
Freshness Assurance of Authentication
Protocols

Kwok-yan Lam and Dieter Gollmann

Department of Computer Science, Royal Holloway, University of London

Abstract. This paper describes various ways of providing freshness as­
surance of authentication protocols. It approaches the issue by discussing
the notion of time in distributed authentication. In the context of au­
thentication, we identify the places where the concept of time is needed,
and describe the ways that timeliness of authentication protocols can be
achieved.

Key words Distributed Operating Systems, Authentication Protocols,
Network Security, Clock Synchronization Protocol

1 Introduction

The notion of time was intentionally ignored in the early stage of computing
history when programs were written mainly for numerical applications. It is not
necessary to require such programs to contemplate the passage of time when they
are expected to run on a uniprocessor architecture. The fact that the notion of
time was not introduced in computer programs simplified the process of software
development. In a multiprogramming environment, it is the task of the operat­
ing system to ensure that independent programs executing concurrently do not
interfere with each other; hence programmers are relieved from the trouble of
triggering a context switch after executing for a certain period of time.

The development of distributed programming required the concept of time
to be introduced in computer programs. When a program is designed to run on a
number of processors distributed over a connected network, there must be some
way to allow the activities of its distributed components to be synchronized.
Hence it is necessary that various components of the distributed program have a
consistent view to the order in which events occur during the course of program
execution. The concept of logical clocks was introduced as a tool for specifying
and designing distributed programs without using physical docks. This concept
arose from the abstract point of view that a clock is just a way of assigning a
number to an event, where the number is thought of as the time at which the
event occurred.

In the context of computer programming, the concept of real-time clocks
evolved as situations were encountered where logical clocks did not meet the
needs of an application. When a distributed program, e.g. an airline reservation
program, is required to anticipate human activities, the way how the set of

© Springer-Verlag Berlin Heidelberg 1992
Y. Deswarte et al. (eds.), Computer Security - ESORICS 92

262

system events are ordered must be consistent with the view of human users. This
requirement implies that the computer system must be able to assign numerical
values (clock values) to events in the same way as human beings do. Therefore,
real-time clocks are used for ordering distributed events. Note that the concept
of real-time clocks is necessary. for any application that is specified in terms
of physical time, e.g. programs that are developed to operate under real-time
constraints.

With regard to the security of distributed systems, however, the concept
of time arises because of the threat of message replays in an open network
environment. Information transmitted over communication lines is vulnerable
to various kinds of security attacks such as eavesdropping and tampering. The
use of cryptographic techniques is usually helpful for preventing unauthorized
information disclosure and detecting unauthorized modification of information.
However, an intruder may still be able to violate a system's security policy
without disclosing or modifying the contents of messages in transit. In some
cases, it is sufficient to simply record a message and then to replay it after some
time. We shall discuss this in more detail in the next section.

Therefore, security protocols need to be equipped with the concept of time
in order to counteract replay attacks. Here, the use of time is not for ordering
distributed events nor for triggering events within some specified time, instead
time is used to provide freshness assurance of objects for applications that are
vulnerable to replay attacks.

The objective of this paper is to discuss the role of time in distributed authen­
tication. Authentication plays an important part in ensuring data secrecy and
authenticity because of its goals of allowing any pair of communicating parties
to mutually verify each others identity and to distribute cryptographic keys for
communications between the pair. Owing to the possibility ofreplaying messages
by an intruder, the design of authentication protocols needs to take into account
the concept of time, and to allow the legal participants of an authentication
protocol to use different keys for communication sessions initiated at different
time. In this discussion, we assume that message passing is the only mechanism
by which distributed processes communicate and we are mainly concerned with
freshness of contents of messages.

2 Time in Distributed Authentication

Communicating parties in a distributed system, frequently refered to as princi­
pals, may wish to convince themselves of the identity of the principals they are
communicating with not only because of personal curiosity but also because of
legal and financial implications. Principals may be held responsible for activities
perpetrated in their 'name' or be billed for services used in their 'name'. Usually,
the identity of a principal is linked to certain data, called its credentials, which
contain some secret information. The link between a principal's identity and
its credentials are guaranteed by some trusted agency. During authentication,

263

a claimed identity is verified by demonstrating knowledge of the appropriate
secret. To mutually authenticate two principals, the role of claimant and veri­
fier is then reversed. If the verifier does not trust the agency guaranteeing the
claimant's credentials, authentication may still be possible if a chain oftrust can
be established between the verifier and that agency, using intermediary agencies.
Authentication may demand a certain administrational and computational effort
from the principals. Thus, in designing authentication schemes, we have to be
aware that principals may be a variety of computing devices, ranging from work­
stations to smart cards, and may have quite different functions in a distributed
system.

