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Abstract 
Structurally object-oriented database systems are a new class of dedicated data stor­
age systems which are intended to form the basis of CAD, CASE, and other design 
environments which are to support large, distributed development teams. Several 
concepts of discretionary access controls (DAC) for such systems have been pro­
posed; these concepts support nested complex objects and nested working groups. 
However, they do not support roles in development teams such as designers, review­
ers, managers etc., whose access rights are typically given in terms of object types 
rather than only in terms of objects. 

This paper presents a concept of type-level DAC which is intended to comple­
ment instance-level DAC and to support roles in development projects. The concept 
consists of a formal model of the state of the object base with regard to access 
controls and a formula which derives from this state and the security context of 
a process the type-rights of this process. Our model has virtually no built-in, en­
forced policies; it allows users to realize a wide range of application-specific security 
policies. It supports multiple inheritance; in order to prevent inconsistent rights on 
types with common subtypes, certain consistency constraints are introduced. The 
model is group-oriented in that it supports nested working groups and inheritance 
of rights along group hierarchies. Access to individual types can be explicitly denied. 
It is implementable in a distributed system; the administration of rights can be fully 
decentralized. 

Keywords: views; discretionary access controls; object-oriented database sys­
tems; distribution; multiple inheritance; group-orientation; access control lists 

1 Introduction and Overview 

Design environments for CAD, CASE or similar application domains impose new 
requirements on their underlying data management system. Conventional data­
base systems or file systems do not fulfil these requirements. This has led to the 
development of a large number of object-oriented database management systems 
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(OODBMSs; surveys appear in [UnS90, Vo91]). Since there is a wide variety of 
different data models, they are not easy to classify; a frequently used classification 
distinguishes between 

- structurally object-oriented data models, which offer hierarchically structured 
complex objects; objects, attributes and relationships are accessed using generic 
operations such as copy, read or write; 

- behaviourally object-oriented data models, which allow type-specific operations 
to be defined on objects, i.e. to encapsulate objects according to the principles of 
abstract data types; they do not generally support complex objects. 

This paper deals with discretionary access controls for distributed, structurally 
object-oriented DBSs. More specifically, we will mainly refer to systems which have 
been designed to form the basis of software development environments, which are 
used in large development projects. We will use the term object management 
system (OMS) to refer to such database management systems and the term ob­
ject base to refer to the database managed by the OMS. The main features of such 
OMSs will be presented in section 2.4. 

This paper deals only with discretionary access controls (DAC), not with 
mandatory access controls, since software developers traditionally prefer DAC. DAC 
are means of restricting access to data granules on the basis of the identity of sub­
jects and/or groups to which the subjects belong. The controls are discretionary in 
the sense that certain subjects ("owners") of a data granule can determine whether 
and how other subjects can access this data granule. 

DAC concepts for conventional database management or file systems, e.g. con­
ventional access control lists or views, are not adequate for OMSs because they do 
not meet the novel conditions for, and requirements on, access controls in OMSs (see 
also [DDMR91, EURAC89, GrS87, Ke90, LuF90]): 

- There is a hierarchy of nested, overlapping complex objects. A complex object, 
e.g. a document, a parse tree, a module hierarchy, or parts thereof, is tlie typical 
unit of access in software development environments, rather then a set of atomic 
objects which is specified by a query. Therefore, each complex object must be a 
granule of access control. 

- Data managed by an OMS are typed. Typically, users can define hierarchies of 
object types, even using multiple inheritance in many OMSs. Type hierarchies must 
therefore be supported by access control concepts for OMSs. 

- Design environments are mostly based on workstations and servers which may form 
large networks. Distribution of data in such architectures must be supported. 

- The members of a development team are organized in nested working groups. 
Such hierarchies of groups must be supported; we call such access controls group­
oriented. 

The resultant requirements on access controls are discussed in more detail in 
section 2. In sum, access controls for OMSs present a new challenge and require new 
approaches. 
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Only a small number of concepts for DAC in object-oriented database systems 
OMSs have been proposed until now [Br91, CAIS88, DiHP88, FeGS89, Ke90, La&90, 
LuF90, Ra&90]. Most of these concepts support neither nested working groups nor 
distribution; in order to do so, they would have to be significantly modified or ex­
tended. Only some of them deal with types and type hierarchies; there are two 
completely different approaches for dealing with types: 

1. One approach is to treat a type as the set of all its instances (i.e. as a class). 
Here, a right on an object type implies (!!) this right on all objects of this type. 
This means that the set of all instances of a type is simply another granule 
within the hierarchy of nested granules. 

2. The other approach is to treat access controls for types and for instances as 
orthogonal to each other. This means that access can be restricted both 

- on the basis of individual instances, i.e. on the instance level, and 

- on the basis of types, i.e. on the type level. 

