� The linear sub�class corresponds to those linearly recursive
predicates for which it is known that communication dominates computation� A non�linear process
is de�ned as being a process which is neither constant nor linear� This classi�cation gives a simple
prescription for controlling granularity� two atoms which are non�linear should be allocated to
di
erent threads whereas any other combination of two atoms� for instance a linear atom and a
non�linear atom� can potentially be allocated to the same thread�

The justi�cation for the classi�cation is that the constant and linear classes tend to repres�
ent those frequently occurring �ne�grained processes which can be coalesced without employing
thresholding� Predicates which correspond to the constant class have a �xed time complexity and
are therefore susceptible to simple granularity analysis� The constant class is important because� if
the statistics presented for Prolog by Touati and Despain ��	��� are also applicable to concurrent
logic programs� half the atoms of a clause� on average� correspond to builtins� and therefore fall into
the constant class� In addition� linearly recursive predicates represent the simplest and perhaps the
most prevalent form of recursion� The linear sub�class thus corresponds to another important and
commonly occurring type of predicate which gives rise to �ne�grained processes�

The linear sub�class coincides with processes �for those linearly recursive predicates� which can
be shown to be �ne�grained by comparing the complexity of the computation to the complexity of
the communication� If the predicate traverses part of a data�structure at each level of recursion� the
complexity of the communication will grow in proportion to the complexity of the computation and
thus only prefactors need be used to decide whether or not the process is linear� Speci�cally� to keep
with a conservative form of granularity analysis� communication is under�estimated by calculating
the minimum rate of growth of communication for the recursive clauses of a predicate� The rate
of growth is computed by comparing the size of the head arguments to the size of the arguments
of the recursive atom� The size of the arguments is� in turn� found by inferring types� Types are
convenient way of characterising the arguments of the head atom and the arguments of the recursive
atom but� however� associate an argument with a set of terms and thus only give a range of possible
sizes� Nevertheless� the size of a term can be inferred from its type� measured in a way which re�ects
the size of the machine representation and therefore gauges the communication overhead�

A norm k�kspace is introduced to count the number of machine words that are typically used in
the structure�sharing representation of a term� If a n�ary function occupies n � � machine words�
excluding the space required to store its arguments� and each occurrence of a constant or variable
requires one word� then the ktkspace norm can be de�ned to be the sum of the arities of the functions
in t totalled with the number of sub�terms in t �

Example � kVkspace �
 � � � �� kf�a� V�kspace � �� � �� � �
 � �� � �
 � �� � � and

k
a� b�kspace � �� � �� � �
 � �� � f�� � �� � �
 � �� � �
 � ��g � 	�

To make coalescing decisions� the communication and the computation have to be compared� and
therefore put into a common unit� Thus a �latency� norm k�klat is introduced and de�ned to be
a constant multiple of k�kspace� the constant determined by the implementation� and chosen to
quantify the communication overhead in terms of the units of computation�

To classify atoms� clauses are catogorised and then predicates classi�ed according to their
component clauses� An atom adopts the classi�cation of its predicate� Clauses are classi�ed in
de�nition � and predicates� and thus atoms� are classi�ed in de�nition ��

De�nition � Let c denote a clause with head atom h� guard atoms g�� � � � � gi and body atoms

b�� � � � � bj and suppose that t
�
� � � � � � t

�
k denote the types of the head arguments of c� In addition�

let Tloc denote the time required to create a process and initiate communication� Tcom denote an

over�estimate for the amount of computation� and Tlat denote an under�estimate for the amount of

communication�

� If c is non�recursive� c is constant if Tcom�c� � Tlat�c� � Tloc and c is non�linear otherwise

where Tcom�c� � Tcom�h� � Tcom�g�� � � � � � Tcom�gi� � Tcom�b�� � � � � � Tcom�bj � and

