
Fast Simulation of Rare Events in 
Queueing and Reliability Models 

Philip Heidelberger 

IBM T.J. Watson Research Center, Hawthorne 
P.O. Box 704 

Yorktown Heights, New York 10598 

Abst rac t  

This paper surveys efficient techniques for estimating, via simulation, 
the probabilities of certain rare events in queueing and reliability models. 
The rare events of interest are long waiting times or buffer overflows in 
queueing systems, and system failure events in reliability models of highly 
dependable computing systems. The general approach to speeding up such 
simulations is to accelerate the occurrence of the rare events by using im- 
portance sampling. In importance sampling, the system is simulated using 
a new set of input probability distributions, and unbiased estimates are 
recovered by multiplying the simulation output by a likelihood ratio. Our 
focus is on describing asymptotically optimal importance sampling tech- 
niques. Using asymptotically optimal importance sampling, only a fixed 
number of samples are required to get accurate estimates, no matter how 
rare the event of interest is. In practice, this means that the required 
run lengths can be reduced by many orders of magnitude, compared to 
standard simulation. The queueing systems studied include simple queues 
(e.g., GI/GI/1) and discrete time queues with multiple autocorrelated ar- 
rival processes that arise in the analysis of Asynchronous Transfer Mode 
communications switches. References for results on Jackson networks and 
and tree structured networks of ATM switches are given. Both Markovian 
and non-Markovian reliability models are treated. 

1 I n t r o d u c t i o n  

This survey paper is concerned with efficient simulation techniques for estimating 
the probability of certain rare, but important,  events that arise in the analysis of 
queueing and reliability models. For example, consider a switch in a communi- 
cations system that has a buffer capable of holding at most B packets. A switch 
designer is interested in the buffer sizing problem; namely determining a value 
of the buffer size so that the (steady state) packet loss probability is very small, 
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say less than 10 -9. A designer of network session admittance and routing algo- 
rithms is faced with a related, but somewhat different problem; namely deciding 
whether or not to allow a new session to use the switch given the traffic already 
using the switch and the fixed buffer size B of the switch. For the session ad- 
mittance problem, one criterion would be to admit the new session provided the 
packet loss probability remains acceptably low (again, say less than 10-9). De- 
pending on the stochastic characteristics of the sources and the service processes, 
exact (or numerical) solution of the relevant queueing model may be impossible 
and (discrete event) simulation may be the only feasible solution approach. 

In the reliability context, consider the design of a fault tolerant computer 
system. The system designer wishes to select components (e.g., processors and 
disk drives) and configure the system so that it is very reliable, subject to some 
cost constraints. For example, the designer may wish to find a configuration 
so that, given a fixed time horizon t (say a month), the probability that the 
system fails (or operates at an unacceptably low level of performance) within 
the interval (0, t) is very small. Even under Markovian assumptions on the failure 
and repair time distribution of the components, such models become difficult to 
solve using numerical techniques due to the problem of state space size explosion. 
For generally distributed failure and repair times, effective numerical techniques, 
for all practical purposes, do not exist. Thus simulation may be the only feasible 
solution approach. 

But how practical is it to use simulation to estimate such small probabili- 
ties? For example, to estimate a packet loss probability of less than 10 -9 would 
seem to require simulating at least 109 packets. As the probability of interest 
becomes smaller, the required simulation time grows ever larger and becomes 
excessive, except perhaps on highly parallel computers. Somewhat remarkably, 
simple techniques e~ist that permit very accurate estimation of such small proba- 
bilities within a matter of minuies on even modest-sized workstations. The basic 
approach is called importance sampling [46, 54]; the technique was first applied 
on computers for performing nuclear physics calculations done during the 1940's 
in collaborations between yon Neumann, Ulam, Fermi, Kahn, Metropolis and 
their colleagues [53, 54, 63]. In the past several years importance sampling has 
also been applied to a variety of problems arising in the analysis of computer 
and communications systems. 

The purpose of this paper is to describe how importance sampling can be 
used to speed up rare event simulations in queueing and reliability models. 
While analysis of the efficiency of importance sampling techniques can tend 
to be highly mathematical, this paper will emphasize basic concepts, thereby 
(hopefully) making the paper accessible to practitioners with a background in 
performance and/or reliability modeling, but with little or no background in 
simulation methodology. The rest of the paper is organized as follows. In Sec- 
tion 2, the problem of rare event simulation will be discussed in more detail and 
the technique of importance sampling introduced. This section will also describe 
the notion of optimal importance sampling, along with other preliminaries such 
as a brief description of regenerative simulation. Section 3 will describe the ap- 
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plication of importance sampling in a variety of queueing systems, including the 
single server queue with independent interarrival and service time distributions 
(GI/GI/1) ,  the multiple server queue (GI /GI /m) ,  the single server queue with 
multiple correlated arrival processes. References for results on and some simple 
networks will be given. Section 4 will describe results for simulating models of 
highly dependable systems for the purpose of estimating reliability and avail- 
ability characteristics. The paper is then summarized in Section 5, highlighting 
the similarities and differences of simulating queueing and reliability models. 

2 Rare Event Simulation and Importance  Sam- 
pling 

2 .1  T h e  P r o b l e m  o f  R a r e  E v e n t  S i m u l a t i o n  

To further demonstrate the difficulty involved in simulating rare events, let us 
consider a simple example. Let X be a random variable that  has a probability 
density function p(z) and consider estimating the probability, 7, that  X is in 
some set A; 

J; 7 = l{=eA}P(z)dx = Ep[l{xeA}] (1) 
O 0  

where the subscript p denotes sampling from the density p and l{=eA } is the 
indicator of the set A, i.e., l{=eA } = 1 i f z  E A and l{~eA } = 0 if �9 ~ A. 
Consider estimating 7 by simulation. The standard approach would be to draw 
N samples, X 1 , . . . , X N  from the density p, set In = l{x~eA}, and form the 

N estimate "~N = (1/N)~,~=II,,. Note that Ep[~N] = 7 and that the variance 
of ~Jv is 7(1 - 7)/N. By the central limit theorem, a 100(1 - a)% confidence 
interval for 7 is (approximately) "~N-4-z,~12 X/7(1 - 7)/N where za/~ is defined by 
the equation a/2 = P(N(O, 1) > Zal2). (N(0, 1) denotes a normally distributed 
random variable with mean zero and variance one.) Suppose we wish to estimate 
7 to within -4-10% (about two significant digits of accuracy), i.e., we want the 
relative half-width of, say, a 99% confidence interval for 7 to be less than 0.1 
which implies that  2.576v/7(1 - 7)/N/~,N < 0.1. How large must N be in order 
to achieve this level of accuracy? Since 7N ---* 7 almost surely (a.s.) as N ---* oo, 
we see that N .~ 100 x 2.5762 x (1 - 7 ) / %  i.e., the required sample size is 
proportional to 1/7. The smaller 7 is, the larger the sample size must be. For 
example, if 7 -- 10 -s,  a sample size of 6.64 x l0 s is required, while if 7 = 10 -9, a 
sample size of 6.64 x 1011 (664 billion) is required. Note that  these sample sizes 
must be increased by a factor of 100 in order to achieve one additional significant 
digit of accuracy (4-1% accuracy). 

The relative error of the estimate ~N, RE(~N), is defined to be the stan- 
dard deviation of the estimate divided by its expected value. Then RE(~N) 
1/,~/TN ---* oo as 7 --~ 0. Thus, using standard simulation, the relative error is 
unbounded as the event becomes rarer. 
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As we will see, when importance sampling is properly applied, it is possible to 
construct (unbiased) estimates of 7 whose relative error remains bounded even 
as 7 ~ 0. This implies that the required sample size to achieve a given relative 
error does not blow up as the event becomes rarer. 

2.2 Importance Sampling 
Importance sampling is based on the following simple observation. (Some of 
the discussion below basically follows that given in [54].) Consider the integral 
representation for 7 in Equation 1. Multiplying and dividing the integrand by 
another density function f ( z )  we obtain (henceforth, we will suppress the limits 
of integration unless they are specifically required) 

[ 1 P(~) " z ' d z  [1 P(~) l 7 = / {zeA}p,(m)P ( ) = E f  [ {XEA}p,(~)J = Ef[ I{x~A}L(X)]  (2) 

where L(z)  = p(z)/p'(~) is called the likelihood ratio and the subscript p' de- 
notes sampling from the density p~. Equation 2 is valid for any density p~ pro- 
vided that pt(~) > 0 for all x E A such that p(~) > 0, i.e., a non-zero feasible 
sample under density p must also be a non-zero feasible sample under density 
p~. This equation suggests the following estimation scheme, which is called im- 
portance sampling. Draw N samples X1, . . . ,  XN using the density p' and define 
Z,~ = L(Xn)In (recall In = I{X,~EA}). Then, by Equation 2, Ef[Z,~] = 7. Thus 
an unbiased (and strongly consistent as N --~ oo) estimate of 7 is given by 

N N 
l ~ z n =  1 ~ ( p ' )  = ~ ~ ~ I,~L(X,O, (3) 

n = l  n = l  

i.e., 7 can be estimated by simulating a random variable with a different den- 
sity and then unbiasing the output (In) by multiplying by the likelihood ra- 
tio. Sampling with a different density is sometimes called a change of measure 
and the density p' is sometimes called the importance sampling density (or if 
p'(~) = dP'(~) /dz ,  P' is called the importance sampling distribution). 

Since essentially any density p' can be used for sampling, what is the optimal 
density, i.e., what is the density that minimizes the variance of'~N(p')? Selecting 
p'(z) =_ p*(z) = p(z ) /7  for z E A and p*(x) = 0 otherwise has the property of 
making g,~ = Inp(X,~)/p*(X,~) = O' with probability one. Since the variance 
of a constant is zero (and since the variance is always nonnegative), p*(z) is 
the optimal change of measure (and one sample from'p* gives you 7 exactly). 
The optimal change of measure thus has the interpretation of being simply the 
ordinary distribution, conditioned that the rare event has occurred. However, 
there are several practical problems with trying to sample from this optimal 
density p*. First, it explicitly depends upon 7, the unknown quantity that we 
are trying to estimate. If, in fact, 7 were known, there would be no need to 
run the simulation experiment at all. Second, even if 3' were known, it might be 
impractical to sample efficiently from p*. 
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Since the optimal change of measure is not feasible, how should one go about 
choosing a good importance sampling change of measure? Since Ep, [Zn] = 3' for 
any density p', reducing the variance of the estimator corresponds to selecting a 
density pl that reduces the second moment of Zn; 

/ (4) Ep,[Z ] = = 

Thus to reduce the variance, we want to make the likelihood ratio p(~)/p'(~) 
small on the set A. Since A is a rare event (under density p), roughly speaking, 
p(z) is small on A. Thus to make the likelihood ratio small on A, we should pick 
p' so that  p '(x) is large on A, i.e., the change of measure should be chosen so as 
to make the event A likely to occur. 

More formally, consider a sequence of rare event problems indexed by a "rar- 
ity" parameter �9 so that 7(�9 --~ 0 as �9 --~ 0. For example, in the buffer sizing 
problem, we could let �9 = 1/B  and 7(�9 = P(Q > B) where B is the buffer size 
and Q denotes a random variable having the steady state queue length distribu- 
tion. In a reliability model, as is done in[57, 72, 88, 89], we could parameterize 
the failure rates of components by �9 e.g., the failure rate of component number 
i is given by ~(e)  = a~e b' for some constants a~ and b~(b~ > 1). Then, defining 
7(�9 to be the probability that  the system fails before some fixed time horizon 
t fits into this framework. Suppose it is known that 7(�9 "" cf(�9 as e --~ 0 for 
some constant c and function f(e). (Thus f(e) -~ 0 as �9 --~ 0.) Now if a p' 
can be chosen so that Ep,[Z~] ... dr(e) 2 for some constant d, then crp,(Z,~), the 
standard deviation of Z,~, ..~ k f ( �9  where k -- V ~ -  c 2. The relative error of the 
importance sampling estimate thus remains bounded as �9 ~ 0: 

lim c~(~r(p')) _ lim ap,(Z,~) k - -  < oo. (5) 
7(�9 7 ( � 9  - 4 -g  

In such a situation, we say that  the importance sampling estimate has "bounded 
relative error" (see, e.g., [57, 72, 88, 89]). In practice, having bounded relative 
error is highly desirable, since it implies that  only a fixed, bounded, number 
of samples N are required to estimate 7(�9 to within a certain relative preci- 
sion, no matter how rare the event of interest is. For example, suppose k < 10, 
then two significant digit accuracy, i.e., making the relative half-width of a 99% 
confidence for 7(�9 less than 0.1, can be achieved in "at most N = 6.64 x 104 
samples, regardless of how small e (and thus 7(�9 is. Compared to the sample 
sizes of 6.64 x l0 s and 6.64 x 1011 required by standard simulation to estimate 
7(�9 = 10 - s  and 10 -9, respectively, we see that  orders of magnitude reduction 
in run lengths, or speedup, could thus be achieved using importance sampling. 
However, the variance reduction does necessarily not tell the whole story, since 
the cost of obtaining each sample may be so high as to effectively limit the num- 
ber of samples that can be collected. It is usually somewhat more expensive to 
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obtain a sample using importance sampling than standard simulation, however, 
the massive reduction in sample size generally more than makes up for the in- 
crease in the cost per sample. Such sampling costs are taken into account in 
a number  of studies, e.g., [6, 86], and see [47] and the references therein for a 
theoretical t reatment  of this issue. 