The overall effect of these levels (or dimensions) is roughly the same as the 
effect of a selection and a projection which form a view in relational database 
systems (s. fig. 1; a more detailed analysis appears in [Ke91]) if we regard an 
object as a tuple of a relation: 

- the rights on instances restrict access to certain objects / tuples. In views, 
this is achieved by means of a selection. Other systems use object-specific 
access control lists for this purpose. 

- the rights on types restrict (e.g.) access to certain attributes of objects or 
relationships. In views, this is achieved by means of a projection. 

tuples/ 

objects 

tl 

tm 

attributes 

Figure 1: Effect of orthogonal type-level and instance-level access controls 

This paper adopts the second approach, i.e. orthogonal access controls on the 
instance level and on the type level, and will be entirely concerned with type­
level DAC. We will assume an instance-level DAC concept which supports complex 
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objects as granules of protection, distribution and nested working groups (as e.g. 
[Ke90, PCTE90]). 

This paper presents a concept for type-level access controls in OMSs which meets 
the requirements mentioned above. This concept includes a formal model of the state 
of an object base with regard to security, the security context of a process accessing 
the object base, and a formula which determines which accesses are allowed. The 
models and the formula should be seen as the specification of a security mechanism 
which allows one to implement a wide range of discretionary security policies. The 
model itself (or a mechanism which implements the model) does virtually not con­
strain the security policies. The constraints are necessary to prevent inconsistent 
access right determinations which can occur due to multiple inheritance. 

This concept has been developed for, and implemented in, one particular OMS, 
namely H-PCTE. H-PCTE is a high-performance, main-memory-oriented version of 
PCTE1 [PCTE90, PCTE91]. However, we present our concepts on a level which 
abstracts from most details of the data model of H-PCTE (or other OMSs) because 
they are not of immediate relevance here and because our concepts are actually ap­
plicable to a wide range of structurally object-oriented OMSs for CASE and other 
application domains. Of course, detailed features of other OMS data models may 
necessitate certain adaptations. 

The rest of this paper is organized as follows: Section 2 introduces, for several 
problem areas, background information, definitions, basic features of our concept, 
and a summary of the main problems of this area. Section 3 introduces a central 
notion of our concept, type-level access right determinations. Section 4 presents a 
model of the type rights of a process, i.e. of the "semantics" of an external schema. 
Section 5 outlines the way in which the concept has been implemented in H-PCTE. 
Section 7 compares our approach with other proposals. 

2 Problem Analysis and Basic Definitions 

This section introduces, for several problem areas, background information, defi­
nitions, basic features of DAC concepts for OMSs, and a summary of the main 
problems. Readers familiar with OMSs or with DAC in OMSs may skip the relevant 
subsections. 

2.1 Basic Notions 

2.1.1 Instance-Level DAC 

A (data) granule is a passive entity which contains or receives information. Access 
to a granule potentially implies access to the information it contains. Normally, the 
term 'object' is used instead of 'granule'; however, this would be confusing here since 
objects are not the only granules in DAC for OMSs. 

A subject is an active entity, e.g. a person or a device, that causes information 
to flow among objects or changes the system state. We assume here that the OMS 
is accessed by executing programs on behalf of a (human) user. 

1 PCTE is the acronym of "A Basis for a Portable Common Tool Environment". 



25 

An access mode, or simply a mode, is a name for a set of elementary modifi­
cations or retrievals in the OMS. 

We model the state of the object base with regard to instance-level DAC as a 
mapping 

iard : S * G * M -+ V 

with S being the set of subjects, G being the set of data granules, M being the set 
of access modes, and V being the set of access values2 . The mapping iard can also 
be regarded as a set of quadruples 

(s,g,m,v) 
s being a subject, g being a granule, m being a mode, and v being a value which indi­
cates whether s is to be allowed to access g using operations in m. Such a quadruple 
is called a instance-level access right determination (lARD for short). The 
object base contains, for each triple {s,g,m), exactly one lARD (s,g,m,v) with v = 
iard{s,g,m). 

There are various ways in which the abstract state can be implemented, e.g. using 
object-specific access control lists. 

The object base can only be accessed by a process. A process acts on behalf 
of one or several subjects3 . If a process calls an OMS operation then the state as 
determined by the lARDs is evaluated (this evaluation can be non-trivial), that is, 
the (instance-) rights of this process are computed. 

2.1.2 Schemata 

We will assume that all the data managed by an OMS is typed. The conceptual 
schema of an object base contains the definition of all the types which are known 
in this object base. 

Individual processes are given a selective view on the object base by means of an 
external schema. An external schema (or view4 ) of a process is, roughly speaking, 
a subset of the type definitions of the conceptual schema; these types are called visi­
ble in this external schema. In addition, the set of operations which are applicable to 
the instances of a given type may be restricted. An external schema thus represents 
a set of "type-rights" of a process, namely the right to "see" certain types and to 
perform certain operations with instances of these types. 

