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1 I n t r o d u c t i o n  

Queueing systems consisting of N queues (channels) served by a single server 
which incurs switch-over periods when moving from one channel to another 
have been widely studied in the literature and used as a central model for the 
analysis of a wide variety of applications in the areas of computer networks, 
telecommunication systems, multiple access protocols, multiplexing schemes in 
ISDNs, reader-head's movements in a computer 's hard disk, flexible manufactur- 
ing systems, road traffic control, repair problems and the like. Very often such 
applications (e.g. Token Ring networks in which N stations a t tempt  to transmit 
their messages by sharing a single transmission line) are modeled as a polling 
system where the server visits the channels in a cyclic routine or according to 
an arbitrary polling table. 

In many of these applications, as well as in most polling models, it is cus- 
tomary to control the amount of service given to each queue during the server's 
visit. Common service policies are the Exhaustive, Gated and Limited regimes. 
Under the Exhaustive regime, at each visit the server attends the queue until 
it becomes completely empty, and only then is the server allowed to move on. 
Under the Gated regime, all (and only) customers (packets, jobs) present when 
the server starts visiting (polls) the queue are served during the visit, while cus- 
tomers arriving when the queue is attended will be served during the next visit. 
Under the K~-Limited service discipline only a limited number of jobs (at most 
Ki) are served at each server's visit to queue i. There is extensive literature on 
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the theory and applications of these models. Among the first works are Cooper & 
Murray [1969] and Cooper [1970] who studied the cyclic Exhaustive and Gated 
regimes with no switchover times. Eisenberg [1972] generalized the results of 
Cooper & Murray by allowing changeover times and by considering a general 
polling table, i.e., by allowing a general configuration of the server's (periodic) 
sequence of visits to the channels. Many other authors have investigated various 
aspects of polling systems, and for a more detailed description the reader is re- 
ferred to a book [1986] and an update [1990] by Takagi, and to a survey by Levy 
& Sidi [1990]. 

Recently, Globally-Gated regimes were proposed by Boxma, Levy ~z Yechiali 
[1992], who provided a thorough analysis of the cyclic Globally-Gated (GG) 
scheme..  Under the Globally-Gated regime the server uses the instant of cycle 
beginning as a reference point of time, and serves in each queue only those jobs 
that  were present there at the cycle-beginning. 

A special, yet important,  polling mechanism is the so-called Elevator (or 
scan)-type (cf. Shoham & Yechiali [1992], Altman, Khamisy & Yechiali [1992]): 
instead of moving cyclically through the channels, the server first visits the 
queues in one direction, i.e. in the order 1, 2 , . . . ,  N ('up' cycle) and then reverses 
its orientation and serves the channels in the opposite direction ('down' cycle). 
Then it changes direction again, and keeps moving in this manner back and forth. 
This type of service regime is encountered in many applications, e.g. it models a 
common scheme of addressing a hard disk for writing (or reading) information 
on (or from) different tracks. Among its advantages is that  it saves the return 
walking time from channel N to channel 1. 

All the above models studied open systems with external arrivals, where jobs 
exit the system after service completion. Altman & Yechiali [1992] studied a 
closed system in which the number of jobs is fixed. They analyzed the Gated, 
Exhaustive, Mixed and Globally-Gated regimes and derived measures for sys- 
tem's performance. 

One of the main tools used in the analysis of polling systems is the derivation 
of a set of multi-dimensional Probability Generating Functions (PGSi's) of the 
number of jobs present in the w- ;~ ls  channels at a polling instant to queue i 
(i = 1 , 2 , . . . , N ) .  The commo.. .d is to d~,ve PGFi+I in terms of  PGFi 
and from the set of N (implicit) dependent equations in the unknown PGF~'s one 
can obtain expressions which allow for numerical calculation of the mean queue 
size or mean waiting time at each queue. The Globally-Gated regime stands 
out among the various disciplines as it yields a closed-form analysis and leads to 
explicit expressions for performance measures, such as mean and second moment 
of waiting time at each queue, as well as the Laplace-Stieltjes Transform (LST) 
of the cycle duration. 

Most of the work on polling systems has been concentrated on obtaining 
equilibrium mean-value or approximate results for the various service disciplines. 
Browne ~ Yechiali [1989a], [1989b] were the first to obtain dynamic control 
policies for systems under the Exhaustive, Gated or Mixed service regimes. At 
the beginning of each cycle the server decides on a new Hamiltonian tour and 
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visits the channels accordingly. Browne & Yechiali showed that if the objective is 
to minimize (or maximize) cycle-duration, then an index-type rule applies. Such 
a rule makes it extremely easy for practical implementations. For the Globally- 
Gated regime Boxma, Levy ~z Yechiali [1992] showed that  minimizing weighted 
waiting costs for each cycle individually, minimizes the long-run average weighted 
waiting costs of all customers in the system. A surprising result holds for the 
Globally-Gated Elevator-type mechanism (Altman, Khamisy ~z Yechiali [1992]): 
mean waiting times in all channels are the same. 

In this tutorial we present and discuss (i) analytical techniques used in study- 
ing polling systems, and (ii) methods derived and applied for dynamic control 
of such systems. 

In sections 3 and 4 we present the basic tools for analyzing polling systems 
with Gated or with Exhaustive service regimes, respectively. Section 5 discusses 
conservtion laws and optimal visit frequencies. In section 6 we address the issue of 
dynamic control of polling systems having service regimes with linear growth of 
work. Secion 7 studies the Globally-Gated regime, and in section 8 the Elevator- 
type polling mechanism is analyzed. Future directions of research are indicated 
in section 9. 