How can bounded relative error estimates be obtained? One way is to select 
p'  so as to ensure that  the likelihood ratio is always small on A. More specifically, 
suppose 

L ( x . )  < dlf(e) (S) 

whenever X,~ E A, then 

= Ep,[Z.L(X.) < < d ,f(e) (7) 
Thus,. sampling under such a p'  produces an estimate with bounded relative 
error. How likely is the event A to occur under such a p '? The probabili ty of A 
is given by 

i [ ?(e) c 
> dlf(e) J l{~eA}P(z)dz = "~ - -  > O. 
- dif(e) dl 

(The inequality in Equation 8 is true by Inequality 6.) Thus, asymptotically,  
the probabili ty of A under p'  does not depend on e, i.e., A is not a rare event 
under p', and the problem has been transformed from a rare event simulation 
into a non-rare event simulation. 

Note that  bounded relative error is obtained by making the second mo- 
ment,  Ep,[Z~], approach zero at the same at the same rate, f(e) 2, that  7(e) 2 
approaches zero. Is it possible to do any better? The answer is essentially 
no, since suppose Ep,[Z~] ~ dg(e) 2 where g(e) ---* 0 as e --+ 0. Because im- 
portance sampling is unbiased and the variance is non-negative, we must  have 
Ep,[Z~] > Ep,[Z,~] 2 = 7(e) 2. Thus, l im~og(e) / f (e  ) > c/v/-d, i.e., g(e) can ap- 
proach zero no faster than a constant times f(e). When in fact, g(e) ..~ kf(e), 
some authors (e.g., [t6, 17, 21, 26, 36, 85, 87, 95]) term the importance sampling 
scheme "asymptotically optimal" or "asymptotically efficient." These terms are 
thus seen to be equivalent to bounded relative error. (As seen from Equation 5, 
it is possible to obtain a relative error of zero as e --* 0 if one is lucky enough 
to have d = c 2, but, in practice, such situations are the exception rather than 
the rule.) Note that  bounded relative error is also obtained if 7(e) > cf(e) and 
if L(X,~) < dif(e) for X,, E A. Also, in some applications, it may  not be pos- 
sible to find a constant di such that  L(X,~) < dlf(e) but it is possible to find 
a random variable D such that  L(Xn) <_ Of(e) (on A). If lim~__.oEp,[D 2] < oo, 
then bounded relative error is still obtained. Juneja [61] shows that  in order to 
obtain bounded likelihood ratios, one must make the likelihood ratio equal to 
one on every cycle of states. Although our focus is on asymptot ic  optimality, it 
is impor tant  to recognize that,  for a fixed e, there may  be other changes of mea- 
sure that ,  because of the (unknown) constants in the variance, result in a lower 
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variance than that obtained by the asymptotically optimal change of measure; 
indeed the zero variance estimator is always better, but as mentioned above, it 
is usually impractical to sample from that distribution. In addition, there may 
be several different formulations for estimating the same quantity; asymptotic 
optimality refers only to a particular formulation of a problem. (For example, 
see Section 3.1 for several formulations to estimate large waiting times in the 
single server queue.) 

As used in this context, the purpose of importance sampling is to reduce 
the variance of an estimator. Thus importance sampling is called a "variance 
reduction technique." (See [4, 46, 56, 84] for a different application of importance 
sampling; so-called "what if" simulations in which importance sampling is used 
to estimate the performance of a system at many different input parameter 
settings from a single simulation run.) Does importance sampling always lead 
to a reduction in variance? The answer is (an emphatic) NO, as the following 
simple example illustrates. Suppose p(z) = ,~e -~z and A = {z > t}, i.e., we are 
interested in estimating ~ -- Pp(X > t) where X has an exponential distribution 
with rate A. Suppose we employ importance sampling using an exponential 
distribution with rate )~', i.e., p'(~) = ,Ve -:~'=. From Equation 4, the second 
moment of the estimator is given by 

fx~ ~ ,~2 f oo e(~'-2~)=d~ = = 

----t ----t 
(o) 

which is infinite if A' >_ 2A. Thus, not only can importance sampling result in a 
variance increase, but it can produce arbitrarily bad results if not applied care- 
fully. (Conditions, and counter-examples, under which importance sampling of 
discrete time Markov chains over a random time horizon has a finite variance are 
given in [44, 46, 53].) So, essentially all work on using importance sampling in 
practical applications deals with choosing an importance sampling distribution 
(change of measure) that leads to actual variance reduction, with particular em- 
phasis being placed on finding asymptotically optimal changes of measure. As 
we will see, selecting such asymptotically optimal changes of measure generally 
involves understanding quite a bit about the structure of the system being simu- 
lated. Fortunately, the understanding does not have to so thorough as to.imply 
a complete solution of the problem; there is a rather large class of queueing and 
reliability models for which exact solutions do not exist (or numerical solutions 
are impractical) but for which asymptotically optimal importance sampling dis- 
tributions can be explicitly given. 

Note that importance sampling is well suited for parallelization by running 
independent replications (or replications with different input parameter settings) 
in parallel on multiple computers. (See [45, 55] and the references therein for 
a discussion of the statistical properties and efficiencies of a variety of parallel 
replications approaches.) If the cost of computing each sample is high, and the 
variance is relatively large, then such parallelization can be very effective; this is 
especially true if the asymptotically optimal importance sampling distribution is 
unknown. Several such examples, including the analysis of fault-tolerant routing 
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algorithms on a hypercube, where parallelization is effective are considered in 
[77]. 

2.3 Likelihood Ratios 

The discussion of the previous section dealt with a very special situation: using 
importance sampling for a single random variable that has a probability den- 
sity function. However, importance sampling is true much more generally as 
we will describe briefly (without getting too technical). In particular suppose 
7 = f H(w)dP(w) for some arbitrary random variable H and arbitrary probabil- 
ity measure P.  Then, as in Equation 2, 7 = fH(w)L(w)dP ' (w)  = Ep,[HL] for 
another probability measure P '  where L(w) = dP/dP'(w) is again the likelihood 
ratio or, in measure-theoretic terms, the Radon-Nikodym derivative. (This re- 
quires that the measure P be "absolutely continuous" with respect to the mea- 
sure P' .)  The reason for this brief excursion into measure theory is to make 
the point that the probabilistic setting in which importance sampling applies is 
extremely general. For example, it can involve stochastidprocesses such as dis- 
crete or continuous time Markov chains, semi-Markov process, or more general 
stochastic processes such as generalized semi-Markov processes (see [43, 99] and 
the references therein). The (rare) event A can also be defined quite generally; 
typically it is defined in terms of "stopping times" [24]. For example, in a relia- 
bility model defined by a continuous time Markov chain (CTMC), suppose rF is 
the first time that the process enters a "bad" set of states F in which the system 
is considered unavailable. Then an event of interest (which is hopefully rare) is 
A = {TF < t} for some given value of t. 

In order to apply importance sampling, it must be possible to compute the 
relevant likelihood ratio. We briefly give several examples; explicit formulas 
for a variety of stochastic processes are given in [46]. In the case of sampling 
from a single probability density function, as described above, the likelihood 
ratio L(X)  = p(X) /p ' (X) .  This equation is also valid if X is drawn from a 
discrete distribution, i.e., if P ( X  = a~) = p(a~), i = 1 , . . . ,  m and P ' ( X  = hi) = 
p'(a~),i = 1, . . . , m .  We require that p'(ai) > 0 if p(a~) > 0, but note that we 
can have p'(ai) > 0 even if p(ai) = 0 since the likelihood ratio is zero in this 
case, i.e., no weight is given to an impossible (under p) sample path. Suppose 
X = (X1 , . . . ,  Xm) is a random vector, where Xi is drawn from density pi(z) 
and Xi is independent of Xj (j r i). If, under importance sampling, X~ is drawn 
from density p~(~), and again Xi is independent of Xj (j # i), then 

L(x) = [ I  p(x0 (10) 

Suppose {Xi , i  >_ 0} is a discrete time Markov chain (DTMC), on the state 
space of nonnegative integers where X0 has (the initial) distribution po(i) and 
the one-step transition probabilities are given by P(i, j)  = P(X,~ -- jlX,~_I = i). 
Let Xm = (Xo, X , , . . . ,  Xm). If, under importance sampling, Xo is drawn from 
pto(i), and the process is generated with the one-step transition probabilities 
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P'(i, j), then 

L(X,~) = po(Xo) mH P(Xi_,,X,) (11) 
p'o(Xo) P'(X,_1,x,)" 

i=l 

We require that p~(i) > 0 ifpo(i) > 0 and P'(i, j) > 0 if P(i, j) > 0. In fact there 
is no requirement that the importance sampling distribution correspond to a time 
homogeneous DTMC; see [30, 50, 51] for examples in which it is advantageous to 
use a process other than a time homogeneous DTMC for importance sampling 
to estimate quantities associated with a DTMC. Identities for the variance of 
L(Xm) and L(Xm)Y,~ where Ym is a function of Xm may be found in [44, 46]; the 
relationship of such identities to the problems of rare event simulation covered 
here is beyond the scope of this paper. 

For a CTMC, let po(i) denote the initial distribution, A(i) denote the total 
rate out of state i and let P(i, j) = Q(i, j)/)~(i) denote the transition proba- 
bilities of the embedded DTMC, where Q(i,j) is the rate from state i to state 
j. If importance sampling is done using a CTMC with initial distribution p'(i), 
holding rates A'(i), and embedded DTMC transition probabilities P'(i, j), then 
the likelihood ratio after m transitions is 

p0(X0) ~ A(X,-1)e-~(x': ' ) ' ' - '  P(X~_~,X~) L(X) (12) I 

~o(Xo) ~=~11 y(x~_~)e-.(x._l)._, P'(X~_l, x,) 

where the sequence of states of the embedded DTMC is Xo,.. . ,  Xm and t{ is the 
holding time in state X~. (Note that this expression simplifies somewhat since 
~(x~_~)p(x~_~, x~) = Q(x~_x, x~).) 

Another example, that will be of use in reliability models, concerns using 
uniformization, or thinning, [60, 71, 93] to sample points from a nonhomogeneous 
Poisson process (NHPP). Let {N(s), s > 0} denote a NHPP with intensity rate 
A(s). Suppose there exists a finite constant fl such that A(s) < fl for all s > 0. 
Then points in the NHPP can be simulated (without importance sampling) 
as follows. Let {Sn,n >_ 1} denote the points in an ordinary Poisson process 
{Nt~(s),s >_ 0} with (constant) rate ft. Then, S,~ is accepted as a point in the 
NHPP with probability A(Sn)/fl, otherwise it is rejected as a "pseudo event" 
(with probability 1 - A(S,)/fl). To implement importance sampling, we could 
simply thin the Poisson process {N~(s), s >_ 0} with different probabilities, in 
effect generating a NI-IPP with a different intensity rate, say A'(s)(A'(s) <_ [3). Let 
N(t) denote the number of accepted (real) events and P(t) denote the number 
of rejected (pseudo) events; then Np(t) -- g(t) + P(t). Let T,~ denote the time 
of the n-th real event (n < N(t)) and let P,~ denote the time of the n-th pseudo 
event (n < P(t)). Then, the likelihood ratio (at time t) has a simple form: 

~(') ~(T~) P(~) 1 -  ~(P~)/[3 
~=~ = 1 - ~ , ( P ~ ) / ~ "  

This requires that A'(s) > 0 whenever A(s) > 0 and 1-A'(s)/[3 > 0 whenever 1 -  
A(s)/[3 > 0. In the reliability context, A(s) might represent the total component 
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failure rate at time s which, because components are reliable, is very small. 
Therefore, to see system failure events, we need to accelerate the rate at which 
components fail, which can be accomplished simply by increasing the component 
failure rate, i.e., by sampling using failure rate A'(s) where A'(s) >> A(s). 

