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Abstract  

With the continuing success of Local Area Networks (LANs), there is an increasing 
demand to extend their capabilities towards higher data rates and wider areas. At high 
data rates and long distances the packet transmission time may become comparable or 
significantly less than the network propagation delay. For this reason Medium Access 
Control (MAC) protocols which were developed for LANs are no longer viable. Together 
with the progress in fiber optic technology, this has given rise to the so-called 
Metropolitan Area Networks, or MANs. These can span much greater distances than 
current LANs, and offer data rates in the region of hundreds of Megabit/sec (Mbps). This 
survey first sketches the problems encountered in using the MAC protocols defined for 
LANs on higher-speed and longer-distance networks; and then it focuses on two MAC 
protocols (FDDI and DQDB) developed for MANs by standardization bodies. These two 
MAC protocols represents two different approaches to overcome the limits of LAN MAC 
protocols. FDDI represents the evolution of the token passing class of MAC protocols, 
while the latter is a new brand of MAC protocol with a completely distributed control. 
This survey focuses on both MAC protocols with particular attention on their 
performance analysis. 

1 Introduct ion 

The success of MANs is strictly connected to the opportunity they give to develop 
new networking products capable of providing high-speed communications and 
interconnectivity between communicating applications at competitive prices which 
nonetheless give an adequate return on the manufacturers' investments. A major factor 
in achieving this goal is the availability of appropriate Networking Standards. FDDI 
and DQDB are the two standard technologies for MANs for which industrial products 
are already available. 

The importance of FDDI and DQDB has meant that their performance has been 
analyzed by several groups. Most of the existing results have been obtained via 
simulation as it is extremely difficult to analytically solve detailed models of both MAC 
protocols. In fact, FDDI has a more complex behavior than a polling system with an 
exhaustive-limited service discipline [59], while DQDB behaves like a round-robin 
scheduling algorithm [36] for very short networks, but it deviates significantly when 
the length of the network increases. Due to the complexity of these protocols, exact 
models of the FDDI and DQDB MAC protocols have only been solved through 
simulative analysis, while models with analytical solutions have been developed to 
approximate each protocors behavior under specific network configurations and 
workload conditions. 

Research in this field is facing a wide range of performance-related problems, such 
as: 1) determining the relationship between bandwidth allocation schemes and 
throughput, delay distribution and packet loss rate 2) dimensioning the key network 
components (e.g., buffer size), and 3) tuning the network parameters. 

The target of this tutorial is to present a structured view of the performance modeling 
activity related to FDDI and DQDB which has been published. For both MAC 
protocols we propose a taxonomy of the analytical models. Some relevant models of 
each class will be discussed by presenting the main simplifying assumptions, the 
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technique used for solving the model and the performance indices analyzed. In the 
presentation the original notation is used and this sometimes results in a non uniform 
use of symbols. 

To make reading easier, the most relevant features of the MAC protocols will be 
summarized before the performance modeling issues of the protocols are discussed. 

This survey is divided into three parts. Section 2 discusses the main issues related to 
the evolution from LAN to MAN. Sections 3 and 4 are devoted to FDDI and DQDB, 
respectively. 

2 F r o m  L A N s  t o  M A N s  

Since a LAN/MAN network relies on a common transmission media, MAC protocols 
have been designed to manage the sharing of the transmission media. The aim of a 
MAC protocol is to control the interference and competition among users while 
optimizing overall system performance and yet nevertheless avoiding pitfalls. The 
target of a MAC protocol is thus to share resources efficiently among several users. 
This efficiency can be expressed in terms of fairness and capacity ([37], [1]). 

Fairness means that the network does not differentiate between stations in granting 
them access rights to the transmission bandwidth [28]. 

Capacity indicates to what extent the protocol utilizes the channel bandwidth. In fact, 
a MAC protocol is a distributed algorithm among several stations; some information 
must be, either implicitly or explicitly, exchanged among the stations. Since the 
transmission media is the only means of communication among the stations, it will not 
always be fully used to transmit user-messages. In the literature the MAC protocol 

capacity figure (/9ma x ) is used to characterize this aspect. This is defined as the fraction 
of the medium bandwidth used by the nodes when each node tries to seize all the 
medium capacity. 

MAC protocols intended for LANs are not suitable for high transmission speeds and 
long distances. This applies to all the popular IEEE standards for LANs: Ethernet, 
Token Ring, and Token Bus. In these protocols, the MAC protocol capacity decreases 
when the ratio between the length of  the network and the length of a packet increases. 
In literature this ratio is often referred to as a. The /9ma x value depends on the specific 

MAC protocol. In the following we report the ]9ma x value for Ethernet, Token Ring and 
Token Bus 

Ethernet: Pmax <~ 
l + z . a '  

whereZ depends upon the approximations made during the analysis; for 
example, Z=6.44 in [55], Z=3.44 [57] and Z=7.34 [30]. 

Token Ring [57]: Pmax '< 

1 
a 

I + - -  
N 

if a < l  

1 
if a > l  

where N is the number of active stations in the network. 
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1 
Token Bus [3011: Pmax < - -  a ' 

l + - -  
3-N 

By assuming that there are packets of 1000 bits and a light speed in the fiber of 
200,000 km/sec in Table 1 we report the a values for various configurations and 
transmission speed. 

Table 1: 
a values for different network configurations and transmission speeds 

Capacity Coverage 
1 km 10 km 100 km 

10Mbps 0.05 0.50 5 
100 Mbps 0.50 5 50 

For a network with 50 active stations the maximum network utilization which can be 
achieved, for various a values, are reported in Table 2. 

Table 2: 
Pmax values 

CSMA/CD Token Ring Token Bus 
a=0.05 76% 100% 100% 
a=0.50 24% 100% 100% 
a=5 3% 20% 96% 
a=50 0.3% 2% 75% 

Table 2 clearly shows that the CSMA/CD and the Token Ring perform poorly at 
speeds and coverages typical of a MAN. On the other hand, the performance of the 
Token Bus does not drop significantly; in fact, one of the standard for high-speed 
LAN/MAN, FDDI, inherits most of the Token Bus MAC protocol mechanisms; in [45] 
it is provided a general proof of the equivalence between Token Bus and FDDI 
networks. 

Fairness and capacity are used to evaluate the MAC protocol algorithms, however 
from the user standpoint other performance figures are needed to measure the quality of 
service the user can rely upon. The most widely used performance measure is the 
delay, which can be defined in several forms, depending on the time instants 
considered when measuring the delay (access delay, queueing delay, propagation 
delay, etc.). 

In LAN networks, whose main target is the support of EDP data applications, the 
quality of service is generally expressed in terms of average delay and throughput; 
while for MANs, which have the potentiality to support beyond EDP data applications 
time-constrained applications (e.g., voice and video) as well, the delay distribution 
would also be necessary. In fact, the most important aspect of a time-constrained 
application is that messages should be delivered to the destination within a given 
amount of time after their generation. The most relevant performance figure for these 
applications is therefore the percentage of messages which are delivered with a delay 
lower than the given constraint. 

Extensive analyses of distributed and "centralized" token-passing MAC protocols for 
MANs have been carried out. For both classes, the pros and cons have been identified. 
In particular, the most interesting features of the DQDB MAC protocol is its ability to 

1 This bound is obtained by assuming that each node can only transmit a single packet 
whenever it receives the token. 
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guarantee a utilization of the medium capacity which does not depend on bus length, 
medium capacity or packet length, and the capability to provide access delays of only a 
few microseconds at light loads ([5], [11], [12]). On the other hand, the FDDI MAC 
protocol [2] behaves more predictably and fairly than DQDB, and this means there is 
guaranteed bandwidth for at least one class of traffic. Unfortunately, the FDDI MAC 
protocol capacity still depends on the a value and this makes the FDDI MAC protocol 
unsuitable for Gigabit MANs. 

Below we focus on the relevant aspects, from the performance analysis standpoint, 
of the FDDI and DQDB MAC protocol. We present an updated survey of some 
significant analytical models for each protocol. 

3 F D D I  

Fiber Distributed Data Interface (FDDI), which employs an optical fiber medium, is a 
100 Mbit/s LAN based on a Token Ring protocol [2]. 

The network topology, two contra-directional rings, allows very flexible 
configurations extending from a few metres of fibre path length supporting a few 
stations, up to 100 km supporting up to 500 stations. Adjacent ring stations can be up 
to 2 km apart with standard multimode optical transmission links, but optionally single 
mode optical links may be used where greater inter-station distances of up to 40 km are 
required ( [51 ], [44]). 

Distributed protocols are used for initialisation and management of the FDDI ring and 
also for error recovery purposes [2]. 

The FDDI standard specifies the building blocks of the functional architecture of an 
FDDI station. The MAC block is mainly responsible for the FDDI performance since it 
controls the token passing ring protocol which determines the behavior of the FDDI 
ring. In this tutorial we only focus on the MAC protocol which will be described in the 
next section. 

3.1 Description of the MAC Protocol 
The MAC protocol controls the transmissions onto the physical ring media. This 

control is exercised by means of aTimed Token protocol, in which a unique sequence 
of data called a token is passed around the ring from station to station. A station 
wishing to transmit information must first wait for the token to arrive; the token is then 
"captured" by stripping it from the ring. The station can then transmit its queued 
frame(s) of data, after which it issues a new token which provides other stations with 
the opportunity to access the medium. 

The frames of data transmitted by the originating station are regenerated and repeated 
by the other active stations on the ring. While repeating incoming frames, a station also 
examines the Destination Address for a match with its own address. If a match occurs, 
the station copies the frame contents into its receive buffers as it transmits the frame 
onwards. 

Each frame of data transmitted eventually comes back to the station that originated it, 
which is then responsible for stripping the frame from the ring. The originating station 
recognises the Source Address contained in the frame as its own address, after which 
stripping takes place. The decision to strip a frame is based on the recognition of the 
frame's Source Address, which cannot occur until the initial part of the frame has been 
repeated. This means that the stripping process leaves frame fragments circulating on 
the medium. Frame fragments are ultimately discarded when they arrive at a station that 
is transmitting its own frames onto the medium. 

Timed Token Protocol. The Timed Token protocol supports two major classes of 
service: synchronous and asynchronous. 
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The synchronous traffic has a preallocated bandwidth while the bandwidth for 
asynchronous transmissions is instantaneously allocated to a station, when it captures a 
token, from the unused bandwidth. 

Specifically, a Target Token Rotation Time (TTRT) is negotiated by a station during 
ring initialization (the negotiated value of TFRT is named T_Opr) and a synchronous 
bandwidth is allocated to each station as an x% of TTRT, i.e., a station can transmit 
every time it captures the token synchronous data for a time up to its x% of TI'RT. In 
any case the aggregate synchronous bandwidth can never exceed TrRT- a where a is 
a constant term defined in the standard which takes into account the maximum ring 
latency, the maximum frame length, and the time it takes to transmit a token. 

To compute the maximum time a station can transmit asynchronous data when it 
captures a token two timers are used: the Token Rotation Timer (TRT) and the Token 
Holding Timer (THT). TRT measures the time between the receipt of two consecutive 
tokens while THT is used to limit the transmission of a station when a token is 
captured. If TRT reaches TTRT before the token returns to the station, a variable, 
named Late_Ct, is set to one and TRT is restarted. When the token arrives at a station 
with Late_Ct=l the token is called a late token, only synchronous transmissions are 
enabled and Late_Ct is set to 0. On the other hand if the token arrives before TRT 
reaches TTRT, the token is named an early token. Whenever an early token is 
captured, the current value of TRT is stored in the THT, TRT is reset and synchronous 
transmissions (up to x% of TTRT) are carried out. After synchronous transmission, 
THT is enabled and asynchronous transmissions start. The difference between TTRT 
and THT is the maximum time available for asynchronous transmissions in this cycle. 
A station may initiate a transmission of an asynchronous frame if the timer THT has not 
reached the TTRT threshold. This may cause an additional delay in the release of the 
token (hereafter called asynchronous overrun) since the transmission of an 
asynchronous frame is always completed. The asynchronous overrun is bounded by 
the time for the transmission of a frame of maximum length. In the FDDI standard 
asynchronous overrun is 0.361 msec, which corresponds to the time required to 
transmit a maximum frame length. 

Multiple levels of asynchronous priorities may be distinguished by a station. For each 
priority level n, a threshold value (T_Pri(n)) is defined. 

T_Pri(n) are an ordered sequence of values in the range [0,TTRT], higher priorities 
have higher T_Pri values and the highest priority has a threshold which is equal to 
TFRT ([23], [54]). 

Asynchronous transmissions start from the highest priority. Asynchronous frames of 
priority n may only be transmitted if THT is less then T_Pri(n). If multiple 
asynchronous priority levels are not implemented, all asynchronous frames have a 
threshold value which is equal to TI'RT. 

The protocol behavior was formally studied in ([56], [34]). In these papers it was 
formally proved that: (1) the average token rotation time does not exceed the TFRT, 
and (2) the maximum token rotation time does not exceed twice the TTRT. 

