
HAL Id: inria-00073943
https://inria.hal.science/inria-00073943

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Parallel Query Execution in DBS3
Luc Bouganim, Benont Dageville, Patrick Valduriez

To cite this version:
Luc Bouganim, Benont Dageville, Patrick Valduriez. Adaptive Parallel Query Execution in DBS3.
[Research Report] RR-2749, INRIA. 1995. �inria-00073943�

https://inria.hal.science/inria-00073943
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

appor t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Adaptive Parallel Query Execution in DBS3

Luc Bouganim - Benoît Dageville - Patrick Valduriez

N˚ 2749
Décembre 1995

PROGRAMME 1

Architectures parallèles, bases de
données, réseaux et systèmes distribués

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

Téléphone : (33 1) 39 63 55 11 - Télécopie : (33 1) 39 63 53 30

Adaptive Parallel Query
Execution in DBS3*

Luc Bouganim** , Benoît Dageville*** ,
Patrick Valduriez

Programme 1 : Architectures parallèles, bases de données,
réseaux et systèmes distribués

Projet Rodin

Rapport de recherche n˚2749 - Décembre 1995

24 pages

Abstract: The gains of parallel query execution can be limited because of high
start-up time, interference between execution entities, and poor load balancing. In
this paper, we present a solution which reduces these limitations in DBS3, a shared-
memory parallel database system. This solution combines static data partitioning
(by hashing the relations across the disks) and dynamic processor allocation (using
shared- memory) to adapt to the execution context. It makes DBS3 almost insensi-
tive to data skew and allows decoupling the degree of parallelism from the degree of
data partitioning. To address the problem of load balancing in the presence of data
skew, we analyze three important factors that influence the behavior of our parallel
execution model: skew factor, degree of parallelism and degree of partitioning. We
report on experiments varying these three parameters with the DBS3 prototype on a
72-node KSR1 multiprocessor. The results demonstrate high performance gains,
even with highly skewed data.

Key-words: Parallel databases, execution model, shared memory, data skew

(Résumé : tsvp)

A short version of this paper appears in the proceedings of the EDBT 96 International
Conference - March 1996, Avignon, France.

* This work has been partially funded by the CEC under ESPRIT project IDEA.
** Email: {Luc.Bouganim}{Patrick.Valduriez}@inria.fr
*** Bull OSS, Echirolles, France. B.Dageville@bull.frec.fr

Exécution parallèle de requêtes
dans DBS3

Résumé :Un ensemble de facteurs limitent les gains obtenus lors d’une exécution
parallèle: temps d’initialisation, interférences entre les entités d’exécution et mau-
vaise répartition de la charge de travail. Dans ce rapport, nous présentons une solu-
tion qui réduit ces limitations dans DBS3, un SGBD parallèle pour architecture à
mémoire partagée. Celle-ci combine un modèle de parallélisation basé sur la frag-
mentation statique des données avec un modèle d’allocation dynamique des proces-
seurs afin de s’adapter à chaque contexte d’exécution. Cette flexibilité permet de
fixer le degré de parallélisme indépendamment du degré de fragmentation, mais
aussi de répartir finement la puissance de calcul ainsi allouée afin de supporter effi-
cacement des charges de travail non uniformément réparties (Data Skew). Une ana-
lyse nous permet de dégager trois importants facteurs modifiant le comportement de
notre modèle d’exécution: Degré de biaisage, de parallélisme et de fragmentation.
Nous présentons plusieurs mesures de performances en variant ces trois paramètres
effectuées avec le prototype DBS3 sur la machine KSR1 munie de 72 processeurs.
Les mesures montrent des gains importants même en cas de données fortement biai-
sées.

Mots-clé : Bases de données parallèles, modèle d’exécution, mémoire partagée,
répartition de charge.

Adaptive Parallel Query Execution in DBS3 3

1 Introduction

DBS3 (Database System for Shared Store) [Bergsten91] is a parallel database
system for shared-memory multiprocessors [DeWitt92a][Valduriez93]. It has been
implemented on an Encore Multimax (10 processors, 96 megabytes memory) and on
a Kendal Square Research KSR1 (72 processors, 2 gigabytes memory). It supports
ESQL [Gardarin92], an extension of SQL with objects and rules. Although DBS3's
run-time is designed for large shared-memory systems, the ESQL compiler supports
a more general parallel execution model. During the EDS ESPRIT project (1989-
1993), the ESQL compiler has been used to generate parallel code for the EDS
shared-nothing parallel computer, the now Goldrush product from ICL.

In a shared-memory architecture, each processor has uniform access to the en-
tire database through a global main memory. Thus, theparallel scheduler, which al-
locates processors to the query's operations and controls their execution, has much
freedom for balancing the query load onto processors. However, query response time
can be hurt by several barriers [DeWitt92a] which must be overcome by the sched-
uler:

• start-up time: before the execution takes place, a sequential initialization step is
necessary. The duration of this step is proportional to the degree of parallelism
and can actually dominate the execution time of low complexity queries. Thus,
the degree of parallelism should be fixed according to the query complexity.

• interference: parallel access to shared software and hardware resources (disks,
data structures, etc.) can create hot spots which increase waiting time. Parallel op-
erations must be isolated, i.e. working on separated data sets, to minimize inter-
ference.

• poor load balancing: the response time of a set of parallel operations is that of
the longest one. Thus, load balancing must deal with skewed data distributions
and operations complexity.

A parallel execution plan is a graph of operations (filter, join, etc..) on data-
base relations. Inter-operation parallelism is obtained by executing different opera-
tions in parallel. Intra-operation parallelism is obtained by executing the same oper-
ation on different relation fragment. Relation partitioning can be static (on the disks)
or dynamic (at run-time).

With static partitioning, relations are physically partitonned using aparallel
storage model based on a partitioning function like hashing. Relation partitioning
typically dictates the degree of intra-query parallelism [Mehta95]. This approach is
very popular in research prototypes, e.g. Bubba [Boral90], Gamma [Dewitt90] and
Volcano [Graefe94], and commercial products, e.g. DB2, Informix, Tandem and
Teradata. Static partitioning reduces well interference between processors as they

4 Luc Bouganim, Benoît Dageville, Patrick Valduriez

work on distinct data sets. It can scale up to large numbers of nodes (hundreds of
processors and disks), and works with either shared-memory or shared-nothing mul-
tiprocessors. However, static choices (degree of partitioning) have a strong impact
on performance as they influence load balancing and the degree of parallelism. In
particular, start-up time may hurt the response time of low complexity queries.