2.4 Regenerative Simulation 

In simulations of stochastic systems, one is often interested in steady state per- 
formance measures. For example, in queueing models one might be interested in 
P ( W  > z) where W is the steady state waiting time distribution. In a reliability 
model, one might be interested in u the steady state unavailability of the system, 
i.e., the long run fraction of the time that system is in a state that  is considered 
failed. In both these cases, one is interested in estimating a quantity associated 
with a rare event. If the system is regenerative [27, 96], then the "regenerative 
method" can be used to estimate steady state performance measures. Let X~ be 
the process at time s. We assume there is a particular state, call it 0, such that  
the process returns to state 0 infinitely often and that,  upon hitting state 0, the 
stochastic evolution of the system is independent of the past and has the same 
distribution as if the process were started in state in 0. Arrivals to an empty 
GI/GI/1 queue constitute regeneration points, as do entrances to a fixed state 
in a CTMC. Let/3~ denote the time of the i-th regeneration (/3o = 0) and assume 
that  X0 = 0. Let a~ = fl~ - fli- I denote the length of the i-th regenerative cycle. 
If E[a~] < co, then (under certain regularity conditions) X~ ~ X as s ---, co 
where ~ denotes convergence in distribution and X has the steady state distri- 

h be a function on the state space and define I~ = f#~'-i h(X~ bution. Let )ds. 
Then {(1~, ai) ,  i > 1} are i.i.d, and 

ElY4 (14) r = E[h(X)] - E[(~i] 

(provided E[Y~] exists and is finite). Equation 14 and the i.i.d, structure of 
regenerative processes forms the basis of the regenerative method; simulate N 
cycles and estimate E[h(X)] by aN = Y'N/&N where YN and a-N are the averages 
of the Y/-s and ~i-s, respectively. It is possible to form confidence intervals for 
r by applying the central limit theorem. (See [27] for a discussion of estimating 
the variance in this central limit theorem.) For example, to estimate P ( W  > m), 
the process is in discrete time, h(w) = l{~>z}, (~i is the number of customers 

to arrive in a busy period and ~ = ~=#,_~ h(W~). To estimate u, the steady 

state unavailability, h(m) = I{,EF } where F is the set of failed states. In both 
of these cases, Y~ = 0 with high probability so obtaining a non-zero Y~ is a rare 
event. Thus importance sampling can be applied to estimate the numerator,  
E[Y~], of Equation 14. Typically importance sampling is used until a non-zero 
value of Y~ occurs, and then it is "turned off" and the process is allowed to 
return naturally to the regenerative state. Note that  the denominator, E[a~] 
is simply the expected cycle time, so importance sampling need not be applied 
to estimating the denominator. Letting Li denote the likelihood ratio of the 
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process over cycle i, then E[Yi] = Ep, [L~Y/] where importance sampling is done 
using distribution P~. (See [11, 42, 46] for an alternative expression that uses 
partial likelihood ratios in regenerative simulation.) 

To obtain variance reduction in estimating E[Y~], roughly speaking, we want 
to chose pt  so as make the rare event likely to occur during a cycle, thus mak- 
ing the likelihood ratio small. But suppose one is interested in estimating the 
expected time (starting in state 0) until the rare event occurs, e.g., estimating 
EO[TF] where vF is the first time the reliability model enters a failed state (in 
F).  Using importance sampling to accelerate the occurrence of TF wilt result 
in unusually small values of TF, thereby increasing the variance. However, this 
problem can be avoided by exploiting a ratio formula for E0[TF]: 

EO[TF] : E0[min(r0, rF)] 
P0(TF < T0) (15) 

where TO is the first time to return to state 0 (see [51, 64, 92]). Equation 15 is 
valid because the number of cycles until hitting TF before TO has a geometric dis- 
tribution with success probability 7 -- P0(TF < TO). Now the problem becomes 
one of estimating 7, which is a rare event problem. Thus quantities such as the 
mean time to failure and the mean time until buffer overflow can be estimated 
by using importance sampling to estimate 7 and standard simulation to estimate 
E0[min(T0, TF)]. The geometric distribution and Equation 15 also form the basis 
for showing that  TF/Eo[TF] =:~ E as 7 "-~ 0 where E is an exponential random 
variable with mean one [15, 64]. 

In some applications, the model may not be regenerative (e.g., a reliability 
model with non-exponential failure time distributions), yet a ratio formula sim- 
ilar to that  of Equation 14 exists. For a subset, A, of the state space define 
A-cycles to begin whenever the process enters A. Then 

r = E [ h ( X ) ]  - E[IQ(A)] (16) 
E[(~i(A)] 

where ~ (A)  is the integral of the process over an A-cycle and c~(A) is the length 
of an A-cycle [14, 25]. In Equation 16, the initial distribution is the stationary 
distribution conditioned on the process just entering A. Importance sampling 
can be used to estimate the numerator, while standard simulation can be used 
to estimate the denominator. A "splitting" technique can be used to obtain the 
proper initial distributions as follows. Simulate the process (without importance 
sampling) until it is approximately in steady state. Then whenever the process 
enters A, simulate two A-cycles; one using importance sampling and one without 
using importance sampling. These provide samples for the ratio estimate. Also, 
the A-cycle simulated without importance sampling provides a starting point 
(with approximately the steady state distribution on A) for the next pair of 
samples. The method of batch means can be used for variance estimation; see 
[21, 81] for a discussion of this approach, and see [1] for a similar idea applied 
to estimating bit error rates over certain communications channels. 
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3 Q u e u e i n g  M o d e l s  

3 .1  T h e  S i n g l e  S e r v e r  Q u e u e  

We are now ready to apply importance sampling to some specific applications 
arising in queueing and reliability theory. We start with the waiting time process 
in the stable single server, GI/GI/1 ,  queue. This queue has quite a lot of random 
walk related structure that can be exploited. Let W,~ denote the waiting time of 
the n-th customer, {A,~} denote the interarrival time sequence and {B,~} denote 
the service time sequence. Then the waiting time sequence follows the well known 
Lindley's recursion (see, e.g., [7, 33]): W0 = 0 and W,,+z = (W,~ + X,,+I) + for 
n > 0 where X +I = B -A +I and = m (0, Let = P(A  < and 
B(x) =- P(B,~ < ~). Then, if E[X,~] < 0 (or equivalently p = E[B,~]/E[A,~] < 1), 
then the queue is stable and W,~ ~ W where W denotes the steady state waiting 
time. We will be interested in estimating P ( W  > z) for large values of z. 
To do so we will exploit the equivalence between the distribution of W and 
the maximum of ~( . ) random = = the time-reversed walk. Define -~z Xn,X2 
X n - 1 , . . . ,  ~:,~ = X1, So -- 0, and S~ = )~z + " "  + X~ for k > 1. Then, it is well 
known that 

W~ -- Mn = max{So, Sz , . . . ,  S,~) n > 0. (17) 

Thus, letting n --* co, W has the same distribution as/17/, the maximum of the 
time-reversed random walk (assuming the distribution of {X,~-k, 0 < k < n} 
converges as n --* co). For the GI /GI /1  queue, )~,~ has the same distribution as 
Xn, so we can say that W has the same distribution as M = max{S~, k _> 0}, 
the maximum of the random walk (which has negative drift). 

We note that P ( W  > x) = P(M > z) = P(r= < co) where r= is the first time 
the random walk exceeds z. Using standard simulation, estimation of P(v= < co) 
is not efficient since, with high probability r= = co. (Not only is the event rare, 
but it takes a potentially long time to determine that the rare event did not 
happen.) However, we will use importance sampling to transform the random 
walk into one with positive drift, so that r= < co with probability one. We follow 
the queueing oriented development in Asmussen [6, 7]. (Siegmund [95] considers 
this and related problems in the context of sequential analysis and sequential 
probability ratio tests. Asmussen also discusses the relevance of this problem 
to "risk theory" in insurance applications.) We will use a specific importance 
sampling change of measure known as "exponential twisting," "exponential tilt- 
ing," or embedding within a "conjugate family." Define the moment generating 
function M(O) = E[e ~ which we will assume is finite for all 0 < 0 < 0 where 

> 0. (For technical reasons, we also assume that M(O) ~ co as 0 T 0.) Note 
that  M(O) = E[e ~ = Ms(O)MA(-O) where Ms(0)  = E[e ~ and 
MA(8) = E[eeA"]. Let F(x) denote the distribution function of X,~. Now define 
the exponentially twisted distribution Fe(z) by dFe(x) = [ee=/M(O)]dF(x); if 
f ( ~ )  has a density function f(~),  then dFe(~) = re(z) = ee~'f(x)/M(O). If 
X t , . . . ,  X,~ are independently sampled from Fe(z), then the likelihood ratio has 
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a very simple form: 

M(8) n 
L,~(8) - ee(X,+...+x,,) = M(8)ne -es ' .  (18) 

Now if r~ = n, then by definition, Sn > z and thus 

Ln(8) = M(O)ne-e=e -~ < M(e)'~e -e~. (19) 

What value of 8 should be chosen? Note that there exists a 8* such that M(8*) = 
1. This is true since M(0) = 1, the derivative of M(e) is negative at 8 -- 0 
(because E[Xn] < 0) and M(8) is convex, continuous and approaches cr as 
8 T $.) By the above argument, at this value of 8", the titled random walk has 
strictly positive drift so rz < cr with probability one. Thus, using Equations 2 
and 19, we obtain 

P ( W  > m) = P(v= < co) = e-e*=Ee.[e -e*~ (20) 

where O= is the (random) "overshoot" O= = S~. - z. Note that the decay rate, 
-0" ,  is known; only Ee. [e - ~ 1 7 6  is unknown and requires estimation. Why is 
8* a good value with which to do importance sampling? It can be shown that, 
under suitable regularity conditions, Ee* [e -e*~ converges to a constant, say 
a(e*), as m ~ cr thus P(W > x) ,.~ a(8*)e -~ (This provides a very simple 
proof that the stationary waiting time distribution in the GI/GI/1 queue has an 
exponentially decaying tail, provided the moment generating function is finite.) 
In addition, by Equation 19, the likelihood ratio is also bounded by e -e*=. 
Thus, by the arguments of Section 2.2, importance sampling with this value of 
8* is asymptotically optimal. (Identify e = 1/z and f(e) = e -e ' / ' . )  In fact 
Siegmund [95] showed that 8" is the unique asymptotically optimal value within 
the class of exponentially twisted distributions, while Lehtonen and Nyrhinen 
[88] showed that it is the unique asymptotically optimal change of measure 
within the class of (essentially) all distributions with i.i.d, increments. Asmussen 
[9] also suggests using the identity in Equation 20 for P(W > z) to estimate 
E[W] = f P(W > z)dm using importance sampling (and quantities such as 
higher moments), although it needs to be combined with additional techniques 
in order to be effective. 

For GI/GI/1, the equation M(8*) = 1 is equivalent to MA(-O*)Ms(8*) = 1. 
For the M/M/1 queue with arrival rate A and service rate #, MA(--O) = A/(A+8) 
and Ms(0) = # / ( # - 8 )  for 8 < #. Solving for O* yields 8" = # - A .  At this value 
of O*, the interarrival time density ae.(m) = ~te -gz and the service time density 
be. (m) = Ae -~z, i.e., the process is simulated with arrival rate # and service rate 
A. Thus, with the asymptotically optimal importance sampling distribution, the 
simulated queue is indeed unstable. This flipping of arrival and service rates will 
also occur in other rare event problems as will be discussed later. 

Further interpretation as to why exponential twisting with parameter 8" is 
a good idea can be found in [2, 5]. Suppose one is told that Wn > na for 
some constant a and large value of n. Then how did the queue come to be in 
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such a (bad) state? Let #* > 0 denote the mean of the tilted random walk, 
i.e., the random S~(O*) with increment distribution Fe*(~). The titled random 
walk builds up linearly at rate #*, i.e., by the strong law of large numbers, 
S[~:](8*)/n ~ t#* a.s. as n ~ co for 0 < t < 1. Now suppose a < #*. Then, 
the titled random walk is capable of reaching the level na by time n. In fact, 
the tilted random walk reaches level na at approximately time ha~#*. Define 
t(a) = 1 - a/#*.  Anantharam [2] shows that  in this case as n -* co, given 
W,~ > ha, with probability one, Win:]In ~ 0 for all t < (1 - t(a)) , and then 
W[nt]/n ~ #*(4 - t(a))  for all t such that  t(a) < t < 1. In other words, W~ 
remains stable until a certain time, t (a)n,  and then starts building up linearly 
at the same rate that the titled random walk builds up until reaching level na 
at time n. (If a > #*, then the tilted random walk with parameter 8* cannot 
reach level na by time n. In this case, the waiting times build up linearly at 
rate a, corresponding to exponential twisting with a parameter 8~ such that the 
drift at 8~ is a.) In fact, related conditional limit theorems for the GI /GI /1  
queue (see [5] and the references therein) show that  during such a buildup, the 
waiting time behavior is (asymptotically) identical to that of the tilted random 
walk. Recall that  in Section 2.2 we stated that  the zero variance estimator was 
obtained by sampling from the ordinary distribution given that  the rare event has 
occurred. The above results show, roughly speaking, that  given a large waiting 
time has occurred, the ordinary distribution is the twisted distribution. Thus 
it is very natural that  exponential twisting with parameter 8* should be very 
effective. Indeed, experimental results in [68], show that  for the M/M/1  queue 
(a problem not requiring simulation but convenient as a simulation benchmark) 
with p = 0.5, P ( W  > 20) ~ 10 -9 can be estimated to within +5% in only 
129 replications. In fact, if a non-optimal value of 8 r 8" is used, then good 
estimates are obtained within reasonable time even if 8 is as much as 30% away 
from 8*. 