2.2 Distribution 

Design environments are typically based on workstations and servers which are con­
nected by a local area network. We assume that the object base is distributed over 

2 Note that this is a straightforward extension of the well-known access-matrix model: the access 
matrix defines a mapping which maps each pair {s,g) onto a set of allowed access modes if access 
modes are distinguished, or onto a Boolean value otherwise. Since we assume more than 2 access 
values, the access matrix is no longer appropriate. 

3 How users identify and authenticate themselves and how their identity is passed on to processes 
falls out of the scope of this paper. 

4 [PCTE90) actually uses the term 'working schema'; we will use more usual terminology in this 
paper. 
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the network. This requires the object base to be partitioned into several segments 

which can be independently stored, e.g. in a file or a "raw volume". Moreover we 

assume that certain types of volumes, e.g. optical discs or floppy discs, can be tem­

porarily dismounted. 
Finally we assume that the OMS allows users to move individual design objects 

between segments (typically in order to have them locally available). 

2.2.1 Main Problems 

Owing to the advent of large networks and portable workstations, we have to as­

sume that it is fairly probable that single workstations which are part of an OMS 

installation are unreachable, e.g. due to a network failure or because they are discon­

nected from the network or non-operational (e.g. switched off). Note that this kind 

of situation may last for a long period (up to several weeks). Moreover, a segment 

may be unavailable because the volume where it is stored has been dismounted. A 

very important design goal is therefore for the OMS to remain resilient against the 

unavailability of segments. It should be possible to perform sensible work on a site 

with the segments reachable from this site. A special case of this is the autonomous 

operation of an isolated workstation. Dependencies on data stored in other segments, 

or on central resources, must be strictly avoided. (Communication delays are another 

reason for adopting this design policy.) 

It must also be possible to install new software development tools when only a 

subset of all segments is accessible. Since tools typically use private data types, their 

installation will require an extension, or modification, of the conceptual schema and 

the external schemata. As a result, 

- the conceptual schema and the external schemata must be managed in such a way 

that they can evolve independently at different sites; 

- a single site may only know part of the conceptual schema; 

- we cannot assume a centrally administrated conceptual schema. 

Traditional approaches for the definition of views, e.g. view definition languages 

in relational systems, are no longer applicable, because they are biased towards 

central administration. 

2.3 Subjects 

We make certain assumptions oil how projects which use an OMS-based environ­

ment are organized into subgroups. These assumptions and the resultant features of 

group-oriented DAC will be outlined in this section. A more detailed discussion of 

this topic can be found in [Ke90, Ke90a]. 

Working groups in a project are formed according to a repeated division of the 

overall task of the project into smaller tasks. In general, there can be a partial order 

of groups. Work may be divided 

- quantitatively, e.g. a system is divided into subsystems which are developed inde­

pendently, or 
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- qualitatively, e.g. according to usual roles in a project (analyst, designer, program­
mer, manager, technical writer etc.). 

We will assume the following basic features of group-oriented DAC in the rest 
of this paper: Groups and their subgroup structure are managed by the OMS. The 
"subgroup of' structure is a connected, acyclic graph with one root, namely the pre­
defined group WORLD. Each user is a member in at least one group and therefore 
directly or indirectly a member of the group WORLD. Groups can be subjects in 
lARDs. An object can have lARDs for arbitrarily many groups. 

The rights of a group can only be exploited if this group has been "activated" 
for the process which performs the access. In general, several groups can be acti­
vated at the same time. The set of active subjects of a process is called its security 
context. 

2.4 Data Granules 

This subsection intends to give the reader some intuitive understanding of the data 
granules occurring in OMSs. We abstract from all the details of concrete OMSs 
which are irrelevant for our DAC concept. 

2.4.1 Structurally Object-Oriented Database Systems 

Typically, the data model of an OMS is derived from the entity relationship model. 
An object base contains objects and relationships. Objects and/or relationships 
are said to have attribute instances. We will assume that relationships are bi­
nary and that each single relationship is actually a pair of directed links, which are 
mutually reverse of each other and which are used to navigate between objects. 

The most prominent feature of the data model of OMSs are complex objects. A 
(complex) object consists of its root node, which contains the attribute instances 
and the outgoing links of the object, and its component objects, which in turn 
are complex. We assume that each component object is connected with the root 
node by a special kind of link, namely a composition link (see below). Complex 
objects enable us to directly model all kinds of documents occurring in software 
development environments. A nested complex object could represent, e.g., a (pro­
gram) module and contain, for each inner module of this module, another object 
representing the inner module. Other examples are a book consisting of chapters 
and sections, or a data flow diagram with its stepwise refinements. Complex objects 
can share components (shared objects). Two books, for example, might share a 
glossary. 

2.4.2 Basic Features of Instance-Level DAC 

We assume an instance-level DAC concept with the following features (regarding 
data granules; support of nested working groups has already been discussed above): 
Complex objects and root nodes are granules of protection. Administration of rights 
is decentralized on a per-object basis. 

