
An Object-Oriented View of Fragmented Data
Processing for Fault and Intrusion Tolerance in

Distributed Systems

Jean-Charles Fabre

I..AAS-CNRS & INRIA
7, avenue du Colonel Roche

31077 Toulouse cedex
(France)

Jean-Charles.Fabre@laas.fr

Brian Randell

Computing Laboratory
University of Newcastle upon Tyne,

Newcastle upon Tyne, NEl 7RU
(United Kingdom)

Brian.Randell@newcastle.ac.uk

Abstract. This paper describes a technique, called Object-Oriented
Fragmented Data Processing, for jointly improving the reliability and
security with which distributed computing systems process sensitive
information. The technique protects the information contained in, and the
processing performed by, a given object by first fragmenting the object
into the subsidiary objects of which it is composed. It then relies on the (i)
the correct execution of a majority of a set of copies of these subsidiary
objects, and (ii) the reliable storage of a majority of a set of copies of each
of these subsidiary objects, having distributed the subsidiary objects
widely across a number of computers in, a distributed computing system.
The intent is to impede intruders and to tolerate faults, and involves
ensuring that an isolated subsidiary object is not significant, due to the
lack Of information it would provide to a potential intruder. This technique
can be applied to application objects and/or to the objects used in the
implementation of the basic object-oriented system. The paper illustrates
the technique using a detailed example, of an "electronic diary", that has
been designed using Eiffel, and experimented with using the DELTA-4
Support Environment.

1 Introduction

The notions of reliability/availability and security though attributes of the generic
concept of dependability [1], are often considered separately because the techniques
used to achieve them are usually perceived as being mutually antagonistic. Firstly,
reliability and availability are generally achieved by incorporating mechanisms for
tolerating any faults (especially accidental faults) that occur, or that remain despite
attempts at fault prevention during the system design process. These techniques will
of necessity involve space and/or time redundancy; they can easily take advantage of a
distributed computing architecture by means of replicated computation using sets of
on trusted (or fallible) processors. Secondly, security features are generally achieved by
means of fault prevention mechanisms (w.r.t. intentional faults, such as intrusions)

This work was supported in part by the CEC-sponsored ESPRIT Basic Research Action
n° 3092 PDCS (Predictably Dependable Computing Systems).

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

194

whereby critical applications are implemented using physically and/or logically
protected computers; such protection is usually based on the TCB (Trusted
Computing Base) or NTCB (Network Trusted Computing Base) concepts. Here we
provide instead an overview of recent work to a combined approach to the provision
of both reliability/availability and security, as applied to object-oriented systems.

2 Fragmented Data Processing

The technique termed "Fragmented Data Processing" (FDP) [2,3,4] is a new approach
to the combined provision of overall system security (in the sense of data and
processing confidentiality) and reliability in distributed systems. It can provide each of
the users of a distributed system with an individual set of processing and storage
resources which are to a great extent protected not only from the effects of hardware
and software faults but also of so-called "intrusions". By this term we mean
(presumably) deliberate attempts by other (possibly unauthorized) users of the system
to gain information from, or modify, or deny access to, the user's resources. For
example, such attempts could even involve tampering physically with the hardware,
or inserting "Trojan Horse" software.

The FDP approach, and the original Fragmentation-Redundancy-Scattering (FRS)
scheme [5] on which it is based, are strongly related to conventional fault tolerance
techniques. FDP achieves high reliability/availability and security for critical
applications by arranging that their execution depends merely on (i) the correct
execution of a majority of a set of copies of each of a number of program fragments,
and (ii) the reliable storage of a majority of a set of copies of each of a number of data
fragments; such fragments are widely distributed across a number of computers in a
distributed computing system so as to impede intruders and to tolerate faults, and are
defined so as to ensure that an isolated fragment is not significant, due to the lack of
information it would provide to a potential intruder. {The problems of ensuring the
security and reliability of the underlying network will not be considered here, though
FOP-like approaches, such as in [6] for meshed networks interconnection, as well as
more conventional solutions, to these problems are quite feasible.)

In effect, fragmentation and scattering is just a form of encryption, though one whose
overheads are quite modest, and whose use fits well with general fault tolerance
provisions (replication and voting) that are aimed at providing high reliability and
availability despite the presence of hardware and software faults. Indeed, the crucial
point about FDP is that the services it provides depend not on the integrity of any
individual software or hardware components (which would imply the existence of
"single points of failure"), but rather on majority voting by members of various sets
of components. It simply presumes that such majorities exist (thus assuming a limit
on the number of simultaneous faults) and in particular that voting is not being
invalidated by either accidental or deliberate collusion between voters.

More specifically, systems employing FDP are, from the point of view of each user,
divided into two sets of resources, namely a "trusted" (and it is hoped trustworthy) set
and an "untrusted" set. Typically, the untrusted resources form a shared set of
processing and storage servers, which users access from their individually trusted
personal workstations, and it is in these terms that the technique will be described
here.

195

Two major implemented examples of the application of the original FDP scheme
have been completed, both using the DELTA-4 distributed system [7]. These are
respectively an archiving system [8] and a user authorization service [9,3].

With respect to sensitive information processing, several types of FDP techniques
which have been described in [4,10] can be used to produce scattered application
fmgments at different gmnularity levels, including:

(i) Structured fragmentation, which treats program and related data structures
together in producing sets of fragments for replication and scattering. Each
fragment consists of one of the programmer-defined code modules (this can be
recursively performed on sub-modules within modules) and its local data on an
instruction-by-instruction (or block-by-block) basis, with the global data being
shared (transmitted) somehow between such fragments.

(ii) Bit-slice fragmentation, which consists in defining fragments of basic data
items without regard to the way in which they are formed into larger data
structures or used by the program. This technique does not try to make the
program code secure - it just requires the necessary multiple variants of the
progmm needed to deal with the set of different data slices.

Although FDP was not originally based on the use of object-oriented programming,
we show in this paper how it can take advantage of an object-oriented design, and
how such a design enables the technique to be generalized. The resulting OOFDP
technique is illustrated using a detailed example, of an "electronic diary", that has been
designed using Eiffel, and experimented with using the DELT A-4 Support
Environment.

3 Object-Oriented Structured Fragmentation

The object-oriented model gives a reasonably straightforward method of
implementing structured fragmentation, which involves arranging that objects are
split into fragments consisting of the subsidiary object of which they were originally
composed, and doing this simply by defining and providing an implementation of the
appropriate class characteristic, and then choosing which classes of object should
inherit this characteristic. Thus just as Arjuna [11] allows all objects of a class to be
declared as recoverable, so the objects of a given class could be declared to be
"Secured" by being fmgmented and scattered.

Using a simple, albeit mther unrealistic example, one might have either the classes
complexvector or vector (or indeed both) inherit the characteristic "secured". These
three possibilities are symbolized in Figure 1, in which the various objects are
labelled with numbers indicating the different (sets of) computers they have been
allocated to. These numbers have been chosen based on the simplistic rule that the
number of computers is minimized, subject to ensuring that the immediate sub
objects of any fragmented object, and the object itself, are allocated to different (sets
of) computers, depending on which class(es) of objects have been defined to inherit
the characteristic "Secured". Inheritance of the "secured" characteristic is denoted by
"Secured: ObjectClass" in the following figures.

196

Secured: complexvector

Secured: vector

5

Secured: complexvector, vector

5

Fig. 1 Different Inheritances of the Characteristic "Secured"

Such a method of fragmentation and scattering would leave the original object largely
empty, apart from the information necessary for accessing its now remote subsidiary

197

objects, and the code (or a reference to the code) for the various operations (methods).
The fact that the subsidiary objects were allocated, in many cases, to separate
machines would provide significant potential parallelism for achieving a speeding-up
of the original object's methods. (There already exist a number of techniques (under
various different names) which are somewhat akin to fragmentation and scattering,
aimed at exploiting parallelism for performance purposes rather than at providing
security. These include, at the hardware level, so-called "disk striping" and, in object
based programming, the object fragmentation provisions of the SOS system at
INRIA [12,13].)