Dynamic partitioning is advocated in XPRS [Hong92] and Oracle [Davis92]
to overcome the problems of static partitioning. Relations are not stored using a par-
allel storage model but split, page by page among all the disks. Intra-operation par-
allelism is then obtained dynamically depending of the number of processors allocat-
ed for the operation. Thus, the degree of parallelism can be adjusted to the query
complexity and the availability of memory and processors, to yield good load balanc-
ing. However, the fact that several processors may access the same data set (i.e. the
entire relation) can yield high interference. Furthermore, this approach only works
with shared-memory or shared-disk architecture.

Our solution in DBS3 tries to combine the advantages of static and dynamic
partitioning. We use static partitioning to reduce interference and for compile-time
query parallelization. We use dynamic allocation of processors to operations, inde-
pendent of the degree of static partitioning, in order to control start up time and load
balancing. This hybrid approach also simplifies database tuning since the degree of

partitioning is not directly related to the degree of parallelism*.

In this paper, we present the adaptative parallel query execution model of
DBS3. To demonstrate the potential performance gains of our solution, we report on
experiments varying the skew factor, the degree of parallelism and the degree of par-
titioning. The performance measurements were done on the KSR1 with 72 proces-
sors, with the relations cached in main memory. This main memory assumption is
not a restriction of the model but a constraint of our KSR1 configuration which has
a single disk.

The paper is organized as follows. Section 2 presents DBS3's parallel execu-
tion model which is based on the parallel algebraic language Lera-par to represent
parallel execution plans. Section 3 describes the implementation of the parallel exe-
cution model on a shared-memory system. Section 4 address the problem of load bal-
ancing in the presence of skewed data distributions. A simple analysis outlines three
important factors that influence the behavior of our model: skew factor, degree of
parallelism and degree of partitioning. Section 5 reports on experiments varying
these factors with the 72-node KSR1 version of DBS3.

* The degree of partitioning must be higher or equal than the degree of parallelism.

Adaptive Parallel Query Execution in DBS3 5

2 Parallel Execution Model

In DBS3, the compilation phase takes an ESQL query which is optimized
[Lanzelotte94] and parallelized [Borla91]. The parallel execution plan produced by
the compiler is expressed in Lera-par [Chachaty92] and captures the operations and
their control.

Lera-par is a dataflow language whose expressive power is an extended rela-
tional algebra that supports ESQL. A Lera-par program is represented by a dataflow
graph whose nodes are operators (like filter, join or map) and edges are activators.
An activator denotes either a tuple (data activation) or a control message (control ac-
tivation). In either case, when an operator receives an activation, the corresponding
sequential operation is executed. Therefore, each activation acts as a sequential unit
of work.

Lera-par's storage model is statically partitioned. Relations are partitioned by
hashing on one or more attributes, and relation fragments are distributed onto disks
in a round-robin fashion. Thus, the degree of partitioning can be independent of the
number of disks. To obtain intra-operation parallelism, each node of the execution
plan, whose input is a partitioned relation, gets as many instances as fragments. This
yields an extended view of the Lera-par graph (see Figure 1).

Pipelined execution is an important aspect of Lera-par. It is expressed by using
data activation between a producer node and a consumer node, which can then oper-
ate in parallel as soon as the consumer gets activated.

Figure 1 illustrates a simple execution plan which performs a selection (filter)
on relation R followed by a join with S. A triggering activation is sent to all filter op-
eration instances, which can then process their associated fragment in parallel. The

Figure 1: A parallel execution plan in Lera-par

filter1 filter2 filtern

join1

R1

S1

R2 Rn

filter

join

S

R

join2

S2

joinn

Sn

Trigger

extended viewsimple view

OP

OPi

Operation

Operation

Trigger

control
activation

data
activation

instance i

Control

Data

Materialized
relation

activations

activations

6 Luc Bouganim, Benoît Dageville, Patrick Valduriez

result tuples from the filter operation are pipelined to the next join operation. Each
result tuple is sent to one join instance which is automatically activated to perform
the join with the associated S fragment.

To manage activations, a FIFO queue is associated to each operation instance.
There are two kinds of queues, triggered or pipelined. A triggered queue is associated
to an operation triggered by a control activation. It receives only one activation
which starts the associated operation, e.g. the filter operation in our previous example
(see Figure 2).

A pipelined queue is associated to an operation which receives one operand in
a pipeline fashion, e.g. the join operation in our example (see Figure 3). In this case,
each activation conveys one tuple and the queue will receive as many activations as
pipelined tuples.

OPi Operation

Figure 2: Triggered operation

Trigger activation

R1

Filter1

T1

Rn

Tn

Filtern

R2

Filter2

T2

Trigger

Activation queue
TrTr Tr

Tr

instance i

S1

Join1

Res1

Sn

Resn

Joinn

S2

Join2

Res2

Figure 3: Pipelined operation

Data activations (Tuples of T)

OPi Operation

Tuples of T

Activation queue

instance i

Adaptive Parallel Query Execution in DBS3 7

3 Shared-Memory Implementation

In a shared-memory architecture, it is possible to uncouple the implementation

of the parallel execution model from thread allocation*. The typical thread allocation
strategy would assign a single thread per operation instance. Instead, we allocate a
pool of threads for the entire operation, independent of the operation instances (and
of the degree of partitioning). This is done by allocating the queues of an operation's
instances in a shared-memory segment so all the threads of a pool can access all
queues associated with the operation. Therefore, the threads can execute code for any
activation in order to increase load balancing.

Figure 4 shows the basic data structures used for the implementation of our
parallel execution model. Each node of the execution plan is described by an opera-
tion structure, which uses a table of activation queues and a table of threads to con-
sume those activations. .