Some features of instance-level DAC are not directly relevant here, e.g. consis­
tency rules which restrict the ways in which access rights can be granted on complex 
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objects with shared components, or ways of overriding lARDs which are inherited 
from outer granules. 

The concept presented in this paper does not make any assumptions about how 
these features are implemented. 

2.5 Data Types 

The following sections give a simplified description of how types can be defined in 

OMSs. We omit a number of detailed features, e.g. integrity constraints, because 

they vary considerably between different OMSs. We assume that each definition has 
a system-wide unique definition identifier. 

2.5.1 Type Definitions 

Object Types. We assume that each object has exactly one object type. An ob­
ject type is essentially defined by: 

- a set of direct supertypes 

- a set of direct subtypes 

- a set of explicit attributes 

- a set of admissible types of outgoing links 

We assume that the subtype structure is a lattice with one root named Object 

and that a new object type is always created as a subtype of one or several existing 

object types (multiple inheritance). 
The set of attributes of an object type is the union of the set of its own explicit 

attributes and, for each direct supertype, of the set of attributes of this supertype. 

These sets are not necessarily disjoint; two attributes are "the same" if they have 

the same definition identifier. 

Attributes. An attribute is defined by: 

- an attribute type, i.e. a set of values, e.g. string, integer or real 

- an initial value. 

Links and Relationships. Links (or relationships) connect objects which are 
associated with each other. Links form specifically the basis for navigation in the 

object base. The details of this vary in different OMSs. Some OMSs realize links 

as surrogate-valued attributes. We will assume a fairly complex notion of a keyed, 
attributed link (as a result, our concept can be easily adapted to less complex cases). 

Each link has a link name which identifies the link among those links which 

lead off from the same object, i.e. link names have a local key property. A link name 
consists of the values of the key attributes of the link type and the na.me of the link 
type. 

A link type is essentially defined by: 

- a sequence of key attributes 

- a set of non-key attributes 



29 

- a set of admissible destination object types 

- a category 

The category of a link type determines certain semantic properties of links of 
this type. One such category is 'composition'. Another category is 'reference'. A ref­
erence link expresses an association between the two objects, but does not possess 
any additional system-defined semantics. 

Subtypes of an admissible destination object type are implicitly also admissible 
destination object types of this link type. 

Modification of Schemata. Many OMSs provide operations by which applica­
tions can create new type definitions or modify or delete existing type definitions. 
In other words, applications can read and modify the conceptual schema (provided 
that appropriate rights are granted). Typical examples of modifications of existing 
type definitions are: an attribute is added to, or removed from, the set of attributes 
of an object type or link type; a link type is added to, or removed from, the set of 
admissible types of outgoing links of an object type. 

2.5.2 An Example 

The example that will be used throughout this paper is an object type representing 
modules (including their inner modules), with attributes and component objects as 
shown below. We denote type definitions using the notation 

type X = subtype of Y 
~ith attribute A1; .•. An; 
~ith link Ll; ... Lm; 
end; 

which expresses that object type X is defined as subtype of Y with the additional 
attributes Al . . . An and with the additional admissible outgoing link types Ll .•. 

Lm. Each link type definition specifies the link type name, key attributes (if any), 
category and admissible destination object types. 

type Module = subtype of Object 
with attribute 

ReviewResult : string; 
CompletionDeadline : date; 
HoursSpent ; real; 
HourlyRate ; real; 
CustomerAccount : AccountNumber; 

with link 
hasSpecification composition link 

to Specification; 
hasSourceProgram composition link 

to SourceProgram; 
hasinnerModule [ModuleName] 

composition link to Module; 

end; 
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type SourceProgram = subtype of Object 
with attribute 

Author : string; 
ProgramText : string; 

with link 
isSpecifiedBy reference link 

to Specification; 

end; 

type AdaProgram = subtype of 
SourceProgram 

with attribute 
PackageNames string; 

end; 

The main aim of the type-level DAC is to support roles such as designer, pro­
grammer, reviewer, manager etc. If we take another look at the above example, it 
should be obvious that the attributes or component objects relate to different roles. 
In other words, complex objects may contain data related to several roles, and users 
working in these roles access the same complex objects. However, it is only role­
specific parts that are accessed, not the entire object. Typical examples of type-level 
access restrictions are: 

- Only designers are allowed to create or modify the Specification component of 
a Module. 

- Only reviewers are allowed to write the ReviewResult attribute of a Module. 

These rules apply recursively to a module and to all its inner modules, i.e. to an 
object and to all its component objects. 

Some attributes may even be invisible to some subjects, e.g. the attributes Hours­
Spent, HourlyRate, and CustomerAccount of Module may be invisible to the de­
signers and reviewers. Thus, the type Module should look to reviewers as follows 
(the allowed access modes are shown in brackets)5 : 

EXTERNAL SCHEMA for Reviewers: 

type Module = subtype of Object 
with attribute 

ReviewResult : (read,write) string; 
CompletionDeadline : (read) date; 

with link 
hasSpecification (navigate) 

composition link to 
Specification; 

5 Note that the concept which is presented in this paper does not imply a specific view definition 
language; it only contains a model on which the semantics of a view definition language can be 
based. A compiler can translate the above definition of an extemal schema into modifications of 
the state of the object base (s. section 3). 



hasSourceProgram (navigate) 
composition link to 
SourceProgram; 

hasinnerModule [ModuleName] 
(navigate) composition link 
to Module; 

end; 

2.5.3 Main Problems 
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Combination of External Schemata. We have seen in section 2.3 that a pro­
cess will generally have several active subjects. Typically, each subject will have an 
associated external schema which this subject can exploit. The type-rights contained 
in the external schemata of the active subjects must basically be "added" (in order 
for rights to be inherited from other groups). This leads to the question of how such 
an "addition" can be defined. 

Conventional view mechanisms do not support nested working groups: they as­
sume only one active subject at a time; if several subjects are active and if their 
external schemata contain different definitions of the same type, it is unclear how 
these different views upon the same type should be combined. 

Additive Type-Rights. Frequently, a subgroup must be granted a set of additive 
type rights, assuming that the instance rights are inherited from a supergroup. In our 
above example, all members of a project may have the instance right to write a hier­
archy of Modules, but they have only the type right to read the attribute instances 
appearing in that hierarchy. In sum, they can only read. The additive type right 
to write the attribute Review-Result is only given to the subgroup of reviewers of 
modules. In concepts (such as relational views) where instance rights and type rights 
are always tightly coupled, one would have to specify the instance rights again for 
the subgroup. This would be very inconvenient, or not practicable at all, and would 
in fact make the inheritance of rights from supergroups useless. We can conclude 
that it must be possible to grant type rights independently of instance rights. 

Conflicting roles. Different groups can correspond to "conflicting" roles which 
exclude one another, for example the producers and reviewers of a document. Such 
roles will use different external schemata. If a user plays different roles in different 
projects, this user may, in principle, have the right to exploit these external schemata 
(but in fact only in connection with different data instances). Thus, there must be 
ways in which the parallel exploitation of "conflicting" external schemata or their 
use with the "wrong" objects can be prevented. 

Visibility of Instances of Subtypes. In all object-oriented languages and sys­
tems, an instance of a type can always be used as an instance of any of its supertypes. 
Thus, if otl is a subtype of ot, an instance of otl can be used whereever an instance 
of otis required; otl is type-compatible with ot in this kind of situation. 

A question that arises is whether the analogous approach should be taken with 
regard to visibility. Let otl be an invisible subtype of the visible type ot. Should 
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instances of otl be visible as instances of ot? The answer to the above question will 

depend on whether objects of type otl require higher security than objects of type 
ot. 

Assume again the object type SourceProgram with the attribute ProgramText 

and a subtype AdaProgram. Then only the group 'AdaProgrammers' might have the 

right to write the ProgramText of an AdaProgram. In this case, the answer is "no". 

On the other hand, the project secretary should be able to print any 

ProgramText, regardless of the subtype in which it appears. In this case, then, the 

answer is "yes" (this has been called inheritance policy Pl in [La&90]). 
Thus, both cases must be supported. Inheritance policy Pl alone is not sufficient. 

2.6 Metadata and Metabase 

Type definitions are data about data, i.e. metadata. Metadata occur in external 

schemata and in the conceptual schema. Each OMS provides means of reading and 

modifying the conceptual schema; some OMSs provide means of reading the external 

schema. Obviously, a process must not be able to change the access rights contained 

in its external schema. 
Most OMSs are self-referential in that they use a special part of the object base, 

called the metabase, in which the conceptual schema is represented by objects and 

links. In some OMSs, a type can be created (or modified) implicitly by creating 

(or modifying) an object in the metabase which represents this type. Other OMSs 

provide specific operations for the creation and modification of types. 

2.6.1 Main Problems 

The problems relating to the distribution of metadata have already been discussed 

in section 2.2.1. Another problem is that metadata must, in general, be protected. 

Type definitions as such can be secret. Unauthorized modification or use of metadata 

can cause considerable damage. 

Protection of the Conceptual Schema. "Normal" applications should not have 

access to the conceptual schema (or to the metabase) at all. This requirement mainly 
concerns the ways in which the programming interface of the OMS is designed. It 

is not met by systems in which, e.g., the operation that creates an object of type ot 

requires as ,one of its input parameters the surrogate of the metabase object which 

represents ot. In such systems, users need to be able to scan the metabase when per­

forming elementary operations, and one cannot keep metadata completely secret. 
For reasons of space, this problem will not be discussed further in this paper. A 

solution is presented in [Ke91, Ke92]. 
Objects in the metabase can be protected by instance-level DAC. 
Information about the conceptual schema might be obtained via the external 

schema; this problem will be discussed below. 