Passwords provide a simple authentication scheme. The claimant is authen­
ticated by presenting its password to the verifier. An obvious weakness of this
scheme is the fact that the verifier is now in possession of the claimant's se­
cret and could pose as the claimant in communications with third parties. To
prevent impersonation, it is thus essential that secrets are not divulged during
authentication. Cryptographic mechanisms exist that demonstrate knowledge
of a secret without giving it away. Authentication that protects the claimants'
secrets is called strong authentication. However, strong authentication is not
sufficient to foil impersonation. If a claimant would always use the same mes­
sages to demonstrate knowledge of its secret, any third party could successfully
assume the claimant's identity by replaying those messages. (We assume that
messages passed in the distributed system are accessible to other users of the
system.) More strongly, if the same authenticating message would be accepted
twice by a verifier, replay attacks are feasible. If, for example, a fixed one-way
hash function were applied to a password before transmitting it to the verifier,
nothing would have been achieved. An attacker, although unable to reconstruct
the password, need only present its hashed version to the verifier to assume a
false identity. Cash dispensing machines provided another popular example for
replay attacks. If a message that dispenses a specified amount of cash while deb­
iting that amount to some specified account would be accepted as valid when
replayed, an attacker could repeatedly extract money at the cost of a victim
who would find it difficult to prove that these transactions had been fraudulent.
Authentication schemes therefore have to check the freshness of messages.

There exist various ways of coping with this problem. We could focus on the
messages and issue sequence numbers to distinguish old from new messages (see
our previous reference to logical clocks). Each verifier keeps track of the last se­
quence number for each claimant it has dealt with. New messages are accepted
only if their sequence number is higher than the sequence number recorded. Ex­
isting authentication protocols do not favour this approach, probably because of
the administrational overheads incurred, in particular in large open distributed
systems. Instead, they try to establish the 'actual presence of the claimant',
i.e. a synchronization in the original meaning of the word. For this purpose it
seems natural to employ timestamps that are obtained from clocks. However,
we will follow Turski [15] in argueing that time derived from clocks is certainly
not mandated by the postulation of our problem and may possibly be even infe-

264

rior to other mechanisms that achieve the same goal. Indeed, by taking recourse
to (local) clocks we find ourselves addressing questions of clock synchroniza­
tion in a hostile environment. To solve this problem some sort of key exchange
seems almost mandatory and it has been argued that we have thus only shifted
the problem without actually changing its nature [3]. Challenge/response (hand­
shake) protocols provide an alternative to clock based synchronization. The price
that has to be paid for abandoning clocks is an increase in the communication
between principals. In this paper, we will examine how existing authentication
protocols handle synchronization and explore the relative merits of the two main
design alternatives.

In distributed authentication, the notion oftime does not only help to protect
against replay attacks. Security management requires mechanism for terminating
the validity of a principal's credentials. Immediate revocation is possible when
the credentials are kept with a trusted agency, where they can be obtained by
the verifier, or when the verifier always checks the validity of credentials with a
trusted agency. Both solutions require communication between the agency and
the verifier. Although immediate revocation of credentials would be preferable
for reasons of security, many schemes settle for the less expensive method of
restricting the life-time of credentials. Again, we find as the two main alterna­
tives the reference to properly synchronized clocks, or perhaps more accurately,
properly synchronized calendars, and a handshake protocol, this time between
the verifier and the principal guaranteeing the claimant's credentials.

3 Clock-Based Authentication

The use of clocks is one way among others to achieve freshness in distributed
authentication. Freshness is assured by the incorporation of timestamps in each
encrypted message. A principal accepts a message as fresh only if the message
contains a timestamp which is close enough to its knowledge of current time.
As a consequence, delays before secure communications start can be reduced.
This feature is especially desirable for distributed applications which use a con­
nectionless communication service as a major mechanism for interprocess com­
munications. In addition, revocation of access rights in a distributed system is
made possible if the lifetime of credentials is indicated by timestamps. This of­
fers an economical approach to implement revocation of rights, but at the cost
of delaying the time at which revocation actions are effective.