Tlat�c� � min�fktklat j t � t
�
� g� � � � ��min�fktklat j t � t

�

k g��

�

sum��� Sum� �� Sum � �

sum�N� Sum� �� N � � 	 N� is N � �� sum�N�� Sum��� Sum is Sum�
 N

Figure �� The sum�� predicate�

� If c is linearly recursive� bl is the recursive atom� and t
�
�

�

� � � � � t
�
k

�

the types of the arguments

of bl � c is linear if Tcom�c� � Tlat�c� and c is non�linear otherwise where Tcom�c� �
Tcom�h��Tcom�g���� � ��Tcom�gi��Tcom�b���� � ��� � ��Tcom�bl����Tcom�bl����Tcom�bj �

and Tlat�c� � min�fktklat�kt �klat j t � t
�
� � t � � t

�
�

�

g����� � � ��min�fktklat�kt �klat j t �

t
�

k � t � � t
�

k

�

g �����

� If c is neither non�recursive nor linearly recursive� c is non�linear�

De�nition � Let p denote a predicate with clauses c�� � � � � cm �

� If c�� � � � � cm constant� p is constant�

� If c�� � � � � cm are either constant or linear� and there exists a ci which is linear� p is linear�

� If there exists a ci which is non�linear� p is non�linear�

The minima used in de�nition � re�ects the desire to maintain a conservative form of granularity
analysis which under�estimates the communication overhead� Type approximations might introduce
negative values for ktklat � kt �klat and hence an intersection with the set of non�negative numbers
�� is used to keep the communication growth rates non�negative�

Example � The second clause of the sum�� predicate listed in �gure � is linearly recursive and thus

a candidate for being linear� If type analysis were equipped with a domain which includes integers�

t
�
� � t

�
� and t

�
�

�

� t
�
�

�

might be inferred to be integers� Therefore min�fktklat � kt �klat j t � t
�
� � t � �

t
�
�

�

g� 	 min�fktklat � kt �klat j t � t
�
� � t � � t

�
�

�

g� 	 min�f
g� 	
 indicating that the amount

of computation can grow in a way which is unconstrained by the communication� Thus the second

clause of sum�� is non�linear� and indeed� sum�� can warrant parallel evaluation�

The relationship between t
�
i and t

�
i

�

has to be clari�ed for recursive types� A recursive type
characterises a set of recursively de�ned terms so that lists of various lengths might� for instance� be
assigned the same type� In particular ktklat�kt �klat can collapse to zero even though the arguments
which correspond to t and t � might actually be di
erent sizes� As a consequence of this inaccuracy�
linear atoms might be categorised as non�linear atoms� However� the type analysis which underpins
producer and consumer analysis and therefore schedule analysis� can be simply adapted to calculate
more realistic values for ktiklat � kt �iklat� This modi�cation is detailed in section ��

� Coalescing atoms into threads

Schedule analysis was motivated by the observation that schedule activity can be reduced by
increasing the proportion of atoms which are totally ordered� A thread de�nes a total ordering
on a set of atoms� and therefore� by maximising the length of the threads� scheduling is improved�
The length of the threads is� in turn� maximised by minimising the number of threads� In addition�
by reducing the number of threads� the number of data�dependencies which exist between the threads
is also likely to be reduced� The number of data�dependencies is signi�cant because it can predict
scheduler activity� For cyclic data�dependencies in particular� the scheduler might have to alternate
the evaluation of the threads� Thus� the fewer the number of cyclic data�dependencies� the fewer
the number of times each thread is likely to be suspended and resumed�

�

In practice� since coroutining tends to be used infrequently� a high proportion of clauses do not
possess cyclic data�dependencies between their atoms� Hence� schedule analysis typically generates a
small number of threads for a clause� usually just one� without incurring any cyclic data�dependencies
between the threads� Once the granularity of the atoms of a clause is considered� the number of
threads tends to increase� and thus there is more scope for introducing cyclic data�dependencies�
Cyclic data�dependencies which originate from the clause� for instance� due to coroutining� cannot
be removed� Extra cyclic data�dependencies can be introduced� however� by the way the threads
are generated� It is these additional cyclic data�dependencies which� whenever possible� should be
avoided� If cyclic data�dependencies can be removed completely� so that the data�dependencies �ow
left�to�right between the threads� depth��rst scheduling can be performed in a way which avoids
the creation of any suspensions� Example � illustrates a valid though sub�optimal partition which
introduces an extra cyclic data�dependency and consequently degrades scheduling�

To explain serialisation analysis� some notation from schedule analysis has to be recalled �King
and Soper� �		��� Schedule analysis concerns the division of the atoms �q �� Qp of a clause p

into into threads� using a relation ��p on Qp� which over�estimates the data�dependencies between
the atoms of p� Thus� if a data�dependence exists from q to q � in p� hq � q �i � ��p � Cyclic data�
dependencies between two atoms q and q �� identify data�dependencies which can only be resolved
at run�time with a scheduler by allocating q and q � to di
erent threads� Pairs of atoms which have
to be separated in this way� are indicated by a relation �p on Qp� derived from �p � Speci�cally�
if hq � q �i � �p� q and q � are to be allocated to di
erent threads� Colouring Qp with �p leads to a
partitioning of Qp into fQ�

p � � � � �Q
t
pg� each Q i

p de�ning the constituent atoms of the ith thread� A

total ordering oip is assigned for each thread� chosen so as not to contradict any data�dependency
in �p� The cumulative e
ect of these total orderings is given by �p � o�p � � � �� otp � A safety result
asserts a condition for which the work required of the run�time scheduler can be safely reduced from
ordering the atoms to ordering threads� The condition is stated as theorem ��

Theorem � If �p � ��p has no more non�trivial cycles than ��p � then for any possible query� a

scheduler can interleave o�� � � � � ot so as not to contradict the data�dependencies on Qp�

In the notation of schedule analysis� serialisation analysis has to separate atoms q and q � such that
hq � q �i � �p� allocate non�linear atoms to di
erent threads and� in addition� reduce the number
of cyclic data�dependencies between the threads� Non�linear atoms can be simply dealt with by
augmenting �p with a relation �p on Qp to indicate the pairs of non�linear atoms of p which have
to separated� Colouring Qp with �p � �p instead of with �p � complies with both �p and �p� Thus� q
and q � which are either both non�linear or satisfy hq � q �i � �p� will be allocated to di
erent threads�

De�nition � �p on Qp is de�ned by
 hq � q �i � �p if and only if q is non�linear and q � is non�linear�

Thus colouring Qp with �p ��p leads to a partition fQ�
p � � � � �Q

t
pg in which q � Q i

p� q
� � Q j

p for i �� j

if either hq � q �i � �p or hq � q �i � �p � Reducing the number of cyclic data�dependencies between the
threads is more subtle and involves modifying the way �p � �p is coloured� speci�cally� a sequential
colouring algorithm �Matula et al�� �	��� is adapted� A sequential colouring algorithm colours each
qi in turn� according to how the preceding q�� � � � � qi�� are coloured� Thus q� is allocated to Q�

p

and any proceeding qi is allocated to the Q j
p with the least j such that hqi � qi �� �p � �p for all

q � Q j
p� The crucial point to note is that colouring Qp in this way can itself introduce extra cyclic

data�dependencies� as illustrated in example ��

Example � Consider again the recursive clause of the fib�� predicate listed in �gure �� and suppose

that Qfib�� � fq�� � � � � q�g where q� 	 N� is N � �� q� 	 N� is N � �� q� 	 fib�N�� F��� q� 	

F is F� 	 F�� q� 	 fib�N�� F��� The relations ��
fib��

� �fib�� and �fib�� for non�linear q� and

q� are given in �gure �� Colouring Qp with �fib�� � �fib�� by the sequential colouring algorithm

leads to the two threads Q�

fib��
� fq�� q�� q�� q�g and Q�

fib��
� fq�g� Q�

fib��
and Q�

fib��
are the

two threads discussed in example � which possess a cyclic data�dependency�

�

q� q�

q�

q�

q�
� �

�
�
���

�
�
��R

q� q�

q�

q�

q�

q� q�

q�

q�

q�

Figure �� ��
fib��

� �fib�� and �fib��

The creation of extra cyclic data�dependencies can be avoided by colouring Qp in an order which�
whenever possible� ensures that the data�dependencies occur left�to�right in fQ�

p � � � � �Q
t
pg� Left�

to�right data�dependencies are guaranteed by renumbering Qp� and instead of allocating qi to Q j
p

with the least j � allocating qi to Q j
p with the last j � Since �p corresponds to the cyclic data�

dependencies in ��p � �
�
p n�p is acyclic and therefore Qp can be renumbered so that if qi � qj � Qp and

hqi � qj i � ��p n �p� i � j � Since ��p n �p is acyclic� the renumbering is well�de�ned in the sense that
��p n �p can always be renumbered� although a renumbering is not necessarily unique� Henceforth
Qp will be considered to be renumbered in this way� In addition� colour Qp as follows� Allocate
q� to Q�

p as before� Suppose that� so far� colouring has generated fQ�
p � � � � �Q

t
pg and qi has yet to

be coloured� If hqi � qi �� �p � �p for all q � Q t
p allocate qi to Q t

p � otherwise assign a new colour to
qi and thus place it in Q t��

p � Since Qp is traversed by following ��p n �p� if hqi � qj i � ��p n �p then

i � j and therefore qi � Qk
p and qj � Q l

p for k � l � Hence� the only cyclic data�dependencies which
exist between fQ�

p � � � � �Q
t
pg are the cyclic data�dependencies which already exist in ��p � Conversely�

a non�cyclic data�dependence from one thread to another� can only exist from an earlier thread to a
later thread� Example � illustrates how colouring Qp this way avoids the creation any extra cyclic
data�dependencies�

Example 	 Continuing with the the recursive clause of the fib�� predicate listed in �gure �� de�ne

Qfib�� � fq�� � � � � q�g as in example �� Renumbering Qp according to ��
fib��

n �fib�� � ��
fib��

might give Qfib�� � fq�� q�� q�� q�� q�g� Colouring with the modi�ed method produces Q�

fib��
�

fq�� q�� q�g and Q�

fib��
� fq�� q�g which coincide with the favoured allocation strategy of example ��

In this case the renumbering involves a choice� though for every choice� no extra cyclic data�

dependencies incurred�

Two nice additional properties of the modi�ed colouring method can be observed� First� renumbering
Qp induces a total ordering on each Q i

p which does not contradict any data�dependence in ��p � Thus

each oip is automatically de�ned� Second� since no extra cyclic data�dependencies are introduced
between the threads� the safety condition is always satis�ed� More exactly� if �p � o�p � � � � � otp �
�p � ��p has no more non�trivial cycles than ��p � These observations are formally asserted and proved
as propositions � and ��

Proposition � If hq � q �i � oip and q �� q �� hq �� qi �� ��p �

Proof � If hqj � qk i � oip and qj �� qk � j � k� Since j � k and because of the renumbering�

hqk � qj i �� ��p n �p� Thus either hqk � qj i �� ��p or hqk � qj i � �p� Because qj � qk � Q i
p � hqk � qj i �� �p and

thus hqk � qj i �� ��p as required� �

Proposition � �p � ��p has no more non�trivial cycles than ��p �

�

procedure serialise�in n�Qp� �
�
p � �p� �p� out fQ�

p � � � � �Q
t
pg� fo

�
p� � � � � o

t
pg�

begin

topological sort�n� ��p � �p�Qp��

t 	� ��
Q�

p 	� fg�
for i 	� � to n do

begin

if there exists q � Q t
p such that hqi � qi � �p � �p then

begin

t 	� t � ��
Q t

p 	� fqig
end

else

Q t
p 	� Q t

p � fqig
end�

for i 	� � to t do

oip 	� fhqj � qki j qj � Q i
p� qk � Q i

p� j � kg
end

Figure �� The serialisation analysis algorithm�

Proof � Suppose� for the sake of a contradiction� that there exists a non�trivial cycle in �p � ��p
which is not in ��p � Since the cycle cannot be con�ned to one thread� it must straddle at least two

threads� Qm
p and Qn

p with m � n� Speci�cally� there exists hqi � qj i � �p � ��p such that qi � Qn
p and

qj � Qm
p � Since hqi � qj i �� �p� hqi � qj i � ��p � and because hqi � qj i �� �p� it follows that i � j � Hence

m 	 n� which is a contradiction� �

Propositions � and � are useful because they enable serialisation analysis to be simpli�ed� First� Qp

has to be reordered just once to de�ne the total orderings o�p� � � � � o
t
p� whereas previously o�p � � � � � o

t
p

had to be formed separately� Second� and more signi�cantly� the safety condition does not have to be
checked� which before� was the most complicated part of schedule analysis� Thus� better scheduling
is achieved by a simpler compilation technique� Figure � presents the central part of the serialisation
analysis algorithm�

� Notes on implementation

Figure � describes the stages of serialisation analysis which are relevant to an individual clause
p� assuming that the relations ��p � �p and �p on Qp are already derived� The relation �p can be
computed by traversing the reduced call graph for the program in a bottom�up way� classifying
atoms� clauses and predicates in the manner de�ned in section �� The reduced call graph simpli�es
classi�cation since� for a non�recursive clause� the atoms of the clause are guaranteed to be already
categorised before the classi�cation is extended to the clause� Furthermore� the reduced call graph
groups together the predicates participating in recursion so that linearly recursive predicates can be
straightforwardly identi�ed�

The stages of serialisation analysis presented in �gure � divide into renumbering Qp � which
amounts to topologically sorting Qp according to ��p n �p� colouring Qp with �p � �p � and �nally
inferring o�p � � � � � o

t
p from the reordered Qp � By representing the sets Q�

p � � � � �Q
t
p as ordered sets� for

instance� as lists� the �nal stage of serialisation analysis can be eliminated� The idea is to construct
each oip on�the��y as Q i

p is generated and represent oip by the total ordering associated with the

ordered set Q i
p � This is simply accomplished by replacing the union of the set Q t

p with fqig with an
append which inserts qi at the end of the ordered set Q t

p�

�

procedure topological sort�in n� ��p � �p� inout Qp�

begin

j 	� ��
repeat

begin

s 	�
�
for i 	� � to n � j do

if hqj � qii � ��p n �p then

begin

t 	� qi�

qi 	� qj�

qj 	� t�

s 	� �
end�

j 	� j � �
end

until s �
 or j � n

end

Figure �� The topological sort algorithm�

An algorithm for topologically sorting Qp with respect to ��p n �p is presented in �gure �� The
algorithm is a variant of bubble�sort� Bubble�sort is an attractive way of sorting Qp because of its
simplicity and also because n� the number of atoms� is typically small and therefore the worse case
quadratic complexity of bubble�sort is acceptable� Moreover� concurrent logic programs are often
written in a Prolog style with data�dependencies �owing left�to�right among the atoms of a clause�
Thus� in many cases Qp will be already ordered according to ��p n �p� Bubble�sort can exploit this�
so that sorting can frequently be performed in just n comparisons�

Section � mentioned that ktklat � kt �klat for t � t
�
i and t � � t

�
i

�

can collapse to zero when t
�
i

and t
�
i

�

are recursive types� since t�i and t�i
�

are often the same type� The type analysis upon which
producer and consumer analysis is founded� however� can be amended to compute more accurate
values for ktklat�kt

�klat� A recursive type can assume a number of di
erent forms� for instance� a list
type might occur as either a null list type or as a type for a list pair� and so on� Thus� to guarantee
termination� these various type combinations have to be recognised and replaced with the recursive
type� Once the recursive type is introduced ktklat�kt �klat can reduce to zero� but if ktklat�kt �klat
is computed beforehand in terms of the the raw types� more accurate communication growth rates
can often be derived� Thus accuracy can be preserved simply by computing the communication
growth rate during type analysis rather than after type analysis�

Serialisation analysis has potential for parallel evaluation since di
erent sub�graphs of the reduced
call graph can be classi�ed simultaneously and each clause of the program be renumbered and
coloured separately�

� Future work

Back�communication can be expensive on a multi�processor� for if those processes which participate
in the back�communication are allocated to di
erent threads on di
erent processors� bindings might
have to be alternately copied from one processor to another� Serialisation analysis might be improved
by ensuring that back�communicating threads are kept together on a single processor�

It might be possible to extend serialisation analysis to deduce process placement tactics� As
a re�nement to the classi�cation� the non�linear class could be divided according to the type of
recursion that is employed in a non�linear predicate� By recognising frequently occurring forms