2 Models  and Nota t ion  

A polling system is composed of N channels (queues), labeled 1, 2, . . . ,  N, where 
'customers' (messages, jobs) arrive at channel i according to some arrival process, 
usually taken as an independent Poisson process with rate Ai. There is a single 
server in the system which moves from channel to channel following a prescribed 
order ('polling table'), most-commonly cyclic, i.e., visiting the queues in the 
order 1, 2 , , . . . ,  N - 1, N, 1, 2, . . . .  The server stays at a channel for a length of 
time determined by the service discipline and then moves on to the next channel. 

Each job in channel i (i = 1, 2 , . . . ,  N) carries an independent random service 
requirement Bi, having distribution function Gi(.), Laplace-Stieltjes Transform 

B/(-), mean hi, and second moment bl 2). The queue discipline determines how 
many jobs are to be served in each channel. The disciplines most often studied arc 
the Exhaustive, Gated and Limited service regimes. To illustrate these regimes, 
assume the server arrives to channel i to find m~ jobs (customers) waiting. Under 
the Exhaustive regime, the server must service channel i until it is empty before 
it is allowed to move on. This amount of time is distributed as the sum of ml 
ordinary busy periods in an M/Gi/1  queue. Under the Gated regime, the server 
'gates off' those m i  customers and serves only them before moving on to the 
next channel. As such, the total service time in channel i is distributed as the 
sum of mi ordinary service requirements. Under Limited service regimes, the 
server must serve either i job, at most Ki jobs, or deplete the queue at channel 
i by 1 (i.e., stay one busy period of M/Gi/1  type). According to the recently 
introduces Globally-Gated service regime, at the start of the cycle all channels 
are 'gated off' simultaneously, and only customers gated at that  instant will be 
served during the coming cycle. 
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Typically, the server takes a (random) non-negligible amount of time to 
switch between channels. This time is called 'walking' or 'switchover' period. 
The switehover duration from channel i to the next is denoted by Di, with LST 

/)i( '), mean di, and second moment d~ 2). In some applications (e.g. star con- 
figuration) the time to move from channel i to channel j (j r i) is composed 
of a switch over time Di, out of channel i, plus a switch-in period to channel 
j, Rj. In other applications, even for a cyclic polling procedure, the switch-in 
time Rj is incurred only if there is at least one message in queue i (see Altman, 
Blanc, Khamisy & Yechiali [1992]), thus saving the switching time into an empty 
channel. 

We will discuss here only systems where each channel has an infinite buffer 
capacity, assuming steady slate conditions, and we focus on conlinuous-time 
models where channel i is an M/Gi/1 queue with Poisson arrival rate hi and 
service requirements Bi. The analysis will concentrate on three main service 
regimes: Gated, Exhaustive and Globally-Gated. 

3 A n a l y s i s  o f  t h e  G a t e d  R e g i m e  

Let X i denote the number of jobs present in channel j (j = 1, 2 , . . . ,  N) when 
the server arrives at (polls) channel /  (= 1, 2 , . . . ,  N). Xl = (X/1, X ~ , . . . ,  X N) 
is the state of the system at that  instant. Let Ai(T) be the number of Poisson 
arrivals to channel i during a (random) time interval of length T. Then, for the 
Gated service regime, the evolution of the state of the system is given by 

~f--{1 Bik + Di j # i 
, _ ), 

~ k = l  Bik + Di , j = i 

where Bik are all distributed as Bi. 
One of the basic tools of analysis is to derive the multidimensional Probability 

Generating Function (PGF 0 of the state of the system at the polling instant to 
channel i (i = 1, 2 , . . . ,  N). PGFi is defined as 

N 

" j = l  " 

(2) 

Then, for the Gated regime, while using (1), 

G i . l _ l ( Z  ) -~ E z j  ,+1 

[fi Ifi X4 
= Exi zj ' E  

j = l  L j =  1 
j r  

z ; j ( ~ ,  B,~) Xi �9 
N 

(3) 
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For a Poisson random variable At(T), and with T(.) denoting the Laplace- 
Stieltjes Transform (LST) of T, we have 

F [ ~  ~(~)1 = E~[e-~(~-~)  ~ ] : ~ [ ~ ( 1 -  z~)] 

and 

~j----1 j----1 

Therefore 

Gi+l(Z) = Ex, zj ' Bi ~ )~j(1- zj) " Di Z )~j(1- zj) �9 

Thus, for i = 1, 2 , . . . ,  N - 1, N (where we take N + 1 as 1) 

a~+l(~)=a~ ~,z~,...,z~_~,~ a~(i-~ ,z~+~,...,z .54 ~(1-~; 
' -5=1 " j = l  

(4) 
Equations (4) define a set of N relations between the various PGFs which are 
used to derive moments of the variables X~, as follows. 

M o m e n t s  The mean number of messages, fi(j) = E(X~), present in channel j 
at a polling instant to channel i is obtained by taking derivatives of the PGFs, 
where 

fi(j) = E(X]) = 0Gi(z) z=l Oz~ (5) 

A set N 2 linear equations in {fi(J): i , j  = 1, 2 , . . . ,  N} determines their values: 

{ fi(j)  + Ajbifi(i) + Ajdi j # i 
f~+l(j) Aibifi(i) + )qdi j = i (6) 

Indeed, equations (6) could be obtained directly from (1). 
N N Set Pk = -~kbk, p = ~k=l Pk, d = ~k=l  dk. Then, the solution of (6) is given 

by 

+ J 

\ -  r ]  

The explanation of (7) is the following. It will be shown shortly that the mean 
cycle time is E[C] = d/(1 - p). During that  t ime the mean number of arrivals 
to channel i is )~iE[C]. Also, during a cycle the server renders service to channel 
k for an average length of time pkE[C]. Thus, the elapsed time since the last 
gating instant of channel j (j r i) until the polling instant of channel i, is 
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}-~k=ji-1 [pkE[C] + d~]. Within that  time-interval the mean number of arrivals to 
channel j is fi(j),  as given by (7).. 

The second moments of the X~ are also derived from the set of PGFs (4). 
Let 

fi(j ,  k) = E[X{ X~] - O2Gi(z) ~=1 Oz i Oz~ (i, j, k = 1, 2 , . . . ,  N not all equal) 

02ai(Z) z : l  (8) 
f i( i , i)  = E [ X ~ ( X ~ -  1 ) ] ] -  Ozg 

Clearly, Var[X[] = fi(i, i) + fi(i) - (fi(i)) ~. 
Taking derivatives, the solution of (8) is given (see, Takagi [1986]) as a set of 

N 3 linear equations in the N 3 unknowns {fi(j ,  k)}. 

Cycle Time The mean cycle time is obtained from the balance equation E[C] = 
pE[C] + d. Hence, 

d 
E[C] - 1 - p 

The mean sojourn time of the server at channel i is f~(i)bi = piE[C], and the 
number of jobs served in a cycle is clearly, ~N=I fi(i) = (~N= 1 ;h)E[C]. 

T h e  PGF of Li and Waiting Times 
Consider the probability generating function, Q~(z) = E,(z L'), of the number 

of customers, Li, left behind by an arbitrary departing customer from channel 
i in a polling system with arbitrary service regime. As the distributions of the 
number of customers in the system at epochs of arrival and epochs of departure 
are identical, then by the well known PASTA phenomenon (Poisson Arrivals See 
Time Averages), Qi(z) also stands for the generating function of the number of 
customers at channel i in a steady state condition at an arbitrary point of time. 

Let T/ be the total number of customers served in channel i during a visit 
of the server to that  channel, and let L~(n) (n = 1, 2 , . . . ,  T~), be the sequence 
of random variables denoting the number of customers that the n-th departing 
customer from channel i (counting from the moment that  the channel was last 
polled) leaves behind it. Then the PGF of L~ is given by (see, Takagi [1986], 
p. 78) 

E T. Q~(z) (E"'=lzn'('~)) 
= ( 9 )  

E(T,) 

As Li(n) = X[ - n + Ai ( ~ = 1  Bik), the evaluation of the expression for Qi(z) 
becomes 

-E(Td .=1 
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1 E z x, ~ z-~e - ' ( ~ : ~  B,~)(1-=) zX: 

1 ( B , ( A I ( 1 - z ) )  1--[B'(~"!I-z))]T') 
= E(~)E z x:.  z i -  ~,(~,!1-~)) 

tT i (h i (1 -  z)) ,~, X~-T,~ T~ [/7i(hi(1 z))]T')] . (10) 
E ( T / ) [ z -  B ( h i ( 1 -  z))] ~ i z  tz - - 

Let Wqi denote the queueing time of an arbitrary message at queue i, and let 
Wi = Wq, + Bi denote the sojourn (residence) time of a message in the system. 
As the messages left behind by a departing message from channel i have all 
arrived during its residence time Wi, we have 

 (nnmUe, ofmessageS)z s 
Qi(z) = k=oE p \ at c h a n n e l / =  k = k=o go e-~w k! dP(Wi _< w) 

= Wi [ h i ( 1 -  z)] = Wq, [ h i ( 1 -  z)]Bi[hi(1- z)] 
Hence, 

Wq,(s) - Qi(1 - s/h~) 
Bi(s) (11) 

For the Gated regime, X[ = T/, and therefore 

Z)) (E[z x~] - E [ ( B i ( h i ( 1 -  z)))x:]) (12) 

(see also Takagi [1986], p. 10V). 
As E(T/) = E(X[) = hiE[C], using ( l l )  and (12) leads to 

E((X~) 2) - E(X[) (1 + pi)fi(i, i) 
= 2-T E(T  (1+ = 2hTE[C] (18) 

By Little's law, E[Li] = hl [E(Wq,) + bi]. 

4 E x h a u s t i v e  R e g i m e  

To derive the PGF of the state of the system at a polling instant to channel i + 1 
we use the law of motion 

j X[ +Aj Ek'-lOik+Di , j • i  (14) 
Xi+l  ---- Ai(Di) , j = i 

where Oi denotes the length of a regular busy period in.an M/Gj1 queue, and 
O~k are all distributed as 0i. Then, 
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Gi+l(Z) = E z; '+: 

fI = Exi  zj ' �9 
N N ] 

j r  j r  

f i z j '  "Oi Aj(I - zj) 5 i  ~j(l - zj) = Ex ,  

Hence, 

G i + l ( z ) = a i  : ,z2, . . . ,Zi- l ,0i  ~j(1-zj  , z i+: , . . . , z  "Di l j (1 - z j )  
j = l  Lj=I  j r  

(15) 
To get the N 2 values of fi(j) one can differentiate (15) or use directly (14). 

The result is 

f fi(j) + AjE(Oi)fi(i) + Ajdi j • i 
/ ~ + l ( j )  (16) 

t Aj di j = i 

where E(Oi) = bi/(1 - Pi) is the mean duration of a regular busy period at 
channel i. 