The actual means by which such forms of fragmentation and scattering can be
achieved, e.g. the methods for placing, and later accessing remote subsidiary objects,
will depend on the strategy that is being provided to users for handling distribution
problems. For example, a user who is programming the class "secured" might be
provided with the simple, but rather inflexible, facility of a single virtual name space
(e.g. [14]), whose implementation embodies and hides the distribution policies which
are in use. Another alternative is the facility provided in SOS for allowing users to
declare and implement shared distributed objects (termed "fragmented objects" in SOS)
out of elementary objects which are located on different computers. (Clearly, with
such an approach the distribution policies remain under user program control.)
However in either case, a trusted means will be needed for identifying the set of
fragments - normally some sort of "key"; methods for providing and, most
importantly, protecting such keys are discussed in Section 7.

Fragmentation decisions might be largely static, based on information in the program
or generated by the compiler, or might be highly dynamic. The latter would
necessarily be the case if one wished to fragment and scatter the elements of a
dynamic array of objects - and could be defined in a special class "scattered array", so
that a single definition of fragmentation and scattering could be used for arrays of
different classes of objects, provided class-based object structuring [15] and multiple
inheritance are supported. The allocation of objects to computers involved in
fragmentation and scattering could in principle also be, in some cases at least, partly
static. Dynamic allocation, however, would allow one to make better use of a set of
operational computers whose membership changes as computers fail and are repaired,
and also to attempt to obtain performance improvements via load balancing.

In summary, the advantages of object-based methods of controlling fragmentation and
scattering are that:

(i) they avoid the complications of global variables,

(ii) they readily support repeated fragmentation and scattering, that is of objects
within objects,

(iii) fragmentation and scattering can be applied selectively, at least on a per class
basis, and different object classes can use different methods of performing it,

(iv) a standard implementation scheme can be provided as a built-in class
declaration, but this can be overwritten under programmer-control, so as to
provide a scheme more attuned to a particular class or classes of objects.

198

(v) being in terms of the structuring already introduced by the programmer, their
performance (including their ability to exploit the existence of multiple
processors) will benefit from the fact that this structuring (presumably) reflects
patterns of access and interaction, and so provides good locality of reference.
(Alternatively, it perhaps could be argued that a fragmentation and scattering
technique which cuts across programmer-defined structuring would be more
effective in obscuring the semantics of the program from intruders than one
which respects such structuring; this issue is pursued further in the next
section.)

4 A Two-Level Object-Oriented Model

We assume, that at two (or more) levels of abstraction we have a distributed complete
interpreter. In practice, the upper level is more likely to be just an interpreter
extension (in the sense of the term as defined in [16]). Each of the two levels is
viewed as supporting a set of objects. In general within each level (and certainly at the
upper level) these objects will form a hierarchy (based on the "is-part-of' relation),
with objects being composed in part of smaller objects, down to some set of
elementary objects.

The relationship between the object hierarchy at the upper system level and the
hierarchy that exists at the lower level could be quite distant, especially if the upper
level is a complete interpreter (e.g. for Smalltalk, but written in C++). Even with a
partial interpreter one might have quite complex inter-relationships, much as one
might have objects such as segments provided by an operating system at the upper
level, and pages provided by the hardware at the lower level, using an intricate scheme
whereby small segments were packed into pages, and large segments split across
pages.

With such a two-level system model, various different dependability-related
characteristics could:

(i) be defined in the upper (application) level of abstraction, and associated with
particular classes of objects, via the class declarations of their operations, and
then could when so desired be inherited or redefined in further class
declarations, and/or

(ii) be supplied by application-independent mechanisms in the underlying complete
hardware (and therefore probably not very object-oriented) or software
interpreter.

As seen from the application level, method (i) above corresponds to what was termed
structured fragmentation in Section 2, and method (ii) corresponds to bit-slice
fragmentation. The model makes it clear that conceptually the difference between the
two methods is simply one of viewpoint, though in practice the effects achieved are
very different, since the former involves use of the object structuring defined by the
application programmer, and the latter can be quite independent of this structure.