	

of recursion� for instance� the sort employed in divide�and�conquer problems� recursive non�linear
processes could be allocated to processors con�gured in a suitable topology� In the case of the
quicksort��� for example� the recursion would induce a two part division into non�linear atoms
which could be allocated to a multi�processor con�gured as a ring of processors� At each level of
recursion� one of the non�linear processes would be distributed to the next processor in the ring to
e
ect a simple form of load balancing�

Schedule analysis has already been incorporated into a compiler �King and Soper� �		�� and
been found to be an e
ective way of ordering atoms� An initial examination has suggested that
serialisation analysis can be straightforwardly inserted into the compiler� Thus� future work will
involve implementing serialisation analysis to quantify the bene�ts which the analysis can bring to
a parallel implementation�

� Conclusions

Serialisation analysis uni�es granularity analysis and schedule analysis into a coherent analysis
for partitioning a program into grains for parallel evaluation and ordering grains for sequential
evaluation� The division into grains reduces the time spent communicating and ordering of the
grains decreases the time spent scheduling�

A useful form of granularity analysis is de�ned by isolating two classes of �ne�grained predicates
which are frequently occurring and simple to identify� Basically� non�recursive processes are regarded
as constant� and linearly recursive processes are regarded linear if the communication can be shown
to dominate the computation over the lifespan of the process� Processes which are neither constant
nor linear in this sense are allocated to di
erent grains� This adapts to concurrent logic programs an
extension of a simple and e
ective granularity control technique which has been applied successfully
to functional programs �Hudak and Goldberg� �	����

The schedule analysis is applied by considering data�dependencies between atoms� so that �ne�
grained processes can be ordered and coalesced into more coarse�grained units� Serialisation analysis
combines granularity and schedule analysis in such a way as to satisfy the constraints imposed by
each analysis� In particular it guarantees a reduction in the number of suspensions for depth�
�rst scheduling� without incurring any extra scheduling overhead� In addition� serialisation analysis
automatically satis�es a satefy result� removing the need for a complicated safety check� and therefore
leads to an algorithm which is straightforward to implement�

References

D� W� Matula� G� Marble � J� D� Isaacson ��	���� Graph theory and computing� chapter
Graph colouring algorithms� pp� �
	����� Academic Press� London� Edited by R�C� Read�

Debray� S� K� ��	�	�� �Static Inference of Modes and Data Dependencies in Logic Programs��
ACM Transactions on Programming Languages and Systems� �� ���� ������
�

Debray� S� K�� N� Lin� � M� Hermenegildo ��		
�� �Task Granularity Analysis in Logic
Programs�� in Proceedings of the Conference on Programming Languages Design and Implement�

ation� White Plains� New York� ACM�

Foster� I� � W� Winsborough ��		��� �Copy Avoidance through Compile�Time Analysis
and Local Reuse�� in Proceedings of the �

� International Logic Programming Symposium� MIT
Press�

Hudak� P� � B� Goldberg ��	���� �Serial Combinators� Optimal Grains for Parallelism��
in Second Conference of Functional Programming Languages and Computer Architectures� pp�
�����		� Nancy� France� Springer�Verlag�

King� A� � P� Soper ��		
�� �Granularity Analysis of Concurrent Logic Programs�� in The

Fifth International Symposium on Computer and Information Sciences� Nevsehir� Cappadocia�
Turkey�

�

King� A� � P� Soper ��		��a� �Reducing Scheduling Overheads for Concurrent Logic Pro�
grams�� in International Workshop on Processing Declarative Knowledge� Kaiserslautern� Ger�
many�

King� A� � P� Soper ��		��b� �A Semantic Approach to Producer and Consumer Analysis��
in International Conference on Logic Programming Workshop on Concurrent Logic Programming�
Paris� France�

Tick� E� ��		
�� �Compile�Time Granularity Analysis for Parallel Logic Programming Lan�
guages�� New Generation Computing� �� ��������

Touati� H� � A� Despain ��	���� �An Empirical Study of the Warren Abstract Machine�� in
Proceedings of the �
�� Symposium on Logic Programming� pp� �������� San Francisco� California�

Ueda� K� � M� Morita ��		
�� A New Implementation Technique for �at GHC� pp� ����� MIT
Press� Jerusalem�

��

