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Abs t r ac t  

Several of the principal results in bottleneck andlysis for closed queue- 
ing networks are surveyed. Both product-form closed queueing networks, 
where exact bottleneck analysis is possible, and non-product-form closed 
queueing networks, where approximations are given for asymptotic bottle- 
neck behavior, are considered. Algorithms for the asymptotic bottleneck 
analysis are presented and the switching surfaces of bottlenecks are de- 
scribed. 

1 I n t r o d u c t i o n  and Scope  

1.1 Impor tance  

Identification of bottlenecks (BNs) in queueing networks is an impor tant  step 
in systems performance evaluation and upgrades: investing resources at  a BN 
will have dramat ic  effect on systems performance; investing at a non-BN will 
have negligible benefit. However, over-investing at a BN is unwise because, 
beyond a certain point, the secondary (or tertiary) BN becomes the pr imary  
BN. Beyond this point, the investment should be split among the several near- 
ties for BN. This complication, along with the diminishing marginal  benefits 
associated with investment, make BN analysis - -  especially of multiple BNs - -  
somewhat  complex. 

*This work was partially supported by CNR "Progetto FinMizzato Sistemi Informatici e 
Calcolo Parallelo" by grant N. 92.01615.PF69.115.23757 and by M.U.R.S.T. 40% Project 
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In addition, BN analysis unavoidably leads to deep technical difficulties, be- 
cause the creation of BNs is inherently a non-linear phenomenon: small changes 
in relative loads or capacities can lead to large shifts in BN locations. On the 
other hand, BN analysis can be simpler than a full performance analysis, because 
much less is being demanded, at the minimum merely requesting the location 
of the most-congested system resources. Furthermore, additional simplification 
is possible if one performs only asymplotic BN analysis, where the load on the 
system (e.g., customer population) approaches 100% saturation. 

1 . 2  P u r p o s e  a n d  S c o p e  

The purpose of this paper is to survey several of the principal results in BN anal- 
ysis for closed queueing networks (CQNs) (open queueing networks are much 
less challenging to analyze because knowledge of external arrival rates and visit 
ratios permits immediate prediction of resource utilizations). 

We include both product-form closed queueing networks (PF-CQNs), where 
exact BN analysis are surveyed and non-product-form networks, where approx- 
imations are given for asymptotic BN behavior. However, there are several 
assumptions made to limit the scope, and thereby make the survey manageable 
in size: 

�9 all servers are constant-rate, and either FCFS (no parallel servers) or 
ample server (AS); 

�9 queue space is unlimited (no blocking) system; 

�9 a customer is at only one resource at any given time, and makes instanta- 
neous transfers from one resource to another (e.g., ignore bus transmission 
times); 

�9 all customer classes are closed, and customers do not change class; 

�9 only an equilibrium steady-state analysis is presented. This assumes, 
among other things, that loads (e.g., populations) remain constant over 
time, so that one does not have to forecast time-varying BNs; 

�9 we do not distinguish between user-workload and system overhead. 

1 . 3  D e f i n i t i o n  o f  B o t t l e n e c k s  

At least two concepts of BNs are in common use: 

�9 physical bottleneck: 

- resource with highest utilization; 

- resource with highest mean sojourn time; 
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- resource with highest mean queueing (delay) time; 

- resource with highest mean queue length (queue length for us means 
number  present either in service or in queue; this definition makes 
meaningful mean queue length at an AS (= mean number  of cus- 
tomers present)); 

- device with highest 90% percentile (or other percentile) of sojourn 
t ime (or queue length); 

�9 economic bottleneck: 

- resource with largest value of the derivative: rate of improvement  
in the system performance measure per dollar invested at the re- 
source (the systems performance measure could be any scalar such as 
weighted average throughput,  weighted average response time, etc.). 

I t  is evident that  many  possible definitions of BNs exist, and that  they 
are not equivalent: the device with highest utilization need not have highest 
response time, nor be the economic BN. However, in the case where one - -  and 
only one - -  device is running at a high level of congestion, all definitions will 
agree. 

The device with highest value of the performance measure (e.g., highest 
utilization) is called the pr imary  bottleneck (if more than one, we speak of the 
B N  set). Next highest is called the secondary BN, etc. 

It  is noteworthy that  physical BNs differ from economic BNs in two ways 

�9 physical BN uses a physical measure of performance and does not involve 
money; 

�9 physical BN looks at average level of performance while economic BN 
looks at marginal return on performance. 

In this survey, we use device with highest utilization as our definition of BN. 
This is the most  common approach, is the easiest to measure, and in any case 
acts as a reasonable surrogate for the congestion at the device. 

1 . 4  N o t a t i o n  

To keep the presentation simple, in the sequel of the paper the index r will 
always be implicitly assumed to range from 1 to R and the indexes i, j to range 
f rom 1 to M.  

1 . 4 . 1  M o d e l  I n p u t s  

�9 M servers, labelled { 1 , 2 , . . . ,  M }  = SFCFS + SAS,  where SFCFS = set 
of FCFS servers and SAS  = set of AS; 
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1.4.2 

�9 cus tomer  classes labe l led  { 1 , 2 , . . . ,  R}; 

�9 K~ = (fixed) p o p u l a t i o n  of  class r; 

�9 S~i = m e a n  service t ime  of  a c lass-r  cus tomer  for each vis i t  to server  i (for 
p r o d u c t - f o r m  networks ,  S~i is i ndependen t  of r if i is F C F S ) ;  

�9 V~i = mean  n u m b e r  of  vis i ts  a c lass- r  cus tomer  makes  to server i; 

�9 Lr i  = V r i S r i  : m e a n  load  a c lass-r  cus tomer  makes  to server i in all  i ts  
visits.  

1 < i < M (otherwise  delete  server i); 

(o therwise  delete  class r ) ;  

(o therwise  delete  class r ) ;  

We assume 

�9 ~ Lri > 0 
r 

�9 ~ L r i  > 0 l < r < R  
i 

�9 K ~ > I  l < r < R  

� 9  

S~i,V~i,L~i>__O l < r < R  l < i < M ;  

Ksum - ~ K~ = to t a l  cus tomer  popu la t i on ;  
r 

�9 /3r = K r / K s u m  = f rac t ion  of  p o p u l a t i o n  be ing  of class r 

�9 /3 = ( /31, /32,-- . , /3n)  = m i x  vector;  

�9 K = (K1, K 2 , . . . ,  KR)  =/3Ksum = p o p u l a t i o n  vector.  

M o d e l  O u t p u t s  

W~i = m e a n  so journ  t ime;  

W~ = response  t ime  of class r; 

X~ = t h r o u g h p u t  of class r; 

X~i = t h r o u g h p u t  of c lass-r  cus tomers  at  server i; 

Q ~  = m e a n  queue length;  

Qi = m e a n  queue at  server i; 

U~i = u t i l i za t ion  at  server i due to class r; 

Ui = u t i l i za t ion  of  server i. 
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Only {W~i} are independent, the rest being obtained from 

i 
K ~  

Xr  Wr ' Xrl X~ Vri (forced-flow law) 

Q~i = xriw~i (Litt le 's  law), Qi = ~ Q~i 
r 

U~i = X~i S~i, U~ = ~ U~i 
r 

There are all nonnegative and also satisfy W,.i >_ S~i (so W~ >_ ~ L~i > 0) and 
i 

~ Qri = Kr. 
i 

2 Asymptotic Bottleneck Analysis 

Here Ksum --~ co, i.e., at least one customer class becomes very large. We 
assume that  each class r with Kr  -~ oc also satisfies 

Lri 0 
i E SFCFS 

i.e., class r visits at least one FCFS server. This means that  at least one FCFS 
server will be saturated.  

For product-form networks, where exact solutions are available (by looking, 
for example, at the integral representation of the generating function), one is 
interested in the asymptot ic  behavior of Ui, Xr,  W,i, Q~i and Qi as I(sum ~ oo. 

These are typically asympfofic expansions of the form 

Ui:U*+ i ~ m + O  (U* <_1) 

Qri -- I~surnQ*i-[-Qr~--~O (j~um) 

Q i - = I f s . m Q * + Q ] * + O ( K ~ )  (Q*i = ~*)Qrl 
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Our notation uses �9 for the leading term, ** for the next term, etc. Note Uri 
and X~i approach finite limits (U~i and X ' i )  while Q~i and W~i diverge linearly 
with I~'~m for at least one i E SFCFS. Also note 0 < Ui* ~ 1, Q~ = 0 if i is an 

AS, ~2 Q; = ~. 
i E SFCFS 

The asymptotic bottleneck set BN(~_) is defined as the set of servers whose 
utilization approaches 100%: 

BN(~_) =_ {i :  i C EFCFS and U/* = 1} 

Note the set {i : i E $FCFS and Q* > 0} of servers whose queue length 
approaches infinity is a subset of BN(fl). 

The primary goals of asymptotic BN analysis are to find 

and 

~,(_Z) - 

Note 

BN(~_) = asymptotic bottleneck set 

Q~ 

E 
j E SFCFS 

- Q* = asymptotic fraction of population at server i 
Q~ 

71(fl_) = O i E SAS,  7~(~_) >- 0, ~ 7i(fl_) = l 
iE SFCFS 

The remaining performance measures are then given by 

W~* = Si7i (independent of r), W~* = E Lri'y~ 
i 

x ;  = , x;~ - 

EL.% E Lr, , 
i j 

. ~ flrLri , flrLriTi Qi = 7i 
Qri - E LrjTj'  E LrjTj 

J J 

flr Lri ~r flr Lri  

J J 

At least 4 different cases of asymptotic analysis must be distinguished 

1. K~um ~ o0, M fixed, at least one AS exists [RM82], [KB91]; 

(la) 

(lb) 

(lc) 

( l d )  
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2. Ksum --+ co, M --+ co, Ksum/M fixed [KT90]; 

3. Ksum ~ co, M ~ co, K s u m / M  fixed (or has a limit), service in random 
order [BGPS87]; 

4. Ksum ---+ co, M fixed, no AS. 

Case  1. is the best known due to the PANACEA code. A scheme is given to 
find as many terms as desired in the asymptotic expansion, along with a bound 
on the truncation error. However, due to the assumption of "normal usage", 
where all FCFS servers have utilizations bounded away from unity, the model 
is restricted to the case where an infinite number of customers accumulates at, 
and only at, the ample servers. These always act as "bottlenecks". 

Case  2. models a computer network with a very large number of terminals. 
The asymptotic analysis is quite delicate. 

Case  3. shows asymptotic normality of the joint queue lengths, and provides 
algorithms for the means and covariances. 

Case  4. differs from Case 1 because customers demands must accumulate 
at, and only at, FCFS servers [BS93a], [BS93b], [SSB92] etc. It differs from Case 
2 and 3 because M is fixed. Its extensions to ample servers is straightforward. 
This case is the least known, and therefore merits presentations of some of 
the technical details. It also leads to convenient approximations for the non- 
product-form case. 

3 Algorithms for Asymptotic Bottleneck Anal- 
ysis 

3.1 I n t r o d u c t i o n  

This section shows how to carry out the asymptotic BN analysis for CQN as 
Ksum --* co. In particular, we describe how to compute the asymptotic fractions 

7 i ( ~ ) ~  lira Qi(Ksum_~) 
- -  K s u  m "-'+ c ~  / ~ ' s  u m 

and the asymptotic bottleneck set BN(~_).  Note that ~ i  7i = 1, 7~ > 0 implies 
U; = l. 