(Interestingly, if MB(8) = co for all 8 > 0, it is shown in [2] that  large 
waiting times are essentially the result of a single customer experiencing a very 
large service time. The assumption that M s  (8) < co for some 8 > 0 implies 
that  the tail of the distribution B 0 goes to zero exponentially fast. Thus if 
Ms(8)  = co for all 8 > 0, the tail of the distribution is "fat" and very large 
values are not that  unlikely.) 

The above analysis makes use of the fact that,  in the G I / G I / 1  queue, the 
stationary waiting time has the same distribution as the maximum of a random 
walk with negative drift. This relationship does not occur more generally, e.g., 
in multiserver queues, queues with finite buffers, or networks of queues. There- 
fore it is desirable to consider techniques that work directly with the queueing 
processes. The first such problem we consider is estimating the mean time until 
a G I /GI /1  queue reaches a queue length of n (not including the customer in 
service). Recalling the ratio formula of Equation 14, we see that  we need to 
estimate %~ = P(vn < r0) where Tn is the first t ime the queue length reaches 
n and TO is the first time the queue empties. (This problem is related to de- 
termining the distribution of the maximum waiting time during a busy period 
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in the GI /G/1  queue, see [59].) We assume that  the initial conditions are that  
a customer (customer number 0) has just arrived to an empty queue. We ba- 
sically follow the analysis in Sadowsky [85]. This analysis provides a rigorous 
justification for a heuristic developed by Parekh and Walrand [83], which will be 
described in Section 3.2. Let S(k) = {r,~ = k, r0 > k}. On S(k), the arrival time 
of customer number k customer is less than the departure time of the k - n-th 
customer to depart the queue (customer number k - n - 1), i.e., 

~--~ 

j = l  j = l  

k For k > n define Zk(n) = ~ j _ t A j  - v"~-nB 
- - ?-d=t j -1 .  Consider using exponential 

twisting with parameter 8*. Then, on S(k), Zk(n) <_ 0 by Equation 21 and the 
likelihood ratio L(8*) is bounded as follows: 

L(8*) = MB(8*)~-'~MA(--8*)~e ~ < MB(8*) -'~ = MA(--8*) '~ (22) 

since Z~(n) < 0 and the fact that 8" satisfies MA(-8*)MB(8*) = 1. Since the 
likelihood ratio is bounded by MA(-8*)n whenever Tn < T0, taking expectations 
we have 3',~ _< MA(--8*) n. Asymptotic optimality will be established if we can 
show that  • >_ cMA(--8*) n for some constant c. To do so, we will make the 
simplifying assumption that  the service times are bounded, i.e., Bj < b for all j 
and some constant b. On S(k), 

Zk(n) = Z~_l(n) + Ak - B~-,~-t >_ Z~-t(n) + Ak - b > -b  (23) 

where the second inequality is true because, on Sk(n), Zk- l (n)  > 0. Combining 
the equality part of Equation 22 with Inequality 23 we obtain 

L(8*) > MA(--8*)'~e -~ (24) 

whenever T,~ > TO. Taking expectations yields 

"Y~ = Ee*[L(9*)l{r~<~o}] >_ MA(--8*)'*e-e*bPe.(T, < TO). (25) 

But since, at 0", the queueing process is unstable, Po* (r,~ < TO) is bounded away 
from 0 as n ~ co, thereby establishing the result. 

Note that  lirr~-~oo(1/n)log(h,) = log(MA(--O*)). In addition, it is true that  
lirnn__.~(1/n)logV,~(O*) = 21og(Ma(--O*)) where V,~(O*) is the variance of a 
single observation using importance sampling with parameter 0". For queueing 
models, asymptotic optimality is often stated in these terms. 

Sadowsky shows that  the bounded service time assumption can be removed. 
He furthermore shows that  exponential twisting with parameter 8* is the unique 
asymptotically optimal change of measure within the class of all simulations 
having i.i.d, interarrival and service time distributions. Further optimality re- 
sults, concerning higher moments of the estimate (not just the variance), are 
established in [86]. 
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3 . 2  A L a r g e  D e v i a t i o n s  A p p r o a c h  t o  t h e  S i n g l e  S e r v e r  

Q u e u e  

The above results are in fact closely related to the theory of large deviations 
[16], which basically deals with estimating the probability that  S,~/n is far from 
its mean. We will give an overly simplified, and somewhat heuristic, description 
of certain basic results and show how they can be applied to fast simulation 
of certain queues; see [16] for a rigorous (and readable) treatment of this topic 
in much greater detail. (There are a number of technical issues and difficulties 
which tend to obscure what's going on, so we will not deal with them here.) 
Consider a random walk, S,~, whose increments, Xk, have a distribution function 
F,  finite moment generating function M(~), and twisted distribution function 
dFe(z) = eeZdF(z)/M(~) as described earlier. Cram~r's theorem, which dates 
to 1937, roughly states that  

P(S~/,~ ~ y) ~ e -~(~) (26) 

where I(y) is the Cram~r transform (or large deviation rate function): 

Z(y) = sup[ey - log (M(e) ) ] .  (27) 
# 

(More precisely, by Equation 26 we mean lim6__,olin'rn_,oo(1/n)log[P([S,~/n- 
Yl < 6)] = - I ( y )  provided I(y) is finite and continuous in a neighborhood about 
y.) At first glance this result looks somewhat mysterious, but the intuition 
behind it is actually quite simple. Pick a small positive 6 and consider estimating 
P(S(n,  y)) = P(y  - 6 < S,~/n <_ y + 6) by simulating the random walk with 
exponential twisting. If y # E[X~], then S(n, y) is a rare event. It is natural to 
chose the twisting parameter 0 =  0y so that  Po(,.q(n, y)) ---, 1, i.e., select 0~ so 
that  y = Ee~[X~] = f zdFe~(z). Then 

p(s(=,y)) = Ee~[L(0~)l~s(~,~)}]  = M ( e ~ ) ~ E 0 ~ [ e - ~ S ~ l ~ s ( = , ~ ) } ]  (2S) 

~, M(~y )ne-e~'~Y Ee~[l{s(n,~))] = e-n[Oyy-log(M(O~))] 

where the ~ is (approximately) true because S,~ ,~ ny on S(n, y). It thus remains 
to be shown that  I(v) = 0~y - log(M(ey) which is established by setting the 
derivative of the function h(e) = 0y - log(M(8)) equal to zero. (It can be shown 
that  I(v) is convex and nonnegative on its domain of finiteness.) Note that  if 
Y = E[X~](= E0[X~]), then, by definition ~ = 0, ICY ) = 0, and thus Equation 
26 is equivalent to P(S,~/n ~ E[X~]) ~ 1 as it should be. 

Let us see how this result can be used (heuristically) in the GI /GI /1  queue. 
Following Parekh and Walrand [83], again consider estimating "y,~ = P(T,~ < r0) 
where T,~ is the first time the queue length reaches n and T0 is the first time the 
queue empties. Suppose this event happens at some time T and that during the 
interval (0, T), the arrival rate is some constant A' and the service rate is some 
constant/x' .  Thus the number of arrivals is approximately A'T, the number of 
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departures is approximately #~T and the queue builds up at rate )~ -  ~ .  Now, by 
Equation 26, the probability of observing such rates A r and #t is approximately 

p(~', ~') = exp [--.~'TIA(1/~') -- #'TIs(1/#')] (29) 

where IA 0 and IB 0 are the Cram~r transforms of the interarrival and service 
time distributions respectively. The values of ~ and ]~ should be chosen so as 
to maximize the probability p(~,  ~ )  of this event. Since T,~ = T, we have the 
(approximate) constraint 

-  t)T = ( 3 0 )  

Substituting this into Equation 29, differentiating the exponent with respect to 
~ and p~, setting the derivatives equal to 0 and solving yields the result that, as 
before, the optimal ~* and ~* correspond to twisting with rates -9* and 8" such 
that MA(-8*)MB(8*) --- 1. An extension of this heuristic approach to certain 
networks of queues was also described in [83] and will be discussed in Section 
3.5. 

Parekh and Walrand also relate this approach to the asymptotically optimal 
simulation of slow Markov walks as developed by Cottrcll, Fort and Malgouyres 
[26]. These results are based on the Wentzell-Freidlin theory of large deviations 
for appropriately scaled diffusion processes (see [16] for a discussion), the details 
of which are beyond the scope of this paper. The basic model is 

X~+ 1 = X~ + eV,~(X,~) (31) 

for some small e (and X~ = 0). Thus {X.~,n > 0} is a Markov chain (with a 
general state space) in discrete time with small increments. (The distribution of 
the increments can depend on the current value of chain.) Let F=(y) = P(V,~ < 
ylX~ = ~) and assume that M=(8) = fee~dF~(y) < oo. Under appropriate 
technical conditions, there is a large deviations result, similar in spirit to Equa- 
tion 26, but in which the decay rate I(y) is replaced by integral of an "action func- 
tional." Define the twisted increment distribution dF~ (y) = e~ (8). 
Assume the process is one-dimensional and let 7(e) = P(X~ hits 1 before 0). 
In [26], it is shown that the asymptotically optimal method for estimating 7(e) 
is obtained by using exponential twisting with parameter 8= whenever X,~ -- z 
where M~(8~) = 1. Cottrell, Fort and Malgouyres apply their method to certain 
Aloha systems. Parekh and Walrand discuss how it can be applied to the M/M/1 
queue, but point out difficulties in trying to use this approach for networks of 
queues. The application of this approach to certain other simple simple single 
server queues (e.g., M/D/ l )  is considered in [37]. 

3 . 3  T h e  M u l t i p l e  S e r v e r  Q u e u e  

Sadowsky [85] also obtains asymptotic optimality results for the multiple server 
GI/GI/m queue (m > 1). In this case, the probability of interest is 7n = 
P(queue length exceeds n during a "cycle") where a cycle is defined to start 
whenever a customer arrives to find all but one of the servers busy. (The initial 
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distribution is assumed to be the stationary distribution at such instances.) 
Under similar conditions to those described in Section 3.1, it is shown that the 
unique asymptotically optimal change of measure is given by 

e-m~ ee*=dB(z) 
d A e * ( z ) -  MA(--rr~*) '  d B e . ( z ) -  MB(8*) (32) 

where 8* satisfies MA(-mS*)Ms(8*)  = 1. Some experimental results are given 
in [85]; in one example with m = 4 servers and n = 20, 7,~, which is approxi- 
mately 2.2 x 10 -s, could be estimated to within +10% accuracy with only 602 
samples using asymptotically optimal importance sampling, whereas over 10 o 
samples would be required using standard simulation. 

3 .4  D i s c r e t e  T i m e  Q u e u e s  W i t h  C o r r e l a t e d  A r r i v a l  P r o -  

c e s s e s  

We next turn to analysis of queueing systems that arise in ATM (Asynchronous 
Transfer Mode) communications systems, in such systems, it is important to 
model bursty and/or correlated arrival processes, such as those that might occur 
in transmitting video data streams across a network. We begin by considering 
a particularly simple model of such a queueing system. The model is in discrete 
time. Let at denote the number of packets that arrive during time slot t and let 
AT = ao -4- ""  -4- at denote the total number of arrivals by time T. We assume 
that the server has the capacity to serve up to c packets/time slot. Letting Qt 
denote the queue length at time t, then Qt obeys Lindley's recursion Q~+I = 
(Qt +a t+ l - c )  + �9 For simplicity, we assume that the arrival process is Markovian, 
i.e., P(at+l = j[at = i) = P(i, j), which we assume is aperiodic, irreducible and 
has a finite state space (0 < i, j _< b). We again consider 7,~ = P(~',~ < TO) 
given that the queue is empty at time 0. The appropriate change of measure 
can be inferred from large deviations results for Markov additive processes [16]. 
Define the matrix Ae(i, j)  = eeJP(i, j). By the Perron-Frobenius theorem, there 
exists a real valued eigenvalue $(8) (the spectral radius) such that if ~ is any 
other eigenvalue, then I$] < ~(8). Corresponding to ~(8) is a positive (right) 
eigenvector h( i, 0) satisfying 

b 

E Ao(i, j)h(j,  8) = )~(8)h(i, 8). (33) 
j=0  

From Equation 33, we see that 

P o ( i , j ) -  Ae(i , j )h(j ,  8) e~ (34) 
- 

defines the transition matrix of a Markov chain, which is called the conjugate 
process. Now apply importance sampling using the conjugate process. For 
simplicity assume the initial distribution using importance sampling is the same 
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as in the original system. Thus by Equation 11, the likelihood ratio after T 
transitions is given by 

L(O, T) = I I  P (a : - l ,  a:) _ A(O)Te_eATH(O ' T) (35) 
, = ,  

where H(O, T) = h(ao, O)/h(aT, 0). Let S(T) denote the event that  QT _> n and 
the queue has not emptied before time T. Then AT >_ Tc + n on S(T), i.e., 
as in Equations 19 and 21, AT = Tc + n + OT where OT is the (nonnegative) 
overshoot at time T. Also, on S(T), the likelihood ratio is given by 

L(O, T) = A(O)We-~176 T) -- e-e~-~176176176 T). (36) 

Which value of 0 should be chosen? Similar to the GI /GI/1  case in which we 
set i (O*) = 1, by selecting O = /9" so that log(A(0*)) - 8"c = 0 (assuming it 
exists), we obtain the simplification that 

L(O*, T) = e-O*'~-e*~ H(O *, T). (37) 

Because the state space of the arrival process is finite, OT < b and there exist 
positive finite constants H and H such that  H _< H(O*, T) < H.  Thus, on S(T) 
we have 

e-~ < L(O*,T) <_ e-e*nH. (38) 

Equation 38 implies both that lirn~_.oo(1/n)log(Tn) -- -0"  and that  simulating 
the conjugate process with 0 -- O* is asymptotically optimal. Thus finding 
the asymptotically optimal change of measure involves solving the nonlinear 
equation 

log(~(O*)) 
- c .  ( 3 9 )  

0* 
If the source actually has independent arrivals, i.e., if P(i, j) = p(j) for all i, then 
the model reduces to the waiting time in the GI /D/1  queue. In this case it can 
be shown that  ~(0) -- Mx(0) and that Equation 39 is equivalent to M(O*) = 1. 