Protection of the External Schema. One possible question is whether a pro­
cess should be able to query its external schema and obtain the complete definitions 
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and type rights of all visible types. This should, in fact, be allowed. This flow of in­
formation is no security problem because it does not convey new information to the 
process, but is indispensable for practical reasons (program testing, writing generic 
browsers etc.). 

A more difficult problem is the following: Assume that a type ot is visible in an 
external schema. Should then implicitly (a) all supertypes (b) all subtypes of ot in 
the conceptual schema also be visible? If so, a process could get information about 
all supertypes and subtypes in the conceptual schema. The answer to both ques­
tions is therefore clearly "no". It must be possible to hide arbitrary supertypes or 
subtypes of ot in an external schema. ot must, of course, not inherit attributes from 
an invisible supertype. 

3 Type-Level Access Right Determinations 
This section will present an abstract model of the state of the object base with 
regard to type-level DAC. This state is modelled as a mapping 

tard : S * T * M -+ V 

with S being the set of subjects, T being the set of type definition units, M being the 
set of access modes, and V being the set of access values. These sets will be defined 
below. The mapping tard can also be regarded as a set of quadruples 

(s,t,m,v) 
s being a subject, t being a type definition unit, m a mode, and v being a value which 
indicates whether s is to be allowed to access instances of t using operations in m. 
Such a quadruple is called a type-level access right determination {TARD for 
short). The object base contains, for each triple (s,t,m), exactly one TARD (s,t,m,v) 
with v = tard(s, t, m). 

There are various ways in which this abstract state can be implemented {imple­
mentation issues will be discussed only very briefly in section 5). 

lARDs and TARDs are conceptually very similar (s. section 2.1.1). They refer 
to the same set of subjects and access values, therefore the same definition of the 
rights of a process can be used. lARDs and TARDs differ inevitably in the units of 
protection to which they refer, and in the set of access modes. 

3.1 Type Definition Units 

Type definition units {in short: units) are sensible "fractions" of type definitions 
which way be known, or unknown to a user and, more generally, for which rights 
can be controlled independently. The way in which a type definition is split into 
type definition units depends, obviously, on the data model of the OMS. The follow­
ing are H-PCTE's type definition units and their denotations; they should be easily 
adaptable to any data model which is based upon the entity-relationship approach: 
- each single object type ot and each single link type It is a type definition unit. 

(Note that this does not include any information about attributes of the object or 
link type.) 
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- each single attribute a is a type definition unit. (Note that "the same" attribute 
appearing at several object types and/or link types is only one type definition 
unit.) 

- for each object type ot, this object type together with all its subtypes form the 
unit ot*, i.e. at*= {ot} U { ot' I ot' is a direct or indirect subtype of at}. (Note 
that ot =f. ot* even if ot does not have subtypes; in this case, ot* = { ot} =f. ot.) 

- for an object type at and an attribute a, the fact that a is "applied" to at (and 
implicitly to every subtype of at) constitutes the unit appl( ot,a)6 . 

- for a link type It and an attribute a, the fact that a is "applied" to It constitutes 
the unit appl(lt,a)7. 

- for an object type at and a link type It, the fact that at (and every subtype of at) 
is a valid origin object type for It constitutes the unit orig(ot,lt). 

- for a link type It and an object type at, the fact that at (and every subtype of at) 
is a valid destination object type for It constitutes the unit dest(lt,ot). 

3.2 Access Modes 

The different sorts of type definition units have different relevant access modes, as 
specified in the following table. 

Unit Relevant Access Modes 
at owner, existence, create, delete 
It owner, existence, create, delete, navigate 
a owner, read, write, append, execute 

at* owner, existence, create, delete 
appl( at, a) existence 
appl(lt, a) existence 
a rig( at, lt} existence 
dest(lt, at) existence 

3.3 Access Values 

There are three access values (see [Ke90, Sa89] for a detailed justification of a three­
valued logic): 

+ "granted" 

? "undefined" (neither granted nor explicitly denied) 

"denied" 

6The definitions of appl( ot,a), orig( ot,lt) and dest{lt,ot) assume that a subtype of a type inherits 
all properties of this type, in particular its attributes and the link types of which it is an admissible 
origin or destination type. Any other definition would be entirely inconsistent with the general 
philosophy of object-oriented systems whereby each object can also be regarded as an instance of 
any supertype of its type. 

7We assume that link types do not have subtypes. Otherwise, a unit It* needs to be introduced 
and appl{lt,a} must implicitly include any subtype of lt. 
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3.4 Consistency Rules 

There are certain consistency rules between TARDs. They have two main motiva­
tions: the nesting of type definition units and integrity constraints. 

Nesting of Type Definition Units. Some type definition units are nested due 
to subtyping. Assume that ot2 is a subtype of otl. Then the following are subunits 
of each other: 

- otl is a subunit of otJ*. 

- ot2* is a subunit of oU*. 