The solution of (16) is 

fi(J) = ~i(1-- pi) (1--~p) j = i 
(17) 

The interpretation of (17) is the following. The mean cycle time is again 
E[C] = d/(1 - p), which is derived from the same balance equation as for the 
Gated regime. The fraction of time that  the server stays at channel i is Pi, 
hence, during the time interval since the server leaves (an empty) channel i 
until it arrives there again, the mean number of accumulated messages at i is 
Ai(1 - p~)E[C]. For channel j 5s i, the total switchover times from the moment 

i l l  the server last exited the channel until it enters channel i is ~k=j dk, and the 
mean time spent in each of the channels k = j + 1 , j  + 2 , , . . . , i -  1, is pkE[C]. 
Thus, the expected number of jobs accumulated at channel j when the server 
polls channel i is given by )lj ( i-1 i-1 d ~k=jdk  + ~=j+:Pk(~_p))" The PGF of the 
number of messages at channel i can be obtained by using result (10). For the 
Exhaustive case, the number of customers served during a visit to channel i is 

X '  = X[ + Ai(Ek_4: OIL), so that  E ( ~ )  = fi(i) + Aifi(i)E(Oi) = fi(i)/(1 - Pi), 
and by using (17), E(T/) = AlE[C]. 
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The PGF of the number of messages at channel i at an arbitrary point of 
time is given by Takagi [1986], p. 79: 

1 hi b (1  - z)] x ,  [E[Z , ]-  1] (18) 
Qi(z )  : l i E [ C ]  z - Bi  [~i(1 - z)] 

The mean number of messages at channel i and the mean queueing times are 
derived from (18), 

2 (2) 
)'i bi f i ( i ,  i) 

E[Li] = pi + - -  + 
2(i - 2A{(I - p{)E[C] 

~.#2) ,-i f (i, i) 
E [ W q , ] -  + 

Again, the values of f i ( i ,  i) have to be calculated numerically by solving a set of 
N 3 linear equations in the unknowns f i ( j ,  k) derived (see (8)) by differentiating 
the PGFs in (15). 

Remarks  on  C o m p u t a t i o n a l  M e t h o d s  
Several numerical procedures have been proposed for computing the mean 

waiting times in polling systems with Gated or with Exhaustive service regimes. 
The procedure mentioned above of determining the mean delay in various chan- 
nels by solving a set of N 3 linear equations is called the Buffer Occupancy 
method. It is of high computational complexity, but can also be applied to solve 
models with switch-in times or with limited-service regimes. A more efficient 
procedure is known as the Station Time method (see Ferguson & Aminetzah 
[1985]). This is an iterative procedure which has been applied to a number of 
polling systems, but cannot be directly used for closed networks or for open 
systems with customers' routing. Sarkar & Zangwill [1989] have developed an 
algorithm for cyclic (Exhaustive or Gated) systems were the mean waiting times 
are obtained by solving a set of only N linear equations (thus requiring O(N 3) 
computational steps). Recently, Konhein, Levy & Srinivasan [1993a] introduced 
a Descedant Set (DS) approach which is based on counting the number of de- 
scedants generated in the system by each customer. The method can be applied 
to variations of Exhaustive or Gated polling systems which are based on f ixed 
order of visits, and can also be used to derive second and higher delay moments. 
It is claimed that  the DS is superior to other methods due to its low compu- 
tational complexity, even though it is based on the buffer occupancy variables. 
In a further effort to develop efficient computational methods, the same authors 
[1993b] introduced the Individual Station (IS) technique which, like the DS pro- 
cedure, allows for the determining of mean waiting time at one or more selected 
nodes without having to obtain mean waiting times at all channels simultane- 
ously. The IS is superior to the DS for systems with high utilization factor, while 
the DS would be preferred for systems with very large N. 
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5 Conservation Laws and Visit Frequencies 

In an arbitrary single-server system (with single or multiple queues) when no 
work is generated or lost within the system, the amount of work present does 
not depend on the order of service - and hence equals the amount of work in the 
'corresponding' system with a single queue and FCFS service discipline. This 
'principle' of work conservation yields useful expression which we now discuss. 
Suppose that  no switching times are incurred in our polling system, and assume 
cyclic or any order of the server's visits. Then it is well known (see, Kleinrock 
[1975]) that the expected amount of work in the system is constant, i.e., 

E 'E[r I=EP'ztw')=P 
/=1  ' = 1  

(19) 

When switching times are incurred, Boxma & Groenendijk [1987] and Boxma 
[1989] have derived the so called 'pseudo-conservation laws' and showed that  for 
an arbitrary polling system with mixed channels 

E P ' E ( W i ) = W + P - 2 - d  -+  2(1 p) P 2 - E P Y  + E E M ( 1 )  
/ = 1  / : 1  " /=1  

(20) 

where E M  (1) is the expected unfinished work at the ith queue at an (arbitrary) 
instant of departure of the server from that queue. Result (20) holds for any 

service regime, and EM[ 1) depends only on the service discipline in channel i. 