Because of parallel access, each structure is protected by a mutex variable.
Conditionvariables are used to synchronize consumers and producers. Furthermore,
there is an internal cache mechanism for activations in order to reduce interference
between activation producers and consumers, and to increase locality of access

* DBS3 performs processor allocation indirectly via threads.

thread:
condition NotEmpty Condition to wake consumer
mutex Protect Protection mutex
bool * MainQueue Table of boolean. Specifies if

the ith queue is a main queue
char * IntCache Internal Cache buffer
etc ...

operation:
int QueueNb Number of queues

(instances) for this operation
queue ** QueueTbl Pointers to these queues
int CacheSize Size of thread’s internal

activation cache
int ThreadNb Number of consumer
thread ** ThreadTbl Consumer table (threads)
void * DBFunc Database function

(ex: join, transmit, store...)
Strategy StrategyId Consumption strategy
etc...

Figure 4: Basic data structures for the parallel execution model

queue:
condition NotFull Condition to wake producers
mutex Protect Protection mutex
char * Buffer Activation buffer
etc ...

Activation queue

Activation

Thread’s main queue

Thread’s secondary queue

Thread

Internal activation cache

Mutex
TC

C CC

T

T T

8 Luc Bouganim, Benoît Dageville, Patrick Valduriez

Access conflicts to the activation queues are limited by defining, for each
thread, two kinds of queues: main and secondary queues. For each operation, all ac-
tivation queues are equally distributed among the associated threads and are marked
as main queues. Therefore, each queue is the main queue of only one thread but each
thread can have several main queues. A thread always tries to first consume the ac-
tivations of the main queues. As there is a continuous activation flow, there is no in-
terference for queue access. If all the main queues of a thread are empty, the thread
would search in secondary queues. Thus, thread utilization is maximized as long as
activations are available.

To increase run-time performance, the scheduler must devise the best config-
uration for the variables ThreadNb, QueueNb, CacheSize and Strategy of each oper-
ation. We use a top-down approach to fix the number of threads and distribute them
on the query's operations. Figure 5 illustrates this approach with a dataflow graph
made of pipelined operation chains (called subqueries) and result materializations
between chains. There are four steps:

1 Choosing the number of threads. Based on the complexity of the query, as es-
timated by the compiler, we can choose the optimal number of threads using
known techniques. For instance, we can compute the best number of threads
which minimizes the parallel execution time [Wilschut92]. This number can then
be reduced according to the average processor utilization in order to increase the
multi-user throughput [Rahm93].

2 Assigning the threads to subqueries. The different subqueries of the query can
be executed sequentially or in a parallel but dependent fashion. The assignment
of the threads to the subqueries can then be done in a bottom up fashion, similar
to [Hsiao94]. The execution graph (Figure 5, step 2) is considered as an inverted
tree. First the total CPU power is allocated for the root (e.g. Sq5). This CPU pow-
er, is then distributed among root children (e.g. Sq3, Sq4) according to sequential
complexity estimation of the work for each child and its subchildren. This is done

Query

Sq5

Sq1

Sq2

Sq4

I1 I2 I3 In

?

2: SubQuery1: Query 3: Operation 4: Instance

Figure 5: Steps for setting execution parameters

Sq3

Op1

Op2

N threads

N1

N2

N3
N4

N5

n1

n2

n3

n1+n2+n3 = N2

....

Op3
T T T

Adaptive Parallel Query Execution in DBS3 9

recursively and generates a set of n independent equations (n is the number of
sub-queries). In our example, let Ti be the sequential complexity of Sqi, Ni be the
number of threads for Sqi, N be the total number of threads for the query, we ob-
tain the set of 5 equations which is easy to solve:

3 Assigning the threads to operations of pipelined chains. The threads assigned
to a simple pipelined chain, are distributed among its operations using the ratio of
the estimated complexity of each operation by the estimated complexity of the
chain:

4 Consumption strategy for operation instances. For each operation, we must
decide on the consumption strategy. Currently, DBS3 supports two strategies:
Random and LPT. For all strategies, main queues are always considered first.
Random is the default strategy. Each thread randomly chooses one queue among
the non-empty ones, associated with the operation. The LPT (Longest Processing
Time First) [Graham69] heuristic should be used in the presence of data skew (see
Section 5.4); each thread chooses the activation queue which contains the most
expensive activations. Others strategies can also be added for specific problems.

With this approach, steps 2-4 assign the CPU power allocated at step 1 so all
the threads have approximately the same amount of work. To summarize, this thread
allocation strategy reduces the major barriers of parallel query execution by offering
several means to adapt to the execution context (query, data distribution, system
load, etc.). First, we can define the degree of parallelism independent of the degree
of partitioning. Second, by controlling the number of threads per pool, we can
achieve better balancing of CPU power between operations. Finally, each thread can
dynamically choose in which queue to consume activations which should yields
good load balancing.

4 Load Balancing with Skewed Data Distributions

Several solutions have been proposed to reduce the negative impact from
skew. [Kitsuregawa90] presents a robust hash-join algorithm for a specific parallel
architecture based on shared-nothing. The idea is to partition each hash bucket in
fragments and spread them among the processors (bucket spreading). Then a sophis-
ticated network, the Omega network, is used to redistribute buckets onto the proces-

N5 N=

N3 N4+ N5=

T3 T1 T2+ +

N3

T4
N4
-------= N1 N2+ N3= T1

N1

T2
N2
-------=

NbThreads(Opi) = NbThreads(Chain)
Complexity(Opi)

Complexity(Chain)

10 Luc Bouganim, Benoît Dageville, Patrick Valduriez

sors. The Omega network contains logic to balance the load during redistribution.
[Omiecinski91] proposes a similar approach in a shared-memory parallel system, us-
ing the first fit decreasingheuristic to assign buckets to processors. Finally,
[DeWitt92b] suggests the use of multiple algorithms, each specialized for a different
degree of skew, and the use of a small sample of the relations to determine which al-
gorithm is appropriate.

The effects of non uniform data distribution (i.e. skew) on parallel execution
[Walton91] are summarized in Figure 6. The example shows a filter-join query ap-
plied to two relationsR andS which are poorly partitioned. Such poor partitioning
stems from either the data (AVS) or the partitioning function (TPS). Thus, the
processing times of the two activations for triggering the operation instancesfilter1
andfilter2 are not equal. The case of the join operation is worse. The uneven size of
S fragments yields different processing times for the activations from the filter oper-
ation (AVS/TPS). Furthermore, the number of activations received is different from
one instance to another because of poor redistribution of the fragments ofR (RS) or
variable selectivity according to the fragment ofR processed (SS).