In order to illustrate the idea, we use the Kerberos Authentication System as
an example. Kerberos is an authentication system developed at MIT within the
project Athena [8, 14]. Athena aims at providing computing resources to stu­
dents across and beyond the whole campus and thus Kerberos is mainly geared
towards authenticating the client/server communications that are predominant
in such an environment. A more detailed analysis of the environment Kerberos
was developed for and its influence on the design is given in [3].

Kerberos is based on DES [10] and the Needham-Schroeder key exchange pro-

265

tocol [11]. Principals are authenticated by the possession of some prearranged
secret cryptographic key, derived with a one-way algorithm from their password.
This key is shared with the Kerberos authentication server (KAS). The KAS is­
sues a ticket, which, in general, is valid throughout one login session, and enables
a principal to obtain other tickets from ticket granting servers (TGS) to access
network services requiring authentication. Tickets essentially consist of crypto­
graphic session keys, generated by the TGS, and timestamps, derived from local
clocks, along with identifiers. The session keys are used for symmetric encryption
during later communication with the desired server/service. As Kerberos servers
generate the keys used in subsequent communications between principals, Ker­
beros servers have to be on line and trust in the servers has to encompass trust
that servers will not misuse their ability to eavesdrop.

The following table, taken from [16], shows the steps involved in establishing
a mutually authenticated session key between a server S and a client C acting
on behalf of a user U. Each protocol step is numbered by an integer appearing
in front of its description. The sequence of activities from step 1 to step 8 are
regarded as part of the login procedure that a user needs to perform in order
to access the computer system. A successful completion of these eight steps
results in possession of a valid ticket to access a TGS and knowledge of the
encryption key for communication with the TGS over the current login session.
In this discussion, we are mainly interested in the actions specified from step 9
to step 18. This sequence of steps describes the way through which a client and
a server establish a shared communication key and verify each other's identity.

1. U-+C u
2. C-+KAS: U,TGS
3. KAS tickTGs = { U,TGS,k,T,L hTas
4. KAS-+C: { TGS,k,T,L,tickTGshu
5. C-+U 'Password ?'
6. u-c passwd
7. c decrypt { TGS,k,T,L,tickTGshu

where ku = f(passwd) to obtain k,tickTGSi
8. stop if decryption fails or T is out of date;
9. C-+TGS: S,tickTGs, {C,Tth

10. TGS obtains k from tickTGS, and thus also C,T1;

11. checks freshness ofT 1 with respect to local clock;
12. ticks = { C,S,k',T',L' hs
13. TGS-+C: { S,k',T',L',ticks }Tc
14. c decryption with k gives k' ,ticks
15. C-+S ticks, {C,T2h•
16. s obtains k' from ticks, and thus also C,T2;
17. checks freshness of T 2 with respect to local clock;
18. 5-"-+C {T2+lh•

With reference to the table above, a client C wanting some service from a

266

server S does so by performing step 9 of the above sequence. The transmitted
message carries enough information (a ticket containing a session key k and a
good timestamp encrypted using k) to allow the TGS to be convinced that the
received message was generated by C very recently (steps 10-11). The TGS, if
satisfied with the claimant's word, grants a ticket and a session key to C which
are used together to access S (step 12). The client C then uses the received
ticket to access S in a similar manner. It is worth noting that this protocol
employs timestamps whenever freshness assurance of messages is needed (see
steps 9,13,15 and 18).