For the Exhaustive service regime E M  0) = 0 for every i, so that  

N - -  d (2) d [ N ] 

E P i E ( W , )  : W + p--~--~ + 2(1 P------~ p2 _ E p  ' . (21) 
i=1  /=1  J 

For the Gated regime, we use (7) and write 

Hence, for the Gated, 

 p s(W,l=W+pb +2(1 p) p2+ . 
/=1  

(22) 

It follows that  for the same set of parameters, whenever switchover times are 
incurred the mean amount of work in the system under the Exhaustive regime is 
smaller then that  under the Gated discipline. Furthermore, expressions (21) and 
(22) enabled Boxma, Levy ~: Weststrate (see, Boxma [1991]) to develop 'good' 
visit frequencies of the server to the various channels so as to construct a polling 
table that  will reduce the value of the expected amount of work in the system, 
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as expressed in (20). For the Exhaustive and for the Gated regimes the visit 
gated frequencies v~ xh, and v i are given by 

vTxh = ~/pi(l - pi)/di 

E;----1 X/Pj( 1 - pj)/dj 

v/gated X/Pi(1 -k pi)/di 
N E =I (1 + p;)/dj 

For example, in a 3-channel case for which the calculated visit frequencies are 
0.52, 0.32 and 0.16, the approximate visit frequencies are 1/2, 1/3 and 1/6, 
respectively, such that  a (periodic) polling table of size 6 is constructed with the 
order of visits [1,2,1,3,1,2]. 

An~)ther approach in the a t tempt  to control and otimize the visit frequencies 
of the server to the various channels is the Cyclic Bernoulli Polling (CBP) intro- 
duced by Altman & Yeehiali [1993]. The server moves cyclically among the N 
channels where change-over times between stations are composed of two parts: 
walking times required to 'move' from one channel to another and switch-in 
times that are incurred only when the server actually enters a station to ren- 
der service. Upon arrival to channel i the server switches in with probability 
Pi, or moves on to the next channel (with probability 1 - P i )  without serving 
any customer. Altman ~: Yechiali analyzed the Gated and Exhaustive regimes 
and defined a mathematical  program to find the optimal values of the switch-in 

{Pi}i=l so as to minimize the expected amount  of unfinished work probabilites N 
in the system. Any CBP scheme for which the optimal pi's are not equal to 1 
yields a smaller amount of expected unfinished work in the system than that  
in the standard cyclic procedure with equivalent parameters. They showed that  
even in the ease of a single queue, it is not always true that  Pl = 1 is the best 
strategy, and derived conditions under which it is optimal to have pl < 1. 

6 D y n a m i c  C o n t r o l  o f  S e r v e r ' s  V i s i t s :  H a m i l t o n i a n  

T o u r s  

A basic question that  arises when planning efficient polling systems concerns 
the order of visits performed by the server. For static order one can think of 
a 'good' polling table that  optimizes some measure of effectiveness. Steps in 
this direction were taken, as mentioned in section 5, by various authors. How- 
ever, a more reaching goal is to control the system dynamically, so that  the 
server will modify its order of visits in response to the stochastic evolution of 
the system. In other words, the general control problem facing the server when 
it exits a specific channel, is "which of the channels to visit next?". In trying to 
solve this problem Browne & Yechiali [1989a], [1989b] developed and formulated 
semi-Markov Decision Processes (SMDP) for the Gated and for the Exhaustive 
regimes. They derived a set of optimality equations where the objective is to min- 
imize mean weighted waiting costs. However, these equations are non-tractable, 
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so that one should look for alternative methods. An appealing approach is to 
look for semi-dynamic control schemes. The idea is to dispatch the server to 
perform Hamiltonian tours, each tour different from its previous one, depending 
on the state of the system at the beginning of the tour, so as to optimize some 
measure of effectiveness. 

Specifically, suppose that  at the beginning of a cycle the state of the system 
is ( n l , n 2 , . . . , n N ) ,  where ni is the number of jobs waiting in channel i (1 _< 
i ___ N).  Assume for the moment that  switching times between channels are 
negligible. The objective is to choose a path (Hamiltonian tour) through the 
queues so as to minimize the expected time of traversing this path. It was shown 
by Browne L: Yechiali [1989a], [1989b] that  for both service disciplines - the fully 
Gated and the fully Exhaustive - this measure of effectiveness is minimized 
if the channels are ordered by increasing values of the index ni/~i .  This is a 
surprising result, as the index ni/~i  does not include the service times at the 
various channels. It is surprising as well that  the same index-rule holds for both 
service regimes (although, obviously, the duration of a Gated-type cycle that  
starts with (nt,  n2 , . . . ,  rig) differs from its Exhaustive counter-part starting with 
the same system-state). 

The dynamics of the control are such that at the end of each t tamiltonian 
! ! cycle a new system-state is observed, say (nt,  n2 , . . .  , n~v), and the server follows 

a new path governed by a new order: increasing values of n~/)~, etc. This is an 
extremely simple rule which can be directly implemented. Moreover, suppose 
that,  for one reason or another, there are systems where the objective is to max- 
imize the duration of each cycle. Then, the index-rule that  determines the order 
of visits to the channels is simply reversed: the server completes a Ilamiltonian 
tour determined by a decreasing order of n j A i .  

To understand the above surprising result Browne ~: Yechiali [1990] studies 
a general scheduling problem with a linear growth of work, as follows. 