3.2 MAC Protocol Modeling 
Although many FDDI analytical studies have already been published, the majority 

contain simplifying assumptions. The main difficulty for the analysis of the FDDI 
MAC protocol is the high degree of complexity and interdependence of the various 
processes that describe the operations of the protocol itself. In fact, when a station has 
seized the token, synchronous frames (if any) are always transmitted, whereas 
asynchronous frames are only transmitted if the preceding token rotation time does not 
exceed TTRT. This implies that there are interdependencies between the total service 
time given at one station, the service time required at subsequent stations and the total 
cycle time. Therefore, exact analytically-tractable solutions for an FDDI network are 
very difficult to formulate. Simplifying assumptions thus have to be made in order to 
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obtain analytically-tractable solutions. Furthermore, even when only synchronous 
traffic is transmitted, and hence the token holding time constraint and the feedback 
mechanism of cycle time have no influence, only approximate solutions are known for 
the resulting model (which reduces to a polling system with an Exhaustive Time- 
limited discipline). 

Table 3 
FDDI Models Taxonomy 

Buffer Traffic 
size Type 

Deterministic Model 1 A 
Network M=I Model 2 A/S 
Wide Stochastic M>I Model 3 A 
Models M=oo Model 4 S 

M>I Model 5 A 
Station Stochastic Model 6 A 
in Isolation M= ~ Model 7 S 
Models Model 8 S 

Performance 
indices 

Th 
E[D] P1 
E[D] M-pdf 
E[D] 
E[D] M-pdf 
g[D] M-PGF 
E[D] M-pdf 

D-LST M-PGF 

P1 

P1 

D% 

Th: Throughput; 
E[D]: Average Delay; 
PI: Packet loss rate; 
M-pdf: Probability distribution function of the buffer occupancy; 
M-PGF: Probability generating function of the buffer occupancy; 
D-LST: Laplace-Stieltjes Transform of the delay distribution, 
D%: Delay percentiles. 

In order to provide a structured overview of the FDDI analytical studies we introduce 
the taxonomy shown in Table 3, which preliminarily classifies the FDDI models into 
two categories: the former (or first category) contains Network-Wide Models while 
the latter (or second category) contains Station-in-Isolation Models. 

The models in the first category characterize the overall FDDI structure in terms of the 
ring and stations spaced along it. All the models in this category belong to the class of 
multiqueue systems with cyclic service [59]. In literature, these systems have 
frequently been investigated. They can be distinguished from each other in a number of 
ways [59] depending onthe buffering at each station, the type of service, the polling 
order, and the assumptions of arrival processes at the various stations. 

The analytical models in the second category tag the station under study. With respect 
to the tagged station, the FDDI network is partitioned into the tagged station itself, and 
the complementary part of the network (C_NET) which aggregates all the other 
stations. In this approach the tagged station is modelled as a single server queueing 
system with server vacations [61]. The server vacation time represents the period 
between the token's departure from the tagged station and its subsequent arrival at this 
station, i.e., the time it takes the token to cross C_NET. 

Models belonging to both classes can be further subdivided (see Table 3) on the basis 
of buffer size (i.e., M=I, M finite and M infinite), traffic type (i.e., synchronous (S), 
asynchronous (A) and a mixing of both (A/S)) for which performance indices are 
derived. For each leaf of the taxonomy, presented in Table 3, we identify a significant 
model for which we provide the model description, the solution technique and the 
performance indices obtained. 

3.3 Network-Wide Models 
This section outlines four special cases of the network-wide model. All the models 

falling in this category are derived from the following abstract model 
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- The system has N queues (stations) and a single server. The queues can have either 
one M (M > 1) or infinite buffers. 

- Synchronous and asynchronous frames arrive at the queues in accordance with 
Poisson arrival processes. 

- The server (token) walks from queue to queue in a fixed order. The time needed to 
switch the server from queue i to queue (i + 1) is modelled by a delay (switchover 
time) r~. The switchover time r~ corresponds to the propagation delay of the signals 

between stations i and (i + 1) plus the latency caused within station i. 
- When the server reaches a queue, synchronous frames are always transmitted (if any) 

whereas asynchronous frames are only transmitted if the preceding token rotation 
time does not exceed TTRT. Once the server has served a queue it goes to the next 
queue. The server can take either a constant or a random amount of time to transmit a 
frame. 
The first model (Model I [23]), performs a throughput analysis of the network under 

the assumption that all nodes are saturated by frames to send, i.e., Asymptotic 
Analysis. Under this assumption the network behavior is deterministic and the authors 
derive an exact solution of the network model. The other three models assume Poisson 
arrivals and thus the system behavior is stochastic. More specifically, under the 
assumption of a single buffer, Model 2 [60] exactly represents the network behavior 
for which an exact solution is provided. Models 3 and 4 are approximate models for 
which approximate solutions are derived. The main differences between these models 
is in the buffer size (finite or infinite) and the solution technique (approximation based 
on an iterative scheme vs. approximation based on a pseudo-conservation law). 

Model 1: Asymptotic Analysis. This model, proposed and analysed by Dikeman 
and Bux in [23], is used for evaluating the maximum total throughput T~x for FDDI 
when only one asynchronous priority level is in use. 

The expression for ~max is derived by assuming that each actively transmitting station 
continuously has asynchronous frames queued for transmission. To simplify the 
analysis, frame transmission times are assumed to have constant length F. 
Asynchronous overrun are assumed to be of constant length R. On the basis of the 
above assumptions, the ring quickly converges to steady-state operation, so that on 
successive rotations the active stations cycle through a finite number of transmission 
states. A transmission state is the set of token rotation timer and frame transmission 
time values for each active station on the ring. 

By examining two scenarios in which one and two stations are actively transmitting 
frames the authors derive, by performing a pure deterministic analysis, the sequence of 
transmission states for both steady-state cycles. For each scenario, the duration of the 
steady-state cycle can be easily computed by summing up the duration of each state 
within the steady-state cycle. Similarly, the total frame transmission time in these states 
can be derived by summing up the frame transmission times of each state within the 
steady-state cycle. The total (normalized) throughput is derived by simply forming the 
ratio between the total frame transmission time and the steady-state cycle time. 

By examining additional scenarios (not reported in [23]) the authors obtain a 
generalized throughput expression for an FDDI with an arbitrary number N of active 
stations. 

(N.tot  tx time+ N2.tx_window).v 
~max ~ N.tot  tx t ime+N 2 . tx_window+(N 2 + 2 N + l ) . r _ I  

where tx_window = T _ O p r -  r_I ,  tot tx time = CEILING(tx_window / F). F, 
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N 

v is the transmission speed, and r _ I  = y r/ is the total ring-latency time. 
i=1 

Taking the limit of 7ma~ as the number of active stations (N) goes to infinity, a bound 
for the maximum total throughput is obtained 

lim ~max - -  iX_ window, v T _ Opr - r_ I 
N-+~ tx _ window + r_ I - T_  Opr �9 v 

Equation for ~/max is then generalized to produce the maximum total throughput for 
FDDI when multiple asynchronous priority levels are being used. 

In [23] the lowest priority message that will ever be transmitted it is shown to belong 
to the class "low", which is the lowest priority level satisfying 

r ] E = [ N - n ( l o w ) + l ] .  r _ P r i ( l o w ) -  , ~ n ( i ) .  T_Pri( i)  > 0 
I "=low+ l 

where m is the number of asynchronous priority traffic in use in a given scenario 
(1 < m < 8); n(i) is the number of stations that have priority level i messages ready to 

m 

transmit during each cycle; and N = ~ n(i) is the total number of stations transmitting. 
i=low 

Under the assumption that stations immediately stop transmitting frames when THT 
has reached T_Pri( i ) ,  Dykeman and Bux show that the throughput t(i) of priority i 
messages is given by 

t(i) = r(i) m . v, where 
( N + l ) . r _ I +  ~ r ( j )  

j=low 

n(i)E 

r(i) = n(i)[N( T Pri( i ) - T_  Pri( Iow) ) + ( N - n( low) ) T_  Pri( Iow) 

m 

- ~ n ( i ) T _ P r i ( i ) +  T _ P r i ( i ) -  r_l] 
i=low+l 

if i = low 

if i = low + 1,.,m 

The overall throughput is given by the sum of the throughputs for each priority level. 

Model 2: Single Buffer Model. This model was proposed and analyzed by 
Takagi in [60]. This model assumes a single-message buffer for each station which can 
accommodate two classes of messages (frames): the priority message (synchronous 
frame) and the ordinary message (asynchronous frame). The throughput and the mean 
waiting times of priority and ordinary messages, the mean token rotation time, and the 
buffer utilization are computed numerically. 

The load is equally shared among the network stations (i.e., symmetric system) and 
when the buffer is empty a message in the generic station i is generated with an interval 
which is exponentially distributed with mean 1/2, for priority messages or 1/2`' for 
ordinary messages. Those messages that arrive when the buffer is occupied are lost. 
The transmission time of both an ordinary and a priority message is assumed to be the 
same constant b. The TTRT is defined as R + M- b where R is the latency (ring plus 
stations) M is an integer 0 _< M < N where N is the number of stations in the FDDI 
network. 

An exact solution of this model is obtained by applying an embedded Markov chain 
technique. Before introducing the state of the system, further notation is required. 
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Stations are indexed from 1 to N; "r} k) denotes the time at which the token arrives at 

station i in the kthcycle and a cycle is assumed to start when the token arrives at station 
1. The system is observed at the token arrival instants at each network station and the 

state vector at time z} k) is (u~ *) ..... U}k_l.U~k),U}k; 1) ..... U~ -1)) where u~ k) is the state of 

stationj at time z~ k) and 

t i  buffer empty 
�9 (k) ordinary message that will not be transmitted 
"J = ordinary message that will be transmitted 

priority message 

The cycle time for station i at  time ~.}k) is R + Q~k). b where Q~k) is a function of 
t(k) , (~) .(k) ,,(k-l) and (k-l) given by 1 ~'"'~i-l~--i ~--i+l ~ " "  UN 

N i-1 
Q~) = ,~  I(u~ k-~) ~ [2,3]) + ,~,I(u~ k) ~ [2.3]) 

j=i+l j=l 

where I(~ is the indicator function. We are interested in computing the steady state 
probabilities of our system 

p / ( u  1 . . . . .  Ui-l,Ui,Ui+l . . . . .  U N ) :  ; ~ D t , ( k )  ,(k) ,(k) , (k-l)  , ( k -1 )~  

/~{ ,  (k) , (k) , (k) , (k-l)  .(k-l)] is the probability that the state of the system at where . i ~ l  , . . . ,~i_l,~i '~ i+1 ' " " ~ N  ] 

{, (k) ,,(k) ,,(k) , , (k-l)  , , (k- l )~ time tr} k) is ~-1 ...... i-l."i ,-i+1 ...... N 1" In steady state we also have that 

. . . . .  u , _ . u , . u , + l  . . . . .  uN)= (uN."l . . . . .  u , _ . u , . u , + l  . . . . .  

Since all stations are statistically identical we can focus on station 1 omitting the 
N 

subscript 1. Now Q= • I(uj ~ [2.3]) and a set of 4 N linear equation among the 4 N 
j=2 

unknowns (i.e., P(u 1 ..... UN) ) are presented in the paper. 
From these steady state probabilities several performance measures are obtained. The 

distribution of the cycle length is given by P(C= R + nb)= ~ P(u I ..... UN) where 
v(2,3) 

{/ } U(2,3) = ul ..... uN I(u~ e [2.3]) = n The distributions of the number of ordinary 
= 

and priority messages transmitted in a cycle are P(Qordi~,,y = n)= 2 P(Ul ..... UN) and 
u(2) 

ZP( . I  ..... uN) where U(j)= ul ..... UN I(U i e [ j ] ) = n  . 
v(3) 

The throughput of ordinary and priority messages are ro~d~,ry = E[~rdi~,y]/E[C] and 

Yp,io,~ = E[ Qp~io,i~, ]/E[ C] respectively. 
The computation of the mean waiting time is more complex. The paper first focuses 

on the priority messages, it computes this waiting time computing the Laplace-Stieltjes 
transform of the waiting time for priority messages Wp,lorie(s) from which the average 
waiting time is derived with routine calculations 
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(u ' 'u '  ..... uN_,) 
E[ Wpriomy ] - 

Z "  Z [1--e-(A+;t')(R+ba)] " Z P(ul~,ul . . . . .  UN-1) 
u2=O uu=0 ul E[0,2,3 ] 

The mean waiting time for ordinary messages is obtained by applying Little's formula 

Nordinary--'--~ordinary(E[Wordinary]'l-b ) where Mo~dinary is the mean number of ordinary 

messages in all buffers at an arbitrary time. Nordi,,~y is computed by exploiting the 

following relationship U=(Nord,,~y+Nerlori~)/N=l-Ter~,~/A.'.N; and in this 

formula the only unknown is Npr~or~ which is easily derived from~prlo,~y and 

The symmetric traffic assumption in the model proposed by Takagi was removed by 
Nakumara et al. [48] who considered the corresponding asymmetric system. 