Taxonomy of data skew in parallel databases [Walton91]

• AVS (Attribute Value Skew): Skew inherent to the dataset. For example, the ‘Paris’ value
will be more frequent than ‘Cannes’ in France’s resident relation.

• TPS (Tuple Placement Skew): Initial unbalanced repartition of tuples. With the previous
example, partitioning on city attribute will lead to TPS.

• SS (Selectivity Skew): Selection selectivity varies from one instance to another.

• RS (Redistribution Skew): Redistribution leads to unbalanced temporary partitions.

• JPS (Join Product Skew): The join selectivity varies from one instance to another.

Figure 6: Taxonomy of data skew on Filter-Join example

Filter1 Filter2

S2

S1

Join1

Res1

Join2

Res2

R1
R2

T
rigger

T
rigger

AVS/TPS

AVS/TPS

SS
SS

JPS

JPS

RSRS

Adaptive Parallel Query Execution in DBS3 11

Assuming all the data to be processed are main-memory resident, the problem
of skewed data distribution reduces to that of optimizing CPU utilization. Thus, to
obtain a query response time that is insensitive to skew, we must equally balance the
load of each operation onto all the allocated threads. In the rest of this section, we
consider the effect of skew on a single operation.

4.1 Analysis

We now analyze the effect of skew in our model on an operation execution.
The objective is to derive an analytical formula that gives the overhead on the oper-
ation response time induced by skew. This is important in order to understand the
major parameters which can be tuned to reduce the effect of skew.

In DBS3, each thread can access all the activation queues of the operation. The
default mode of queue consumption is random, i.e. the thread randomly chooses one
queue among the non empty ones associated with its operation. Thus, thread utiliza-
tion is maximum as long as activations are available. However, at operation end,
when there is no more activation, threads become idle as they terminate until the last
thread completes processing its activation.

Let us now consider an operation execution witha activations andn threads.
P indicates the average processing time for an activation. To maximize thread utili-
zation, we must haven ≤ a, otherwise,n-a threads would be idle. In the worst case,
one thread will consume the last activation when all other threads have terminated.
During the processing of this last activation, only one thread is active and thread uti-
lization is minimum.

Let Tideal be the ideal execution time for the operation, when all threads com-
plete simultaneously, andTworst be the worst time. To computev, the overhead of the
worst time, we have the following equation forTworst:

The worst case scenario can be seen with two phases. In the first phase, all ac-
tivations but the most expensive one are processed. LetPmax be the time to process
the last activation (i.e. the most expensive one), the execution time for the first phase

is: :

The second phase corresponds to the processing of the last activation whose
time isPmax. Thus, we have:

Tworst 1 v+() Tideal× 1 v+() a P×
n

------------ 
 ×= = (1)

a P×() Pmax–() n⁄

Tworst

a P×() Pmax–

n
------------------------------------- Pmax+≤ (2)

12 Luc Bouganim, Benoît Dageville, Patrick Valduriez

By substituting Tworst with the previous formula from equation (1), we can
compute v as follows:

Equation (3) exhibits that the overhead depends on three factors: skew factor
(Pmax/P), degree of parallelism (n) and number of activations (a). For the latter, we
have two interesting cases, depending on whether a is high or low:

• The number of activation is high. This case corresponds to a pipelined opera-
tion with lots of tuples. a is then equal to the cardinality of the pipelined relation.
Thus, v is quite small and the execution time of the operation is close to Tideal.
This good result is independent of thread consumption strategy and of skew.

• The number of activation is low. This case corresponds to a pipelined operation
with few tuples or to a triggered operation. The overhead due to skew can then be
quite serious. A solution is to use a consumption strategy that reduces this over-
head, like LPT (Longest Processing Time First) [Graham69] which processes the
most expensive activations with highest priority. To implement this heuristic in
DBS3, we do not need to estimate the execution time of each activation. Instead,
we can arrange the operation instance in decreasing order of estimated execution
time, for instance, based on static information on fragment sizes.

5 Experiments

In this section, we show though experimentation how our adaptative parallel
execution model can be exploited to deal with a varying execution context. We first
present the environment for the experiments, in particular, the KSR1 machine and
the queries. Then we address the problem of load balancing in the presence of
skewed data distributions. We report experiments by varying three important factors
that influence the behavior of our model: skew factor, degree of parallelism and de-
gree of partitioning.

5.1 The KSR1 Machine

DBS3 runs on a KSR1 multiprocessor at Inria*. The KSR1 machine provides
a shared-memory programing model in a scalable highly parallel architecture
[Frank93]. It has a hybrid architecture in the sense that the memory is physically dis-
tributed and virtually shared using hardware mechanisms. Each processor has its
own 32 Megabytes memory, called local cache.

* Although KSR1 production has been stopped, our machine will be up and running for an-
other two years since many researchers like it for experimentation.

v
Pmax

P
----------- n 1–()

a
------------------×≤ (3)

Adaptive Parallel Query Execution in DBS3 13

The Allcache memory system provides the user with a virtual shared-memory
space which corresponds to the collection of all the local caches. When a processor
accesses a data item which is not already cached, this item is shipped transparently
to the local memory of this processor by the Allcache memory system. Compared to
conventional shared-memory machines (like the ENCORE Multimax machine) this
memory organization may have some negative behavior which will be studied in the
next section.

Figure 7 shows the difference between the two memory organizations accord-
ing to the physical realization of the shared-memory space. The configuration used
for the experiments includes 72 * 40 MIPS processors for a total main memory of 2.3
Gigabytes.