The two methods could be used in combination. Indeed, lower-level fragmentation and
scattering could in fact be implemented and used without explicitly considering the

199

fact that the upper-level interpreter was also performing fragmentation and scattering,
in much the same way that a conventional paging system might be unaware of
dynamic storage allocation of arrays being performed by the program that is being
paged. Alternatively, the interpreter could be specially designed to respect the object
structuring defined at the application-level. That is, it might for example deal
separately with the information relating to individual upper-level objects, provided
that it has knowledge of their boundaries.

The use of an application-level scheme, as in method (i), in fact corresponds to the
way in which the Arjuna distributed programming system [11] provides various
reliability (but not as yet security) characteristics, such as recoverability, atomicity
and stability for distributed application programs in the face of possible processor
crashes. (Arjuna is based on C++ and UNIX, and provides its facilities completely by
means of C++ declarations, without introducing any changes into the language, its
run time support system, or the UNIX system.) An example which is equivalent to
employing methods (i) and (ii) in combination is provided by the plan to augment
Arjuna by means for the replication of, and voting by, the processors which
implement the Arjuna system, something that the Arjuna group is investigating
using multiple transputers [17].

5 An Example

We have investigated the object-oriented fragmented data processing using several
detailed examples. The first was in fact based on part of the specification of the user
authorization service [9,3] provided in the DELTA-4 distributed system [7]. A fuller
account of this first example to be found in [18].

The example given here is a distributed Electronic-Diaryl which has been designed
using Eiffel [15] tools and implemented on top of the DELT A-4 Support
Environment (DELT ASE). A first prototype is currently running on a set of Unix
workstations. We describe here this service by a small series of classes. The latter
only address the definition of management operations on meetings day-per-day; the
information related to a meeting is composed of a given topic, a group of people
attending, a venue and time/date information. Any two or more of such items is
considered as constituting confidential information. Otherwise, any person attending
is defined by several identification items and can be considered as being public
information.

For the moment, we omit from our example any mention of the mechanisms
involved in providing or using fragmented data processing, deferring such matters
until Section 5.2. The information used for the management of meetings is stored in
each of a set of meeting descriptors and can be summarized as follows:

• topic: topic to be discussed during the meeting - this is
considered to be confidential information;

1 The objective is not here to design a complete E-Diary with every functionnality a user
can expect from such tool. Only a subset is provided to illustrate the object-oriented
approach of FDP.

• venue/time/date:

• dynamic person list:

200

place where the meeting is held and time/date
information;

list of persons attending the meeting, all together
constituting confidential information even though
the identity of any of them is public information.

These descriptors are the main leaves of a tree (a subtree) of the E-Diary which is
considered as being an object which is private to a given user (theE-Diary is not
shared by multiple users).

5.1 Object-Oriented Management

This section presents an object-oriented approach to the management of meeting
information; the basic items forming a meeting descriptor and further the person list
are also taken into account but not shown in Figure 2. Some of the object classes
(and their component objects) forming theE-Diary application object are shown in
Figure 2, where an asterisk indicates the possibility of there being several
components of a given object class.

·.··•· u.tock••·•mondl .•..••.•..• . ·.·::.::::~:-:>:-:··.·.·.··

meeting

Fig. 2 The E-Diary object composition hierarchy

The object hierarchy represented in Figure 2 for the E-diary service is as follows: the
E-Diary is composed of several month objects and is owned by a given user (owner).
Each month is composed of a number of weeks and can be locked (lock_ month) for a
given reason (holidays, for instance). Each week is composed of a number of days and
can also be locked (lock week) for a given reason (travel abroad, for instance). Any
day is composed of a list of meetings, a list of messages (note pad) and can be also

201

locked for a given reason (lock _day). Any lock set to true implies that no meeting can
be allocated in the month, week or day, respectively. TheE-Diary is considered as a
persistent object and can thus be activated (from persistent storage) after being created.
It offers several services to the owner: create, modify, move, delete a meeting, put,
release a message in the note pad of a given day, and lock a month, a week, or a day
for a given reason.

Note the above makes no mention of inheritance, and hence of whether a public
method's implementation is given in the class definition of the particular object, or is
inherited from some other class definition.

The object which is of interest in the above hierarchy is the meeting object which
contains confidential information; the composition hierarchy of this object is
presented in Figure 3. A meeting is composed of a persons list (P-list), a venue, time
and topic. The P-list can be implemented in various different ways, possibly using
the Eiffel pre-defined class list (of persons). Person is composed of three sub-objects
in our example: name, address and position.

name address position

Fig. 3 The Meeting object composition hierarchy

The object hierarchies presented in Figure 2 and 3 (in a form similar to Eiffel browser
output) illustrate the various components in the design of theE-Diary object down to
elementary objects (i.e. a combination of Eiffel elementary objects such as integers,
booleans, strings ...). Some of the elementary objects represented by grey boxes are
confidential leaves of the tree that it is assumed for our purposes cannot be usefully
decomposed into smaller objects; for instance the topic is a string that is ciphered to
ensure confidentiality as soon as it is entered by the user in the system. The same is
true for lock objects which correspond to a boolean value and a string that indicates
the locking reason.

In order to illustrate the usage of such object classes, we briefly present a few steps of
some management operations on one example in which the creation of one meeting
object is detailed. TheE-Diary is created by invoking theE-Diary constructor, that

202

further invokes the Month constructor twelve times, then the Week constructor and
finally the Day constructor. From the user interface object (not presented in the above
figures) located in the "trusted" area of the system, a new meeting is created by
invoking the meeting constructor that defines and initializes data structures; then
input information provided by the user leads to the creation and filling of meeting
subobjects such as persons' list, venue, time, topic. At each level, several checking
operations are performed with respect to the various locks and to meeting overlaps.

5.2 Inheritance of the "Secured" Characteristic

In this section we give one example of the effects that can be achieved by arranging
that the characteristic "secured" be inherited by a given object class, say the meeting
class.

The effects of using such inheritance are discussed using the above hierarchy. For
clarity in our examples we attach the characteristic "secured" directly to a chosen class
to demonstrate what effect this will have. (In an object-oriented design of theE-Diary
that used inheritance among its class definitions, one could arrange that the "secured"
characteristic was inheritable from higher in the class hierarchy. The implementation
of the characteristic "secured" and its effects on objects that inherit this characteristic
are discussed in Section 6.)

In each of our examples, site number 1 represents the user site where the owner is
able to execute management operations (in particular input/output operations) and
where all the meeting descriptors are located when FOP is not used. In this first case
the characteristic "secured" is attached to the meeting class. This solution leads to
processing (and perhaps storing) Person list, venue, time and topic at distinct sites as
shown in Figure 4. (fhe fragmentation and scattering of the P-list objects is discussed
later.)

Secured: meeting

P-list

Fig. 4 "Secured" meeting descriptors

In this case, site 1 is responsible for the management of meeting objects. Considering
just P-list objects, all the person objects that appear in the meeting will be managed
(and perhaps stored) at the same site (say site 2). An intruder located at site 2 is
unable to find out about the topic of the meeting (even in its enciphered form) ; the
confidentiality of the relation (person list, topic) is thus preserved by sites 2 and 5.
Similarly, an intruder located at site 5 is able to obtain the (enciphered) topic of the
meeting but is unable to find out the list of persons attending.

203

The characteristic "secured" could be attached to the meetings but also inherited by the
P-list object as in Figure 5. This solution leads to two phenomena:

1) P-list, venue, time and topic objects in the meeting are fragmented and
scattered onto different sites (see figure 4);

2) Use of the characteristic "secured" at the P-list level, leads to the persons
objects belonging to the list being fragmented and scattered.

Secured: meeting, P-Iist

5

Fig. 5 Secured meetings and P-list by inheritance

This solution provides a complete fragmentation and scattering of persons objects
belonging to the P-list. It would provide to an intruder a partial view on the meeting
object, similar to the notion of views used in multilevel security in object-oriented
database systems [19]. An intruder located at one of the sites 6 to 9 is unable to get
the P-list information (the list of persons attending the same meeting). At site 2, the
P-list object is a collection of references to person objects: these references are
produced by a naming facility based on one-way functions similar to those used in the
archiving system described in [3].