To appreciate the merits of clock-based authentication, we now discuss how
Kerberos exploits the assumed behavior of clocks. There are three main points
that we are most interested in. Firstly, we would like to know the number of
message exchanges between C and S before authenticated communication starts.
Secondly, we are concerned with the amount of long term data that a server has
to maintain for each communicating client. Thirdly, we are interested in the ways
that revocation of right can be achieved. Back to the table again, the client C
first contacts server S at step 15. The message passed from C to S in this step
allows S to retrieve the authorized session key to communicate with C which
in turn is used to interpret the data structure { C, T2h•, which is called an au­
thenticator, in order for verifying the authenticity of the claimant. Any request
for service from S can also be carried by the same message which is protected
by proper security mechanisms. Therefore, the first message exchange between
C and S is the first message that C contacts S for requesting services. This
is a desirable feature in that C and S are not required to go through a hand­
shake procedure before request messages are sent. In addition, the server S,
being capable of learning the authori:t,ed communication key from a valid ticket
(a ticket that contains a valid timestamp) and of checking freshness of themes­
sage using the authenticator, is not required to maintain any state information
for ensuring secure communication between C and itself. This feature, together
with the previous one, is very useful when building distributed applications in
the Athena environment. Further, revocation of user rights is possible, because
authentication servers are asked for permission at each login and KAS tickets
have a limited life-time. The use of timestamps for indicating tickets' life-time,
though not providing immediate revocation, has the advantage that a server is
not required to contact the KAS (or TGS) whenever a ticket is required.

One major drawback of the timestamp-based approach is that it assumes
the presence of a globally accessible clock. This globally accessible clock must
be highly reliable and available, because security checks are invloved in every
distributed operation of a properly protected system and authentication plays an
essential role in most security functions. The clock is also required to be highly
secure in that the security strength of a clock-based authentication mechanism
relies on the fact that timestamps are correctly generated by it.

In a distributed system, rather than using a single, centralised, time service
for timestamp generation, a reliable global clock is usually approximated by using
the individual processor clocks and requiring each processor to bring their clock

267

values close to each other by means of some fault-tolerant clock synchronization
protocol [9, 13]. Each individual processor is said to implement a local time
server. A distributed implementation of the clock service reduces the reliance on
a single component of the system, thus makes the clock service more available.

The clock synchronization protocol itself must be fault-tolerant so that the
clock values on each correct processor are reliable in the face of network and
other processor failures. The time service must provide accurate and precise
time, even with relatively large stochastic delays on the communication paths.
A clock synchronization algorithm operates by measuring clock offsets between
the various time servers in the distributed system and so is vulnerable to sta­
tistical delay variations on the various communication paths. As the size of the
network increases, the paths involved can have wide variations on their delays.
Well-designed algorithms are needed to improve the accuracy of delay and off­
set measurements made over statistically noisy communication paths and to
select the best clock from among a set of mutually suspicious clocks. In addi­
tion, it is necessary that the synchronization protocol operates continuously and
provides update information at rates sufficient to compensate for the expected
drifts among the set of clocks.

In order to replace the role of a globally accessible clock in distributed au­
thentication, the system of closely synchronized clocks must be capable of han­
dling possible security attacks. Therefore, cryptographic techniques should play
an important part in the clock synchronization protocol. The Byzantine Clock
Synchronization Protocol discussed in [7] is one such example that makes use
of digital signatures. The problem, however, is that performance of the synchro­
nization protocol may be degraded in that cryptographic operations introduce
extra delay in every communication path. Further, the ways that keys for such
operations are distributed raises another problem since, almost invariably, key
distribution is one of the original goals of authentication protocols. At a first
glance, this seems to suggest that the philosophy of building an authentica­
tion mechanism whose correctness relies heavily on a yet "to be secured" clock
syncrhonization protocol is questionable, because the reliance relationship is a
mutual one.

Worse yet, even if a highly secure clock synchronization protocol is available,
the security strength of clock-based authentication is still doubtful. To under­
stand this, one should note that message delivery has a finite speed and that
distributed clocks are unlikely to have identical values at all time. Therefore, the
recipient of a timestamped message should take this into account and prepare
to accept messages whose timestamps are not exactly the same as that of its
local clock. The size of such an acceptance window is determined by system pa­
rameters such as expected message delivery delay and performance of the clock
synchronization protocol. The acceptance window is assumed to be large enough
that a majority of fresh messages are accepted correctly by their intended re­
cipients, and yet small enough to detect intruders' replay attacks. However, this
assumption is very difficult to realise since intruders are most likely to have their
tools running in the system and ready to perform the replay attack whenever

268

target messages appear [3]. More importantly, it is unreasonable to assume that
replay messages necessarily take longer than the expected message delivery delay.
Therefore, however small the acceptance window is, it must be larger than the
minimal possible replay time. If the resulting gain of a successful replay attack
is significant, we should not under-estimate an intruder's ability to replay within
the acceptance window. This seems to suggest that timestamp-based approach
should not be used in a sensitive environment.