Consider a single-processor system with N jobs waiting to be performed 
sequentially. Let ai be the initial (expected) processing t ime requirement of job 
i (i = 1, 2 , . . . ,  N),  called the 'core'. If job i is delayed and is started at t ime t, 
then its processing requirement grows linearly with the delay to 

Yi(t) = ai + air 

where ai is the growth rate of work requirement by job i. Consider the processing 
order ~r0 = (1, 2 , . . . ,  N),  and let Y~ denote the actual processing length of job i 

under ~r0. Let Sk = E/k=1 Yi be the completion time of job k under 7r0 (So = 0). 
Then Yj = aj +aj  Sj_ 1. By adding Sj_ 1 to both sides we obtain a set of difference 
equations 

Sj - (1 + olj)Sj_l ~ -  aj (j  = 1, 2 , . . . ,  N)  (23) 

The solution of (23) is 

J J 
S) = E a i  H ( l + a T )  ( j = l , 2 , . . . , N )  (24) 

i =1  r = i + l  
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so that  the makespan is S g  S y ( ~ o )  EN=I N = = ai l-I~=i+1(1 + o~). 
The objective is to find a visit order ~ that  minimizes  the makespan SN(~r) 

over all n! possible permutations ~'. 
Consider now the processing sequence 7r 1 ~-  ( 1 , 2 , . . . , j  - 1 , j  + 1 , j , j  + 

2 , . . . ,  N),  where the order of jobs j and j + 1 is interchanged. The correspond- 
ing makespan is S N ( ~ I ) .  Then, it is easy to show that S g ( ~ o )  < SN(~I) iff 
aj/c~j < a j + l / a j + l .  That  is, the makespan is minimized  (maximized) if we pro- 
cess the jobs in an increasing (decreasing) order of the ratio index a i /a i ,  i.e., 
'core' divided by 'growth rate'.  

Consider again the Gated regime. If (nl,  n 2 , . . . ,  aN)  is the state of the system 
at the start  of the Hamiltonian tour, then ai = nibi. The growth rate (i.e., the 
amount of work flowing to channel i per unit of time) is p~. Hence, 

ai  n i b i  n i  

ai Aibi Ai " 

For the Exhaustive regime, al -- h i E ( @ )  -- ni(l_p,)-h-- , whereas ai --1-pi-- P' (the 
duration of time that  the server has to stay in channel i grows linearly at a rate 

g,  of ~ for each new arrival. As the rate of arrivals is Ai, we have c~i = l-p,  )" 
s 

Thus, for the Exhaustive case 

ai n i ~ , l _ p , j  nlbl ni 

which is the same index as for the Gated regime. 
We can now reintroduce the switchover and switch-in times. For illustration, 

assume a star-configuration of the system. Recall that  Di is the switchover t ime 
out o f i  and/~j  denotes the switch-in duration into j .  Then, for the Gated regime, 
assuming gating occurs after switch-in is completed, 

ai = nibi + (1 + pi)ri  + di 

Oil = fli , 

so that  aiai  = [nibi + (1 + pi)ri  + d i ] / p i .  For the Exhaustive 

r i  n i  bi 
ai -- - -  + + di 

1 - p ~  1 - p ~  
~ = p j ( 1  - pi) , 

so that  a i / a i  = [ri + nibi + di(1 - p i ) ] /p , .  
It should be emphasized that  the scheduling principle a i / a i  can be applied 

to any system with a mixed set of service regimes among the channels: Gated, 
Exhaustive, Binomial or Bernoulli Gated, Binomial or Bernoulli Exhaustive, etc. 
(see, Yechiali [1991]). All that  one has to do is to calculate (once) ai  for every 
channel, and then, at the beginning of each new Hamiltonian tour, to calculate 
the current 'core' ai at each channel. Then, performing a visit tour that  follows an 
increasing (decreasing) order of a i / a i  will minimize  (maximize) cycle duration. 
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Browne ~; Yechiali [1991] further employed the above ideas to achieve dy- 
namic scheduling in systems with only a unit buffer at each channel. 

7 T h e  G l o b a l l y - G a t e d  R e g i m e  

A drawback both of the Gated and the Exhaustive regimes is that they are not 
'fair' with regard to the FCFS principle. To help resolve this dichotomy, Boxma, 
Levy & Yechiali [1992] introduced a (cyclic) Globally Gated (GG) service scheme 
which uses a time-stamp mechanism for its operation: the server moves cyclically 
among the queues, and uses the instant of cycle-beginning as a reference point of 
time; when it reaches a queue it serves there all (and only) customers who were 
present at that queue at the cycle-beginning. This strategy can be implemented 
by marking all customers with a time-stamp denoting their arrival time. In its 
nature the GG policy resembles the regular Gated policy. However, the GG 
policy leads to a mathematical model which allows for derivation of closed-form 
expressions for the mean delay in the various queues. As a result, the operation 
of the polling system by the GG policy is easy to control and optimize. As 
in earlier sections, the system consists of N infinite-buffer channels, the rate of 
offered load to queue i is Pi = )~ibi and the total system load-rate is p -- }-~N=I Pi. 
When leaving queue i and before starting service at the next queue, the server 
incurs a random switchover period Di. The total 'walking' time in a cycle is 
D =_ ~ = 1  Di. (Clearly, other 'Global' versions, such as Globally Exhaustive, 
can be easily imagined and analyzed.) 