The result of this last solution leads to the definition of the current implementation of
E-Diary on the DELTA-4 platform. DELTA-4 [7] does not provide an object-oriented
layer but provides a runtime support for objects as a collection of servers responsible
for object management; a server is defined by an interface composed of a set of
operations described using an Interface Definition Language and operation activation
from the clients is transparent. In our implementation a server is associated with an
Eiffel class and is responsible for the management of object instances of this class.
For a given class several servers can be created on several sites, such as person servers
in the above example. The Eiffel design presented in this section has been mapped
onto DELTA-4 by hand. At configuration time, any server can be created replicated

204

for fault tolerance and several error processing strategies are available. The complete
application including more objects and more confidentiality constraints (including
operator interface, ciphering and naming functions) is currently running using
scattering and replication (with majority voting) on a set Unix workstations, using
the DELTASE layer and the DELTA-4 error processing protocols, based on DELTA-
4's Multicast Communication System.

5.3 Commentary on the Example

The example presented in Section 5 reflects the use of an object-oriented design as a
basis for implementing a variety of fragmentation-redundancy-scattering techniques.
The example shows that different grades of confidentiality can be obtained using
appropriately chosen fragmented and scattered objects. The aim of our example was
not to provide a new implementation of an actual E-Diary Service. Nevertheless, it
gives the flavour of several different strategies for ensuring the confidentiality and
reliability of meetings, attendance lists and topics; for instance, meetings may be
stored by meeting servers on a day-by-day basis locally on one given site, persons
may be stored on a collection of persistent servers. More importantly, the actual
implementation differences between these strategies are quite minor, since they only
involve differing decisions regarding inheritance.

One interesting aspect of this simple example is that it shows that using the OOFDP
approach the confidentiality of information such as the relation between topic and
person list or the relation between people attending the same meeting together (i.e.
present within the same person list) can be preserved with respect to intrusions
performed by other unauthorized users (even site/workstation administrators) or by
external intruders tampering with some sites in the network.

6 Implementing the "Secured" characteristic

What we have termed "attaching" the characteristic "secured" to a given class means
arranging for this class to inherit a set of facilities defined in an appropriate class
declaration. These characteristics will, for example (i) ensure that when object of this
given class are created, their constituent sub-objects will be scattered, and (ii) provide
each object with any necessary information, such as a "key", needed to control the
fragmentation and scattering and the means by which the object's operations access its
scattered sub-objects, and operations such as SetKey and GetKey. These operations
may well be defined in, and inherited by the class declaration from, a class "key".

Some such keys might be used only at compile and generation time, and then
deliberately discarded (i.e. for what can be termed "static" fragmentation and
scattering). Others are likely to be retained within, or associated with, objects at run
time (e.g. for "dynamic" fragmentation and scattering, in which sub-object names are
computed when the sub-objects are invoked). Key objects might of course also be
used for other purposes by other classes, as is the case in DELTA-4, where keys are
also used in the implementation of the archive server.

However the characteristic "secured" should involve not just fragmenting an object
when it is generated, into its sub-objects, but also replication as well as the scattering
of the resulting fragments. According to the example given in the previous sections,

205

replication of the meeting sub-objects needs a definition of an appropriate set of
workstations to store, for instance, replicates of P-list objects.

The approach we suggest is that used in Arjuna, in which the replication characteristic
is implemented using inheritance with a ReplicationBase class. A replicated object is
declared as:

class ReplicatedObject: ReplicationBase;

The class ReplicatedObject inherits the replication methods from ReplicationBase
class. An instance of a replicated object in five copies is declared as:

class Replicated0bject(5)

where the number of copies 5 is passed to ReplicationBase.

The "secured" characteristic could be declared in the same way, using the class
Security Base:

class SecuredObject: SecurityBase;

Thus, using the above declarations Fragmention-Replication-Scattering is
implemented at the object level by multiple inheritance of the classes SecurityBase
and ReplicationBase.

Different ways of implementing the stub generator of the SR-bases (where SR stands
for Scattering or Replication) classes may be defined:

(i) First, a generic stub generator for any class of object would need to be able to
determine the class of objects that is to be fragmented and scattered and/or
replicated, and thus conduct the appropriate operation with respect to the object
type including multiple initiations, handling multiple return values (and
voting operations), etc.