These results extend to the case when there are multiple independent arrival 
sources feeding the same queue. Suppose now that we have K independent 
Markovian sources defined by transition matrices P~(i,j) for 1 < k < K~ Note 
that  a numerical solution of this model is typically infeasible. As above, let A~ (0) 
denote the spectral radius of the matrix defined by Ak,o(i, j) = eeJP~(i, j) and 
let h~(i, 0) denote the corresponding eigenvectors. If each source is twisted by 
the same parameter 0, i.e., 

Pk,e(i, j) = Ak,o (i, j)hl: (j, O) 
A~(O)hi:(i,O) ' (40) 

then as in Equation 36, on S(T) the likelihood ratio at time T is given by 

L ( O , T ) = e x p [ - O n - O O T + T ( ~ = ~ l o g ( ~ ( O ) ) - O c ) ] t t ( O , T )  (41) 
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where now H(8, T) is the (bounded) term involving the product of the eigenvec- 
for ratios as defined above. Thus, simulating each process with parameter 8" 
where 

K 

(421 8" -- C 

(assuming it exists) results in the likelihood ratio given by Equation 37. This 
again implies that lim~...oo ( l /n)  log(%) = -8* and yields an asymptotically op- 
timal simulation scheme.. Note that each source is still simulated independently, 
however the distributions of the sources are related by Equation 42. 

More general types of arrival processes are also possible. For example, sup- 
pose source k is a Markov arrival process. In this model, there is an environ- 
ment variable X~ and the distribution of arrivals is described by P~(a,j[i) = 
P(a~ = a ,X~ = j]X~_ 1 = i). Let ;~(8) be the spectral radius of the matrix 

A~,o(i, j)  = ~b~= o ee~P~ (a, jli) and let h~ (i, e) be the corresponding eigenvector. 
The twisted distribution is now given by 

jli)h (j, e) (43) 
Pi,e(i , j )  = Po(a~ = a ,X~  = jlx~_l = i) = Xk(e)h~(i,e) 

Again, simulating each arrival process with twisting parameter 8" where 8' sat- 
isfies Equation 42 is asymptotically optimal. 

The analysis above follows that described Chang, Heidelberger, Juneja and 
Shahabuddin [21, 22], however there are a number of related results and papers 
[8, 16, 17, 69, 87] that deal with large deviations of Markov additive processes. 
For example, Asmussen [8] considers the M/G/1 queue with Markov modulated 
arrivals. Although not primarily a simulation paper, Asmussen suggests using 
exponential twisting on the time reversed arrival process along with the maxi- 
mum representation (in this case for the virtual waiting time) as described in 
Section 3.1. Descriptions of large deviations and asymptotically optimal simu- 
lation results for Markov additive process may be found [16, 17, 87]. Here the 
problem is estimating P(S,~/n > a) (a > 0) where S,~ = f ( X o ) + . . . +  f ( X n )  and 
{X,~} is a Markov chain such that lirrrn_.oo S,~/n < 0. These papers show that 
the twisted distribution is the unique asymptotically optimal change of measure 
within the class of all time-homogeneous Markov chains. Lehtonen and Nyrhinen 
[69] show that this is also the unique asymptotically optimal change of measure 
for estimating the distribution of the maximum of a Markov additive process 
with negative drift. Conditional limit theorems also exist for Markov additive 
processes (see [28]) showing that given a large value of S,~/n has occurred, the 
process got there according to the same distribution as the conjugate process. 
Similar results for a fluid model of a queue with a Markovian fluid-type arrival 
process are obtained in [10]. This provides additional interpretation as to why 
exponential twisting is asymptotically optimal. 

These results are closely related to the theory of "effective bandwidths" in 
telecommunications; see [41, 52,66] for early papers in this area. A compre- 
hensive treatment of effective bandwidths is given in Chang [20]; see also Whirr 
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[100] for additional results and references. The effective bandwidth (also called 
the minimum envelope rate in [20]) of a source is given by 

a*(0) = lim 1 ( r  13_og,ELe~ (44) 
T--~oo OT 

(assuming the limit exists). The existence of this limit (plus some technical 
assumptions) is sufficient to show that the stationary queue length distribu- 
tion has an exponentially decreasing tail with rate 0* where a*(O*) = c, i.e., 
lirn~__.~(1/n) log(P(Q > n)) = -0"  where Q has the stationary queue length 
distribution. (If the limit in Equation 44 does not exist, but the lim sup is given 
by a*(O), then the tail of the stationary queue length distribution decreases at 
least as fast as an exponential with rate -0" . )  

The relationship between these effective bandwidth results and fast simula- 
tion is explored in [21, 22]. Consider, for example, the Markovian arrival process 
in which P(at = j]at-1 = i) = P( i , j ) .  Then 

E[e ~ ] = Eo [L(O, T)e ~ = A(0) T Eo [H(O, T)] (45) 

where the second equality follows from Equation 35. Thus, 

log ( r 1~ ELe~  log(A(@) a*(O). (46) lim - - 
T--,oo OT 0 

Thus the effective bandwidth equation a* (0") = c is identical to the asymptot- 
ically optimal fast simulation Equation 39. The key idea is found in Equation 
35 which implies that 

L(O, T)e ~ - -  
H__(O) < eOO'(o)T < H(O). (47) 

More generally, if a family of processes (called envelope processes in [21, 22]) 
can be found such tha t  the likelihood ratio with respect to the original distri- 
bution satisfies the likelihood ratio bounds of Inequalities 47, then Equation 
44 holds, simulation with parameter 0* such that a*(O*) = c is asymptotically 
optimal for estimating 7-, and lim~-.oo(1/n)log(7~) = -0" .  For multiple in- 
dependent arrival processes, the coupling equation is the same as Equation 42, 
i.e., a~(O*) + . . .  + a~(0*) = c and simulation with this value of 0* is asymp- 
totically optimal. This is true for essentially any type of arrival process (e.g., 
autoregressive), provided 47 is true, in which case the conditions for the Gs 
Ellis theorem (see [16, 32, 38]) relating to large deviations results for A T / T  are 
basically satisfied, where AT is the sum of random variables that may have a 
very general dependency structure. Thus, the G&rtner-Ellis theorem, effective 
bandwidths, and fast simulation are all closely related. 

It is observed in [22] that envelope processes can be constructed by min- 
imizing the relative entropy rate, or Kullback-Leibler distance (subject to a 
drift constraint); see also [16, 26] for applications of the Kullback-Leibler dis- 
tance in large deviations, and [67] in which a related fast simulation heuristic 
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for on-off Markovian fluid sources is proposed. (This distance is defined as 
K(P', P) = f log(dP'/dP)dP'.) The splitting technique described in Section 
2.4 can be used to estimate quantities such as the steady state buffer loss prob- 
ability. Define an A-cycle to begin whenever the queue is empty. Note that  
the expected number of packets lost during an A-cycle is zero unless Tn < r0 
where n is the buffer size. Thus, (asymptotically optimal) importance sampling 
can be used to bring the queue up to level n at which point it can be turned 
off allowing the queue to empty again. This technique was shown to be very 
effective in [21, 22]. 

3.5 Networks of Queues 

There are fewer papers on fast simulation of rare events in networks of queues, 
and the situation is currently not as well understood as in the single queue 
case. Rather than giving a detailed description of results for networks, a set 
of references will simply be given. Papers dealing with overflows in Jackson 
networks include [3, 34, 35, 36, 58, 83, 97]. In such networks, roughly speaking, 
a buildup to an overflow occurs along the same path that  the corresponding time- 
reversed network (see [65]) empties from such an overflow, but in the opposite 
direction. 

Large deviations results for the the way in which rare certain rare events 
happen in a class of multidimensional Markov jump processes are given in [94, 
98]. Tree-structured networks of discrete time queues such as those considered 
in Section 3.4 have been studied in [21, 22]. 

Heuristics for simulating certain queueing networks that  arise in high speed 
communications switches, such as a Clos switch, have been developed in De- 
vetsikiotis and Townsend [29, 30, 31]. They consider a family of importance 
sampling change of measures parameterized by a (perhaps multidimensional) 
parameter 8; exponential twisting is one such example. Let 0~2(8) denote the 
(unknown) variance of the estimator using importance sampling with parameter 
O. The basic idea is to run relatively short pilot studies to obtain estimates of 
a2(O) and then select the value of 8" that optimizes the estimated variance for 
use in longer runs. This can be done dynamically within stochastic optimization 
procedures similar to simulated annealing, although some care has to be. taken 
to discard values of ~ with exceptionally small estimates of a2(6), since in finite 
samples "overbiasing" the simulation can lead to small estimates of (~2(~) with 
high probability even though the actual value of ~r 2 (8) is high. Other heuristics 
for some networks have been proposed in [12]. 

4 Reliabil i ty Mode l s  

We now turn to a discussion of fast simulation techniques for models of highly 
reliable systems. An additional overview of this material may be found in [82]. 
The general class of models that we will be interested in simulating are basi- 
cally those that can be described by the SAVE (System AVailability Estimator) 
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modeling language [49, 48] that has been developed at IBM Research (initially 
in cooperation with Kishor Trivedi of Duke University for modeling language 
and numerical algorithm development and subsequently in cooperation with Pe- 
ter Glynn of Stanford University for development of importance sampling tech- 
niques). The models are a class of generalized machine repairmen models. A 
system consists of components and repairmen; components may fail and repair- 
men repair failed components. When a component fails, it may "affect" other 
components (with some probability), thereby causing the other components to 
fail simultaneously. Components may fail in a variety of failure modes (accord- 
ing to some probability distribution). Associated with each failure mode is a set 
of components (possibly empty) to be affected, a repairman, and a repair distri- 
bution; all of these may be different for different failure modes. The operation 
of a component may "depend upon" the operation of certain other components. 
For example, a disk drive may need a control unit in order to access data; if 
the control unit fails, the disk drive has not failed (thereby requiring repair) but 
rather is said to be "dormant" to reflect its inoperable state. Similarly, the repair 
of a component may depend upon other components, e.g., repairing (restarting) 
an operating system requires an operational processor. The modeler describes 
Boolean-type conditions involving the states of the components under which the 
system as a whole is considered to be operatiOnal, or operating at a reduced 
level of performance. Thus the system as a whole can tolerate the failure of 
certain combinations of component failures. In SAVE, all failure and repair dis- 
tributions are assumed to be exponentially distributed, although we will consider 
importance sampling for systems with non-exponential distributions as well. For 
small models, the generator matrix of the underlying CTMC can be constructed 
and numerical algorithms can be used to solve for the relevant output measures, 
e.g., steady state availability, mean time to system failure, system failure time 
distribution, etc. However, for large models consisting of many components, nu- 
merical techniques are not feasible and simulation is used. Since system failure 
events are (hopefully) rare, importance sampling can be used, and SAVE au- 
tomatically incorporates a provably good importance sampling heuristic called 
"balanced failure biasing," which will be described in this section. 