Model 3: G-limited with Time-Limit  Variat ion Polling Model. This model, 
proposed by Tangeman and Saner [62], is used to analyze the performance figures of 
an FDDI network with N stations which only transmit asynchronous traffic subdivided 
into multiple-priority levels. Each station transmits traffic of only one priority level, and 
the priority level of a station i is characterized by its threshold Teri(i ). The number of 

packets which can be buffered in a station i is limited by the value m r Packets arrive 

in the buffer of station i according to a Poisson distribution with rate Ai. The service 

time of a packet buffered in a station i (TH(i)) and the switchover time from station i 

to station i + 1 (Tu(i)) are random variables sampled from general distributions. To 

represent the timed token protocol behavior the service discipline is of G-limited with 
time-limit variation type (see also Section 3.4). In fact, when a station i captures the 
token it can use the tran.smission media for a maximum time of 

max{0, Te~i(i ) -  TrRr(i)}, where TrRr(i ) measures the length of the previous cycle 

(i.e., it is equal to the TRT of the station i when it captures the token). With this 
discipline, when station i holds the token it can only transmit the packets that were in 
its buffer at the token arrival (i.e., gated service). The transmission period of a station 
ends when there are no more packets to transmit or the maximum transmission time for 
this cycle is reached, whichever occurs first. In the latter case the transmission of the 
last packet may be completed. In [62] this service discipline is called cycle-time- 
dependent timer-controlled gated service discipline. 

The analysis of this model is divided into two main parts. First, for each station i, the 

statistics of the cycle time observed by the station (Tc(i)) are derived, i.e., the time 
between two consecutive arrivals of the token at station i. Then by analyzing each 
station in isolation, the packet loss probability and the average waiting time are derived. 
The analysis of the cycle time is performed by studying, for each station i the steady 

state statistics of the sequence {A}n',T(r~r(i)} embedded at the time instants at which the 

server arrives at the station; where A} ") is the number of packets waiting in station i at 

the n th token arrival, and T(r~)r(i) is the value of the TRT counter at the same time 
instant. To simplify the analysis, it is assumed that a station always restarts the TRT 
timer and therefore T(r~)r(i) has the same distribution as T(c")(i) which measures the 
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time since the previous token arrival (i.e., the length of the interval between the 
(n - 1) 'h and n 'h token arrival instants) at station i. 

Due to the complexity of the problem, the authors could not find closed formulas for 
(n) (n) �9 the steady-state distribution of {~ , T~r(t )}, but by applying an iterative scheme they 

are able to approximate this distribution. The iterative scheme, applied in this paper, is 
an extension of the method used by Tran-Gia and Raith to study a finite capacity 
polling system with limited service discipline [63]. 

[A(O) T(O) (M The iterafive approach starts by assigning initial values for [ i , *rRr~'JJ" Through a 

s e t  equations (5) (1) �9 of the statistics of {A i ,T~r(l)} are derived. This recursive scheme is 
N 

applied until the system is stable ~E[A[n)]-E[Ai/n-I/]/E[A[n-1)]<e, where e 
i=0 

determines the accuracy of the results. When the iteration ends the statistics of 

{A (n) T(")(i~ approximate the steady state distributions of {A,. TTRr(i)} where i ~ T R T \  ? j  ~ 

A~. limA[ "), TTRr(i)=~im ~ (")" = ,--,= T~r(t ). Specifically, each iterative step, starting from the 

firstly provides ~ ( n + l )  : .', statistics of  the statistics related to t,) and 

secondly those of A[ "+~). 
The authors also propose to improve the above analysis by taking into consideration 

the dependencies between consecutive stations. To this end, they propose, in 
computing the variance of the cycle length, to consider the covariance of each couple 

T~ (1 + 1)) of adjacent stations. (T~)(i), ~)" 
In the second part of the analysis each node is analyzed in isolation. Starting from the 

approximate distribution of the number of packets in the queue of a tagged node at the 
token arrival instant, first the steady-state distribution of the queue length at arbitrary 
times is derived. Then from the distribution at arbitrary times the packet loss rate and 
the average waiting time are obtained. 

Model 4" Exhaustive Time-Limited Polling System. This approximate model 
was proposed by Chang and Sandhu in [7] for the delay analysis of a polling system 
with a time-limited discipline. The MAC protocol is modelled as a Cyclic-service 
system with an exhaustive time-limited discipline. The time limited policies limit the 
duration of transmission whenever a station possesses the token; this makes this model 
suitable for the FDDI and Token Bus delay analysis. The delay analysis is carried out 
assuming that all the traffic is at the highest priority level i.e., in FDDI only a 
synchronous service is used. The algorithm can be applied both to FDDI and to the 
Token Bus with small differences because in FDDI the time a station can hold the 
server can never exceed the station threshold (Hi), while in the Token Bus when the 

Hi threshold is reached no further services are permitted but the server will only leave 
station i if the ongoing service is completed. 

The idea behind the approximate model is to use results obtained in [8] for the polling 
systems with exhaustive-limited discipline to the exhaustive time-limited discipline. 
Obviously these two disciplines only coincide when the service time distribution is 
deterministic. 

To derive the mean delay a pseudo-conservation law is used and approximations for 
the unknowns in the pseudo conservation law formula are proposed. 

3 . 4  S t a t i o n - i n - I s o l a t i o n  Models 
This section outlines four special cases of the station in isolation model. All the 
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models falling in this category are. variants of M/G/I queueing models with vacation 
times. From the modeling standpoint, the toker~ is a server that provides a service 
during its visit to the tagged stadon and is on vacation (i.e., within C N E T )  when it is 
away from it. Thus, with respect to the tagged node, C_NET can also be viewed as a 
generator of vacation periods. In some of the station in isolation models which will be 
described in this section, the queue has a finite capacity and this motivates the use of 
M/G/l fN queue with vacation, where the queue capacity equals N, to represent the 
behavior of the tagged station. Several serv4ce disciplines ([24], [25], [61]) have been 
proposed and analyzed in the literature. The service disciplines implemented by the 
models described in this section belong to the following classes 
Limited. A fixed limit is placed either on the maximum number of frames that can be 

served, or on the amount of time the server serves the queue, before going on 
vacation. The term time-limited is normally used to distinguish the latter discipline 
from the former. When the "time" prefix is missing, the limit refers to the number of 
frames. In both cases, the server serves until either (i) the (time-)limit is reached, or 
(ii) all the frames eligible for service have been served. Both service disciplines can 
operate in an exhaustive-limited (E-limited) or gated-limited (G-limited) manner. 
In the former case, all the frames in the queue are eligible for service, whereas in the 
latter case, only the frames that were in the queue upon the server's arrival are 
eligible; 

Limited with limit variation. This policy extends the previous one since a dynamic 
limit (randomly chosen upon server arrival) is placed either on the maximum number 
of frames that can be served, or on the amount of time the server serves the queue, 
before going on vacation. 
The M/G/1 and M/G/1/N systems with vacation times and limited or limited with 

limit variation service discipline are analyzed with the embedded Markov chain 
technique. The state of the Markov chain includes a random variable to denote the 
number of frames in the system and other random variables whose semantics vary from 
model to model. If the tagged station is modelled with a G-limited (or G-limited with 
limit variation) service discipline the embedding points correspond to the vacation 
termination instant (i.e., the arrival instants of the server at the tagged node); otherwise, 
if the service discipline is E-limited (or E-limited with limit variation), apart from the 
vacation termination instant the service completion instants are also included among the 
embedding points, 

Three techniques have been used to solve these models: z-transform, matrix-analytic 
and iteration. 

z -Transform.  According to this technique, formulas for the probability generating 
functions (PGFs) of the embedded queue size distribution are obtained. These formulas 
have the following general structure 

N(z) 
a(z)  = zC. K _ B(z)' c e IN +, 

where N(z) and z ~ - B(z) are analytic functions in the unit disk. The unknowns in 
Q(z) are a set of L = c. K boundary probabilities in N(z) which express the 
probability that the tagged station transmits less than Kpackets when it receives the 
token. 

To compute the boundary probabilities a standard technique is generally used. In fact, 
if the system satisfies the stability condition, from Rouche's theorem it is possible to 
prove that the denominator of Q(z) has L zeros in Izl- 1 + e. Of these L zeros, it is 
easy to verify that one of them is unity. Let us denote the remaining L - 1 zeros, none 
of which is equal to unity, by zi, i = 1,2,. . ,L- 1. Lagrange's theorem can be used to 

find an infinite series representation for each of these zeros. Since Q(z) is analytic in 
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lz[ < 1, it is possible to conclude that these L -  1 denominator zeros in fz~ ~ 1 are also 
zeros of N(z). By evaluating this numerator at the L -  ! zeros, it is possible to write 
L - 1  linear equations in terms of the L unknown boundary probabiIities. The 
normalization condition, Q(1) = I, is used to find another equation in the L unknowns 
and this solves the problem of computing the L unknown boundary probabilities. 

Matrlx-analytic. Chiarawongse et al. [9] use the matrix-analytic technique to 
analyze an M/G/1 queueing system with vacations and timer-controlled service. With 
this technique, the boundary probabilities are computed by matrix-geometric analysis 
which involves matrix inversions and successive iterations. The steady state 
distribution of the embedded Markov chain is then generated recursively from these 
boundary probabilities to conduct queue size and delay analysis. 

Iteration. Finally in Rubin et al. [53] an iteration procedure is used to evaluate the 
steady state probability distribution of the embedded Markov chain. The authors claim 
that this approach has the following advantages over the z-transform method and 
matrix-analytic technique, respectively: 

without tackling the multidimensional boundary value problem in the 
transform-domain, the potential high-order root-solving problem incurred by 
the numerous boundary states is avoided; 
by iteratively calculating the boundary probabilities based on balance 
equations, the numerical difficulties involved in inverting huge matrices are 
eliminated. 

Obviously all the models presented in this section are approximate. The first two 
models (Model 5 [53] and Model 6 [38]) perform a delay analysis of the asynchronous 
traffic. The performance figures of an FDDI tagged station are studied by solving, 
either, with an iterative approach, an M/G/1/N queueing system with E-limited and 
time-limit variation service discipline [53], or. with z-transform, an M/G/1 queueing 
system with E-limited and limit variation service discipline [38]. Model 7 ([13], [18]) 
and Model 8 [27] are proposed and solved for analyzing the quality of service achieved 
by the synchronous frames. Since the synchronous service of FDDI is designed to 
deliver time critical messages, the emphasis in both works is on the development of 
models which provide estimates of the probability distribution of the number of packets 
queued in the tagged station, and of the delay experienced by these packets in the 
buffer. In fact, the analysis of the relationship between the probability distribution 
figures and the negotiated network parameter values (T_opr value, quota of 
synchronous traffic for the tagged node, etc.) indicate for a given network 
configuration the likelihood that a given deadline and packet loss rate will be met. In 
both works, the system is analyzed under the heavy load assumption as it is the most 
important case for network designers and managers (for the tuning of the network 
configuration). 

Model 5: M/GI1/N with Vacation and E-limited with Time-limit 
Variation Service Discipline. In [53] the tagged station is modelled as an 
M/G/1/N single server (token) queuing system with server vacations. The service 
policy is such that the server can provide contiguous service to the tagged station for a 
(dynamic) limited period of time (i.e., E-limited with time-limit variation service 
discipline). 

The tagged station queue, which has a finite packet buffer capacity of size N, is fed 
with packets arriving according to the Poisson distribution with rate ~. The packets 
belong to a single asynchronous priority class. The timing threshold associated with it 
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is denoted by Tpr i. A token holding time limit THTL = [Tp,~ - TRT] + is set, upon the 

arrival of the token at the station. The station is allowed to initiate transmission of its 
queued packets (when it has seized the token) at any time, provided at this time 
THT < THTL. 

Each packet consists of a random number of fixed-size segments, and the 
transmitting time of a segment is equal to a slot duration, A. In addition, the length of 
the vacation period is assumed to be a multiple of A. Therefore the dynamics of the 
system can be described by means of a discrete time queueing model with time units 
equal to one slot. 

If B,, (slots) denotes the n 'h packet transmission time, then {B,,,n > 1} forms a 
sequence of independently identically distributed random variables. The probability 
d i s t r ibu t ion  of  the packe t  t ransmiss ion  t ime is deno ted  by 

b(i) = P{B  n = i}, i=  1 ..... bmax; bma x < oo (note that for FDDI, the maximum packet 
length-is set to 4500 bytes). The mean packet transmission time is denoted by # .  The 

n th vacation time relative to the station is denoted as V, (slots). To simplify the 

analysis, in [53] it is assumed that the successive vacation times {V,,,n >_ 1} form a 
sequence of independently identically distributed random variables. The probability 
d i s t r i b u t i o n  o f  the v a c a t i o n  t ime  is thus d e n o t e d  by  

v ( i )=P{V , ,= i } ,  i=1  ..... Vm~x; Vmax<Oo (note that for an FDDI network 

V n < 2 x TTRT).  The mean vacation time is denoted by V. Furthermore, let G,, (slots) 

represent the n th token dwell time at the station, measured from the instant of the n th 

token arrival at the station to the instant of the n 'h token departure from this station. 
The maximum value of G,, denoted Gmax, is equal to Tpr i + bin, x - 1 ; note that this 

dwell time may be longer than Tp~ due to the occurrence of transmission overruns. The 

mean token dwell time is represented by G.  
The FDDI network is analyzed by means of an embedded Markov chain, defined at 

the token arrival and packet departure instants. Those (ordered) time instants are 

represented as {'c0,~'t,'r 2 ...... }. The state of the station at an embedded point 

~" E { ' r0 ,~ ' l ,~"  2 . . . . . .  }, is described by a triplet (S~,N~,T~), where S t is the time since the 

most recent token arrived, N, is the number of packets in the queue (queue size; 
N~ = N~+ if ~ is a packet departure point), and T~ is the token holding time limit. 