5.2 Impact of the Allcache model on DBS3

We now quantify the performance penalty that cannot be avoided on the KSR1
because of the heterogeneous structure of the virtual shared-memory. In the KSR1,
data may move from one local cache to another; it is this feature which gives the glo-
bal shared-memory view. Therefore, it is difficult to benefit from data locality. Be-
cause the access to a remote cache line is 6 times that of the access to a local cache
line, cache misses may dramatically slow down the query execution time. To meas-
ure the overhead of cache misses, we have run a parallel selection over a 200k tuples
relation (the DewittA relation of the Wisconsin benchmark). The objective is to com-
pare the execution time with local or remote data access. Tl is the execution time in
the local case, while Tr is that of the remote case. The number of threads allocated to
perform the selection is varying from 5 to 30. We have measured (Tr - Tl) in order to
obtain a result independent from the global execution time. Note that under 5 threads,
Tr is equal to Tl. In fact, as fewer threads are allocated for the query, each thread gets
more work. Under 5 threads, the local cache size is too small to contain all the data
which are selected and a local execution cannot be obtained. The results (Figure 8)
show that the difference Tr - Tl represents approximately 4% of the total execution
time, which is not a high overhead. This experiment also shows (Figure 9) that the

P1 P10

shared-memory Architecture

P1 Pn

KSR Allcache shared-memory

• • •P2

local
cache

local
cache

local
cache

• • •

(Encore Machine)

Figure 7: Two implementations of the shared-memory model

14 Luc Bouganim, Benoît Dageville, Patrick Valduriez

difference Tr - Tl decreases with the number of threads. This is exactly what was ex-
pected as remote accesses are (roughly speaking) parallelized, i.e. the overhead of
cache misses are shared between the threads.

For more complex queries (e.g. join), this overhead would become even small-
er. In DBS3, a fragment of code manipulates only a small fragment of data which
means that once caches are filled with relevant data, all accesses get local. Of course,
each bucket of a relation must be relatively small compared to the size of a local
cache in order to benefit from caching.

In summary the hardware management of cache misses by the Allcache sys-
tem associated with the parallelization model adopted in DBS3 should reduce the
overhead of cache coherency management in the virtual shared-memory of the KSR1
machine. A comparison of DBS3 on the KSR1 and the Encore Multimax can be
found in [Dageville94]. It shows attractive performance on the KSR1 and similar
speed-up for the two implementations.

5.3 Databases and Queries

In all the experiments, we use the relations of the Wisconsin benchmark
[Bitton83]. These relations are partitioned based on hashing. Performance measure-
ments are done with the relations cached in main memory for the simple reason that
only one disk was available to us, which mean sequential disk accesses.

In our experiments, we use two Lera-par execution plan: IdealJoin which in-
dicates a parallel join where both operands (A and B’) are partitioned on the join at-
tribute in the same number of buckets, and AssocJoin where one operand (B’) must
be dynamically repartitioned before the parallel join (the other one (A) is partitioned

Figure 8: Impact of the remote ac-
cess for a 200K tuples selection

1

2

3

4

5

6

5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of threads

Remote execution

Local execution

0

50

100

150

200

250

300

5 10 15 20 25 30
(T

r
-

T
l)

 (
m

s)
Number of threads

Figure 9: Difference of remote
and local execution time

Adaptive Parallel Query Execution in DBS3 15

on the join attribute). Figure 10 and 11 shows the parallel execution plans for these
operations:

To do a thorough study of skewed data partitioning and high degree of parti-
tioning, we had to generate a large number of databases (more than 50). The disk size
available to us (the KSR1 is shared by many people) was relatively small (one Giga-
byte). Therefore, measurements on large databases were avoided whenever possible.
With small databases (i.e. 100 or 200 KTuples), index-based joins run too fast and
make the result analysis difficult as the response time is of the same order of magni-
tude than measurement errors. Thus, when the join algorithm has no impact, we use
a nested-loop join in order to slow down the execution time. In other cases, we use
larger databases (500 Ktuples) and build indexes on the fly. We repeated each meas-
urement six times and took the average result.

5.4 Expt 1: Varying the Skew

To get more practical insights on the previous analytical results, we performed
several experiments with IdealJoin and AssocJoin for varying skews. We have cre-
ated many databases for which we have varied the tuple distribution within frag-
ments. To determine fragment cardinality, we use a Zipf function [Zipf49] which
yields a factor between 0 (no skew) and 1 (high skew). In practice, many skewed data
distributions can be modelled by this kind of function [Lynch88].

Each database has two relations A and B’ of 100K and 10K tuples, respective-
ly. Each relation is statically partitioned in 200 fragments (see Section 5.6). It is
enough to have only one skewed relation, in our case A, since we have experimen-
tally verified that the skew of the two relations could made equivalent by increasing
the skew of one relation and leaving the other one unskewed.

For each database (obtained by changing the skew of A), we have run the two
queries AssocJoin and IdealJoin with 10 threads to obtain their response time. In the
case of AssocJoin, B’ is redistributed, so 10K tuples move through the pipeline. Fig-

Join1 Join2 Joinn

Trigger

A1 B’1 An B’nB’2A2

R1 R2 Rn

Figure 10: IdealJoin execution plan

Transmit1 Transmit2 Transmitn

Join1 Join2 Joinn

Trigger

B’n

An

B’2

A2

B’1

A1

R1 R2 Rn

Figure 11: AssocJoin execution plan

16 Luc Bouganim, Benoît Dageville, Patrick Valduriez

ure 12 confirms the analytical results. The execution time measured is constant what-
ever the skew. It also shows the graph for the worst time (Tworst) suing the analytical

formula. Even in the worst case, the maximum deviation is small (3%). Thus, this
experiment shows that we obtain an ideal execution time, independent of the skew
factor.

IdealJoin is a triggered operation. Thus, the number of activations is equal to
the number of operation instances. In Figure 13, we show the results of running this
operation by varying the skew and changing the thread consumption strategy (Ran-
dom or LPT). We also show the Tworst curve. For low skew factors (less than 0.4),

we obtain good results independent of the consumption strategy. Since the relation
has 200 fragments, each fragment is relatively small which yields good load balanc-
ing, even with Random. However, with a higher skew, LPT becomes better than Ran-
dom, and remains insensitive to skew up to a skew factor of 0.8 (less than 2% over-
head with respect to the ideal time). The inflection after 0.8 is due to the execution
time of the longest activation. This is because after 0.8, the execution time of this ac-
tivation is higher than the ideal time of the whole operation, that is

. With LPT, even if this activation is processed first, the oper-
ation response time is equal to the execution time of this first activation.