While the general approach of importance sampling can be applied, it must 
be done somewhat differently for reliability models than for queueing models. 
The main reason is that the rare events of interest happen in very different 
ways in these two types of systems. In queueing models, events such as buffer 
overflows happen because many events, none of which are particularly rare (e.g., 
shorter interarrival times and longer service times), combine to produce an event 
that is extremely rare. In highly dependable computing systems, there is a 
limited amount of redundancy, so system failure events happen because a few 
events, each of which is relatively rare (e.g., component failures), combine to 
produce an event that is extremely rare. Since importance sampling is effective 
when the simulation follows typical failure paths, different importance sampling 
approaches are required for queueing and reliability models. 
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4 .1  M a r k o v i a n  M o d e l s  

We begin by describing results for Markovian reliability models. We assume that  
the system can be described by CTMC with a finite space; let i and j denote 
generic states in the system and let Q(i, j) be the generator matrix. We assume 
there are two types of transitions possible: failures and repairs. For state i, let 
~(i) = -Q( i , i )  denote the total rate out of state i, let ~F(i) denote the total 
failure rate out of state i and let #R(i) denote the total repair rate out of state 
i, i.e., ~p(i) = ~ j eF( s )Q( i ,  j) where F(i) denotes the set of failure transitions 

from state i and #R(i) = ~j~R(~)Q(i, j)  where R(i) denotes the set of repair 
transitions from state i. Note that A(i) = AF(i) 4-/~R(i). We assume that there 
is a single state, 0, in which all components are operational (and thus there are 
no repair transitions); all other states are assumed to have at least one repair 
transition. In order to analyT.e importance sampling approaches, Shahabuddin 
[88, 89] parameteriT.es the generator matr ix by a rarity parameter �9 as follows: 
Q(i,j)  = q(i,j) �9 d(i,j) for failure transitions where d(i,j) > 1 and q(i,j) does 
not depend on e. Also, Q(i,j)  is assumed not to depend upon �9 for repair 
transitions. Allowing different exponents d(i, j) in the failure rate transitions 
permits modeling of systems in which either: 

�9 some components are much more reliable than others, or 

�9 some failure modes are very unlikely, e.g., when a component fails, with 
some small probability it also causes other components to fail with it. 

If d(i, j) is the same for all failure transitions the system is said to be bal- 
anced; otherwise it is unbalanced. With this parameterization, for small e, 
failure transitions are unlikely (except out of state 0 from which all transi- 
tions are failure transitions). The transition matr ix  of the embedded DTMC, 
P(i, j) = Q(i, j)/:k(i) then has a similar form to Q(i, j) (for i 5~ 0), i.e., P(i, j) = 
p( i, j)e d(~J ) +o(e d(i,D) for failure transitions and P( i, j) = p( i, j) +o(1) for repair 
transitions. Since all transitions from state 0 are failures, the above representa- 
tion for P(0, j)  does not hold; for state O, P(O, j) = p(i, j)e dO) + o(edO)), where 
d(j) = d(O, j ) -  min~{d(0, k)}. For state 0, it is assumed that any transitions 
directly into a system failure state are unlikely, i.e., d(j) > 1 for j E F (otherwise 
system failure events are not rare). 

Regenerative simulation, starting in state 0, can be used to estimate steady 
state measures and the mean time to failure using the ratio formula 15 to esti- 
mate ~(e) = Po(r~ < r0), the probability, starting in state 0, of hitting a failure 
state before returning to 0. Shahabuddin shows that there exists an r > 1 such 
that  V(e) = ce" + o(e "). This generalizes a result in [40], although the value of 
r is typically unknown. Thus we are faced with a rare event simulation. Note 
that  without importance sampling, a typical cycle consists of a failure transition 
followed by one or more repair transitions until returning to state 0. 

In general, we would like to apply importance sampling so as to sample most 
often from the most likely paths to failure. However, in complex systems, it 
may not be easy to identify these most likely paths. Thus, heuristics that  are 
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simple to implement need to be developed that search many different paths 
to failure , yet sample often enough from the most likely failure paths so as 
to obtain variance reduction. The basic class of techniques known as failure 
biasing is designed to do this. The first such technique, known as simple failure 
biasing, was introduced in [70]. In simple failure biasing, if i ~ 0, the probability 
of failure events is increased by selecting a failure transition with some fixed 
probability p that does not depend on e. Note that in the original system 
(without importance sampling) the probability of this event is AF(i)/)~(i) which 
is very small. I f a  failure transition is selected, then the failure transition to state 
j is selected proportionally to the original transition rates, i.e., with probability 
Q(i, j)/AF(i). If a repair transition is selected, with probability (1 - p ) ,  then 
the repair transition to state j is selected with probability Q(i, j)/#R(i). In the 
original system, the probability of a repair event is very close to one. Note that 
to estimate 7(e), only the embedded DTMC need be simulated; the likelihood 
ratio is obtained from Equation 11. Typically, p is chosen so that 0.25 _~ p _( 0.9. 

Using simple failure biasing, the system ends up in a system failure state, at 
least some appreciable fraction of the time. However, it may not follow the most 
likely path to system failure, as the following simple example of an unbalanced 
system illustrates. Consider a system with two types of components. There is 
one component of type 1 that has failure rate e2 and three components of type 
2 that each have failure rate E. The system is considered operational if least one 
component of each type is operational. Under simple failure biasing, given that 
a failure event occurs, it is a type 1 failure with probability e~/(N2e + e 2) where 
N2 is the number of operational type 2 components; this probability is of order 
e. Similarly, the (conditional) probability of a type 2 failure is (1 - O(e)). Thus, 
under simple failure biasing, when the system ends up in a failure state, most of 
the time it gets there by having three type 2 component failures. It only rarely 
(with probability of order e) ends up in the state in which component 1 is failed. 
However, the path with a single component 1 failure is the most likely path 
to system failure; its probability is of order e whereas any other system failure 
path has a much smaller probability of order e 2. Thus while simple failure 
biasing takes the system to the set of failure states with reasonable probability, 
it does not push the system along the right failure path often enough. The 
result of this is that simple failure biasing applied to unbalanced systems may 
result in estimates having unbounded relative error. On the other hand, when 
simple failure biasing is applied to balanced systems, bounded relative error 
(asymptotically optimal as e ---* 0) estimates are obtained [88, 89]. 

To overcome this problem, "balanced failure biasing" was introduced in [51, 
88]; its asymptotic optimality for estimating 7(e) was ~stablished in [88, 89] and 
experimental results are presented in [51]. In balanced failure biasing, a failure 
transition is again selected with probability p. Now however, given a failure 
event has occurred, the probabilities of all failure transitions are equalized, i.e., 
a failure transition from i to j is (conditionally) selected with probability 1/[f(i)[ 
where [F(i)I is the number of failure transitions from state i (or more generally 
selected from a distribution that is independent of e). As in simple failure 
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biasing, given a repair transition has been selected, the repair transition to state 
j is selected with probability Q(i , j ) /#R(i ) .  The proof technique in [88, 89] is 
matrix algebraic in nature, however a proof based on bounded likelihood ratios is 
also possible [61, 72, 74]; i f rF < r0, then the likelihood ratio L ( X )  < D[e ~ +o(e r )] 
for some random variable D that does not depend on e. For estimating steady 
state unavailability, balanced failure biasing can be used until the set of system 
failure states is hit, and then importance sampling can be turned off until the 
start of the next cycle. 

Note that in the example above, balanced failure biasing brings the system 
to the most likely failure state with probability 0.5 in one transition. Mathemat- 
ically, balancing prevents the denominator of the likelihood ratio from getting 
too small, thereby producing stable estimates. Under balanced failure biasing, 
many unlikely paths to system failure may be generated, but enough of the most 
likely such paths are generated so as to guarantee good estimates. Nakayama 
[72, 73] formalizes the notion of most likely failure paths in this setting by show- 
ing that, given TF < TO, there exists a limiting (conditional) distribution on the 
set of paths. He also shows that balanced failure biasing results in asymptotically 
optimal estimates of the derivative of v(e) with respect to the failure rate of a 
component, as e -* 0. (See also [76] for empirical results.) Further analysis that 
characterizes when these and more general failure biasing schemes are efficient 
is given in Nakayama [74, 75]. 

For estimating transient quantities, such as the unreliability U(t) = P(TF 

t), failure biasing needs to be augmented with a technique called "forcing" [70] 
which basically forces the first transition to occur before time t with high proba- 
bility (perhaps 1). (For a fixed value of ~, the probability that  the first transition 
occurs before time ~ approaches zero as e --~ 0.) If t is "small" (i.e., fixed), then 
balanced failure biasing and forcing produce bounded relative error estimates of 
U(t) [91]. For "large" values of t, the empirical effectiveness of this technique 
decreases [51], and a somewhat different approach must be taken. This problem 
is analyzed in Shahabuddin and Nakayama [91]. Suppose ~(0) = ce b~ + o(eb~ 
i.e., the mean holding time in state 0 is of order 1/e b~ By the ratio formula 
Equation 15, E0[~'F] is of order 1/e ~+b~ Thus if t,  = t /e  b where b < b0, then 
both the first event occurring before time t~ and the event TF < ~'0 are rare and 
balanced failure biasing with forcing is effective. However, if t.e = t / e  ~ where 
b0 < b < r + b0, ~'F <_ t, will still be a rare event, however the previous approach 
will be inefficient. In this case, importance sampling extends over a long time 
horizon and it is known that the variance of the likelihood ratio blows up in such 
cases [44]. In this case, the regenerative structure of the system can be exploited 
to estimate (tight) upper and lower bounds on U(t), e.g., 

U(t) < U(t) = 1 - e -'K~)~(~ (48) 

This bound is true because ~'F k E1 + . . .  EN where N is geometric with success 
probability 7(e) and the E~'s are i.i.d, exponentials with rate ~(0), independent 
of N. For ~ = t /e  b where 0 < b < r + bo, U(t~)/U(t~) ---* 1 and the upper bound 
U(t~) is efficiently estimated by estimating vie) using balanced failure biasing. If 
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t~ = t /r  b where b > r + b0, then the problem is no longer a rare event simulation. 
Conditions under which efficient large t estimates of the derivative of U(t) (with 
respect to a failure rate) are obtained are also given in [91]. A similar approach 
to efficient estimation of another transient quantity, the expected fraction of time 
the system is unavailable during the interval (0, t), is considered in Shahabuddin 
[90]. A different approach to estimating U(~) is presented in Carrasco [19]. 
Instead of estimating U(t), its Laplace transform U(s) = E[e -s~F] is estimated 
at a number of values of s. The regenerative structure is again exploited by 
deriving a renewal equation for U(s) in terms of quantities defined over a single 
cycle that  can easily be estimated. Numerical inversion of the estimated Laplace 
transform is then used to recover estimates of U(~). 

Carrasco [18, 19] considers another failure biasing approach, termed failure 
distance biasing, that at tempts to improve on the efficiency of balanced failure 
biasing by giving more weight to sample paths that are "closer" to the set of 
system failure states F .  In this approach, failure transitions are grouped into 
classes based on their estimated distance to F and more weight is given to the 
classes corresponding to shorter distances. Once a class is chosen, if the probabil- 
ities given to individual transitions within the class are chosen proportionally to 
their original rates (as in simple failure biasing), then unbounded relative error 
may occur in an unbalanced system (see [75] for an example). However, if the 
probabilities given to individual transitions within the class are balanced, then 
a result in [88] implies that the resulting estimate has bounded relative error. In 
practice, the success of this approach depends on the ability to correctly (and 
efficiently) assign the distances; the class of systems for which this can be done 
is unclear. In some cases, significant improvements over balanced failure biasing 
have been obtained for systems with a large number of component types. 

The above papers all assume that the repair rate is nonzero for all states, 
other than state 0. However, in some models this may not be the case, e.g., if 
repairs are deferred until a sufficient number of components are failed. Juneja 
and Shahabuddin [62] show that standard balanced failure biasing need not be 
asymptotically optimal in such situations. However, a generalization of balanced 
failure biasing is shown to be asymptotically optimal for balanced systems in [62]. 

4 . 2  N o n - M a r k o v i a n  R e l i a b i l i t y  M o d e l s  

We now turn to a discussion of importance sampling for highly reliable systems 
in which the failure and repair time distributions are not exponentially dis- 
tributed. Although other techniques have been proposed (see, e.g., [39, 79, 80]), 
in this section we will concentrate on showing how balanced failure biasing can be 
generalized by appropriately applying importance sampling to a uniformization 
based simulation algorithm. This approach Also produces bounded relative error 
estimates for estimating the unreliability U(g) (under appropriate technical con- 
ditions). The discussion here follows that in [56, 57, 78, 81] and is based on the 
notion of hazard rates [13], e.g., if component i has failure density f~(~) and dis- 
tribution function F~(z), then its failure hazard rate is hi(z) = f i ( x ) / [ 1 -  Fi(~)]. 
For an exponential distribution, the hazard rate is constant. If component i is 
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new at time 0, then the probability that it fails in the interval (z, z -4- dz), 
given that  it has not failed before time m, is approximately hi(z)dz. Simi- 
larly, let ri(z) denote the hazard rate of component i's repair distribution. For 
simplicity, we assume that there are N components that  can either be opera- 
tional or failed (these assumptions can be relaxed). At simulation time s, let 
O(s) denote the set of operational components and let F(s) denote the set of 
failed components. Let ~(s )  denote the failure (hazard) rate of component i 
at time s, A~(s) = h~(Ai(s)) where A~(s) is the age of component i at time s if 
i e O(s), and )~(s) = 0 if  i ~ O(s). Similarly, let #~(s) denote the repair rate 
of component i at time s, which is zero if i is not undergoing repair at time s. 
We assume that  the component failure hazard rates are small and that  repair 
distribution hazard rates are bounded from above and below, i.e., there exist 
positive, finite constants h,~,  ~ , ~  such that ~e b~ < A~(s) < ~e b~ where bi > 1 
and #_' < /~(s) < ~. The total failure and repair rates at time s are given by 

Ap(s) = ~ f f  hi(s) and #R(s) = ~ / ~ i ( s ) ,  respectively. The total event rate at 
time s is A(s) = $F(s) + #R(s). Note the similarity between this situation and 
that in the Markovian case. 