Values of/?, i E BN(fl_) and U[ -- 1 implies the converse, namely that 7~ > 0. 
Note that the technical difficulty lies in computing 7i(~), since BN(fl_) can 

then be easily computed from 

B N ( ~ )  = { i  E S F C F S :  U/* = 1} --- i E S F C F S :  / ~  ~,~-'~LrJTj(R ~ -- 1 

J 
(2) 
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The algorithm include 

1. fixed point methodology; 

2. optimization methodology; 

3. simultaneous non-linear equation methodology; 

4. simultaneous linear equation methodology. 

The remaining subsections discuss the higher order terms and the extensions 
to non-product form CQNs. 

3.2 Fixed Point  Methodology 

This approach exploits the properties 

7/(/3) > 0 (3a) 

, ~_ flrLri < 1 (35) u; (Z_) = ,  - 

7i (/3) > 0 ~ U/* (/3) = 1 (3c) 

If we define the function 

fi(z_) = _ E Lrjzj  I < i < M ,  z e  [0,1] M (4) 

J 

where _z = (Zl, z2 , . . . ,  ZM) is constrained to satisfy zl >_ 0 for all i and E L~j zj > 
J 

0 for all r, then (4) may be rewritten as the non-linear complementarity problem 

71>_0 l < i < m  (5a) 

1 -  f i (7)  > 0  l < i < M (55) 

7i[ 1 - fi(7)] = 0 1 < i < M (5c) 

( i . e . , ' / =  (71,72, . . . ,7M) and U[ = fi(7_) 1 < i < M) .  
Summation of the last of these shows that,  as expected, 

7's 
In addition, the last may be understood as the fixed point equation for the 

7i = 7ifi(~_) 1 < i < M (6a) 
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subject to the side constraints 

7i _> 0 1 < i < M (ab) 

ELri7i>O 1 < r < R  (6c) 
i 

fi(7-) _< 1 1 < i < M (6d) 

An alternate derivation of (5c) and (6a) is based directly upon the MVA 
recursion 

IGL~i[l+Qi(K---e-r)] I < i < M  (7) 
Qi(K) = E Lrj[I +Qj(K_f f )  ] 

J 

namely, divide both sides by Ksum and let Ksum -~ c~. 
The fixed point equation (6a) has been obtained by [Schw79], [Chow83]. In 

most cases it has a unique solution 7_. However there are some exceptional cases 
where (6a) does not have a unique solution, and one must go to higher order in 
the expansion 

Q i ( K s u m f l ) - T i ( f l ) + O ( 1 )  [/x. s u m - 

in order to resolve ambiguities. Even in the case where the fixed point equation 
does not satisfy 7 uniquely, it is possible to show that f~(7) is unique for each 
i, hence BN(~_) is well-defined. 

A convenient way to solve (6) is by successive substitutions 

7 } n + .  1)  ---- 7}n) fi(~ (n)) 1 < i < M ( 8 )  

starting from an initial guess which satisfies (6 c,d) but with (6b) replaced by 

7/(~ > 0 (else 7/(n) remain zero for all n). The scheme (8) is easy to program and 
usually has geometric convergence to 7_. However convergence is not guaranteed 
and sometimes the scheme fails. Ways of ensuring convergence are discussed in 
subsection 3.3 below, hence computation of Ti(~) and BN(fl) (and higher order 
terms) may be considered to be routine, except at (or near) the exceptional 
values of fl where the fixed point is not unique. This algorithm appears to be 
simpler than other asymptotic expansions, such as those based upon integral 
representations. 

3 . 3  O p t i m i z a t i o n  M e t h o d o l o g y  

The scheme (8) may be shown [Schw79] to be a projected gradient approach for 
solving the concave optimization problem 

max(h(_z):_zC[0,1] M, z~>O and E L ~ i z i > O }  (9) 
i 
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where 

and indeed, the complementary slackness conditions (6) are the Kuhn-Tucker 
conditions for (9), so (8) and (9) are equivalent characterizations of 7. 