5.5 Expt 2: Varying the Degree of Parallelism

The previous experiments were done with relatively small numbers of threads,
which was enough for studying the effect of skew. We now turn to the impact of in-
creasing the degree of intra-operation parallelism on load balancing. We use similar
databases, but with larger relations (200K and 20K tuples) in order to minimize error
propagation in measurements.

Figure 12: AssocJoin execution

25

26

27

28

29

30

31

32

33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

)

Degree of skew (Zipf)

Measured execution time (Random)

Tworst

Figure 13: Ideal Join execution time

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

)

Degree of skew (Zipf)

Random consumption strategy

Tworst

LPT consumption strategy

Pmax a P×() n⁄>

Adaptive Parallel Query Execution in DBS3 17

We ran the queries AssocJoin and IdealJoin (using nested loop) on a set of
skewed databases. For each database, we vary the number of threads from 1 (sequen-
tial) to 100 using 70 processors of the KSR1 (which we could reserve). Figure 14 and
15 show the speed-up results. With non skewed relations, the results are very good
with a speed-up greater than 60 with 70 processors for both queries. For such simple
queries, there is no benefit in allocating more threads than available processors since
speed-up is decreasing after 70.

With skewed relations, the results are different depending on whether the op-
eration is pipelined or triggered. In the case of pipelined operation (AssocJoin), the
high number of activations (20,000) can well absorb bad distributions, even with a
high number of threads. Using Equation (3), we can analyze the behavior of Assoc-
Join. With 70 threads and the worst skew (Zipf=1), the execution time is only 12%

worse than the ideal time*. Our measurements indicate that this worst case is overes-
timated since it never exceeds 5%.

In the case of triggered operation (IdealJoin), the results are not as good. With
skewed relations, the speed-up reaches a ceiling of number of threads depending on
the skew. Again, this is because of the longest activation Pmax. When

, the operation execution time is that of this single activation,

independent of the number of threads. Thus, there is no gain in using a degree of par-

allelism greater than , i.e. the sequential execution time
of the operation over the sequential time of the longest activation. From this formula,
we can compute nmax for each skew factor. We obtain nmax = 6 with Zipf = 1, 19 with
0.6 and 40 with 0.4. These theoretical values are confirmed in Figure 15

* With Zipf = 1 and a = 200 buckets, we have Pmax = 34 P. With 70 threads, we have
v = 34 x 69 / 20000 = 0.117

Pmax a P×() n⁄>

nmax a P×() Pmax⁄=

Figure 14: AssocJoin speed-up

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

Sp
ee

d-
up

 (
T

se
q

=
 1

04
8

s)

Number of threads

Unskewed data
Skewed data (Zipf = 1)

Theoretical speed-up

Figure 15: IdealJoin speed-up

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

Sp
ee

d-
up

 (
T

se
q

=
 9

56
 s

)

Number of threads

Unskewed data

Zipf = 0.4

Theoretical speed-up

Zipf = 0.6

Zipf = 1

18 Luc Bouganim, Benoît Dageville, Patrick Valduriez

To summarize, the horizontal fragmentation of an operation into a high
number of sequential units of work (pipelined operations) can absorb skewed data
distributions and get much better performance than with small numbers of fragments
(triggered operations). In DBS3, the initial degree of partitioning can be dynamically
raised to increase the number of activations and reduce their execution time. Howev-
er, a high degree of partitioning can generate an overhead (for queue creation and
management) which offsets the gains obtained from a better load balancing. We ad-
dress this problem in the next section.

5.6 Expt 3: Varying the degree of partitioning

The degree of relation partitioning on disks typically determines the degree of
parallelism, hence the choice of full declustering [Mehta95] or partial declustering
[Copeland88]. In DBS3, the degree of partitioning can be higher than the number of
disks which is useful to reduce the effect of skewed data distribution. However, hav-
ing more fragments than disks can induce some overhead since there are more queues
to be created and accessed. In the rest of this section, we evaluate this overhead
through experimentation and measure the improvement of a high degree of partition-
ing on skew.

5.6.1. Overhead of a High Degree of Partitioning

To study this overhead, we created several databases by varying the degree of
partitioning of the two unskewed relations (of 100K and 10K tuples). We use the
query IdealJoin for the overhead of a triggered join and AssocJoin for the overhead
of a pipelined join. The measurements use 20 threads and a degree of partitioning
varying from 20 to 1500.

Figure 16 shows the overhead for IdealJoin and AssocJoin without indexes.
This overhead is computed as the difference of the measured time and the theoretical

time*. Note that this difference does not depend on the join algorithm but on the kind
of operation (triggered/pipelined).

The overhead can be approximated with a straight line (dotted line in the Fig-
ure), using the ratio 0.45 ms/degree for IdealJoin and 4 ms/degree for AssocJoin. The
difference between these ratios has a simple explanation. In the case of IdealJoin,
there is only one activation per fragment and as many queues to create. In the case of
AssocJoin, there are two groups of queues (one for the redistribution and one for the
join) and 10K activations.

* Let T20 be the time measured with a degree of partitioning 20, the theoretical time for
degree d is obtained by (Nested loop algorithm).T

d
T

20
20 d⁄()×=

Adaptive Parallel Query Execution in DBS3 19

.

The overhead for a pipelined execution may be significant. However, it ena-
bles very high degree of partitioning (in the order of 1K) with little global overhead.
The reason is that the gains obtained from algorithmic simplification can compensate
the overhead due to partitioning. This is obvious for a nested loop join. It is less ob-
vious when using indices. Thus, Figure 17 shows the results for the same queries us-
ing a temporary index with relations of 500K and 50K tuples. In this Figure, the over-
head dominates the gain when d > 1000 for AssocJoin and d > 1400 for IdealJoin.

These experiments show the limited impact of the overhead incurred by a high
degree of partitioning on unskewed relations.