- appl(ot2,a) is a subunit of appl(otl,a}. 

- orig(ot2,lt} is a subunit of orig(otl,lt). 
- dest(lt,ot2} is a subunit of dest(lt,otl}. 

Due to multiple inheritance, units can overlap: otl* and ot:J* have a common 
subunit if otl and ot3 have a common subtype ot2. Two TARDs (s,otl*,m,+) and 
(s,ot:J* ,m,-) would then be semantically inconsistent since they would imply contra­
dictory TARDs for ot2. Similar problems arise for the other subunits. Therefore the 
following consistency rule for subunits is necessary: 

If t2 is a subunit of t1 then 

- tard(s, tl, m)='+':::} tard(s, t2, m}='+' 

- tard(s,tl,m)='-':::} tard(s,t2,m}='-' 

This consistency rule is the only built-in policy in our model. Similar consistency 
rules appear in some instance-level DAC concepts [Ke90, Ra&90]. Note that our 
TARDs are explicit. Our concept could be extended by implicit TARDs along the 
lines of [Br91, La&90, Ra&90]. 

A TARD for some ot* E OT* is valid for all its subunits. This allows one to 
implement a security policy where all instances of a subtype of a type ot are visible 
as instances of ot (policy Pl in [La&90]). 

Integrity Constraints. The data model of H-PCTE has (like most other OMSs) 
a number of inherent integrity constraints. For example, a link cannot exist without 
its reverse link. Thus, when a link is created, its reverse link must also be created. 
It does therefore not make sense to grant the create-right for a link type It, but not 
for the (unique) reverse link type ltr. This is prevented by the consistence rule: 

- tard(s,lt,m)='+':::} tard(s,ltr,m}='+' 

- tard(s,lt,m)='-':::} tard(s,ltr,m)='-' 

3.5 Operations on TARDs 

There are operations which set or read TARDs. The set operation propagates 
changes of TARDs to subunits or superunits whenever this is necessary due to the 
consistency rule. Attempts to modify TARDs or the subtype structure, which, by the 
above consistence rule, would lead to an inconsistency, are rejected by the system. 
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4 Type-Rights of a Process 

This section presents a formal model of the type-rights contained in the external 
schema of a process, defines how they are computed from the state of the object 
base, and explains how they are interpreted during accesses to the object base. 

The type-rights of a process are, conceptually, a mapping 

has_type_right : T * M __,. Boolean 

with T being the set of all the type definition units and M being the set of access 
modes, as defined above. If has_type_right(t, m) = true for a process, then we say 
that the process has the m-right on t. 

4.1 Evaluation of TARDs 

The type rights of a process are derived from the TARDs in the object base as 
follows: 

A process acts generally on behalf of a set of active subjects (see also section 
2.3). A TARD {s, t, m, v) is active for a process iff subject sis active for this process. 
The TARDs of all active subjects are "added" according to the following formula: 

has_type_right{t, m) : = true if 

- there is an active TARD {s,t,m,+) 

- there is no active TARD (s, t, m,-) 

The above "formula." which defines has_type_right{t,m) can be implemented in 
various ways. In the H-PCTE prototype, for example, all type rights of a process 
are computed and stored in a cache when the external schema of a process is set. 
Other systems may use other schemes. 

4.2 Interpretation of the Modes 

The definition of a type, as seen by a process, is composed from the type defini­
tion units which the process can "see", i.e. on which it has the existence-right. The 
existence-right on the different type definition units is necessary 

- to be able to "see" instances of object or link types; the existence-right on an 
object type is also necessary for navigating over objects of this type 

- to know that an attribute is applied to a (visible) object or link type; then the 
attribute is visible at the object or link type; no additional existence-right for the 
attribute itself is necessary 

- to know that an object type is a valid origin or destination type of a link type 

The create- or delete-right is necessary for creating or deleting instances of object 
or link types. 

Modes 'read' and 'write' are obvious. Modes 'append' and 'execute' are only rel­
evant for string (i.e. long field) attributes: The execute-right is necessary for loading 
and executing an executable program stored in the string. 
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The owner-right is necessary for changing the set of TARDs on a unit, except 
for units of the type appl, orig and dest. For the latter units, the owner-right on the 
involved object type, link type and/or attribute is necessary. 

Note that the administration of type-rights is decentralized in the same way as 
the administration of instance-rights. 

5 Implementation in H-PCTE 
Our model can be implemented in a variety of ways. For reasons of space, we will 
only very briefly discuss how it has been implemented in H-PCTE. A more detailed 
presentation can be found in (Ke91]. 

H-PCTE uses a metabase in which all object types, link types and attributes 
are represented by objects. A subtype relationship between two object types is rep­
resented by a relationship between the objects representing these object types. If 
an attribute is applied to an object type (or link type) then there is a relationship 
between the objects representing the attribute and object type (or link type). Admis­
sible origin and destination object types of link types are represented analogously. 
In sum, each type definition unit is represented by an object or relationship. 

