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Abstract

Boolean algebra is simpler than number algebra, with applications in programming, circuit

design, law, specifications, mathematical proof, and reasoning in any domain.  So why is

number algebra taught in primary school and used routinely by scientists, engineers,

economists, and the general public, while boolean algebra is not taught until university, and

not routinely used by anyone?  A large part of the answer may be in the terminology of

logic, in the symbols used, and in the explanations of boolean algebra found in textbooks.

The subject has not yet freed itself from its history and philosophy.  This paper points out

the problems delaying the acceptance and use of boolean algebra, and suggests some

solutions.

Introduction

This is not a mathematically deep talk.  It does not contain any new mathematical results.  It

is about the symbols and notations of boolean algebra, and about the way the subject is

explained.  It is about education, and about putting boolean algebra into general use and

practice.  To make the scope clear, by “boolean algebra” I mean the usual algebra whose

expressions are boolean, where “boolean” is a type.  I mean to include propositional logic

and predicate calculus.  I shall say “boolean algebra”, “boolean calculus”, or “logic”

interchangeably, and call its expressions “boolean expressions”.  Analogously, I say

“number algebra”, “number calculus”, or “arithmetic” interchangeably, and call its

expressions “number expressions”.

Boolean algebra is the basic algebra for much of computer science.  Other applications

include digital circuit design, law, reasoning about any subject, and any kind of

specifications, as well as providing a foundation for all of mathematics.  Boolean algebra is

inherently simpler than number algebra.  There are only two boolean values and a few

boolean operators, and they can be explained by a small table.  There are infinitely many

number values and number operators, and even the simplest, counting, is inductively

defined.  So why is number algebra taught in primary school, and boolean algebra in

university?  Why isn't boolean algebra better known, better accepted, and better used?



One reason may be that, although boolean algebra is just as useful as number algebra, it

isn't as necessary.  Informal methods of reckoning quantity became intolerable several

thousand years ago, but we still get along with informal methods of specification, design,

and reasoning.  Other reasons may be accidents of educational history, and still others may

be our continuing mistreatment of boolean algebra.

Historical Perspective

To start to answer these questions, I'm going to look briefly at the history of number

algebra.  Long after the invention of numbers and arithmetic, quantitative reasoning was

still a matter of trial and error, and still conducted in natural language.  If a man died leaving

his 3 goats and 20 chickens to be divided equally between his 2 sons, and it was agreed that

a goat is worth 8 chickens, the solution was determined by iterative approximations,

probably using the goats and chickens themselves in the calculation.  The arithmetic needed

for verification was well understood long before the algebra needed to find a solution.

The advent of algebra provided a more effective way of finding solutions to such problems,

but it was a difficult step up in abstraction.  The step from constants to variables is as large

as the step from chickens to numbers.  In English 500 years ago, constants were called

“nombers denominate” [concrete numbers], and variables were called “nombers abstracte”.

Each step in an abstract calculation was accompanied by a concrete justification.  For

example, we have the Commutative Law [0]:

When the chekyns of two gentle menne are counted, we may count first the chekyns

of the gentylman having fewer chekyns, and after the chekyns of the gentylman

having the greater portion.  If the nomber of the greater portion be counted first, and

then that of the lesser portion, the denomination so determined shall be the same.”

This version of the Commutative Law includes an unnecessary case analysis, and it has

missed a case:  when the two gentlemen have the same number of chickens, it does not say

whether the order matters.  The Associative Law [0]:

When thynges to be counted are divided in two partes, and lately are found moare

thynges to be counted in the same generall quantitie, it matters not whether the

thynges lately added be counted together with the lesser parte or with the greater

parte, or that there are severalle partes and the thynges lately added be counted

together with any one of them.

One of the simplest, most general laws, sometimes called the Transparency Law, or

“substitution of equals for equals”,

x=y ⇒ f x=f y



seems to have been discovered a little at a time.  Here is one special case [1]:

“In the firste there appeareth 2 nombers, that is  14x + 15y equalle to one nomber,

whiche is  71y .  But if you marke them well, you maie see one denomination, on

bothe sides of the equation, which never ought to stand.  Wherfore abating

[subtracting] the lesser, that is  15y out of bothe the nombers, there will remain

14x = 56y that is, by reduction,  1x = 4y .