4 Authentication by Challenge/Response

The use of challenge-response operations is another major approach to ensure
freshness in distributed authentication. With this approach, a principal A ex­
pecting a fresh message from another principal B first sends a random number
(challenge) to B, and requires that this random number appears in the sub­
sequent message (response) received from B. These protocols come in various
shapes. The challenge could be protected so that it can only be read by the le­
gitimate recipient. Any correct response therefore would have to originate from
there. Alternatively, the challenge could be open but the expected response be
such that it can only be provided by the legitimate recipient.

In all cases, it is A's responsibility to ensure the quality ofthe random number
it chooses. Incidentally, randomness is a rather misleading term, both because
different readers may disagree in their intuitive interpretation of randomness
and because different protocols have different requirements on the nature of
the challenges. If, for example, the response were the challenge encrypted by a
varying session key, even a fixed challenge value would be acceptable. If the same
key were used repeatedly in such a protocol, then the challenge could be a time­
stamp. In this case it is only important that it is highly unlikely that the same
time-stamp is used twice, i.e. the challenge has to be a nonce. In other situations
the challenge may be required to be 'meaningless' as a recipient may refuse to
sign arbitrary messages. Finally, in a protocol where the value of the challenge
contributes to the generation of a session key, it may well be advisable that the
challenge is chosen truly at random. The authentication scheme discussed below
can serve as an example for such a protocol.

When we are dealing with 'truly random' challenges, i.e. challenges ofthe last
kind where each possible value may be" picked with equal probability, then we
face the problem of automating such a random choice. True random generators
could be used but would not be part of common computing and communica­
tions equipment. The existing hardware could be used for implementing pseudo
random generators. This approach solicits two remarks. Firstly, a poor or cor­
ruptable pseudo-random generator may open new possibilities for attacking a
scheme. This, of course, is a well known fact which has been highlighted by re­
cent discussions on the proposed NIST digital signature standard. Secondly, we
may view the approximation of randomness by pseudo randomness as a. situ­
ation similar to that encountered in clock-based systems, where a global clock

269

was approximated by local clocks.

We use Selane [2, 6], developed at the E.I.S.S., as an example for a challenge/­
response-based authentication service for distributed systems. Principals obtain
their credentials from Secure Key Issueing Authorities (SKIAs). These SKIAs are
active only during user registration and may be offline as they are not involved
subsequently in authentication between principals. The SKIAs can be set up in
two different ways. In one case, the SKIAs are privy to the session keys generated
by the principals. In the second case, the SKIAs have only to be trusted to issue
correct credentials. The ElGamal public key signature system is used for user
registration and authentication [4]. Authentication is achieved by establishing a
common session key that is derived from the principals' credentials. Hierarchical
network structures are possible. Two networks can be connected by setting up
a common SKIA on top of the respective SKIAs. This happens at the expense
of having to re-register all principals.

A challenge/response-based protocol is used to establish the freshness and
authenticity of session keys. This mechanism is not available for revocation as
the SKIAs are not involved in the actual process of authentication. Presently,
revocation of credentials is only partially addressed by setting an expiry date. If,
however, one would allow for on-line Credential Guaranteeing Agencies so that
verifiers can check the validity of credentials with these agencies, then credentials
could be revoked immediately.

The authentication protocol relies strongly on some mathematical properties
of the underlying cryptographic mechanisms. The SKIA issues a credential of
the form (mA,rA,sA) to the principal A, where mA is A's identity and (rA,sA)
the SKIA's signature of mA. The value SA has to be kept secret by A. There
exist functions f and g so that

f(mA, rA, :z:) = g(g(rA, :z:), SA)·

We omit the details and refer the reader to [5, 1, 2, 6]. The following table gives a
simplified description of a one-way authentication from principal A to principal
B.