The step-direction _7(~+1) -_7('~) in successive substitutions is an uphill di- 
rection for maximizing h, i.e., 

E ['/(n-]-l) --  3(n)]i~--~. h(~f(n)) ---- E 7}n)[fi(7-(~))- 112 > 0 
i v~~ i 

However the step length could be too long, causing overshooting and lack 
of convergence of successive substitutions. To enforce convergence, one must 
merely check that h(_7(~+l)) is strictly longer than h(_7(~)), and if this is not so, 
one reduces the step length sufficiently that this criterion is met. 

We found it simplest to repeatedly halve the step length (i.e., _7(~+1) = 
1(_7(~) +_7('~+i))) until h(7("+1)) > h(_7(")) is met. This procedure works flaw- 
lessly, producing (at least)-6 digit accuracy without difficulty. 

For other reduction of the leading asymptotic term to an optimization prob- 
lem, see [Pitt79], [BGPS87], [PKT90]. 

3 . 4  S i m u l t a n e o u s  Non-Linear Equation Methodology 

Here one applies any root-finding technique for the M simultaneous equations 
(6a) and then checking for satisfaction of (6 b,c,d). For non-exceptional fl, where 
BN(fl) =__ {i :  U*(__fl) = 1} = {i :  7i(_~) > 0}, this is especially easy in the usual 
case where there is only a small set of bottlenecks Bi(fl__), because (6a) reduces 
to only I BN(~_)I simultaneous (non-linear) equations 

1 = E flrLri i e BN(~_) (10) 

j e BN(s 

for iBX(fl)l unknowns {7/(9):  i E BN(fl)}. 
If BN~/3) can be guessed correctly, then (say) Newton's method appiied to 

(10) gives ]-Ti(fl) : i E BN(fl)} while 71(fl) = 0 if i ~ BN(fl__). One then checks 
if (6 b,c,d) hold in order to confirm the guess for BN(~_). 

3.5 Simultaneous Linear Equation Methodology 

This approach uses 

X~ = 8~ > 0 1 < r < R 
E Lri*fi(~) 

(ii) 
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as primary unknowns, thereby transforming (10) into a set of linear equations 

1 = E X*Lri i e BN(fl) (= U*) (12) 
r 

for the X*'s (if the X*'s are under-determined, one adds additional equations 
involving the reciprocals of the X*'  s, to reflect the fact that the rows of L(fl) = 
[Lri] 1 < r < R, i E BN(fl__) may be linearly dependent). Once the X*'s are 
known, the 7's can be chosen anywhere in the polytope 

__TE[0, : 7 i =  r BN(~),  71_>0 e B N ( f l ) ,  1] M 0 for i for i 

E T i = l ,  E L r i T i = f l ~ / X *  foral l  r }  (la) 
i i 

preferably the maximal solution 7~ > 0 (strict) for all i C BN(~_). 
As the simplest illustration this, consider the most common case where there 

is just  one BN, say 
BN(_Z) = {b} 

Then 

and (10) reduces to the identity 

Evidently 

7i = 5ib (14) 

~r Lrb 
1 - - - - ~  Lrb 

r 

~ r  
X r =  l < r < R  

Lrb 

is easily determined from ( l l )  and (14). Note L(fl) is a R • 1 matrix, hence 

flrLri only one row of it is independent. Also, one must check that U* = E Lr--~ < 
r 

l = U; for i C b. 
The next complicated case is of two BNs, 

BN(..#~) ~-~ {51, b2} 

This is most tractable if there are 2 types of customers, since (12) then 
consists of 2 simultaneous linear equations for the two y's. Finally, 761 and 7b~ 
are obtained from the latter two linear equations from the trio in (13) 