Consider a uniformization based simulation of this process. Generate a Pois- 
son process {Np(s)} with rate fl such that :~(s) < fl for all 0 < s < t. Suppose an 
event in this process occurs at time S. Then the event is a component i failure 
with probability A~(S)/fl, it is a component i repair with probability #~(S)/fl, 
and it is a pseudo-event (i.e., no event at all) with probability 1 - )t(S)/~. 
Given that an event is real (i.e., failure or repair), it is a failure with probability 
AF(S)/)t(S), which is small (provided/~R(S) > 0). The analog of balanced fail- 
ure biasing is now apparent: given the event is real, increase the probability of a 
failure to p and decrease the probability of repair to ( 1 - p ) .  Then, if the event is 
a failure, pick component i to fail with probability 1/Io(s)l, and if the event is 
a repair, repair component i with probability #~(S)/gR(S). To be effective, the 
analog of forcing needs to be done in the transient case when no repairs are ongo- 
ing. We have also implicitly assumed that the components affected probabilities 
are not functions of e and therefore do not require importance sampling, although 
this assumption can be relaxed. This approach can be described more generally 
by defining importance sampling failure and repair rates $~(s) and #~(s) with 
which to do sampling such that ~'(s) = ~ ( s )  + #~(s) _< /3 for (0 < s _< t). 
Then the likelihood ratio at time t, L(t) = L~(t) • L~(t) • Lp(t) whereZ~,(t) 
is the failure event likelihood ratio, L~(t) is the repair event likelihood ratio, 
and Lp(t) is the pseudo event likelihood ratio. For example, if component i fails 
Ni (t) times in (0, t) and ~ i  denotes the j ' t h  time that component i fails, then 

L (t) = I I  I I  
i=l  j = l  

(49) 

m 

If the importance sampling rates are chosen such that  A' < A~(s) < A' whenever 
> o, , -  _< _< whenever > O, and 1 - a'(s) _> &' > 0 whenever 

1 - ~(s) > 0, then bounded relative error estimates are obtained for U(t) [57]. 
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The result is obtained by showing that c(t), r <__ U(t) for some function c(t) and 
r _> 1, and then bounding the likelihood ratio when r! _< t: L(t) <_ dNo(t)e ~ for 
some constant d > 1. This establishes bounded relative error, but indicates that 
the method will only be effective for "small" values of t. "Large" t results for 
estimating U(~), similar to the Markovian case, have not been obtained. 

Since the hazard rate of some repair distributions may not be bounded (e.g., 
uniform and discrete distributions), the above importance sampling technique 
has been generaliT.ed so as to sample repairs from their given distributions, but 
to accelerate failure events with importance sampling. Under appropriate tech- 
nical conditions, bounded relative error is still obtained when failure events are 
appropriately accelerated, e.g., either by using uniformization based importance 
sampling for failure events only as described above, or by sampling the time 
until the next failure event from an exponential distribution with rate bounded 
away from zero. These techniques can be adapted to steady state estimation 
using the ratio formula of Equation 16 and the splitting technique of Section 
2.4, although bounded relative error has not been proven in this situation [81]. 

5 Summary 

This paper has surveyed techniques for efficient simulation of rare events in 
queueing and reliability models. A number of common themes appear in both 
problem settings: 

�9 Using importance sampling to accelerate the occurrence of the rare events. 

�9 The notion of asymptotically optimal importance sampling. 

�9 Obtaining asymptotically optimal importance sampling by bounding the 
likelihood ratio on the rare event of interest. 

Among the differences between the two application settings are: 

�9 In queueing models, the rare event happens because of a combination of 
a large number of events, none of which are particularly rare. In relia- 
bility models, rare events happen because of the occurrence of only a few 
events, each of which is itself rare. Thus different importance sampling 
approaches are required: exponential twisting in queueing models, failure 
biasing in reliability models. In addition, rare event probabilities in queue- 
ing models decrease exponentially at a known rate, whereas they decrease 
polynomially at an unknown rate in reliability rdodels. 

�9 Performing asymptotically optimal importance sampling of queueing mod- 
els generally requires understanding quite a bit more about the structure of 
the problem, as compared to reliability models. Thus, the class of queueing 
models for which asymptotically optimal importance sampling algorithms 
are known is more limited. 
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There is typically a unique asymptotically optimal change of measure for 
queueing models: exponential twisting with a certain parameter. Finding 
the optimal twisting parameter may be fairly complex, e.g., solving a non- 
linear equation involving the largest eigenvalues of the sources as in the 
case of the discrete time queue with Markovian arrival processes. There is 
much more simplicity and flexibility in simulating reliability models: es- 
sentially any generalized form of balanced failure biasing is asymptotically 
optimal. Furthermore, there is flexibility in selecting the parameters of 
the failure biasing method, e.g., balanced failure biasing with any fixed p 
is asymptotically optimal, although the constant term in the variance can 
certainly be improved by, for example, selecting p appropriately. 

For the queueing models studied, the asymptotically optimal importance 
sampling distribution is equivalent to the (asymptotic) ordinary distribu- 
tion, given that the rare event has occurred. For reliability models, it is 
harder to sample from the (asymptotic) ordinary distribution, given that 
the rare event has occurred. In practice, failure biasing techniques may 
devote a large fraction of the samples to highly unlikely sample paths. 

Thus, when the asymptotically optimal change of measure is known for 
a queueing model, better variance reduction is typically obtained than 
in reliability models (for estimating a probability of the same order of 
magnitude). 

Acknowledgement 
My understanding of importance sampling and rare event simulation has greatly 
benefited from interactions with my co-authors, whose names are listed in the 
bibliography. Special appreciation is due to Cheng-Shang Chang and Perwez 
Shahabuddin. Thanks also to S~ren Asmussen for providing helpful comments 
on the manuscript. 

References 
[1] A1-Qaq, W.A., M. Devetsikiotis, and K.R. Townsend. 1993. Importance 

sampling methodologies for simulation of communication systems with 
adaptive equalizers and time-varying channels. IEEE Journal on Selected 
Areas in Communications 11: 317-327. 

[2] Anantharam, V. 1988. How large delays build up in a GI/G/1 queue. Queue- 
ing Systems 5: 345-368. 

[3] Anantharam, V., P. Heidelberger, and P. Tsoucas. 1990. Analysis of rare 
events in continuous time Markov chains via time reversal and fluid approx- 
imation. IBM Research Report RC 16280. Yorktown Heights, New York. 



195 

[4] Arsham, H.~ A. Fuerverger, D.L. McLeish, :l. Kreimer, and R.Y. Rubinstein. 
1989. Sensitivity analysis and the "what if" problem in simulation analysis. 
Math. Comput. Modelling 12: 193-219. 

[5] Asmussen, S. 1982. Conditioned limit theorems relating a random walk to 
its associate. Advances in Applied Probability 14: 143-170. 

[6] Asmussen, S. 1985. Conjugate processes and the simulation of ruin prob- 
lems. Stochastic Processes and their Applications 20: 213-229. 

[7] Asmussen, S. 1987 . Applied Probability and Queues. New York, NY: J. 
Wiley & Sons, Inc. 

[8] Asmussen, S. 1989. Risk theory in a Markovian environment. Scan& Actu- 
arial J., 69-100. 

[9] Asmussen, S. 1990. Exponential families and regression in the Monte Carlo 
study of queues and random walks. The Annals of Statistics 18: 1851-1867. 

[10] Asmussen, S. 1993. Busy period analysis, rare events and transient be- 
haviour in fluid models. To appear in Journal of Applied Mathematics and 
Stochastic Analysis. 

[11] Asmussen, S., and R.Y. Rubinstein. 1992. The efficiency and heavy traffic 
properties of the score function method in sensitivity analysis of queueing 
models. Advances in Applied Probability 24: 172-201. 

[12] Asmussen, S., R.Y. Rubinstein, and C.L. Wang. 1992. Efficient regenerative 
rare events simulation via the likelihood ratio method. Preprint. 

[13] Barlow, R.E., and F. Proschan. 1981. Statistical Theory of Reliability and 
Life Testing. New York, NY: Holt, Reinhart and Winston, Inc. 

[14] Breiman, L. 1968. Probability. Reading, MA: Addison-Wesley. 

[15] Brown, M. 1990. Error bounds for exponential approximations of geometric 
convolutions. The Annals of Probability 18: 1388-1402. 

[16] Bucklew, J. 1990. Large Deviation Techniques in Decision, Simulation and 
Estimation. New York, NY: J. Wiley & Sons, Inc. 

[17] Bucklew, J.A., P. Ney, and J.S. Sadowsky. 1990. Monte Carlo simulation 
and large deviations theory for uniformly recurrent Markov chains. J. Appl. 
Prob. 27: 44-99. 

[18] Carrasco, J.A. 1991. Failure distance-based simulation of repairable fault- 
tolerant systems. In Proceedings of the Fifth International Conference on 
Modeling Techniques and Tools for Computer Performance Evaluation, 337- 
351, 



196 

[19] Carrasco, J.A. 1991. Efficient transient simulation of failure/repair Marko- 
vian models. In Proceedings of the Tenth Symposium on Reliable and Dis- 
tributed Computing, 152-161, IEEE Computer Society Press, Pisa, Italy. 

[20] Chang, C.S. 1992. Stability, queue length and delay, Part II: Stochastic 
queueing networks. IBM Research Report RC 17709, Yorktown Heights, 
New York. Part of the report is published in Proceedings of the IEEE 
CDC'9~ Conference, 1005-1010, IEEE Computer Society Press, Tucson, 
Arizona, 1992. 

[21] Chang, C.S., P. Heidelberger, S. Juneja, and P. Shahabuddin. 1992. Effec- 
tive bandwidth and fast simulation of ATM intree networks. IBM Research 
Report RC 18586, Yorktown Heights, New York. To appear in Proceedings 
of the Performance '93 Conference. 

[22] Chang, C.S., P. Heidelberger, S. Juneja, and P. Shahabuddin. 1993. The 
application of effective bandwidth to fast simulation of communication net- 
works. IBM Research Report RC 18877, Yorktown Heights, New York. 

[23] Chen, H., and A. Mandelbaum. 1991. Discrete flow networks: bottleneck 
analysis and fluid approximations. Mathematics of Operations Research 16: 
408-446. 

[24] ~inlar, E. 1975. Introduction to Stochastic Processes. Englewood Cliffs, N J: 
Prentice Hall, Inc., 

[25] Cogburn, R. 1975. A uniform theory for sums of Markov chain transition 
probabilities. The Annals of Probability 3: 191-214. 

[26] Cottrell, M., J.C, Fort, and G. Malgouyres. 1983. Large deviations and 
rare events in the study of stochastic algorithms. IEEE Transactions on 
Automatic Control AC-28: 907-920. 

[27] Crane, M.A., and D.L. Iglehart. 1975. Simulating stable stochastic systems 
III: regenerative processes and discrete event simulation. Operations Re- 
search 23: 33-45. 

[28] Csiszhr, I., T.M. Cover and B.-S. Choi. 1987. Conditional limit theorems 
under Markov conditioning. IEEE Transactions on Information Theory 33: 
788-801. 

[29] Devetsikiotis, M., and K.R. Townsend. 1992. On the efficient simulation of 
large communication networks using importance sampling. In Proceedings 
of IEEE Globecom '92, IEEE Computer Society Press. 

[30] Devetsikiotis, M., and K.R. Townsend. 1992. A dynamic importance sam- 
pling methodology for the efficient estimation of rare event probabilities in 
regenerative simulations of queueing systems. In Proceedings of the IEEE 
ICC '92 Conference, 1290-1297, IEEE Computer Society Press. 



197 

[31] Devetsikiotis, M., and K.R. Townsend. 1993. Statistical optimization of dy- 
namic importance sampling parameters for efficient simulation of commu- 
nication networks. To appear in IEEE/ACM Transactions on Networking. 

[32] Ellis, R. 1984. Large deviations for a general class of random vectors. Annals 
of Probability 12: 1-12. 

[33] Feller, W. 1971. An Introduction to Probability Theory and its Applications. 
Vol. 2 (Second Edition). New York, NY: :]. Wiley ~ Sons, Inc. 

[34] Frater, M.R., and B.D.O. Anderson. 1989. Fast estimation of the statistics 
of excessive backlogs in tandem networks of queues. Australian Telecommu- 
nications Research 23: 49-55. 