Cycle Time 
Assume, without loss of generality, that a cycle starts from channel 1. Let 

( X  1 , X 2 , . . . ,  X~, . . . ,  X N) ~- (X1, X 2 , . . .  , X j , . . . ,  XN) be the  s t a t e  of  the  sys- 
t em at the beginning of the cycle. Then, the cycle duration is 

N X3 

C:D+ZEB. 
j = l  k=l 

The LST of C is derived as follows 

N 

E(~ - ~ c  I (x l ,  x ~ , . . . ,  xN))  = b ( w ) r [  (B~(w)) Xj �9 (251 
j=l 

On the other hand, the length of a cycle determines the joint queue-length dis- 
tribution at the beginning of the next cycle. Hence 

z _ z 7'  = z c  z _ z T ' t c  : E c  exp - ~ ( 1 - z ~ ) C  

N 

"j=l 
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Combining (25) and (26) 

N 

The mean cycle time is derived from (27) 

N 

That is, E[C] = d / (1  - p), as for the Gated and the Exhaustive regimes. The 
second moment of C is derived from (27) 

[ < / ] /  z[c2]= d(2)+ 2~e+~jb~ ~) E[C] V-p~). (28) 
j----1 

Let Cp and CR denote, respectively, the past and residual duration of a cycle. 
It is well known that 

~p(w) = 5R(w)_ 

and E[Cp] = E[CR] = E[C2] 
2E[C] " 

1 - ~(w) 
wE[C] 

P s e u d o - C o n s e r v a t i o n  law 
To derive a pseudo-conservation law we use (20) and the observation that for 

the cyclic GG regime, E ( X j )  = pj E[C] and 

EM}I)=p  =PJ  P'I-# 
i=1 i=1 i=1 

Substituting (29)in (20) yields 

d 
+ d i  + P ~ I  p 

(29) 

N d (2) d N j-1 
~ p ~ e ( w ~ ) = W + p T - [ +  l _ p p  ~ + ~.p~F_,d~ . 
j = l  j = 2  i=1 

(30) 

Waiting Times 
Consider an arbitrary job K at channel k. The cycle age at the job's arrival 

instant is Cp. The job's waiting time is composed of (i) the residual cycle time 
Ct~, (ii) the service times of all customers who arrive at channels 1 to k - 1 
during the cycle in which K arrives, (iii) the switchover times of the server 
through channels 1 to k, and (iv) the service times of all customers that  arrive 
at channel k during the past part of the cycle, Cp.  Then 
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k-1 k-1  

E(W ) = E[CR] + Z pj (E[Cp] + E[CR]) + + p E[Cp] 
j=l  j=l  

k-1 k-1 
= ( l - [ - 2 ~ p j ~ p k ) E [ C R ] + ~ d j  �9 (31) 

j = l  j = l  

It readily follows that  

E(Wk+I)  - E (Wk)  = (pk+l + pk)E[CR] + dk 

so that,  for the cyclic GG regime, we always have 

E(W1)  < E(W2) < . . .  < E ( W N )  . (32) 

Boxma, Weststrate ~ Yechiali [1993] extended the cyclic GG model to the case 
where the server suffers periods of breakdown, and applied the results to real- 
world repairman problems where both preventive and corrective maintenance 
actions are considered. 

Static Optimization 
Let ck be the cost rate of a waiting job at queue k. Then, the mean weighted 

waiting cost of an arbitrary job in the system is 

N N 

By substituting (31) into (33) and using an interchange argument it follows that  
the cycle which minimized (33) is determined by an increasing order of the index 

2E[CR]pj + d~ 

uj = Aj cj 

If dj is negligible, the above index reduces to the index bj/ej,  which is the well 
known "c#" rule. 

D y n a m i c  C o n t r o l  
An important characteristic of the GG regime is that the order of visits 

selected for one cycle does not affect the future stochastic behaviour of the 
system. Moreover, any t tamiltonian tour that  starts from state (nl,  n~ , . . . ,  nM) 
yields the same cycle duration C(nl ,  n~ , . . . ,  nN). Thus, if we consider the costs 
incurred during the cycle by the customers present at its initiation and add to 
it the costs incurred along that  cycle by the new arrivals, then the long-run 
miminal cost can be achieved by determining a new optimal Hamiltonian tour 
for each cycle independently. 

The mean total weighted cost incurred during a cycle starting with 
(nl, n2 , . . . ,  nN) is 
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N [ k - 1  nk-1 ] 

k=l E ck ~tkj~l(njbj + E/=I i (34) 

N 

+ It(n,, n2,.. . ,  nN)2]/2 
k=l 

where the first term is the contribution to total cost incurred by the customers 
present at the cycle beginning, and the second term is due to the customers 
arriving during that  cycle (see, Yechiali [1976]). The only term in (34) that  

N v-~k- 1 ~ b depends on the order of visits is ~ k =  cknk 2_,j=l(nj j + dj). It follows (by an 
interchange argument) that the optimal order of visits that minimizes expected 
total costs of the coming cycle is determined by an increasing order of the 
(Gittins) index 

njbj + dj 
njcj 

Again, for negligible dj this index reduces to the "cp" rule (i.e., bj/cj).  

8 Elevator-Type Polling 

In an Elevator-type (scan) polling mechanism the server alternates between 'up' 
and 'down' cycles. In an 'up' cycle it visits the channels in the order 1, 2 , . . . ,  N -  
1, N, and in a 'down' cycle the order of visits is reversed to N, N - l , . . . ,  2, 1. This 
type of polling procedure is encountered in many applications, e.g., it models 
a common scheme of addressing a hard disk for writing (reading) information 
on (from) different tracks. It is important to note that  the Elevator-type polling 
saves the return walking time from channel N to channel 1. A comprehensive 
analysis of Elevator-type polling with four different service regimes can be found 
in Shoham & YechiMi [1992]. Here we present the Globally-Gated (GG) regime 
as discussed in Altman, Khamisy & Yechiali [1992]. 