Scholar.  I see, you abate  15y from them bothe.  And then are thei equalle still,

seyng thei wer equalle before.  According to the thirde common sentence, in the

patthewaie:  If you abate even [equal] portions, from thynges that bee equalle, the

partes that remain shall be equall also.

Master.  You doe well remember the firste grounds of this arte.”

And then, a paragraph later, another special case:

“If you adde equalle portions, to thynges that bee equalle, what so amounteth of them

shall be equalle.”

As you can imagine, the distance from  2x + 3 = 3x + 2  to  x=1  was likely to be several

pages.  The reason for all the discussion in between formulas was that algebra was not yet

fully trusted.  Algebra replaces meaning with symbol manipulation;  the loss of meaning is

not easy to accept.  The author had to constantly reassure those readers who had not yet

freed themselves from thinking about the objects represented by numbers and variables.

Those who were skilled in the art of informal reasoning about quantity were convinced that

thinking about the objects helps to calculate correctly, because that is how they did it.  As

with any technological advance, those who are most skilled in the old way are the most

reluctant to see it replaced by the new.

Today, of course, we expect a quantitative calculation to be conducted entirely in algebra,

without reference to thynges.  Although we justify each step in a calculation by reference to

an algebraic law, we do not have to justify the laws anymore.  We can go farther, faster,

more succinctly, and with much greater certainty.  The following proof of Wedderburn's

Theorem (a finite division ring is a commutative field) is typical of today's algebra;  I have

taken it from the text used when I studied algebra [2].  You needn't read it;  I quote it only

so that I can comment on it after.

(start of typical modern proof)
Let D be a finite division ring and let Z be its center.  By induction we may

assume that any division ring having fewer elements than D is a commutative field.
We first remark that if a,b∈D are such that bta=abt but ba≠ab then bt∈Z. For,

consider N(bt) = { x∈D | btx=xbt}. N(bt) is a subdivision ring of D; if it were not D,
by our induction hypothesis, it would be commutative. However, both a and b are in
N(bt) and these do not commute; consequently, N(bt) is not commutative so must be



all of D. Thus bt∈Z.
Every nonzero element in D has finite order, so some positive power of it falls

in Z. Given w∈D let the order of w relative to Z be the smallest positive integer m(w)
such that wm(w)∈Z. Pick an element a in D but not in Z having minimal possible order
relative to Z, and let this order be r. We claim that r is a prime number for if r=pq with
1<p<r then ap is not in Z. Yet (ap)q=ar∈Z, implying that ap has an order relative to Z
smaller than that of a.

By the corollary to Lemma 7.9 there is an x∈D such that xax–1=ai≠a; thus
x2ax–2=x(xax–1)x–1=xaix–1=(xax–1)i=(ai)i=ai2. Similarly, we get xr–1ax–(r–1)=
ai(r–1). However, r is a prime number thus by the little Fermat theorem (corollary to
Theorem 2.a), ir–1=1+ur, hence ai(r–1)=a1+ur=aaur=λa where λ=aur∈Z. Thus
xr–1a=λazxr–1. Since x∉Z, by the minimal nature of r, xr–1 cannot be in Z. By the
remark of the earlier paragraph since xa≠ax, xr–1a≠axr–1 and so λ≠1. Let b=xr–1;
thus bab–1=λa; consequently, λrar=(bab–1)r=barb–1=ar since ar∈Z. This relation
forces λr=1.

We claim that if y∈D then whenever yr=1, then y=λi for some i, for in the field
Z(y) there are at most r roots of the polynomial ur–1; the elements 1, λ, λ2, ..., λr–1

in Z are all distinct since λ is of the prime order r and they already account for r roots
of ur–1 in Z(y), in consequence of which y=λi.

Since λr=1, br=λrbr=(λb)r=(a–1ba)r=a–1bra from which we get abr=bra. Since
a commutes with br but does not commute with b, by the remark made earlier, br

must be in Z. By Theorem 7.b the multiplicative group of nonzero elements of Z is
cyclic; let γ∈Z be a generator. Thus ar=γj, br=γk ; if j=sr then ar=γsr; whence (a/γs)r=1;
this would imply that a/γs=λi, leading to a∈Z, contrary to a∉Z. Hence, r does not
divide j; similarly r does not divide k. Let a1=ak and b1=bj; a direct computation from
ba=λab leads to a1b1=µb1a1 where µ=λ–j k∈Z. Since the prime number r which is the
order of λ does not divide j or k, λj k≠1 whence µ≠1. Note that µr=1.