Note that T~ is computed at the instant that the token arrives at the station and does 
not change until the next token arrival instant. 

Based on the model assumptions, the process {(S~,N~,T~,) , i> 0} is a discrete-time 

Markov chain over the following finite state space A 

a = {(s,n,t)  l ( t =  0,1,.., Tpri;S = 0;n = 0,1,..,N) 

k-)(t-~- 1 .... Tpri'~S = 1,..,t + bm~ x -1;n = 0,1, . . ,N-l)} 

The Markov chain {(S~,,N~,,T~,),i>O} is irreducible and aperiodic. Therefore a 

unique limiting (steady-state) distribution p,,,,, = limP{St = s,N~ = n,T~ = t} 

(s ,n, t)  ~ A exists. From p,.,., the station's normalized throughput can easily be 

obtained through the following relation t9 = G-/G" + V = (1 - a)/.t/(1 - a)/.t + aV, where 



95 

a denotes the probability that an embedding point is a token arrival point which can be 
Nr~r, 

expressed as follows a = ~ ~ Po,,.t. 
n=0 t=0 

In [53], an iteration procedure is used to evaluate P,,n,~. Once P~,n.t have been 
evaluated, by using supplementary variables and sample biasing techniques, the queue 
size distribution at an arbitrary instant of time u, the blocking probability and the mean 
packet delay are derived. 

By using the above techniques the steady-state queue size distribution at an arbitrary 

instant of time, P(m)= ~imP{X, = m}, are derived. Hence, the blocking probability 

is given by Pb = P(N) = 1 - p/~l.t. 
Finally, the mean packet delay (i.e., the interval from the instant at which a packet 

arrives at the tagged station to the instant that this packet departs from the station), 

denoted as D,  can be obtained using Little's formula D = ~.,mP(m) 1 - Pb). 

An empirical procedure is employed to construct an approximation of the vacation 
time distribution at each station. 

Model 6 : M / G / 1  with Vacation and E-limited with Limit Variation 
Service Discipline. In [38] the tagged station, which is fed with only one 
asynchronous traffic class, is modelled as an M/G/1 single server queueing system 
with server vacations. The service discipline is such that the server provides service 
until either the system is emptied or a randomly chosen limit of I frames has been 
served (E-limited with limit variation or ELV service discipline). The server then 
goes on a vacation before returning to service the queue again. 

In the analysis performed in [38], the limit I is a bounded random variable for which a 
mass function, Pt, I c {0,1 ..... L}, is assumed. The limit / for  a service interval is 
determined at the preceding vacation termination instant. Due to the way FDDI works, 
the value of 1 will differ from one token arrival to the next, depending upon the state of 
the system (i.e., Late_Ct and the TRT) at the time the token is seized by the tagged 
station. Consequently, a major difficulty in the analysis of FDDI is the fact that this 
limit depends upon the length of time that the token spends at each of the stations 
(including the current one) during the previous token cycle. To permit analysis, the 
following simplifying assumption is made; i.e., the sequence of limits chosen at these 
vacation termination instants are independent, identically distributed random variables. 

It is assumed that the frame arrival process is Poisson with arrival rate $ and that at 
each station, the incoming frames wait in queues of infinite length. The service times 
(i.e., the frame transmission times) are assumed to be independent of any process in 
the system. The probability density function (pdf) of the service time and the 

corresponding Laplace-Stieltjes transform (LST) are denoted by b(t) and B*(s), 
respectively. The first and second moments of the service time are denoted by b and 
b ~z), respectively. In the analysis, the vacation time is only allowed to be correlated 
with the limit I that was used for the preceding service interval. The conditional pdf of 
the vacation time, given that the limit I was used for the preceding service interval, is 
denoted by ~t(t)) with LST Vt*(s ) and first and second moments of v t and v~ 2), 

respectively. Similarly, the marginal pdf of the vacation time is denoted by ~(t) with 

LST V*(s) and the first and second moments of v and v/2), respectively. Estimates of 

the function ~t(t) and the mass function pt that are used in the theory to obtain the 
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mean waiting times are determined from the simulation. 
The M/G/1 vacation model described above is analyzed by using a similar approach 

to the one used by Lee for an E-limited (i.e., with a fixed limit) service [41] (also see 
Takagi [61]). Specifically, it is defined an embedded Markov chain at the vacation 
termination and service-completion instants. The state of the system at an embedded 

point t~{to,t 1 ..... }, is described by a triplet, {kt,fit,/t}. kt=O indicates that an 

embedded point t is a vacation termination instant while k t = k, (k = 1,2 ...... L) indicates 

that it is a service completion instant of the kth frame in the service interval. The 

random variable fit, is the number of frames in the system at time instant t. Finally, /,, 
is the limit on the number of frames that can be served during the (possibly zero length) 
visit of the server as determined by a random choice of limit at the vacation termination 

instant. Thus, the limit/, ,  associated with a vacation termination instant t is the limit 
chosen at this point for the following service interval. The Markov chain that derives 
from these definitions is irreducible and aperiodic. By assuming that the system is 
stable, closed formulas for the PGFs of the number of frames in the system at the 
above embedding points are derived. The following steady-state joint probabilities are 
first defined 

fn,t=limPIk, =0,h t =n,/t =l} n=0,1  ..... ; l=0 ,1  ..... L 
i---) ~ t t i i ' 

/~[k] ___limP{k' =k,h t =n,[ t : / }  n : 0 , 1  ..... ; /=0 ,1  ..... L; k = l , 2  ..... l 
The steady-state probability that an embedded point is a vacation termination instant 

and there are n frames in the system in denoted by f, ,  n = 0,1 .... Starting from f,  and 
~ L l 

7r fkl.,, the following F(z)= ]F,f,z" and Q(z)= ~2.~__~ Jr~k}z".PGFs are defined 
n=0 n=0 l=1 k=l 

After extensive algebraic manipulation the following expressions for F(z) and Q(z) 
are derived. 

~p~V~*(/, 2z I - B  Zz) +R~(1)- B 2z _ . Z L 

/=1 
F(Z) = L 

Q(z) = 

Z L -  2 P I V l * ( ~ [ ~ - -  ~ z ) [ B * ( / ~  - ~Lz)]lz L-1 
/=0 

8(, -Zz)Zp, l(Ftz)-:o} l-I ' -  B( Zz) 
/=1 L L [- Z . ] J  

R ' "  [0_, 
where ttZ)= lk~= ~klzt-k ' 

What is noteworthy in 

l = l ,  

l = 2 , 3  ..... L." 

V(z) and Q(z) is the presence of L unknown boundary 

probabilities f0, and -0 'W[1],-~0 '/'r[2l,--.-,#~0qrtL-1] which can be found by using Rouche's 

theorem and the normalization condition. From the F(z) and Q(z) expressions the 
derivation of the mean queueing time in terms of the L boundary probabilities is 
straightforward. The mean queue length at the service completion instants is given by 

the normalized z-transform derivative, Q' (1)/Q(1). 
Since the stochastic process of the queue length only makes discontinuous changes of 
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unit size, the queue length distribution immediately before the arrival instants is the 
same as the distribution immediately after the service completion instants ([36],[61]). 
Furthermore, since Poisson arrivals see time averages (PASTA) [68], the steady-state 
mean queue length (at arbitrary times) is equal to the steady-state mean queue length at 
the service completion instants. Using this argument and Little's law, the mean waiting 
(i.e., queueing) time can be found W = Q'(1)/AQ(1) - b. After extensive algebraic 
manipulation it can be shown that 

vC2) ~vtE) +2v+fAbC2' [(1-p)(1-P+~'v) 2[[(1-p)-~v] L . - . J ~ ] W= § - ~ f ~  lp, v,[F(1)- fo]- p,v,R;(1) 

-t ( 1 - p ) ( 1 - p +  ~,v).I~l(l_l)Pt[F(1,_ fo]_~p,R~(1) ] 

In a parallel paper, Leung [42] analyzed an asymmetric cyclic-service system, with 
infinite capacity queues, that uses the same service discipline. In [42], a numerical 
technique based on discrete Fourier transforms is used to obtain the waiting time 
distributions for the queue. 

LaMaire extended this work in [38] to the case of an M/G/1/N queueing system [39] 
with the same service discipline (E-limited with limit variation). The queue length 
distribution and the Laplace-Stieltjes transforms of the waiting time, busy period and 
cycle time distributions are derived in [39]. In addition, an expression for the mean 
waiting time is developed. 

Model 7: Worst Case Model for Synchronous Traffic. In ([13], [18]) an 
FDDI network with synchronous and asynchronous traffic is analyzed. The authors 
evaluate whether the quality of service guaranteed by FDDI is adequate to support real 
time applications when the level of network congestion is very high. The analysis is 
performed by using a model which is based on the assumption that the interactions 
among stations generate a "worst" case for the performance indices of a tagged station. 
The worst case proposed and analysed in [18] assumes that the length of the cycle of 
the FDDI network, as seen from the tagged station, has its maximum length. 
Furthermore, to simplify the analysis the tagged station is assumed to transmit 
synchronous frames of fixed length, and therefore the synchronous quota (maximum 
number of frames) for the tagged station corresponds to an integer number of 
synchronous frames, which will be denoted throughout by M. 

The resulting stochastic model is an extension of the single server queuing system 
with vacation and E-limited service discipline ([41], [60]) with parameter M. The 
distribution of the service time is deterministic and is equal to a frame transmission 
time. The input traffic to the station is generated by the superposition of discrete time 
Markov processes. Furthermore, to model the behavior of the Timed Token protocol, it 
is assumed that the cycle length can be either TTRT or 2 • TTRT in order to model the 
normal network behavior (i.e., Late_Ct=0) and the delayed network behavior (i.e., 
LateCt=l) ,  respectively. When the Late_Ct=0, with probability PL the next cycle has 

a length TTRT and Late_Ct remains equal to zero, while with probability (1 - PL) the 
next cycle has a length equal to 2 x 7TRT (to model the maximum token rotation time 
delay) and Late Ct is set to one. Until Late_Ct=l, cycle lengths are equal to TTRT. 
Late_Ct returns to zero when the queue of the tagged station becomes empty. While in 
FDDI the memory of a late token is lost when the average token rotation time is again 
below T_Opr, this model loses the memory of a late token whenever its effect on the 
congestion of the queue of the tagged station is lost (i.e., the queue becomes empty). 
Therefore, the average length of the cycle is greater than TI'RT. As the tagged station 
has a maximum fixed throughput for each cycle this model represents a worst case 
since in a real FDDI subnetwork the average cycle length is less than or equal to TTRT. 
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The distance between this worst case model and a real system is evaluated in [10]. 
In [18] two solution methods for this model are proposed. The first one, which was 

developed to analyze a tagged station with a finite buffer, is based on the periodic 
Markov chain theory and, due to its computational complexity, it is applicable for 
buffer sizes less than a given threshold (approximately 250 cells). The second one, 
which can be applied when the tagged station buffer is infinite is based on an aperiodic 
positive recurrent embedded Markov chain for which a closed formula for the PGFs of 
the number of frames in the buffer at the embedding points are derived. There are two 
groups of embedding points: one related to the normal behavior (Late_Ct=0) and the 
other related to the delayed behavior (Late_Ct= 1). 

The state of the system for any cycle i at the embedding points is described by a 

couple {t, N t, ~}i where ~ = 0 represents normal states, while ~ = 1 identifies delayed 

states, t=o indicates the vacation termination instant, while t = m, m = 1,2,...,M is the 

embedding point just after the m th transmission. The random variable N, is the number 
of  frames in the station at time t. The resulting Markov chain is irreducible and 
aperiodic only if 0 < PL < 1. 

By assuming that the system is stable, the following steady-state joint probabilities 

c a n  be  d e t i n e u ~  k -  ~-(m)=l imP{t=m,  Nt=k,~=O}i,  m = l , 2  ..... M a n d  
i-'--)~ 

(" l=l imP{t  m, N t = k , ~ = t } i ,  m=0,1  ..... M where ,7"~ m) e (m)x sk i-~ = tsk ) is the steady state 

probability that the system is in the normal (delayed) state, immediately after the m 'h 
packet transmission and there are k packets in the buffer. 

By using stochastic arguments zc~ 1) and s~ ~ are derived. Starting from them, the 
steady state probabilities, which there are k frames at an embedded point corresponding 

to the m ̀ h service completion instant in the normal state and in the delay state, are 
computed by applying the following recursive relations 

k+l 
= 2 _ ~ j  .ak_j+l+l{k_o}_ .% , m = 2 , 3  ..... M, k > 0 a n d  

j=l 
k+l 

s~m) = ~ s~m-1) ~(m) �9 "k-j+1, m = 2,  3 . . . . .  M ,  k > 0 
j=l 

~ (m) k By definingIIm(Z) = ~zc~")z k and Sm(Z ) = Z S~ Z it is possible to show that both 
k=O k=O 

sets of z-transforms are functions of 2M unknown boundary probabilities 
,/7.(1) qr(2) ,rr(M) v(0) c(1) e(M-1)'[ �9 ~o ,,-o ....... o ,~ ,o~ ...... 1 j .  They appear in the following closed formula for 

So(Z ) which can be derived after some lengthy algebraic manipulations 
M M-1 

i=1 i=1 
So(z = , 

where: C(z) is the PGF of the number of arrivals in a cycle of length TTRT, 
~(z), ~(z) and  va(z) are functions ofz  which contain known parameters. 