All TARDs for a type definition unit are encoded in an ACL, with access value 
? being the default value. This ACL is stored at the object or link representing this 
unit. Metabase objects representing an object type ot have two type-level ACLs: one 
for ot and one for ot*. 

Objects which represent type definition units can be stored in different sites of 
the network. As a result, the management of type rights is fully decentralized. 

6 Conclusion 

This paper has presented a concept of type-level discretionary access controls for 
distributed OMSs, which is intended to complement instance-level DAC and to sup­
port roles in development projects. The concept consists of a formal model of the 
state of the object base with regard to access controls and a formula which computes 
from this state and the security context of a process the type-rights of this process. 
The most important features of our model are: 

- It has virtually no built-in, enforced policies, thus it allows us to realize a large 
range of application-specific security policies. It directly supports inheritance pol­
icy Pl (La&90]. 

- It is group-oriented in that it supports nested working groups and inheritance of 
rights along group hierarchies. Access can be explicitly denied. 

- It allows us to tightly couple instance-rights and type-rights or to specify type­
rights independently of instance-rights. 

- It is implementable in a distributed system. The administration of rights can be 
fully decentralized. 

It is left as an exercise to the reader to check that the more detailed requirements 
listed in sections 2.2.1, 2.5.3 and 2.6.1 are actually fulfilled by our concept. 
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7 Discussion 

7.1 Other Approaches 

Views or type-level access controls are an aspect of OODBMSs which has been 
widely neglected so far: most OODBMSs do not have them (many even have no 
access controls at all) and are therefore unacceptable in many cases (De&91]. 

Concepts for views or type-level DAC must, of course, be tightly integrated within 
the data model, they depend in particular on the notion of an (object) type and the 
notion of inheritance, and also on the data manipulation operations (e.g. relational 

· vs. navigational access). Since most OODBMSs differ quite substantially in this re­
spect, most of the related DAC concepts published so far are not directly comparable 
with each other or with our concept. 

The only type-level DAC concept in a directly comparable data model appears in 
PCTE+ [PCTE+88, PCTE90]. PCTE+ uses an indirect, highly complicated mecha­
nism for managing type rights (which cannot be presented here for reasons of space); 
most details of the type-level DAC are entirely different from the instance-level DAC. 
The concept in PCTE+ is also group-oriented and the protection achievable is more 
or less the same as in our concept, with the following notable exceptions (some of 
which tend to weaken the degree of security achievable in practice): 

- It is not possible to explicitly deny access. 

- It is not possible to tightly couple a set of instance rights and a set of type rights 
as in relational views, so that they can only be exploited together. (In H-PCTE, 
one can readily achieve this by granting both sets of rights to one subject.) 

- The administration of rights is based upon the principle of delegation (instead of 
ownership) without any possibility of transitively revoking delegated rights. 

- PCTE+ has only a fixed inheritance policy (Pl). 

- Only one group paradigm (the rights package paradigm, see (Ke90a]) is supported. 
However the task paradigm, needs to be supported as well. The absence of this sup­
port has led to certain exceptions to the type-level access controls, i.e. to "holes" 
in the security system. The consequences of this are exemplified by the fact that 
a process can often create objects of a type ot, although it does not have the 
create-right on ot. 

Several other view concepts have been designed for a significantly different type 
of OODBMS, namely "relational" OODBMSs (e.g. [Br91, La&90, Ra&90]): these 
OODBMSs are based upon the relational model, assume set-valued, ad-hoc queries, 
have data-dependent views, while not having general complex objects with recursive 
types. These concepts either do not consider distribution at all or assume a conven­
tional, "relational" distribution model. They aim at performing access controls at 
query translation time (resulting in query modifications), rather than within each 
access to an object. 

These conditions appear to be the reason why all the view concepts mentioned 
above have only one level of access controls. A type is treated as the set of all in­
stances (i.e. as a class), that is access to a type implies (!!) access to all instances; 
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this is not acceptable at all for our purposes. Thus, type-level and instance-level 
access control are not orthogonal to each other as they are in H-PCTE. All concepts 
mentioned above have only one fixed inheritance policy (P1). 

7.2 Application to other Data Models 

Our concept can easily be transferred to behaviourally OODBMS (s. section 1). The 
basic constituents of our concept (two-level access controls, group-orientation, type 
rights in an external schema, TARDs etc.) can be transferred in a rather straightfor­
ward way to behaviourally OODBMSs8 : Broadly speaking, one can regard an access 
to an attribute instance of an object in H-PCTE and the execution of a type-specific 
operation on an object as corresponding to each other. Thus, the visibility of at­
tributes corresponds to the visibility of operations of an object type. However, the 
modes read, write, and append are not applicable to operations because they can 
only be executed. If relationships between objects are modelled as surrogate-valued 
attributes, all features related to links in our concept can be dropped. 
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