Let us see where we are. We have produced two elements a1, b1 such that:
(1) a1

r=b1
r=α∈Z.

(2) a1b1=µb1a1 with µ≠1 in Z.
(3) µr=1.

We compute  (a1
–1b1)r;  (a1

–1b1)2=a1
–1b1a1

–1b1=a1
–1(b1a1

–1)b1=
a1

–1(µa1
–1b1)b1=µa1

–2b1
2.  If we compute (a1

–1b1)3 we find it equal to µ1+2a1
–3b1

3.
Continuing we obtain (a1

–1b1)r=µ1+2+...+(r–1)a1
–rb1

r=µ1+2+...+(r–1)=µr(r–1)/2. If r is an
odd prime, since µr=1, we get µr(r–1)/2=1, whence (a1

–1b1)r=1. Being a solution of
yr=1, a1

–1b1=λi so that b1=λia1; but then µb1a1=a1b1=b1a1, contradicting µ≠1. Thus
if r is an odd prime number, the theorem is proved.

We must now rule out the case r=2. In that special situation we have two
elements a1,b1∈D such that a1

2=b1
2=α∈Z, a1b1=µb1a1 where µ2=1 and µ≠1. Thus

µ=–1 and a1b1=–b1a1≠b1a1; in consequence, the characteristic of D is  not 2. By
Lemma 7.7 we can find elements ζ,η∈Z such that 1+ζ2–αη2=0. Consider
(a1+ζb1+ηa1b1)2; on computing this out we find that (a1+ζb1+ηa1b1)2=
α(1+ζ2–αη2)=0. Being in a division ring this yields that a1+ζb1+ηa1b1=0; thus
0≠2a1

2=a1(a1+ζb1+ηa1b1)+(a1+ζb1+ηa1b1)a1=0. This contradiction finishes the
proof and Wedderburn's theorem is established.

(end of typical modern proof)



Before we start to feel pleased with ourselves at the improvement, let me point out that there

are two kinds of calculation in this text.  One kind occurs in formulas, such as

λrar=(bab–1)r=barb–1=ar

br=λrbr=(λb)r=(a–1ba)r=a–1bra

(a1
–1b1)2=a1

–1b1a1
–1b1=a1

–1(b1a1
–1)b1=a1

–1(µa1
–1b1)b1=µa1

–2b1
2

(a1
–1b1)r=µ1+2+...+(r–1)a1

–rb1
r=µ1+2+...+(r–1)=µr(r–1)/2

This kind uses algebra well.  The other kind occurs in the English text between the

formulas.  A proof is a boolean calculation, and in the current state of mathematics, as in

the example, it is usually conducted mostly in natural language.  Words like

“consequently”, “implying”, “there is/are”, “however”, “thus”, “hence”, “since”, “forces”,

“if...then”, “in consequence of which”, “from which we get”, “whence”, “would imply”,

“contrary to”, “so that”, “contradicting” suggest boolean operators;  all the bookkeeping

sentences suggest the structure of a boolean expression.  A formal proof is a boolean

calculation using boolean algebra;  when we learn to use it well, it will enable us to go

farther, faster, more succinctly, and with much greater certainty.  But there is a great

resistance in the mathematical community to formal proof, especially from those who are

most expert at informal proof.  They complain that formal proof loses meaning, replacing it

with symbol manipulation.  The current state of boolean algebra, not as an object of study

but as a tool for use, is very much the same as number algebra was 5 centuries ago.

Traditional Terminology

Formal logic has developed a traditional terminology that its students are required to learn.

There are terms which are said to have values.  There are formulas, also known as

propositions or sentences, which are said not to have values, but instead to be true or false.