J'ar(1) ,rr(2) ,rr(M) ~,(0) v(l) v(M-l)~ Hence, t'*o ,,-o ....... o ,~ ,~ ...... ~ j can be found according to the general 
methodology described above by considering the normalization condition 

r io)  + S(1) = 1 where ritz ) = ~-' II,.(z), S(z)= ~Sm(Z ). 
m=l m=O 
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For the special case PL = 1 the average and the standard deviation of the average 
number of frames in the tagged station are directly computed from the closed formula 
of S(z) while the percentiles are overestimated by applying Chebyshev's inequality, 
and approximated by using a two-moments approximation [67]. In [19] it is shown 
how, in this type of model, it is possible to derive the delay statistics from the PGF. 

Model 8: Model for Synchronous Traffic Under Heavy Load. The major 
problem in the analysis of an FDDI system is the correlation between the service time at 
each station (i.e., the time the station holds the token) and the total cycle time. This 
difficulty is overcome in [27] by observing that this correlation is almost negligible 
during heav~r load conditions, as in these conditions the transmission of asynchronous 
traffic is often deferred until traffic moderates. In fact, simulation results have estimated 
that the TRT value has a very low coefficient of variation under heavy load conditions 
(e.g., 0.9. T_  opr < TRT < 1.1. T opr ). Furthermore, simulative experiments indicate 
that there is a negligible correlation between the time a station holds the token to 
transmit synchronous traffic and the total cycle time. On the basis of these 
considerations, in [27] the network behavior observed by a tagged station is 
approximated by assuming that the value of the TRT of the station is independent of the 
station behavior (i.e., the length and number of synchronous transmissions and the 
number of packets queued in the station). With these hypotheses the tagged station is 
modelled via an M/G/1 queuing system with vacation and G-limited service discipline 
with parameter M. The service time of a packet, and the vacation time are r.v. with 
continuous distributions U(t) and V(t), respectively. U*(s) and V*(s) are the LSTs of 
U(t) and V(t), respectively. As the service time is stochastic, M is only an 
approximation of the synchronous quota of the station. The PGF of the number of 
packets in the station at the token arrival instants is therefore [61] 

M - 1  
, n M ( - zllz 

O_(z): v*(z -  az) .:0 
-[v*(Z-  zllMv*(z- 

where 7r,, n = 0,1,.., M - 1 are the unknown boundary probabilities. 
After computing the boundary probabilities by using classical arguments in [27] an 

expression for the LST of the waiting time is derived. By inverting the LST the 
probability density function of the waiting time of the synchronous traffic is finally 
obtained. 

4.0 D Q D B  

In this section, firstly the basic DQDB MAC protocol is described. Then by analyzing 
the unfairness problems, the Bandwidth Balancing mechanism, which was included in 
the standard to recover this problem, is introduced. Finally, performance modeling of a 
DQDB network is discussed. A classification of the analytical models is proposed, and 
for each class some relevant models are presented. 

DQDB has been the subject of intensive research related both to performance 
modeling issues, and to enhancements and architectural variations of the protocol. In 
this tutorial we will only focus on the performance modeling related to the standard 
version of the protocol. A complete overview and bibliography of the DQDB research 
activities as of 1992 is reported [47]. 

4.1 DQDB MAC Protocol Description 
The basic structure of a DQDB network is shown in Fig. 1. The network consists of 
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two high speed unidirectional buses carrying information in opposite directions. The 
network nodes 2 are distributed along the two buses and they can transmit information 
to and receive information from both buses, as shown in Fig. 1. The node in the 
leading edge of each bus is designated as the head of its corresponding bus (HOB). 
Each HOB continuously generates slots of  fixed length (53 octets) which propagate 
along their respective buses. The first byte in a slot constitutes the Access Control 
Field (ACF), which is utilised by the nodes in the network to co-ordinate their 
transmissions. Each slot accommodates one segment which is 52 octets long; 4 of these 
octets are designated as the header of the segment and the remaining 48 octets are used 
for information transmission. 

Bus A 

! I 

EEl 
I--"1"1 

(forward bus) 

I ~ ~ =  I I  I ' ~  : ~  II I I ~  
-'~Sinkl 

Bus B (reverse bus) 

access con~'ol field which contains the busy and REQ bits 
an empty slot (i.e., busy bit=0) 
a busy slot (i.e., busy bit=l) 

Fig. 1. DQDB Dual Bus Topology 

The DQDB MAC protocol provides two modes of access control to the buses: 
Queued Arbitrated (QA) and Pre-Arbitrated (PA) which use QA and PA slots, 
respectively. The distinction between the two types of slots is made through the 
SL TYPE bit in the ACF of a slot. PA access is reserved for isochronous services 
such as voice and video, while QA access is used typically to provide asynchronous 
services. 

This tutorial will only deal with the QA mode of operation. The PA part of the 
protocol is analyzed in ([70], [71], [72]). 

Without loss of generality, we name bus A the forward bus, and bus B the reverse 
bus. In each node, the segments, on arrival, are put in the proper local node queue 
(LQ), as determined by the destination address (there are two local node queues, one 
for each bus). Below we will focus on segment transmission by using the QA slots in 
the forward bus, since the procedure for transmission in the reverse bus is the same. 

To manage the QA mode of operation the ACF includes a busy bit and 3 request 
(REQ) bits. These four bits are set to "0" by the originating HOB. The busy bit 
indicates whether or not the corresponding slot has already been used for data 
transmission. The three REQ bits are provided to implement a three-level priority 
scheme to access the QA slots. For ease of presentation the tutorial focuses on one 
priority level. 

The procedure for segment transmission on the forward bus utilizes the busy bits in 
the ACF of the slots of the forward bus and one request bit (the REQ bit below) in the 
ACF of the slots of the reverse bus. 

Each node is either idle, when there is nothing to transmit, or count_down. When it 
is idle the node keeps count, via the request counter (RQ_CTR), of the number of 

2 In this survey the words node and station will be used interchangeably. 
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outstanding REQs from its downstream nodes. The RQ• increases by ,one for each 
REQ received in the r e v i s e  bus and decreases ,by one for each empty slot in the 
forward bus. When a node in the idle state receives a segment, it enters the 
count_down state and starts the transmission procedure by takittg the following actions: 
1) the node transfers the content of the RQ_CTR to a second counter named the 
count_down counter (CD_CTR), 2) resets the RQ_CTR to zero, and 3) generates a 
request which is inserted into the queue of  the pending requests while waiting for 
transmission on the reverse bus (by setting REQ=I in the first slot with REQ=0). In the 
count_down state the CD:CTR is decreased by one for every empty s~tot in the forward 
bus until it reaches zero. Immediately afterwards, the node transmits the segment into 
the first empty slot of the forward bus. In the meantime, the RQ_CTR increases by one 
for each new REQ received in the reverse bus from the downstream nodes. After the 
segment transmission, if the LQ is empty the node returns to the idle state, if not the 
transmission procedure .:(1-.3) is repeated. 

The QA part of the DQDB MAC protocol is an attempt to approximatea Round Robin 
[36] policy (with the quantum equal to the slot duration) for the sharing o f  the medium 
capacity. This is achieved when we neglect the following aspects (due to the physical 
implementation of the algorithm in a distributed environment): 

1) the waiting time for setting the REQ=I bit on the reverse bus, 
2) the transfer time of the REQ= 1 bit to the upstream nodes, and 
3) the transfer time of flue empty slot from the head node to the node which issued the 

REQ= 1 under consideration. 
Under these ideal .conditions the protocol manages the network access by 

maintaining a global queue named Distributed Queue (DQ) which contains at most one 
segment for each node, and a set of LQs, one for each node. A segment which arrives 
in a node which has no representative in the DQ immediately enters in the DQ, 
otherwise it waits in the node LQ. Segments in the DQ are served on a FIFO basis 
(each segment gets a service quantum equal to the segment transmission time). After 
the transmission of one of its segments a node may insert a new segment 0 f  any) at the 
end of the DQ. 

Unfortunately, due to the propagation delays between the nodes, the information that 
a node receives is usually outdated. For this reason the DQDB MAC protocol deviates 
from the Round Robin schedule to a degree that depends on several parameters (e.g., 
the network physical size, the position of the nodes along the buses, the network load 
etc.) and this gives rise to the so called unfairness in DQDB. 

4.2 DQDB Unfairness and the Bandwidth Balancing mechanism 
DQDB provides quality of service, either in the form of access delays or bandwidth 

allocation, which is strongly dependent on the node position in the network ([65], [11], 
[5]). 

The DQDB unfairness in bandwidth allocation was highlighted in [69] by analyzing 
the behavior of an earlier version of the DQDB MAC protocol (which however, under 
the configuration presented below, behaves exactly like the IEEE802.6 standard) in a 
simple network configuration with only two active stations and the propagation delay 
between the nodes equal to D slots. In [69] it is assumed that initially only the upstream 
node (node{l}) sends data and that this node has enough traffic to fill all the slots 
travelling on the forward bus. This is allowed by the DQDB protocol as the upstream 
node, which is the only active node, does not see any request in the reverse bus. Let us 
now assume that the downstream node (node{2]) becomes active at least D slot times 
after node{ 1 ] starts its transmission. When node{2} becomes active it immediately 
switches to the countdown state (with CD_CTR equal zero), issues a request on the 
reverse bus, and it stops to wait for an empty slot to appear on the forward bus. In this 
scenario, node{l]  only leaves an empty slot in response to a node{2} request. 
Obviously, it takes D slots before the upstream node can observe a node{2} request. 
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When the upstream node reads the node{2} request, it allows a slot to remain idle. 
After a D slots propagation delay, the idle slot reaches the node{2} which transmits a 
segment, a new segment enters the distributed queue, and issues a new request on the 
reverse bus. 

In this configuration the downstream node can only transmit one segment every 2D 
slots. With a separation of 30 Km between nodes, 2D --- 100, and consequently the 
downstream node receives about one slot out of a hundred. 

DQDB unfairness in saturated conditions arises because the protocol enables a node 
to use every unused slot (i.e., an empty slot not reserved by downstream nodes) on the 
bus. 

To overcome this problem the Bandwidth Balancing (BWB) mechanism [29] has 
been added to the DQDB standard [31]. 

The Bandwidth Balancing mechanism follows the basic DQDB protocol, except that a 
node can only take a fraction of the unused slots. Specifically, the Bandwidth 
Balancing mechanism limits the throughput of each node to some multiple M of the 
unused bus capacity (U); this limit is defined as control rate. Nodes with less demand 
than the control rate (not-rate-controlled nodes) get all the bandwidth they want. 

Therefore, if p(i) indicates the bandwidth requirements of node i the throughput r(i) of 
node i satisfies the following relationship [29] 

r(i)=minlp(i),M'U]=min[p(i),M'(l-~r(m))]. 

This scheme is fair, in fact if there are N rate-controlled nodes, and S is the utilization 
due to not rate-controlled nodes, all rate-controlled nodes get the same bandwidth 

r(i) = M(1-S) / (1  + M. N). 
The BWB mechanism achieves a fair bandwidth sharing by sparing a portion of the 

bus capacity. In fact, while in the basic DQDB (i.e., BWB mechanism disabled) a 
complete utilization of the transmission media can be always achieved, when the BWB 
mechanism is enabled, the network utilization depends on the number of active nodes. 
In [29] it is shown that the bandwidth wastage due to this mechanism is therefore 
(1 -  S)/1 + M. N; and the worst case bandwidth wastage is 1/(1 + M) which only 
occurs with one active node. 

To implement this mechanism the protocol uses a counter (BWB_CTR) to keep track 
of the number of transmitted segments. Once BWBCTR reaches the BWB_MOD 
value this counter is cleared and the RQ_CTR is increased by one. The value of 
BWB_MOD can vary from 0 to 63. The value 0 means that the BWB mechanism is 
disabled. For further details see [31]. 

The effectiveness of this mechanism has been extensively studied via simulation 
([65], [11], [5]). Simulative analysis has shown that, with the BWB mechanism 
enabled, DQDB always reaches (after a transient time) a steady state condition where 
the bandwidth is equally shared among the nodes. During the transient time the 
network behavior remains unpredictable. The length of this transient interval depends 
significantly on the BWB_MOD value and initial state, while it is not significantly 
affected by medium capacity and bus length [11]. The relationship between the length 
of the transient period and the above parameters is still an open issue. 

4.3 DQDB Analytical Modelling 
Due to the discrete time nature of the DQDB network, it is natural to expect that 

Markov chains are natural modeling tools for the description of the network behavior. 
The problem in the use of a Markov chain model is the definition of an appropriate state 
space. In [46] a discrete time Markov chain which exactly describes a DQDB network 
with N nodes, constant internode distance of d slots, and K buffers per node is 
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proposed and the size of its state space is investigated. The state of the Markov chain 
includes 

the values of the RQ_CTR and CD_CTR in each of the nodes (excluding the most 
downstream one, since it never receives any requests); 
the number of segments queued at each of the nodes; 
the number of requests queued per node to be transmitted on the reverse bus 
(excluding the most upstream, since it never sends requests); 
the value of the busy bit for each slot in transit on Bus A; 
the value of the request bit for each slot in transit on Bus B. 