(ii) A second solution would be to have one SR-base class per object class. The
appropriate SR-operation to generate a given object instance would be
performed by the associated stub generator; using inheritance and SR-operator
overloading, the appropriate stub generator being invoked for each "secured"
object (sub-object).

7 "Guarding the Guards"

Clearly, the techniques we have described so far depend on making sure that an
intruder cannot easily reconstruct an object that has been fragmented and scattered. If a
key (e.g. that expresses the relationships between its fragments) is needed to access a
fragmented and scattered object then the security of this key of course becomes
critical. Such keys could be kept and used only in appropriate trusted areas, or one
could instead apply a further level of fragmentation and scattering to them. However,
such a potentially indefinite recursion must eventually be broken either by the use of
trusted areas, or by avoiding the use of keys.

This latter is the approach taken in the actual DELTA-4 system, which uses the
notion of a threshold scheme [20] to make the management of the keys it uses for its

206

scheme of PDP intrusion-tolerance (and, as mentioned earlier, also for other
purposes). Such a scheme represents the value of an object which is to be kept secret
by a set of N shadows sl, s2, s3 ... (Thus the replicates of a given object would
contain different shadows of the object's key, the key itself not being needed once the
shadows had been created.)

This technique, which is appropriate only for relatively small objects such as keys,
has the following properties:

(i) a number of shadows greater or equal to the threshold Tis required to create the
secret information,

(ii) less shadows than the threshold T do not give any information about the
secret.

Implementing a key object by means of a threshold scheme thus can ensure the
continued availability of the key, despite the occurrence of less that N-T faults, N
being the number of shadows generated, as well as its confidentiality.

8 Concluding Remarks

The Object-Oriented Fragmented Data Processing approach that we have described
generalizes the technique of PDP, as previously described and implemented. The
multi-level view of system structuring which we have used shows how
fragmentation-scattering can be implemented independently by each of a hierarchy of
interpreters (and interpreter extensions), thus providing protection at various
granularity levels.

We would therefore argue that PDP, perhaps in common with certain other
approaches to security, so far explored mainly in the database world, can derive
significant benefits from being viewed and used in conjunction with a suitable object
oriented structuring scheme. Indeed, its provision as an independently inheritable
characteristic alongside the use of several forms of inheritable reliability
characteristics (such as "stable" and "atomic") that have already been devised
elsewhere, such as in the Arjuna Project, seems perfectly feasible. However, one
particularly attractive feature of the PDP technique is that it would seem to have the
potential of being simultaneously beneficial not just to security and reliability but
also, because of its exploitation of parallelism, to performance - characteristics which
are normally mutually antagonistic!

Detailed experimental investigations are however now needed to substantiate the
hopes expressed in this paper, and to determine the likely actual cost/effectiveness of
OOFDP, as compared to the PDP that has already been implemented in DELTA-4,
and any other approaches to the joint provision of reliability and security.

Acknowledgements

The preparation of the work briefly presented in this paper has been greatly assisted by
discussions in particular with Dan McCue, but also with numerous other colleagues,
including Yves Deswarte, Ron Kerr, Jean-Claude Laprie, Mark Little, Peter Neumann,
Robert Stroud and Gilles Trouessin. The implementation of the complete example has been
done by Vincent Nicomette and Tanguy Perennou. This research was in part supported by

207

the CEC-sponsored ESPRIT Basic Research Action on Predictably Dependable Computing
Systems, and was aided by a CNRS fellowship that enabled Brian Randell to spend a period
atLAAS.

References

1. J.C. Laprie, Ed., Dependability: Basic Concepts and Terminology (in English,
French, German, Italian and Japanese), series Dependable Computing and
Fault-Tolerant Systems, (A. Avizienis, H. Kopetz, J.C. Laprie Eds.), Vol.5,
Springer-Verlag, 265 p., ISBN 3-211-82296-8 and 0-387-82296-8, 1992.

2. J.-M. Fray and J.-C. Fabre, "Fragmented Data Processing: an Approach to
Secure and Reliable Processing in Distributed Computing Systems", in Proc.
1st IFIP Int. Working Conf. on Dependable Computing for Critical
Applications, Santa Barbara, California (USA), 1989, pp. 131-137.