[35] Frater, M.R., R.R. Bitmead, R.A. Kennedy, and B.D.O. Anderson. 1989. 
Rare events and reverse time models. In Proceedings of the 28th Con/erence 
on Decision and Control, 1180-1183, IEEE Press. 

[36] Frater, M.R., T.M. Lenon, and B.D.O. Anderson. 1991. Optimally efficient 
estimation of the statistics of rare events in queueing networks. IEEE Trans- 
actions on Automatic Control 36: 1395-1405. 

[37] Frater, M.R., 3. Walrand, and B.D.O. Anderson. 1990. Optimally efficient 
simulation of buffer overflows in queues with deterministic service times via 
importance sampling. Australian Telecommunications Research 24: 1-8. 

[38] Gs :]. 1977. On large deviations from invariant measure. Theory 
Probab. Appl. 22: 24-39. 

[39] Geist, R.M. and M.K. Smotherman. 1989. Ultrahigh reliability estimates 
through simulation. In Proceedings of the Annual Reliability and Maintain- 
ability Symposium, 350-355, IEEE Press. 

[40] Gertsbakh, I.B. 1984. Asymptotic methods in reliability theory: A review. 
Advances in Applied Probability 16: 147-175. 

[41] Gibbens, R.J., and P.J. Hunt. 1991. Effective bandwidths for the multi-type 
UAS channel. Queueing Systems 9: 17-28. 

[42] Glasserman, P. 1993. Stochastic monotonicity and conditional Monte Carlo 
for likelihood ratios. Advances in Applied Probability 25: 103-115. 

[43] Glynn, P.W. 1989. A GSMP formalism for discrete event systems. Proceed- 
ings of the IEEE 77: 14-23. 

[44] Glynn, P.W. 1992. Importance sampling for Markov chains: asymptotics 
for the variance. Technical Report, Department of Operations Research, 
Stanford University, To appear in Stochastic Models. 



198 

[45] Glynn, P.W., and P. Heidelberger. 1992. Experiments with initial transient 
deletion for parallel, replicated steady-state simulations. Management Sci- 
ence 38:400 - 418. 

[46] Glynn, P.W., and D.L. Iglehart. 1989. Importance sampling for stochastic 
simulations. Management Science 35: 1367-1392. 

[47] Glynn, P.W., and W. Whirr. 1992. The asymptotic efficiency of simulation 
estimators. Operations Research 40: 505-520. 

[48] Goyal, A., W.C. Carter, E. de Souza e Silva, S.S. Lavenberg, and K.S. 
Trivedi. 1986. The System Availability Estimator. In Proceedings of the Six- 
teenth International Symposium on Fault-Tolerant Computing, 84-89, IEEE 
Computer Society Press. 

[49] Goyal, A., and S.S. Lavenberg. 1987. Modeling and analysis of computer 
system availability. IBM Journal of Research and Development 31, 6: 651- 
664. 

[50] Goyal, A., P. Heidelberger, and P. Shahabuddin. 1987. Measure specific 
dynamic importance sampling for availability simulations. In 1987 Winter 
Simulation Conference Proceedings, 351-357, IEEE Press. 

[51] Goyal, A., P. Shahabuddin, P. Heidelberger, V.F. Nicola, and P.W. Glynn. 
1992. A unified framework for simulating Markovian models of highly reli- 
able systems. IEEE Transactions on Computers C-41: 36-51. 

[52] Gu6rin, R., H. Ahmadi and M. Naghshineh. 1991. Equivalent capacity and 
its application to bandwidth allocation in high-speed networks. IEEE J. 
Select. Areas Commun. 9: 968-981. 

[53] Halton, J.H. 1970. A retrospective and prospective survey of the Monte 
Carlo method. SIAM Review 12: 1-60. 

[54] Hammersley, J.M., and D.C. Handscomb, 1964. Monte Carlo Methods. Lon- 
don: Methuen and Co., Ltd. 

[55] Heidelberger, P. 1988. Discrete event simulations and parallel processing: 
statistical properties. SIAM Journal on Scientific and Statistical Computing 
9: 1114-1132. 

[56] Heidelberger, P., Nicola, V.F., and Shahabuddin, P. 1992. Simultaneous and 
efficient simulation of highly dependable systems with different underlying 
distributions. In Proceedings of the 1992 Winter Simulation Conference, 
458-465, IEEE Press. 

[57] Heidelberger, P, P. Shahabuddin, and V.F. Nicola. 1993. Bounded relative 
error in estimating transient measures of highly dependable non-Markovian 
systems. IBM Research Report RC 18794, Yorktown Heights, New York. 



199 

[58] Heidelberger, P., and P. Tsoucas. 1991. Reverse time simulation of rare 
events. IBM Technical Disclosures Bulletin 34, No. 3: 163-165. 

[59] Iglehart, D.L. 1972. Extreme values in the GI/G/1 queue. Annals of Math- 
ematical Statistics 43: 627-635. 

[60] 3ensen, A. 1953. Markov chains as an aid in the study of Markov processes. 
Skand. Aktuarietidskr. 36: 87-91. 

[61] Juneja, S. 1993. Efficient Rare Event Simulation of Stochastic Systems. 
Ph.D. Thesis, Department of Operations Research, Stanford University, 
California. 

[62] Juneja, S., and P. Shahabuddin. 1992. Fast simulation of Markovian re- 
liability/availability models with general repair policies. In Proceedings of 
the Twenty-Second International Symposium on Fault-Tolerant Computing, 
150-159, IEEE Computer Society Press. 

[63] Kalos, M.H., and P.A. Whitlock. 1986. Monte Carlo Methods, Volume I: 
Basics. New York, NY: John Wiley ~ Sons, Inc. 

[64] Keilson, J. 1979. Markov Chain Models - Rarity and Ezponentiality, New 
York, NY: Springer Verlag. 

[65] Kelly, F.P. 1979. Reversibility and Stochastic Networks. New York, NY: 
John Wiley & Sons, Inc. 

[66] Kelly, F.P. 1991. Effective bandwidths at multi-class queues. Queueing Sys- 
tems 9: 5-16. 

[67] Kesidis, G., and J. Walrand. 1993. Quick simulation of ATM buffers with 
on-off multiclass Markov fluid sources. To appear in ACM Transactions on 
Modeling and Computer Simulation. 

[68] Lehtouen, T., and H. Nyrhinen. 1992. Simulatinglevel-crossing probabilities 
by importance sampling. Advances in Applied Probability 24: 858-874. 

[69] Lehtonen, T., and H. Nyrhinen. 1992. On asymptotically efficient simulation 
of ruin probabilities in a Markovian environment. Scand. Actuarial. J. 60- 
75. 

[70] Lewis, E.E., and F. Bohm. 1984. Monte Carlo simulation of Markov unre- 
liability models. Nuclear Engineering and Design 77: 49-62. 

[71] Lewis, P.A.W., and G.S. Shedler. 1979. Simulation ofnonhomogeneous Pois- 
son processes by thinning. Naval Research Logistics Quarterly 26, 403-413. 

[72] Nakayama, M.K. 1991. Simulation of Highly Reliable Markovian and Non- 
Markovian Systems. Ph.D. Thesis, Department of Operations Research, 
Stanford University, California. 



200 

[73] Nakayama, M.K. 1991. Asymptotics for likelihood ratio derivative estima- 
tors in simulations of highly reliable Markovian systems. IBM Research 
Report RC 17357, Yorktown Heights, NY. 

[74] Nakayama, M.K. 1993. A characterization of the simple failure biasing 
method for simulations of highly reliable Markovian systems. IBM Research 
Report RC 18721, Yorktown Heights, New York. 

[75] Nakayama, M.K. 1993. General conditions for bounded relative error in 
simulations of highly reliable Markovian systems. IBM Research Report 
RC 18993. Yorktown Heights, New York. 

[76] Nakayama, M.K., A. Goyal and P.W. Glynn. 1990. Likelihood ratio sen- 
sitivity analysis for Markovian models of highly dependable systems. IBM 
Research Report RC 15400, Yorktown Heights, New York. To appear in 
Operations Research. 

[77] Nicol, D.M., and D.L. Palumbo. 1993. Reliability analysis of complex mod- 
els using SURE bounds. ICASE NASA Langley Research Center Technical 
Report 93-14. 

[78] Nicola, V.F., P. Heidelberger and P. Shahabuddin. 1992. Uniformization and 
exponential transformation: techniques for fast simulation of highly depend- 
able non-Markovian systems. In Proceedings of the Twenty-Second Interna- 
tional Symposium on Fault-Tolerant Computing, 130-139, IEEE Computer 
Society Press. 

[79] Nicola, V.F., M.K. Nakayama, P. Heidelberger and A. Goyal. 1990. Fast 
simulation of dependability models with general failure, repair and mainte- 
nance processes. In Proceedings of the Twentieth International Symposium 
on Fault-Tolerant Computing, 491-498, IEEE Computer Society Press. 

[80] Nicola, V.F., M.K. Nakayama, P. Heidelberger, and A. Goyal. 1991. Fast 
simulation of highly dependable systems with general failure and repair 
processes. IBM Research Report RC 16993. Yorktown Heights, New York. 
To appear in IEEE Transactions on Computers. 

[81] Nicola, V.F., P. Shahabuddin, P. Heidelberger and P.W. Glynn. 1993. Fast 
simulation of steady-state availability in non-Markovian highly dependable 
systems. In Proceedings of the Twenty-Third International Symposium on 
Fault-Tolerant Computing, 38-47, IEEE Computer Society Press. 

[82] Nicola, V.F., P. Shahabuddin, and P. Heidelberger. 1993. Techniques for 
fast simulation of highly dependable systems. IBM Research Report RC 
18956, Yorktown Heights, New York. 

[83] Parekh, S., and J. Walrand. 1989. A quick simulation method for excessive 
backlogs in networks of queues. IEEE Transactions on Automatic Control 
34: 54-56. 



201 

[84] Rubinstein, R.Y. 1991. How to optimize discrete-event systems from a single 
sample path by the score function method. Annals of Operations Research 
27: 175-212. 

[85] Sadowsky, J.S. 1991. Large deviations and efficient simulation of excessive 
backlogs in a GI /G/m queue. IEEE Transactions on Automatic Control 36: 
1383-1394. 

[86] Sadowsky, J.S. 1993. On the optimality and stability of exponential twisting 
in Monte Carlo estimation. IEEE Transactions on Information Theory 39: 
119-128. 

[87] Sadowsky, J.S., and :I.A. Bucklew. 1990. On large deviations theory and 
asymptotically efficient Monte Carlo estimation. IEEE Transactions on In- 
formation Theory 36: 579-588. 

[88] Shahabuddin, P. 1990. Simulation and Analysis of Highly Reliable Systems. 
Ph.D. Thesis, Department of Operations Research, Stanford University, 
California. 

[89] Shahabuddin, P. 1991. Importance sampling for the simulation of highly 
reliable Markovian systems. IBM Research Report RC 16729, Yorktown 
Heights, New York. To appear in Management Science. 

[90] Shahabuddin, P. 1993. Fast transient simulation of Markovian models of 
highly dependable systems. IBM Research Report RC 18587, Yorktown 
Heights, New York. To appear in Proceedings of the Performance '93 Con- 
ference. 

[91] Shahabuddin, P., and M.K~ Nakayama. 1993. Estimation of reliability and 
its derivatives for large time horizons in Markovian systems. IBM Research 
Report RC 18864, Yorktown Heights, New York. To appear in Proceedings 
of 1993 Winter Simulation Conference. 

[92] Shahabuddin, P., V.F. Nicola, P. Heidelberger, A. Goyal, and P.W. Glynn. 
1988. Variance Reduction in Mean Time to Failure Simulations. In 1988 
Winter Simulation Conference Proceedings, 491-499, IEEE Press. 

[93] Shanthikumar, J.G. 1986. Uniformization and hybrid simulation/analytic 
models of renewal processes. Operations Research 34: 573-580. 

[94] Shwartz, A., and A. Weiss. 1993. Induced rare events: analysis via time 
reversal and large deviations. To appear in Advances in Applied Probability. 

[95] Siegmund, D. 1976. Importance sampling in the Monte Carlo study of se- 
quential tests. The Annals of Statistics 4: 673-684. 

[96] Smith, W.L. 1955. Regenerative stochastic processes. Proc. Roy. Soc. Set. 
A. 232: 6-31. 



202 

[97] Tsoucas, P. 1989. Rare events in series of queues. IBM Research Report RC 
15530, Yorktown Heights, New York. 

[98] Weiss, A. 1986. A new technique for analyzing large traffic systems. Ad- 
vances in Applied Probability 18: 506-532. 

[99] Whitt, W. 1980. Continuity of generalized semi-Markov processes. Mathe- 
matics of Operations Research 5: 494-501. 

[100] Whitt, W. 1993. Tail probability with statistical multiplexing and effective 
bandwidths in multi-class queues. To appear in Telecommunication Systems. 