However, not all the possible states can be reached. In order to study the relationship 
between the number of possible states and the number of the valid states (i.e., the 
reachable states) in [46] 7 a network configuration with only two single buffer stations 
is analyzed. The relationship between the number of possible states and the number of 
valid states for this configuration is shown in Table 4. 

�9 Table 4 
DQDB Modeling Complexity 

d Total possible states Number of valid states 
1 216 61 
2 1536 305 
4 38400 5642 
6 884736 92604 

It is easy to observe that the state space explodes quite rapidly and analysis is 
possible in a few simple cases. Thus a general solution for the DQDB network, i.e., 
one that encompasses any number of nodes and any internode distance, seems to be 
highly improbable. Simplifying assumptions therefore have to be made in order to 
obtain analytically-tractable solutions. 

To the best of our knowledge, no exact solution of a general model of DQDB has 
been presented in literature. Approximate solutions have been proposed for general 
DQDB model, while exact solutions have been proposed for DQDB networks operating 
under specific conditions. 

Table 5 
DQDB Models Taxonomy 

Models Performance 
indices 

Network- Deterministic Node-Spaced Models 1 Th 
Wide 
Models Stochastic Node-Concentrated Models 2 E[D] 

L_NET I s'-order 3 output process 

Node Stochastic Models n 'h-order 4 output process 

In Isolation Tagged node Single buffer 5-6 E[D] 
Models Models Infinite buffer 7-8-9 E[D] 

Th: Throughput; E[D]: Average Delay; 

In order to provide a structured overview of the DQDB analytical studies we 
introduce the taxonomy shown in Table 5. Depending on whether the models consider 
explicitly all the network nodes or whether they focus on a tagged node, we 
preliminary identify two main classes of DQDB models: Network-Wide Models and 
Node-in-Isolation Models [47]. 
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4.4 N e t w o r k - W i d e  M o d e l s  
Models of a DQDB network which explicitly represent the interdependencies among 

the network stations can be subdivided into two further classes: models which assume 
that the network nodes are spaced along the two buses (Node-Spaced Models) and 
models in which the nodes are concentrated in the same place (Node-Concentrated 
Models). 

N o d e - S p a c e d  Mode l s .  Models of a DQDB network which represent few active 
stations spaced along the network buses are often used in literature to study the DQDB 
asymptotic behavior. By assuming that all network nodes, when active, always have 
segments to transmit, the resulting models have a deterministic behavior. These models 
are used to obtain expressions for throughput achieved by every node as a function of 
the network span and the nodes activation instants. The complexity of the 
interdependencies among stations make the analysis possible for only few active nodes. 

As noted in the previous section, in [69] a model of this type was applied to an earlier 
version of the DQDB MAC protocol to highlight its unfairness. In [29] the model 
proposed by Wong was extended to the standard version of DQDB (with the BWB 
mechanism disabled) 3 by taking into consideration all the possible configurations of 
time instants at which nodes start to transmit. 

As in [69], in this model, a simple network configuration with only two active nodes 
is assumed (hereafter the index 1 will be used to indicate the most upstream node) and 
the propagation delay between the nodes equal to D slots is analyzed. D (an integer 
number of slots) is used to indicate the difference in the starting times of the two nodes 
(i.e., node{2} starting time, t 2, minus the starting time of node{ 1 }, t 1). When both 
nodes are active, node{ 1 } leaves to node{2} an empty slot when it observes a request 
on the reverse bus. The rate at which node{2} can generate its requests is a function of 
the sum (X) of the number of requests travelling on the reverse bus, the empty slots on 
the forward bus, and the number of requests queued in the node{ 1 } counters at the 
time instant at which both nodes are active. After this time, X becomes a constant and it 
causes the node{2} throughput. The value of X is determined by the following 
relationship X = 1 + D- c(D), where 

c(D) ~(tz-tl) i f -D<(tz-t l)<D 
=I;D i f - D > ( t 2 - t l )  

if D<(t2-t,) 
Before continuing, the following definitions must be introduced. 

- r(1) and r(2) are the throughputs of node{ 1 } and node{ 2 }, respectively; 

- Q(1) is the average length of the distributed queue observed by node{ 1 } just after it 
inserts a segment in the distributed queue (i.e., 1+ the value of the CD_CTR of 
node{ 1 }); 

- Q(2) is the average length of the distributed queue observed at node{ 1 } just after the 
insertion in the queue of a request from the downstream node; 

- T is the average delay between the time node{2} issues a request and the time it 
receives the related empty slot. 

The network behavior in steady state can be approximated by the following four 
equations {29]: r(1) + r(2) = 1, r(1) = 1 / Q(1), r(2) = X /T ,  and T = 2D + Q(2). 

Finally, by solving the system of linear equations, with the approximation 

In [29] a model to analyze the transient behavior of the BWB mechanism in 
asymptotic conditions is also proposed. However the model assume that nodes follow 
the so called deference scheduling instead of the DQDB MAC protocol. 
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T = 2D+  Q(2) - 2D+ Q(1), the nodes  t h r o u g h p u t  are o b t a i n e d  
2 

r(1) = and r(2) = 1 - r(1). 
2-D-c(D)+ ~/(D-c(D)+ 2)2+ 4Dc(D) 

For a short network (D = 0) the nodes get equal throughput. In a large network, the 

minimum throughput of node{2} (i.e., c(D)=D) is =l/2D, while in its most 

unfavourable scenario (c(D)=-D) node{l} is less penalized as it gets = 1/2~-D of 
the network capacity. 

Deterministic models to analyze the DQDB asymptotic behavior have also been 
presented in ([66], [211, [26], [431). 

Node-Concentrated  Models.  In [50] a DQDB network with N stations is 
analyzed. Packets arriving at a station for transmission on a bus are divided into fixed- 
length segments. Segments are then queued in the Local Queue, LQ, related to their 
priority level; four priority levels 4 are assumed for the transmission of the 
asynchronous traffic. 

To make the analysis possible the following assumptions are made. Propagation and 
processing delays are zero. The request channel has an infinite capacity. The order in 
which packets arrive in the system is random, i.e., the order in which segments are 
transmitted does not depend on the position of the station. 

It is then easy to observe that these hypotheses correspond to the ideal conditions 
(see Section 4.1) according to which DQDB provides a Round Robin (RR) sharing 
type of service to its nodes. Therefore, to analyze the DQDB behavior under these 
ideal conditions the authors propose a discrete time Multi-queue Processor Sharing 
(MPS) model which extends the classical RR model [36]. The classical RR model is 
based on a single server queue, in which newly arriving customers join the end of the 
queue. Customers are served on a FIFO basis. When a customer is served, it receives a 
quantum of service, and if it requires more service it rejoins the end of the queue. The 
MPS model extends the RR model by introducing multipriority levels, LQs and discrete 
time services. 

In the MPS, arriving packets are queued in the LQ related to their priority level. There 
is a separate LQ for each priority class in each station. One representative (if any) for 
each LQ is inserted in the Processor Sharing (PS) queue. In the PS queue, packets of 
different priority levels are served on a strict priority discipline (HoL discipline). 
Packets of the same priority level are served on a RR basis: a packet in the PS queue 
recycles through the service facility, receiving (each time) a quantum of service 
equivalent to one segment transmission. The packet only leaves the PS queue after it 
has recycled enough times to service all the segments in the packet. 

By assuming that the number of priority-p packets arriving in a slot time are 
independent and identically distributed (i.i.d.) and independent of the arrivals at the 
other LQs; and that the number of segments in the packets are discrete and i.i.d. (the 
distributions may differ for different priority levels), the authors derive a closed 

formula for the mean time (Dp(n)) that a priority-p packet made up of an n segments 
spends in the system (i.e., the time from its arrival until it is transmitted). 

Hereafter Ep and C~,. will be used to denote the average and the squared 
coefficient of variation of the number of priority-p packet arrivals in a slot, respectively; 

while bp and  C~.p and Fb,p(. ) will be used to denote the average, the squared 

4 This model has been defined to analyze an older version of DQDB in which four 
priority levels for the asynchronous traffic were designed. 
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coefficient of variation, and the probability distribution function of the length (in 
segments) of a priority-p packets, respectively. 

In the MPS model Dp(n) includes the time a priority-p packet spends in the LQ (Lp) 

and the time it spends in the PS queue to serve all its n segments (Sp(n)). 
As in the RR model, it can be proved that Sp(n) linearly increases with n. In fact, in 

[50], by indicating with Np(n) the mean number of priority-p packets in the PS queue 
which have already obtained exactly n quantum of service (i.e., n segments 

transmission), it is shown that Sp(n)= n(Np(O)/2~p), where ~Lp is the total priority-p 

packet arrival rate to the system in a slot time. Np(O) is derived by measuring the delay 
of a long test packet as proposed by Kleinrock [36]. By considering a long test packet 
at priority-p made up ofx segments, the time it spends in the PS queue tends towards 
the sum of 1) the service time x of the test packet, 2) the service times required by all 
the priority-p packets which join the PS queue during the service of the test packet 
(i.e., the priority-p packets representatives of the LQs except that related to the test 
packet), and 3) the service times of the packets with priority q higher than p 
(q = p + 1,.., H)s, which join the PS queue during the service of the test packet 

x + se (x  p e +  , 
q=p+l 

where M e is the number of priority-p LQs, and pq is the priority-q bus utilization, 

pq = Zq "bq, q = 0,1,..,H. 
Af ter  some algebraic manipula t ions ,  it can be shown that 

H 
S e ( n ) =  n = M e - 1 , where O'e+ ~ 

1 - tTp+ 1 Mp Pp q=p+l 

To obtain Lp, the authors exploit the equivalence, in terms of average segment delay, 
between the MPS model and the discrete-time M/G/1 with preemptive resume priority 
queueing model (hereafter referred to as D[M / G / 1]vR) studied in [52]. 

Indicating with Re(k ) the probability that a randomly selected priority-p segment is 

the k 'h in its own packet, in [50] it is shown that Rp(k)=(1-Fb, p(k-1))/b e. 
Therefore the average segment delay in the MPS queueing system can be expressed as 

E[D, eg(p)]= ~[Lp + So(k)]" Re(k ). Finally, by equating the last expression with the 
k=l 

expression of the average priority-p segment delay in the equivalent D[M/G/1]e R 
system a closed-form expression for Lp can be derived 

+ ~ pqVq 
vP q--Z=p(l-o'p) [bp(l+C2p) +1] 1 

L - ' + - ,  / 
5 The authors solve the model for a general number H of priority levels. Then they 

instanciate the model on DQDB by setting H=4. 
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where Vq = "bq(C2q -l- ~,qC2a,q[ Mq) 
In [50] it is clearly shown, by using simulative results, that the performance indices 

obtained with the MPS provide an adequate estimation of the DQDB performance 
figures, given that the distance between stations is small. 

4.5 Node - in - I so la t i on  Mode l s  
The modeling and performance analysis of the DQDB network is very difficult 

problem due to the high degree of interactions among several processes. This implies 
that exact DQDB models must take into consideration all the details of the protocol (the 
values of the counters in each node, the status of the slots travelling in the network and 
the length of the local queues). 

Exact models have a very large state space and this means that they can be analyzed 
in very specific scenarios. However, when DQDB operates in underload conditions the 
following observations indicate how DQDB modeling complexity can be reduced ([ 12], 
[14]): 
1) in underload conditions the number of empty slots is greater than the number of 

segments to be transmitted; 
2) the time it takes a REQ sent by node{j } to affect upstream nodes depends on the 

physical distance between the nodes. This time interval, in a MAN environment, 
may have a duration of several slots. 

From 1) and 2) it follows that, when DQDB operates in underload conditions, a 
segment may often be transmitted in a slot ahead of the one corresponding to its REQ. 
Therefore, the correlation between the transmission of a segment and its REQ is almost 
negligible, and the only effect of the REQs is to widen the time interval between 
consecutive transmissions by a given node. 

These observations indicate that a significant reduction in complexity is obtained by 
aggregating the influence of the downstream nodes, on a given node, in a process with 
the same average arrival rate of downstream REQs. In addition, the influence of the 
upstream nodes can be modelled via a stochastic process describing the status of the 
slots travelling on the forward bus observed by node{i}. 

Knowledge of these processes reduces the complexity in DQDB modeling by looking 
at each node-in-isolation. Following this approximate approach [4] the node under 
study is tagged and, with respect to the "tagged node, the network is partitioned into 
�9 an L_NET (for Left Network) which includes all the upstream nodes (from the 

tagged node); 
�9 the tagged node itself, and 
�9 the RNET (for Right Network) which includes all the downstream nodes (from 

the tagged node). 
With respect to the tagged node, the L_NET is a generator of Busy/Empty slots on 

Bus A (L_NET process), while the R_NET is a generator of requests on Bus B 
(R_NET process). 

In all the existing analytical models R_NET generates requests according to a 
memoryless distribution (Poisson or Bernoulli process), while research on modeling 
DQDB nodes in isolation has concentrated on solving the following subproblems 

1) L_NET modeling; 
2) Tagged Node modeling. 