A-+B:
B

B-+A:
A

mA,rA
chooses a nonce ns and
computes and retains kA = f(mA,rA,ns)
g(rA,ns)
computes and retains kA = g(g(rA,ns),sA)

At this stage, B can be sure that kA is a key shared with A. By changing their
roles, A and B can generate another key, ks, where A can be sure that k8 is a
key shared with B. A session key kAB could be formed by combining these two·
keys. However, it is still possible that kA is shared between A and an attacker C,
or that ks is shared between Band an attacker C'. Thus, the combination kAs
is not necessarily a key shared by A and B. Further four steps in a handshake
protocol can establish that this is the case. Messages encrypted with a key shared
with an attacker would not be compromised but be unreadable for the intended
recipient.

270

Thus, overall eight steps are required before secure communication between A
and B starts. If A is known to initiate the communication, only two steps would
be necessary to allow A to establish that kAB is shared with B. For example,
A could challenge B with a nonce nA and proceed if it receives the response
{nAhAs' (At that moment, the combined key is indeed shared between A and
B but only A is aware of it.) In addition, principals have to keep track of the
state of the protocol they have reached and of the keys and nonces used in the
challenges.

Selane was. developed mainly with 'symmetric' relationships between princi­
pals in mind. Now, consider the case where A is a client approaching a server B
and compare the actions B has to take in Selane with the actions of the server
S in Kerberos. Clearly, in this respect B is at an disadvantage as it is involved
in more steps and has to keep state information for all its current clients. The
advantage this price has been paid for is the independence of an underlying dock
service that may compromise the security of the authentication system.

5 Conclusion

We have discussed the major ways that freshness assurance of distributed au­
thentication is provided. The discussion was based on the notion of time which
plays an important role in the design of authentication protocols. This concept
is usually realized in either of two ways: challenge/response or clock. Both have
their own advantages and disadvantages. This paper highlighted the important
issues involved in the design of authentication protocols with freshness assur­
ance, and suggested aspects for further research. We are currently conducting
extensive experiments to examine the quantitative differences between the two
approaches.

References

1. Bauspiel1, F., Knobloch, H.-J .: How to Keep Authenticity Alive in a Computer
Network. Proceedings Eurocrypt'89, Springer LNCS 434 (1990) 38-46

2. Bauspiel1, F.: SELANE: An Approach to Secure Networks. Proc eedings SECURI­
COM 90 (1990) 159-164

3. Bellovin, S.M., Merritt, M.: Limitations of the Kerberos Authentication System.
ACM Computer Communications Review 20(5) (1990) 119-132

4. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Dis­
crete Logarithms. IEEE Transactions on Information Theory 31 (1985) 469-472

5. Guenther, C.G.: An Identity-Based Key-Exchanged Protocol. Proceedings Euro­
crypt'89, Springer LNCS 434 (1990) 29-37

6. Horster, P., Knobloch, H.-J.: Protocols for Secure Networks. Proceedings Euro­
crypt'911 Springer LNCS 547 (1991) 399-408

7. Lamport, L., Melliar-Smith, P.M.: Byzantine Clock Synchronization. ACM Oper­
ating Systems Review 20(3) (1986) lD-16

271

8. Miller, S.P., Neuman, C., Schiller, J.I., and Saltzer, J.H.: Kerberos Authentication
and Authorization System. Project Athena Technical Plan Section E.2.1, MIT
(July 1987)

9. Mill, D.: Internet Time Synchronization: the Network Time Protocol. RFC 1129
(October 1989)

10. National Bureau of Standards: Data Encryption Standard. FIPS Publication 46
(1977)

11. Needham, R.M., Schroeder, M.: Using Encryption for Authentication in Large
Networks of Computers. CACM 21(12) (1978) 993-999

12. R.M. Needham, R.M., Schroeder, M.: Authentication Revisited. ACM Operating
Systems Review 21(1) (1987) 7

13. Schneider, F.B.: A Paradigm for Reliable Clock Synchronization. Proceedings of
the Advanced Seminar on Real-Time Local Area Networks (1986)

14. Steiner, J.G., Neuman, C., Schiller, J.I.: Kerberos: An Authentication Service for
Open Network Systems. Usenix Workshop Proceedings, UNIX Security Workshop,
Portland (1988)

15. Turski. W.M.: What to do when we cannot depend on time. Workshop on Mathe­
matical Concepts of Dependable Systems, Oberwolfach (1990)

16. Woo, T.Y.C., Lam, S.S.: Authentication for Distributed Systems. IEEE Computer
25(1) (1992) 39-52