3. Y. Deswarte, L. Blain and J.-C. Fabre, "Intrusion Tolerance in Distributed
Computing Systems", in Proc. IEEE Symp. on Security and Privacy, Oakland
California (USA), 1991, pp. 110-121.

4. G. Trouessin, J.C. Fabre and Y. Deswarte, "Reliable Processing of
Confidential Information", Proceedings of the 7th Internaltional Conference on
Information Security, IFIP!Sec'91, Brighton (United Kingdom), 1991, pp.
210-221.

5. J.-M. Fray, Y. Deswarte and D. Powell, "Intrusion Tolerance Using Fine
Grain Fragmentation-Scattering", in Proc. IEEE Symp. on Security and
Privacy, Oakland, California (USA), 1986, pp. 194-200.

6. Y. Koga, E. Fukushima and K. Yoshihara. "Error recoverable and securable
data communication for computer network," in Proc. 12th IEEE Int. Symp. on
Fault-Tolerant Computing (FTCS-12), pp. 183-186, Santa Monica, California
(USA), 1982, pp. 183-186.

7. D. Powell, Ed., Delta-4: A Generic Architecture for Dependable Distributed
Computing, series Research Reports ESPRIT, Project 818/2252, Delta-4,
Vol. 1 of 1, 484 p., ISBN 3-540-54985-4 and 0-387-54985-4, Springer
Verlag, 1991.

8. P.G. Ranea, Y. Deswarte, J.M. Fray, D. Powell, "The Security approach in
DELTA-4", inProc. of the European Telematics Conference (EUTEC0-88) on
Research into Networks and Distributed Applications, Viena, Austria, pp.455-
466 (Ed. North-Holland, April1988).

9. L. Blain andY. Deswarte, "An intrusion-tolerant security server for an open
distributed system", in Proc. of the European Symposium in Computer
Security (ESORICS 90), AFCET, Toulouse, France, pp. 97-104, 1990, ISBN
2-9036778-9.

10. G. Trouessin, Y. Deswarte, J.C. Fabre and B. Randell, "Improvement of Data
Processing Security by means of Fault Tolerance", Proceedings of the 14th

208

.
National Computer Security Conference, NCSC, Washington DC (USA),
1991, pp. 295-304

11. S.K. Shrivastava, G.N. Dixon and G.D.Parrington, "An Overview of the
Arjuna Distributed Programming System", IEEE Software, vol. 8, #1, 1991,
pp.66-73.

12. M. Makpangou, Y. Gourhant, J.-P.L. Narzul and M. Shapiro, "Structuring
Distributed Applications as Fragmented Objects", INRIA Research Report
1404, INRIA, Rocquencourt, France, 1991.

13. M. Shapiro, Y. Gourhant, S. Halbert, L. Mosseri, M. Ruffin and C. Valot,
"SOS: An Object-Oriented Operating System - Assessment and perspective",
Computing Systems, vol. 2, #4, December 1989, pp. 287-338.

14. E.H. Bal and A.S. Tanenbaum, "Distributed programming with shared data",
in Proc. of the !CCL, Miami, Florida (USA), IEEE, 'Computer Society Press,
1988, pp. 82-91.

15. B. Meyer, "Eiffel: Programming for Reusability and Extendibility", ACM
SIGPLAN, vol. 22, #2, pp.85-94, 1987.

16. T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice, Prentice
Hall, 1981.

17. P.D. Ezhilchelvan and S.K. Shrivastava, "A Distributed System Architecture
Supporting High Availability and Reliability", in Preprints, 2nd Int. Working
Conference on Dependable Computing for Critical Applications, Tucson,
Arizona (USA), 1991, pp. 36-48.

18. B. Randell and J.C. Fabre, "FDP techniques in Object-Oriented Systems",
LAAS Research Report n0()1JJ4, Computing Laboratory of the University of
Newcastle-upon-Tyne Research Report n°337, 35p., May 1991.

19. T.F. Lunt, "Multilevel Security for Object-Oriented Database Systems", in
Proc. 3rd IFIP Workshop on Database Security, Monterey CA, USA, 1989.

20. A. Shamir, "How to Share a Secret", Comm. ACM, vol. 22, #11, pp.612-
613, 1979.