L_NET Modeling. Results reported in ([11], [12], [5]) show that the number of 
consecutive busy slots observed by nodes close to the head node has a nearly geometric 
distribution, i.e. the number of the busy bit in consecutive slots is independent. On the 
other hand, while moving towards the end node the correlation among busy bit in 
consecutive slots sharply increases. 

In literature, L_NET is frequently modelled by a Bernoulli process ([64], [4]). 



1,08 

Obviously, this model does not take into consideration the correlation between 
consecutive slots. To overcome this, in ([15], [16], [20]) models are presented which 
consider the correlation between consecutive slots. 

In the previous section we pointed out that a node (e.g. node{i}) may often transmit a 
segment m an empty slot positioned ahead of the slot forced empty by the node's own 
REQ. This event can occur when: 
a) no node upstream of the node{ i} has a segment to transmit; 
b) the empty slot (somewhere ahead of that requested by node{i}) has been forced by 

a REQ which has already been satisfied (henceforth referred to as a worthless 
REQ).6 

If the L_NET process observed by a node were only due to point a), the L_NET 
process would correspond exactly to the busy period process of an M/D/1 system 
[TAKA91] where the input traffic is obtained by the superposition of the input streams 
of all the upstream nodes. However, in the light of  point b), the busy periods of the 
M/D/1 system are subdivided into smaller units due to the worthless REQs. 

It thus follows that L_NET can be studied by referring to a Simplified DQDB 
network which is characterized by the following assumptions. 

The reverse bus is modelled by introducing, for each node, a Poisson process to 
characterize the arrival of REQs generated by downstream nodes; the forward bus is 
slotted and the status of the slots is modelled via the LNET process; the MAC 
protocol is modelled by a queue where REQs and segments are stored on a FIFO basis. 
Consequently, for each node{i}, where I<i<K, the input traffic is made up of 

segments and REQs. The arrival process is Poisson with ~(i) parameters, where 

;~(i)=A,s(i)+~,R(i); ;~s(i) and 2R(i)are the segment and the REQ arrival rate, 

respectively. Obviously, ~s(i) depends on the workload characterization, whereas 
K 

"~R(i) = ~_~s(J). The transmission time of both segments and REQs is constant and 
j=i+l 

equal to the slot duration, and both can be transmitted in the first empty slot seen by a 
node. An empty slot used for a transmission remains empty if there is a REQ at the 
head of the queue, but becomes busy if there is a segment at the head of the queue. The 

probability that a queued packet is a REQ (PReQ) or a segment (Ps~G) are 

PReQ(i) = ~R(i)/( ~,R(i)+ ~s(i)) and Pse~(i)= 1-  PReQ(i), respectively. 
Simulative results presented in [14] show that the Simplified DQDB behaves very 

similarly to DQDB at least from the slot-occupancy-pattern process standpoint. 
In ([15], [16], [20]) the L_NET process of the Simplified DQDB is characterized by 

observing, for each node{i}, the L_NET process immediately ahead 

((Si~(i):={sJi); j ~ I N } ) ) o f  and behind ((Sou,(i):={(SJi),AJi)); j e l l } ) ) n o d e { i }  

which are referred to as input and output process respectively. The random variable 
SJ i) takes the value B if the jth slot is busy, and the value E if the jth slot is empty, 

while AJ 0 represents the action of node{i} on the jth slot. Thus the random vector 

(s)i),A) i,) takes the following values: 

This can happen in two different scenarios. In the first the REQ has been generated by 
a node upstream of node{i} that, by the time it observes the requested empty slot, no 
longer has a segment to transmit. In the .second, the REQ generated by a node 
downstream of node{i} has already been satisfied by the node{i} itself via a previous 
empty slot. 
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(B0): if the slot is already busy in the input process; 
(El): if the slot was empty and the node uses it for segment transmission; 
(E0): if the slot was empty, and the node queue is either empty or there is a REQ on 
top of it. 

Obviously the states of consecutive slots are not independent and thus processes 
Sine(i) and So.,(i ) do not satisfy the Markov property. However, the correlation 
between the status of two slots separated by n slots tends to weaken as n increases. In 
[15] Si.p(i ) and So.t(i ) are therefore approximated with discrete time Markov 

processes S~.~ (i) and S~." I (i) which only capture the dependencies between n 

consecutive slots (n 'h -order discrete-time Markov process). 
The state space of S}f(i) is {(sl,s 2 ..... s.)lsj e {B,E},I _< j < n}, and its transition 

probabilities are P/{S.+ 1 = sn+l[(S 1 = spS 2 = s 2 ..... Sn = s.)}. Each n-tuple (sl,s 2 ..... s.) 
describes the state of the last n consecutive slots observed on the forward bus by the 
t a g g e d  node .  W h i l e  the s t a t e  space  of  S~l(i ) is 

{(s,a.s2a2 ..... s.a.)lsjaj {(80),(e0),(el)},l _< j <__ n}, and its transition probabilities 

are Qi{S.+lA.+l =S.+la.+l[(SlAl =slal,S2A2 =s2a 2 ..... S.An = s.a.)}. 

By noting that S}."I(1) is known (all slots observed by node{ 1 } are empty), and that 

the ~."2(i + 1) can be easily constructed from S~".l(i ) in ([16], [20]) the L_NET study is 
performed by defining algorithms to compute the nth-order Markov model of the 
output process of node{i} starting from the nth-order Markov model of the input 
process. All these algorithms first compute the joint probability distribution function of 

the status of (n+l) consecutive slots in the output process  (jn+l -- pdf) and then define 
the transition probabilities in the output process by using the definition of the 
conditional probability density function and the j" - pdf. 

Following the methodologies used for deriving the output process model from the 
input process, below we divide the 1 s'-order models and the models which take into 
consideration higher orders of correlation. 

1 st-order Markov Models: for this class of models the computation is based on the 
result of the following theorem proved in [10]. 

Theorem: the first-order Markov model of the input process, and of the output 
process related to node{i} are regenerative processes with respect to the sequence 

(T= {Tj; j ~ IN}), where T is a renewal process defined by the successive instants at 

which the queue of node{i} in the Simplified DQDB becomes empty (renewal times). 
By using the regenerative property of the input and output processes we derive a 

closed formula for the j2 _ pdf. The paper focuses on the computation of Pr{B, B}, as 
the transition probabilities of the output process can easily be determined from it; and 
Pr{B,B} is computed by applying renewal theoretical arguments [68]: 

Pr{B, R} -- E[NB~]/e[Cycle], where E[NBB ] is the average number of (B,B) couples 

in a generic renewal period and E[Cycle] is the average length of a generic renewal 
period. The computation of these unknown quantities is based on the fact that the 
renewal period has the same distribution as the delay period of an M/G/1 system with 
exceptional first service [611, [361. 
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Results presented in [15], show that even at light loads the interdependence between 
slots is significant, and that the Bernoulli hypothesis generally used for modeling the 
length of busy trains diverges from the real behavior at almost any load condition. On 
the other hand, by using a simulative analysis it is shown that the first-order Markov 
model is able to capture almost all the lSt-order dependencies in the output process of a 
DQDB network for a wide range of offered loads (up to OL=.70). 

In [17] this model was extended to include the effect of the BWB mechanism on the 
L_NET process. 

nth-order Markov Models: the methodology developed for the U-order Markov 
Models (described in [15] and [17]) can be used only for approximating the slot- 
occupancy-pattern process via a 1 st-order discrete-time Markov process, as it requires 
that the number of consecutive busy slots in the L_NET process be represented by 
i.i.d, random variables. On the other hand, the approach presented in ([16], [20]) can 
deal with all orders of correlation. 

In ([ 16], [20]) the output process, immediately after a generic node{i }, is computed 
by studying the fol lowing auxiliary discrete-time Markov process 

{(S 1, A t ), (S 2 , A 2 ) ..... (S,,, An), L n }, where A t , A 2 .... ,4. are random variables which describe 

the actions performed by node {i} on the last n slots it observed and L. (L. �9 IN) is the 

length of the node{i} queue immediately after the sequence of actions A 1, A z .... .4.. 

Once the steady state probabilities of the auxiliary process are known the jn+t _ pd f  
and j" - pd f  of the output process are easily derived. 

Pr{(SiA1) ..... (SnAn)(gn+lAn+l)} = 

Pr{(S.+,A.+I) I (S1A1),(S2A2) ..... (S.A~)}.Pr{(SIA,),(SzA2) ..... (S.A~)}= 

Pr{(S.+,A.+,) I (S,A~),(SzA2) ..... (S.A.),L.>O}'Pr{(SIAt) ..... ( S n A n ) , L n > O } +  

Pr{(S~+tA.+I) [ (S1A,),(SzA2) ..... (S~A.),L.=O}. Pr{(S1A1) ..... (SnAa),L. =0}. 

Pr{(SIA1) ..... (S.A~),L.>0} a n d  Pr{(SIA1) ..... (S.A.),L.=0} are the steady state 
probabilities of the auxiliary process and 

Pr{(Sn+I=S.+,A.+t=a.+I) I (SIA1),(SzA2) ..... (SnA.),L.=O}= 

=so+, ISt,S2 ..... s. } I{a.+, 

Pr{(S,,+I=s.+IA.+,=a.+I) J (S,A,),(SzA2) ..... (S.An),L.>O}= 

"{Sn+l=Sn+l 131'82 ..... Sn}'{l{sn+l=B ...... =01 "t- PSEG " I{sn+I= E .... =11 "t- PREQ" I{sn+,= E ..... =0,} 
where P{.} are the transition probabilities of the input process and I{a } is the indicator 
function of the event A. 

Two solution methods are proposed for computing the steady state probabilities of 
the auxiliary process required to compute the output process. In [16] a closed formula 
is derived for the probability generating functions of the number of users in the system 
(PGF), while in [20] steady state probabilities are numerically computed by solving an 
M/G/l-type system. The computation of the PGFs, requires a closed formula for the 
solution of a linear system of 3 ~ of . . . . .  lation equations with 3 ~ of . . . .  lation unknowns 
and therefore it can only be applied for small orders of correlation (up to three). On the 
other hand, a numerical solution of the steady state probabilities is obtained by applying 
the theory developed by Neuts in [49] for M/G/1 type systems, where the size of the 
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square blocks in the transition matrix is 3 ~ of ..... lation 
By carrying out a simulative analysis in [20], it is shown that the nth-order Markov 

models can capture almost all the significant dependencies in the output process of a 
DQDB network for a wide range of offered loads (OL<0.60). Furthermore, the n th- 
order-Markov-model characterization always outperforms the Bernoulli 
characterization. 

Tagged Node Models. The exact queueing model of the DQDB MAC protocol in 
the tagged node is a discrete time single server queue with two classes of customers: 
the segments generated by a (tagged) node and the reservations from downstream 
nodes. The two classes are served according to a two-state discipline which reflects 
the different behaviors of DQDB depending on whether or not the segment queue is 
empty. When the segment queue is empty, idle-discipline, the server attends the 
reservation queue continuously. When a segment arrives the busy-discipline is 
applied. In this discipline the server serves the reservations queued according to a gated 
discipline, and then the segment queue according to a one limited discipline. After 
segment transmission, the busy-discipline is repeated over and over again until the 
segment queue becomes empty. This two state discipline is referred to as quasi-gated 
discipline in [6] or the consistent gated/limited priority policy with head of line service 
(c-G/L/HoL) in [40]. 

Several papers in literature have analyzed the tagged node in isolation with the quasi- 
gated discipline. A general solution has not yet been found. Exact solutions exist only 
when the tagged node has a single buffer for queueing its messages ([4], [33]). In the 
case of a tagged node with an infinite buffer, the works in this survey can be divided 
into two classes: 1) papers which reports solution methodologies which provides 
bounds on the average performance figures ([3], [40]); 2) papers which provide simple 
closed formulas which approximate the tagged node performance figures ([64], [14], 
[22]). 

Single Buffer Models: an exact analysis of the node model which provides the 
generating function of the access delay is reported in [4]. The main simplifying 
hypothesis is that no more than one segment can be stored in a node (single buffer 
model); while the cumulative traffic generated by L_NET and R_NET are assumed to 
be Bernoulli processes with probabilities a ,  and 13 to observe a busy and a request, 
respectively. 

The work computes the waiting time (W) experienced by a packet from the moment it 
enters the buffer until the time instant at which its transmission starts. To this end, the 
author first derives the probability generating function of the random variable F which 
is equal to the number of outstanding requests at the time a packet is ready for 

transmission (GF(Z) = s162  i, where ~/ is the steady state probability that a packet 
i=0  

finds i outstanding requests) and then, he easily computes the statistics of the packet 
waiting time by conditioning on the number of outstanding requests. In fact, by 
conditioning the waiting time on the event {F = i} its probability generating function 

(Gw(z;i)) satisfies the following equation Gw(z;i ) = \ ~ j  Iz[ < 1, i = 0,1,2 ...... 

and then Gw(z ) = s Gw(z;i).(o i = GF((1- a)z ], Izl < 1. 
i=O k 1 - - ~  J 

Finally, the statistics of the access delay (D) of a packet, which is equal to the 
waiting time in the buffer plus a slot time (which corresponds in this analysis to the 
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time unit) to transmit the packet itself (i.e., D=W+I)  are easily derived from its 
probability generating function, Go(z). 