5.6.2. Using a High Degree of Partitioning for Skewed Data

We now use this property of low impact overhead incurred by a high degree
of partitioning to deal with skewed data distributions in the case of triggered opera-
tions. We run the IdealJoin query with 20 threads and relations of 500K and 50K tu-
ples, and 100K and 10K tuples. The degree of partitioning varies from 20 to 1500.
We ran the queries with a uniform distribution (Zipf = 0) and a skewed distribution
(Zipf = 0.6). The consumption strategy for the threads is LPT. We used the measure-
ments to compute the overhead v of execution time (T0.6) with respect to execution
time without skew (T0) obtained as follows: (see equation 1)

Figure 18 shows the values of v0.6 for IdealJoin with and without index. The
two curves are almost identical. It confirms that the behavior of our model with data
skew is independent of the join algorithm. The other graph shows the worst value of
v (see equation 3). Figure 19 shows the time saved by increasing partitioning, which
is to be compared with the value for T0 for IdealJoin with index.

0

1

2

3

4

5

6

250 500 750 1000 1250 1500

M
ea

su
re

d
ov

er
he

ad
 (

s)

Degree of partitioning

Overhead for AssocJoin

Overhead for IdealJoin

4 m
s/d

eg
ree

0.45 ms/degree

Figure 16: Partitioning overhead for
IdealJoin and AssocJoin (No temp. index)

Figure 17: Execution Time for Ideal-
Join and AssocJoin (with temporary index)

4

6

8

10

12

250 500 750 1000 1250 1500

E
xe

cu
tio

n
tim

e
(s

)

Degree of partitioning

AssocJoin execution time

 IdealJoin execution time

v0.6

T0.6

T
--------- 1–=

20 Luc Bouganim, Benoît Dageville, Patrick Valduriez

.

In the case of a triggered operation applied to skewed data, the advantage of a
high degree of partitioning is clear. By increasing the degree of partitioning, the gran-
ule of the sequential unit of work gets smaller (one activation = one fragment) and
the LPT strategy can better balance the load on the threads.

In the case of a pipelined operation, the granule of sequential processing is
very small (one activation = one tuple) and a higher degree of partitioning does not
modify the overhead since the number of activations remains the same. We also ver-
ified this observation by experimenting with AssocJoin, and we obtained T0.6 = T0
for any degree of partitioning (v0.6 < 0.03).

In general, complex queries will include both triggered and pipelined opera-
tions. A high degree of partitioning allows more efficient processing of skewed data
distributions for triggered operations. However, it yields some overhead for pipe-
lined operations which is well compensated by the gains obtained on triggered oper-
ations.

6 Conclusion

The barriers to parallel query execution are start-up time of parallel operations,
interference and poor load balancing among the processors due to skewed data dis-
tribution. In this paper, we have described how these problems are addressed in
DBS3, a shared-memory database system implemented on a 72-node KSR1 multi-
processor.

 Our solution combines the advantages of static and dynamic partitioning. We
use static partitioning of relations to reduce interference and dynamic allocation of
processors to operations to reduce start-up time and improve load balancing. This ad-

Figure 18: Skew overhead with
IdealJoin

0

0.5

1

1.5

2

2.5

3

250 500 750 1000 1250 1500

Sk
ew

 o
ve

rh
ea

d
(v

)

Degree of partitioning

Ideal Join (nested loop)
Ideal Join (temp. index)

vworst

Figure 19: Saved time for IdealJoin
with index.

0

2

4

6

8

10

250 500 750 1000 1250 1500

Sa
ve

d
tim

e
(s

)

Degree of partitioning

Execution time
with unskewed data, T0= 7.34 s

Saved time, Ideal Join (temp. index)

40

Adaptive Parallel Query Execution in DBS3 21

aptative approach also simplifies database tuning since the degree of partitioning
does not dictate the degree of parallelism.

A major advantage of our solution is to be able to deal efficiently with skew
by allowing each execution entity (thread) to dynamically choose which operation’s
instance it will execute and by increasing the degree of partitioning. To quantify the
potential gains, we did a performance analysis and ran experiments on our prototype
with different databases of the Wisconsin benchmark.

The behavior of our parallel execution model in front of skew depends heavily
on the nature of the operation. In DBS3, pipelined operation are naturally insensitive
to skew. This is because the high number of units of work (activations) produced by
pipelined execution yields good load balancing even in difficult situations (high
skew, high degree of parallelism).

For a triggered operation, the number of activations depends on the degree of
partitioning of the operand relations. Heuristics can be used to reduce the overhead
of skew. However, with high skew, the execution time is bounded by the time of the
longest activation.Thus, there is no gain in increasing the degree of parallelism. An
effective solution is to use a high degree of partitioning, since our models allow it
with an insignificant overhead.

With a high degree of partitioning, our model is almost insensitive to skew and
yields excellent performance. We obtained good speed-up using the 72 processors of
the KSR1, even in presence of skew. These results are due to both our DBS3 hybrid
model (static partitioning, dynamic processor allocation) and the hybrid architecture
of the KSR1 (physically distributed, virtually shared-memory).

Since pipelined operations are insensitive to skew, a simple execution strategy
would be to run as many operations as possible in pipelined mode. This strategy re-
sists to bad data distributions but may yield high overhead, especially with limited
memory size. The problem reduces to that of grain of parallelism. Coarse-grain
parallelism (triggered operation) is bad with data skew but has limited overhead.
Conversely, fine-grain parallelism (pipelined operation) makes the operation insen-
sitive to skew but may yield high overhead. Future work in DBS3 will address this
problem by allowing the choice of the grain of parallelism independent of the oper-
ation semantics.

Acknowledgments:

The authors thank Michael Franklin for careful reading of the paper. They also
want to thank J.P. Chieze, A. Clo who have allowed efficient use of the KSR1 at In-
ria, and all the members of the DBS3 team for their cooperation.

22 Luc Bouganim, Benoît Dageville, Patrick Valduriez

7 References

[Bergsten91] B. Bergsten, M. Couprie, P. Valduriez, “Prototyping DBS3, a shared-
memory parallel database system”.Int. Conf. on Parallel and
Distributed Information Systems, Florida, USA, December 1991.

[Bitton83] D. Bitton, D. J. DeWitt & C. Turbyfill, “Benchmarking database
systems - A systematic approach”,Int. Conf. on VLDB, Firenze, Italy,
October 1983.

[Boral90] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M.
Franklin, P. Valduriez, “Prototyping Bubba, A highly parallel database
system”.IEEE Knowledge and Data Engineering, Vol. 2, 1990.