7b~+Tb~ = 1  

Lrbl Tbl + Lrb:~/b2 = fir/X* r =  1,2 
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Assuming that the 2 x 2 matrix 

[ Llb~ 
L ( ~ ) =  L2bl 

is non-singular, the result is 

Llb2 ] 
L262 

~1L2b~ fl2Llb2 
7bl -- L2b2 -- L2bl Llbl -- Llb2 

/32 L l bl /31L2b~ 
7b2 -- Llb~ -- Llb2 L262 -- L2bl 

More generally, this approach works if the number of bottlenecks [BN(fl) I 
agrees with the number of classes R, provided the R • R matrix 

L(fl_) = {Lri : l < r < R, i E BN(fl_)} 

is non-singular. 

3 . 6  H i g h e r  O r d e r  T e r m s  

By inserting the asymptotic expansion 

Q i ( I ( s u m f l ) = K s u m Q * ( / 3 ) +  Q~*(_fl) + 0 ( K - ~ m )  (15) 

into (7), one gets a sequence of fixed point problems for Q*, Q**, etc. We have 
already investigated the first of these, for Q*. As long as/3 is not exceptional, 
the higher order terms can be evaluated recursively. The authors have obtained 
explicit expressions for Q** and Q***. We found that the first three terms in 
the series (15) are sufficient provided 

* Ksum is sufficiently large (typically 1000's); the relatively slow convergence 
as Ksum -'* ~ was also noted in [Lave82] if ample servers occur; 

* fl is not too close to an exceptional value, where the asymptotic series be- 
comes singular. The bad cases can usually be detected because of symp- 
toms like [Q**I is very large for some i E BN(fl_), 7i(/3) is very close to 

zero for some i E B N ( ~ ) ,  some ~-~-7'(_) gets very large, etc. We call 

the set of/3's where the expansions break down switching surfaces (i.e., 
singularities), because the set BN(_~) of BNs is discontinuous there. 
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3 . 7  E x a m p l e s  

Consider the case M = 4, R = 2 with 

[lOOo 4o] 
Lri ---- 70 90 40 

Server 4 can never be a bot t leneck since it is masked-off  by the other  servers. 
Then,  f rom (2), we have 

5 {3} o < 31 < 
{2,3} 5 <31< 9 2-5-  - ~  

BX(fl_) = {2} 9 < ]31 < 1...88 
23 25 

{1,2} as < 3 1  < 4 2-g-  - g  
4 {1} g < 31 < 1 

and [32 = 1 - 3a. 
The  exceptional  points (switching surfaces) are_fl = ( f i ,  ~a) - (0.217, 0.783), 

3 : ( f i , ~ )  -" (0.391,0.609), __fl : ( ~ , 7 )  : ( 0 . 7 2 , 0 . 2 8 ) a n d  3 : (4,_~) : 
(-0.8, 0.2) where BN(fl_) changes. The  corresponding first terms in the asymp- 
tot ic  expansion are 

~(~) =__0"(s = / 

(o, o, 1, o) 
5 9 __ 23 

( 0 , - - ~  + - ~ 3 1 ,  ~ "~"31, O) 

(0, 1 ,0 ,0)  

( - 9 +  25 -~31,0,  0) -~ -31 ,10  - 

( 1 , 0 , 0 , 0 )  

0 < _ 9 1 < ~  
5 < i l l <  9 2-5-  -5 -g  

18 

is < 31 < 4 2-g-  - g  
4 
~ < f l l < l  

The  switching surfaces can be detected f rom the expressions for Q~(__fl), f rom 
(lc) ,  tha t  violate the requirements  0 _< Q* _< 1. In addit ion,  at the swi.tching 
surface we have the unusual  s i tuat ion where some server i has U[ = 1 bu t  
7 i = 0 .  

As can be seen f rom Figure 1, the migra t ion of the bot t leneck f rom one 
server to another  yields a bot t leneck set in which both  these servers saturate .  