(1 -a )Z  a,(z)= zaw(z)= zaF( l_-T2 ) lzl <- l. 
From this probability generating function the average access delay is obtained 

] 1-_a ]3 + 1 ___2_~{a]3_ (1_ ~)(1_ ]3)(1 _ 0)} + 1_ 0(1_ a ) e[D]=l-a ]3 
where 1 - e -z represents the probability of a segment generation in a slot by the 

tagged node in the hypothesis of exponential segment interarrival times, and 0 
represents the probability that a segment finds no outstanding requests ahead of it when 
it is generated by the tagged node; 0 can be numerically calculated from the analysis of 
the Markov chain. 

The main part of this work is therefore devoted to deriving the steady state 
probabilities r that an incoming packets finds i outstanding requests. To compute 
these statistics the author exploits, that, if we denote with F. the number of outstanding 

requests at the arrival of the n 'h -packet, the sequence {Fn,n >_ 1} is a Markov chain 
embedded at the packet's arrival instants. This Markov chain is homogeneous, 
irreducible, aperiodic and it is ergodic if ]3 < 1 - a (i.e., the request arrival rate is less 
then the rate of the empty slots observed by the tagged node). 

The computation of the transition probabilities vii J = Pr{F.+~ = JlF. = i} of the 
Markov chain is subdivided by applying the Chapman-Kolgomorov equation 

Vi.j = ~ai,k'ckj; where o'i, k is the conditional probability that there are k outstanding 
k=O 

requests after the transmission of a packet given that there were i outstanding requests 
when the packet arrived; and Zk, j is the conditional probability that a packet finds j 
outstanding requests at its arrival given that there were k outstanding requests just after 
the transmission of the previous packet. 

By denoting with Y(i) a random variable such that Pr{Y(i) = k} = tyi, k, and with 

Gr(z;i) its generating function of Y(i) the paper shows that 

+ o  ,( ( 1 - a ) ( 1 -  ]3 + ]3z)'l i 
Gr(z;i) =(1 -  ]3 pz)~ l_--_--~(l(1--]3--~z)z) " ) , Izl---1. 

The conditional probabilities zk, j are studied by investigating the sequence of random 

variables {Z.(k)} which denote the conditional number of outstanding requests n time 
units after the last packet transmission, given that there were k outstanding requests 
just after the transmission. The analysis of the sequence {Z.(k)} is equivalent to 
studying of the transient behavior of a random walk with the barrier at level 0. 

By using the following definition 
R(k) is the value of the sequence {Zn(k)} at a packet arrival instant; 

GR(z;k ) is the generating function of R(k); 

zcj(n; k) = Pr{Z.(k) = j} 

f c , ( k )=Pr{R(k )=JI=(1-e -Z)~z~ , (n ;  k)e-nZ; 
n=O 
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with some elaborate manipulation 

(1-e-Z)z k +e(1-z-1)e-a~o(k ) 
GR(Z;k)= ~ _ - ~ - - - ~  ,where 

= aft, is the probability that there is a slot with Busy=l on the forward bus and 
with REQ=I on the reverse bus; 

e = (1 - a)(1 - ]7), is the probability that there is a slot with Busy=0 on the forward 
bus and with REQ=0 on the reverse bus; 

~0(k) is the probability that the sequence is at the barrier level at the arrival instant; it 
can be calculated numerically. 

From GR(z;k ) and Gy(z;i) the probability generating function Gr(z ) can eventually 

be derived. In fact, by utilizing the relationship ~s = ~ ~il[[i,j = ~ ~)i ~ {~i.kq~k.j it can 
i=0 i=0 k=0 

be verified that the following functional equation holds. 

_ ,=  ( 1 - e - Z ) ( 1 - r +  flZ).OF . ~ - -  G F ( Z ) _ Z ~ ) j Z I ~ j , I  z ( O ) - I  ~ ( (1 -  a) (1-  ]3 + flz)'] + 
j:0 , : o  ~ 1-a(1-/7+/Tz) ) 

(1-a)(1-13)(1-z-l)e-S~O]z + O(1-oO(1-z ) 
where 0 = r is the probability that an arriving packet finds no outstanding 

requests; and O = 1 - [ ~]Tz + o~ + 17 - 2~x/7 + (1 - a )(1 - 13 )z -1 ]e -z . 
The model in [4] has been extended in [33] to the case where each node can queue 

one message of fixed length (1) segments. Results obtained from this model show that 
for sufficiently large I the message delay behaves like a linear function of the message 
length which was also observed in the simulative study reported in [5]. 

Bounds on the Performance Figures for Infinite Buffer Models: in [3] a model for a 
tagged node which by following the quasi-gated discipline is analyzed. For Poisson 
processes with intensity ;L r for requests registered by a node and ~, for segments 
generated by a node and general service requirements for each class of arrivals, the 
analysis of the priority queueing system (assisted by the conservation law for work 
conserving queues [36]) yields the following for the mean delay D, experienced by the 
segments [3] 

-D,=(-R-(1-p)~S,)k(1-pr)(1-p))+S, where R, the residual service time 

of the customer in service, R = 1 [ ~ , ~  + ~ , ~ ] ,  and {1,2}) is the second 

moment of the service time, S i is the average service time, p; is the offered load to the 

queue due to class i customers, p = #9, + p,, and ~" is the probability that the segment 
queue is empty and the server serves the request queue. An analysis of a dominant and 

- 1  * _min[Rp,/S~(1-p dominated queue shows that [1 ( -p,)/S~(,~)]pr< ~ < ), p~]. 

A simulative analysis in [3] shows that these bounds are tight especially in light or 
heavy traffic conditions. In [6] the same queueing system is analyzed in the discrete 
time domain, but the derived bounds are not as tight as in the continuous case. 

The discrete time version of the above model has been studied in [40]. Through an 
analysis of the model based on renewal/regenerative theory and a work conservation 
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law the authors obtain upper and lower bounds on the average access delay in the 
tagged DQDB node. In this model three class of traffic are considered which represent 
the busy slots travelling on the forward bus (upstream traffic), the segment queue in the 
tagged node and the request traveling on the reverse bus. In this system the time is 
assumed to be slotted and the service time of all classes is deterministic and equal to 
one slot. The segment and request arrival processes are assumed to be Bernoulli, while 

the busy slot arrival process is modelled by Y'-order Markov model [15] with at most 
one packet per slot. The upstream traffic queue have the highest priority and is served 
in accordance with the HoL discipline [68] while the segment and request queue are 
served following to the consistent gated/limited discipline (c-G/L) [40]; where c-G/L 
discipline is exactly the two states discipline previously described whenever the service 
time is deterministic and equal to one slot. This discipline is a priority discipline which 
guarantees that high priority packets will be served before any low-priority packets 
which arrive on the same slot or at a future time but at the same time is not 
inconsiderate of low priority traffic such as HoL. The analysis is based on 
renewal/regenerative theory, a work conservation law and the theory for approximating 
the solution of infinite systems of equation [35]. 

Let {S, : n e N} be the sequence of time instants in which the system is empty. This 

sequence S,, denotes renewal cycles and the length of the n" renewal cycle is 

X n = S, - S,,_ r Let C~ indicate the cumulative delay of the i th-priority packets that 

arrived during the n 'h cycle. {C~ : n e N} is a regenerative process with respect to the 

renewal process {S~ : n e N} and thus by applying classical renewal/regenerative 

arguments the mean delay of a n  i th priority packet D i can be obtained from 

D i = CT/Zi �9 X, where C ---7 is the expected value of the cumulative delay of the i ~h- 
priority packets that arrived during a renewal cycle,  Z is the arrival rate of the i 'h 

class, and X is the average length of a renewal cycle. 
Since the c-G/L/HoL is a work conserving system a work conservation law can be 

used to define a relationship between the average access delay of the same system with 

the FIFO service discipline (DFzFo) and the weighted sum of the average access delay 
3 

of each class in the c-G/L/HoL system: Z. DFIFO = Z ~'i" Di" 
i=1 

By analyzing the system in a renewal cycle a set of linear equations among 
cumulative delays is obtained. The structure of the generic equation is 

cH(i,j) = aH(i'J) + ~ Z bH(i,j,i',j')" cH(i',j'), where 
i'=Oj'=O 

H �9 �9 .p .p a"(i,j) and b (t,j,t ,J ) are constants; 

C" (i, j )  is a r.v. describing the cumulative delay of all the H packets which arrived 
(and were served) over the time it takes the system to move from the state i d (at 
time t n ) to empty; 
j is the amount of time that has elapsed since the gate was closed in High priority 

queue for the n 'h time; 
i is such that i+j describes the time distance from t~ and the arrival of the packet at 
the head of the low priority queue. 

By applying the theory of infinite dimensional linear equations for each class a lower 

bound of the average access delay (D: ~ is computed. From the work conservation law 
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and the lower bounds (D~ ~ the upper bound for a specific class can easily be 

derived: DiP = ~. DF, Fo - ~ ,  2~. D~ ~ . 
i=t, 
i s j  

Approximate Solutions for Infinite Buffer Models: in [64], simple closed-formulas 
for approximating the performance figures of a tagged node in a DQDB network are 
derived. The analyzed DQDB network has N stations transmitting asynchronous traffic 
of one priority level 7. Incoming messages to the network stations are made up of single 
segments; segments arrive at each node{i} according to a Poisson distribution with 
rate A, i. The L_NET process of a node{i} is modelled by a Bernoulli process with a 

probability qi qi = ~ ' ~ j  to observe a busy slot, while the R_NET process of 
j=l 

node{i} is modelled by a Poisson process with rate A i A i = ~ A j  . By indicating 
j=i+l 

with z the slot duration, it follows that the bus utilization of node{i} is p~ = ~ .  z, and 
N 

the total bus utilization is p = ~ p~. 
i=l 

One of the key concepts in the analysis of this model is the decomposition of a 
tagged-segment access delay (the time a segment spends within a node) in intervals 
identified by the following time instants: 1) arrival epoch of the segment; 2) time 
instant, at which the observed segment is scheduled for transmission on bus A; 3.) the 
time instant at which the observed segment arrives at the top of the distributed queue; 4) 
end of the transmission of the tagged segment on the forward bus. 

The segment access delay at a given node i is obviously the interval between instant 1 

and 4 (T14), and it can be decomposed into the following random variables. 

T~2: is the waiting time in the local queue in station i. 
T23: is time that a segment spends in the distributed queue from its insertion in the 
distributed queue to the time instant at which it arrives at the head of the distributed 
queue. 
T34: is the virtual transmission time, i.e., the time between successive empty slots 

(on Bus A) as seen by the (tagged) node i. According to the above hypothesis T34 

has a geometric distribution and its LST is *34(s)=[(1-qi)z]/(1-qiz),  where 

Z = e - s z  . 

T34 is the time to transmit a segment or to satisfy a downstream reservation. 

Therefore the waiting time Tz3 of segments in the scheduling position is studied with 

a standard M/G/1 system with arrival rate F~ F~ = ~ ;~ j  and service time ~4. 
j=i  

7 In the paper it is also proposed an approximation to study the effect of the isochronous 
traffic on the performance figures of the asynchronous traffic. 
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_ s (1 -  r ,  
Thus the LST of T23 is qb23(s ) - s -F / (1 -qb34(s ) ) ,  where E[T34 ] = ~l_qi is the 

average of T34. O23(s ) �9 ~b34(s ) can be seen by the segments arriving at node{i} as the 
virtual service time to be transmitted on the bus. Therefore T~2 can be approximated 
with the waiting time experienced by the segments in an M/G/1 system with arrival rate 
'q'i with service time equal to the virtual service time. Hence, 

~bl2(S ) = I s ( l -  •i" E[T24])]/[s-/1"i(1-- Cl)24(S))]" 

Finally,  the LST of the access delay (T~4) is approximated by 

(I)14(S) = CI)12 (S) �9 I:I)23(S ) " I~34(S ) 
Obviously, the main approximations introduced in this approach are related to the 

computation of the T23 distribution. In fact, both the possibility of having more than 
one segment per node in the distributed queue and the Poisson hypothesis on the REQs 
arrival are conservative. Despite these approximations, the model is able to capture the 
dependence of the performance figures either from the node position or from the traffic 
pattern. 

The model proposed in [64] was extended in [14] to take into consideration a non 
memoryless distribution of  the length of the busy train (T34), i.e., the number of 
consecutive busy slots. In that paper the lengths of consecutive busy trains constitutes a 
renewal process and hence those messages which arrive when the queue is empty are 
considered separately (i.e., such messages experience an exceptional service). The 
waiting time of the messages (segments or requests) from the distributed queue (T23) is 
therefore modelled by the waiting time in an M/G/1 system with an exceptional first 
service in a busy period [61]. 

In [22], an attempt to extend the nested M/G/1 queue model to the multi-segment 
messages was made. Unfortunately, even for small (5-segment) messages and 
moderate loads (0.60), the proposed approximation significantly deviates from 
simulative results. 

Just recently, [58] reports an M/G/l-type model of the tagged node from which the 
statistics of the queue-length occupancy distribution are derived. To obtain an M/G/I- 
type model the authors assume that a) the maximum number of outstanding requests in 
the tagged node is bounded; and b) the L_NET process is modelled via a Bernoulli 
process. 
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