[Borla91] P. Borla-Salamet, C. Chachaty, B. Dageville, “Compiling Control into
Database Queries for Parallel Execution Management”.Int. Conf. on
Parallel and Distributed Information Systems, Florida, USA,
December 1991.

[Chachaty92] C. Chachaty, P. Borla-Salamet, M. Ward, “A Compositional Approach
for the Design of a Parallel Query Processing Language”,Int. Conf. on
Parallel Architectures and Language Europe, Paris, France, June
1992.

[Copeland88] G. Copeland, W. Alexander, E. Boughter & T. Keller, “Data Placement
in bubba”,Int. Conf. ACM-SIGMOD, Chicago, June 1988.

[Dageville94] B. Dageville, P. Casadessus, P. Borla-Salamet, “The Impact of the
KSR1 AllCache Architecture on the Behaviour of the DBS3 Parallel
DBMS”, Int. Conf. on Parallel Architectures and Language Europe,
Athens, Greece, July 1994.

[Davis92] D. D. Davis, “Oracle’s Parallel Punch for OLTP”, Datamation, August
1992.

[Dewitt90] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao
& R. Rasmussen, “The Gamma Database Machine Project”,IEEE
Transactions on Knowledge and Data Engineering, Vol. 2, March
1990.

[DeWitt92a] D.J. DeWitt, J. Gray, “Parallel Database Systems: the Future of High
Performance Database Systems'',Comm. of the ACM, Vol. 35, No. 6,
June 1992.

[DeWitt92b] D.J. DeWitt, J.F. Naughton, D.A. Schneider, S. Seshadri, “Practical
Skew Handling in Parallel Joins”,Int. Conf. on VLDB,Vancouver,
Canada, August 1992.

[Frank93] S. Frank, H. Burkhardt, J. Rothnie,“The KSR1: Bridging the Gap
Between Shared-Memory and MPPs”,Compcon’93, San Francisco,

Adaptive Parallel Query Execution in DBS3 23

USA, February 1993.

[Gardarin92] G. Gardarin, P. Valduriez, “ESQL2, an Extended SQL2 with F-logic
Semantics.”,IEEE Int. Conf. on Data Engineering, Phoenix, Arizona,
February 1992.

[Graefe92] G. Graefe, S. Thakkar, “Tuning a Parallel Database Algorithm on a
Shared-Memory Multiprocessor”,Software - Practice and Experience,
Vol. 22, No.7, July 1992.

[Graefe93] G. Graefe, D. L. Davison, “Encapsulation of Parallelism and
Architecture-Independence in Extensible Database Query Processing”,
IEEE Transactions on Software Engineering, Vol. 19,August 1993.

[Graefe94] G. Graefe, “Volcano, An Extensible and Parallel Dataflow Query
Processing System”,IEEE Transaction on Knowledge and Data
Engineering Vol. 6, February 1994.

[Graham69] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies”,SIAM
Journal of Applied Mathematics, Vol. 17, March 1969.

[Hong92] W. Hong, “Exploiting Inter-Operation Parallelism in XPRS”,Int. Conf.
ACM-SIGMOD, San Diego, CA, June 1992.

[Hsiao94] H. Hsiao, M. S. Chen, P. S. Yu, “On Parallel Execution of Multiple
Pipelined Hash Joins”,Int. Conf. ACM-SIGMOD, Minneapolis, May
1994, 185-196.

[Kitsuregawa90] M. Kitsuregawa, Y. Ogawa, “Bucket Spreading Parallel Hash: A New,
Robust, Parallel Hash Join Method for Data Skew in the Super
Database Computer”,Int. Conf on VLDB, Brisbane, Australia, 1990.

[Lanzelotte94] R. Lanzelotte, P. Valduriez, M. Zait, M. Ziane,“Industrial-Strength
Parallel Query Optimization: issues and lessons”,Information Systems,
Vol. 19, No. 4, 1994.

[Lynch88] C. Lynch, “Selectivity Estimation and Query Optimization in Large
Databases with Highly Skewed Distributions of Column Values”,Int.
Conf. on VLDB, Los Angeles, CA, August 1988.

[Mehta95] M. Metha, D. DeWitt, “Managing Intra-operator Parallelism in Parallel
Database Systems”Int. Conf. on VLDB, Zurich, Switzerland,
September 1995.

[Omiecinski91] E. Omiecinski, “Performance Analysis of a Load Balancing Hash-Join
Algorithm for a Shared-Memory Multiprocessor”,Int. Conf on VLDB,
Barcelona, Spain, September 1991.

[Rahm93] E. Rahm, R. Marek, “Analysis of Dynamic Load Balancing Strategies
for Parallel Shared-Nothing Database Systems”,Int. Conf. on VLDB,
Dublin, Ireland, August 1993.

24 Luc Bouganim, Benoît Dageville, Patrick Valduriez

[Valduriez93] P. Valduriez, “Parallel Database Systems: open problems and new
issues.”, Int. Journal on Distributed and Parallel Databases, Vol. 1,
No. 2, 1993.

[Walton91] C.B. Walton, A.G. Dale, R.M. Jenevin, “A taxonomy and Performance
Model of Data Skew Effects in Parallel Joins” Int. Conf. on VLDB,
Barcelona, Spain, September 1991.

[Wilschut92] A. N. Wilschut, J. Flokstra, P. M. G. Apers, “Parallelism in a main-
memory system: The performance of PRISMA/DB”, Int. Conf. on
VLDB, Vancouver, Canada, August 1992.

[Wolf91] J. L. Wolf, D. M. Dias, P. S. Yu, J. Turek, “An Effective Algorithm for
Parallelizing Hash Joins in the Presence of Data Skew”, IEEE Int.
Conf. on Data Engineering, Kobe, Japan, April 1991.

[Zipf49] G. K. Zipf, Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology, Reading, MA, Addison-Wesley, 1949.

Éditeur

Inria, Domaine de Voluceau, Rocquencourt, BP 105 LE CHESNAY Cedex (France)

ISSN 0249-6399

Unité de recherche INRIA Lorraine, technopôle de Nancy-Brabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LÈS-NANCY
Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex

Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex1
Unité de recherche INRIA Rocquencourt, domaine de Voluceau, Rocquencourt, BP 105, LE CHESNAY Cedex

Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