Wi th  R = 3 and Ksum constant  all the possible mix  vectors fl belong to the 
tr iangle {/3: fll + f12 +/33 = 1 and 0 _< ill, f12,33 _< 1}. The  sw~ching surfaces 
become straight  lines identifying polyhedral  regions in which one, two or (at  
most)  three servers sa turate .  Each value of BN(fl_) occurs only once, i.e., the 
regions are all connected sets. Bott leneck set switches f rom regions with one to 
regions with two and with three components .  
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Figure 1: Bottleneck set BN(~) vs. population mix_~ for R = 2. 

Let us consider now the case M = 5, R = 3 with 

Lri 
90 50 60 80 70 1 
40 80 30 40 30 
50 80 90 50 70 

Figure 2 represents the various bottleneck sets of this case. As can be seen, 
with the loading matr ix considered we have only one bottleneck set in which 
three servers saturate together, i.e., the internal triangle. However, depending 
on the relative values of L~i and on the number of servers none or several of 
such regions may exist. The regions with all the other bottleneck sets are also 
represented. A complete description of the switching surfaces can be found in 
[BS9ab]. 
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3 . 8  N o n - P r o d u c t  F o r m  N e t w o r k s  

If S,.i depends upon r at one or more FCFS server i, the CQN lacks product- 
form. If we assume 

Wri ~ QtiS~i + O(1) for large -/(sum (16) 
$ 

then 

Qri 
] ( sum ~ Q*i as / ( s u m  --~ OO 

Q___s - .  Q~ = ~ Q:~ 
I ~  S U ITI 

r 
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Vr --/(sum --'+ W :  = E *SQti ti (independent of r due to (16)) 
t 

K~V~ fl~v~ 
X r i  - -  § 

J J 

flr Lri 

J 
We expect that W/* > 0 if and only if Q~ > 0 (since all throughputs Xri are 

bounded, this follows from Little's law), so we still expect the relationships 

W * > 0  I < i < M  

u~*<_l I < / < M  

W / * > 0  ~ U * = I  I < i < M  

E V T i W * > O  l < r < R  
i 

which is a non-linear complementarity problem for W* similar to (3) and (5). 
It may still be solved by successive substitutions as in (8) or by a root-finder as 
in (10). However, we lose the interpretation of successive approximation being 
an optimization problem, and therefore lose the ability to force convergence by 
reducing the step length. 

The one exception is if S~i = aTbi for all r and i, in which the optimization 
interpretation still survives [Schw79]. This case arises in models of telecom- 
munications where r = message type, i = transmission link, and where the 
transmission time on a link depends on both on the (constant) message length 
ST and the link speed bi. 

The empirical result is that successive substitution with stepsize reduction 
converges well, for arbitrary Sri, despite the absence of an explanation. So 
asymptotic BN analysis is possible (for the dominant term) for general CQNs, 
although the accuracy of the higher-order terms (Q**, Q***, etc.) is doubtful. 

Note that approximate MVA [Schw79], [Bard79] and both the linearizer 
[CN82] and Chow [Chow83] approximations will reduce to the fixed point prob- 
lem when populations get very large. This help explains why all are accurate 
when the populations are very large. 

4 C o n c l u s i o n s  

One of the major problem that arise in modelling actual computer systems and 
networks is that the computational complexity of the exact solution techniques 
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becomes prohibitively expensive as the number of classes, customers, and sta- 
tions grows. 

As a consequence, different methods are becoming fundamental for the future 
of systems modelling. Among them, approximation techniques and asymptotic 
bottleneck analysis techniques will play an important role in the near future. 

In this paper several of the principal results in bottleneck analysis for closed 
queueing networks, either product-form and non product-form, are described. 
Algorithms for the asymptotic bottleneck set identification have been presented 
and their applicability has been shown through examples. 
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