According to the Elevator-type polling with GG service regime all chan- 
nels are gated off at the beginning of the 'up' cycle, where the system-state is 

up up up up 
n 1 , n~ , . . . ,  n N ), and the server resides in channel i for n i regular service du- 

rations. At the end of the up cycle all channels are gated again, the system-state 
is (ndown, ~2down, . . .,nNdown,), and the server starts its down cycle, serving n d ~  

customers in channel i. We assume that  the down walking time from channel 
i + 1 to channel i has the same distribution as the up walking time Di from 
channel i to channel i + 1. A key observation is that  arbitrary up and down 
cycles have the same distribution, which differs from its cyclic GG counter-part 
only in that  it is smaller by the 'saved' walking time DN. Hence, the results 
derived for the cycle time distribution (27) and for mean waiting times (31) in 
a cyclic GG regime are directly applicable to the Elevator case, with DN = O. 
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Wai t ing  Times  
Consider an arbitrary job at channel k. Since all cycles are distributed alike, 

the job arrives during an up or a down cycle with equal probabilites, 0.5. Hence, 
its mean waiting time is given by 

(. I s e r v e r  _ I s e r v e r  
E(Wk):O.hE~Wklmovesdown)+O.hE(Wk movesup) .  (35) 

The expression for E Wk is given by (31), with dN = 0, whereas, 
m o v e s  down 

by reversing the order of visits, we have 

E Wk server = 1 + 2  E PJ +pt: E[CR]+ dj . (36) 
moves up 

j = k + l  j=k 

Combining (35) with (31) and (36) yields the surprising result 

E(Wk) = (1 + p)E[CR] + 0.hd. (37) 

That is, expected waiting times are equal in all channels. This is the only-known 
non-symmetric polling system that exhibits such a "fairness" phenomenon. An 
explanation of result (37) is the following. An arbitrary arrival has to wait, 
on the average, E[C_a] units of time until the cycle (up or down) in which it 
arrives terminates. Then, it waits until the server moves back to channel k, 
which requires, on the average (taking into account both directions), } [(E[CR] + 
z[Cd)p + d] units of time. 

Op t ima l  A r r a n g e m e n t  of  Channels  The interesting result that E(W.e) is 
the same for all channels, independent of their location, leads to considering 
channels' arrangement such that the variation in waiting times will be small. 

Let a~ = 2E[CRIp~ + d~ (i = 1, 2,..., N). Then 

server 
E = E[CR](1 + + Z moves down 

i----I 

server ~ = E [ C R I ( I + p k ) +  E a i + d ~  E W~ moves up ] 
i = k + l  

k -1  Let A~ = E(Wk I d o w n ) -  E(Wk ] up) = s163 dk. Now, 
N 

A t  = -- ~ i = 2  ai -- d l <  O, A N  = ~-~N..~I ai > 0 ( reca l l  t h a t  dN= 0),  and  A~ is 
a monotone increasing function of k. 

One goal is to arrange the channels such that maxl<k<g { IAkl} is as small 
as possible. Clearly 

l~a_<xN {Iakl} = max{IZ~ll,lANI} 

= max E ai - 2E[CR]pl, E a i -  2E[CI:t]pN 
i = i  i----1 
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It follows from (38)that maxl<k<N {Inkl} is minimized if channel 1 is the one 
with the highest value of pi and channel N is the one with the second highest 
value of pi (or vice versa). 

9 F u t u r e  D i r e c t i o n s  o f  R e s e a r c h  

We have presented methods of analysis for single-server, continuous-time, infinite 
buffers polling systems, and studied several control and optimization problems. 
Difficult problems are finite-capacity models and limited service regimes, for 
which only partial solutions are given in the literature (see, bibliography in 
Takagi [1990]). A few authors have studied polling systems with multiple servers, 
and recently Browns & Weiss [1992] investigated dynamic priority rules for a 
system with parallel servers. 

All the systems mentioned above are open, with external arrivals, where 
jobs exit the system after service completion. Closed systems should also be 
investigated, and only recently Altman & Yechiali [1992] analyzed such systems 
with Gated, Exhaustive or Globally-Gated service regimes. 

For other future directions of research we state a recent 'call for papers' on 
"Discrete-Time Models and Analysis Methods": 

"The past few years have seen an increasing interest in discrete-time 
models and their solution techniques. One of the driving forces behind 
this area has been new developments in telecommunications, espacially 
in high-speed metropolitan area and wide area networks. Tehcnological 
advances and user demands have shifted the evolution of telecommunica- 
tion systems towards integrated networks where information is transferred 
in small, ofted fixed-size, packets, slots or cells (e.g., ATM networks, high- 
speed LANs and MANs such as DQDB, etc...), operting in a discrete-time 
environment. The resulting mathematical models of such slotted systems, 
crucial for the evaluation of design alternatives and their dimensioning, 
are discrete-time models. The complexity of the stochastic processes in- 
volved (e.g., arrival and departure processes) and of the system operation 
mechanisms (e.g., service mechanism, access protocol, etc...) pose an ex- 
citing challenge for the development of efficient and tractable methods 
for deriving the main performance measures of these systems. 

Papers are solicited on discrete-time models and their analysis meth- 
ods, in particular on, but not restricted to, the following topics: 
- -  Discrete-time queueing models (polling systems, priority systems, 

multiserver systems, vacation models, etc...). 
- -  Exact and approximate solution methods for discrete-time queueing 

models, with emphasis on the efficiency and the numerical tractability 
of these methods. 

- -  Stochastic processes as traffic models for performance studies (taking 
into account the diversity of time scales, correlations between arrivals, 
etc...) 
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- -  Discrete-time markov chains and their analysis methods".  

Naturally, we add to the above topics the interesting and challenging prob- 
lems of control and optimizat ion of such systems. 
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