Operators (+, –) join terms, while connectives (∧, ∨) join formulas.  Some terms are

boolean, and they have the value  true or  false , but that's different from being true or

false.  It is difficult to find a definition of predicate, but it seems that a boolean term like

x=y stops being a boolean term and mysteriously starts being a predicate when we admit

the possibility of using quantifiers (∃, ∀).  Does  x+y stop being a number term if we

admit the possibility of using summation and product (Σ, Π)?  There are at least three

different equal signs:  =  for terms, and then  ⇔ and  ≡ for formulas and predicates, with

one of them carrying an implicit universal quantification.  We can even find a peculiar

mixture in some textbooks, such as the following:

a+b = a ∨ a+b = b

Here,  a and  b are boolean variables,  +  is a boolean operator (disjunction),  a+b is a

boolean term (having value  true or  false ),  a+b = a and  a+b = b are formulas (so they

are true or false), and finally  ∨ is a logical connective.



Fortunately, in the past few decades there has been a noticeable shift toward erasing the

distinction between being true or false and having the value  true or  false .  It is a shift

toward the calculational style of proof.  But we have a long way to go yet, as I find

whenever I ask my beginning students to prove something.  If I ask them to prove

something of the form  a≡b they happily try to do so.  If I ask them to prove something of

the form  a∨b , they take an unwittingly constructivist interpretation, and suppose I want

them to prove  a or prove  b ;  they cannot understand the phrase “prove  a∨b ” otherwise,

because “or” isn't a verb!  Here is an even more blatant example:  prove  a⊕b where  ⊕ is

pronounced “exclusive or”.  They cannot even start because they need something that looks

grammatically like a proposition or sentence.  If I change it to either  (a⊕b ) ≡ true or to

a b they are happy.  The same lack of understanding can be found in many introductory

programming texts where boolean expressions are not taught in their generality but as

comparisons because comparisons have verbs!

while flag=true do something

Our dependence on natural language for the understanding of boolean expressions is a

serious impediment.

Traditional Notations

Arithmetic notations are reasonably standard throughout the world.  The expression

738 + 45 = 783

is recognized and understood by schoolchildren almost everywhere.  But there are no

standard boolean notations.  Even the two boolean constants have no standard symbols.

Symbols in use include

true t T 1 0 1=1

false f F 0 1 1=2

Quite often the boolean constants are written as  1  and  0 , with  +  for disjunction,

juxtaposition for conjunction, and perhaps  –  for negation.  With this notation, here are

some laws.

x(y+z) = xy + xz

x + yz = (x+y)(x + z)

x + –x = 1

x(–x) = 0

The overwhelming reaction of algebraists is:  it doesn't matter which symbols are used.

Just introduce them, and get on with it.  But to apply an algebra, one must recognize the

patterns, matching laws to the expression at hand.  The laws have to be familiar.  The first

law above coincides with number algebra, but the next three clash with number algebra.  It

takes an extra moment to think which algebra I am using as I apply a law.  The logician



R.L. Goodstein [3] chose to use  0  and  1  the other way around, which slows me down a

little more.  A big change, like using  +  as a variable and  x as an operator, would slow me

down a lot.  I think it matters even to algebraists because they too have to recognize

patterns.  To a larger public, the reuse of arithmetic symbols with different meanings is an

insurmountable obstacle.  And when we mix arithmetic and boolean operators in one

expression, as we often do, it is impossible to disambiguate.

The most common notations for the two boolean constants found in programming

languages and in programming textbooks seem to be  true and  false .  I have two

objections to these symbols.  The first is that they are clumsy.  Number algebra could never

have advanced to its present state if we had to write out words for numbers.

seven three eight + four five = seven eight three

is just too clumsy, and so is

true ∧ false ∨ true ≡ true

Clumsiness may seem minor, but it can be the difference between success and failure in a

calculus.

My second, and more serious, objection is that the words  true and  false confuse the

algebra with an application.  One of the primary applications of boolean algebra is to

formalize reasoning, to determine the truth or falsity of some statements from the truth or

falsity of others.  In that application, we use one of the boolean values to represent an

arbitrary true statement, and the other to represent an arbitrary false statement.  So for that

application, it seems reasonable to call them  true and  false .  The algebra arose from that

application, and it is so much identified with it that many people cannot separate them.  But

of course boolean expressions are useful for describing anything that comes in two kinds.

We apply boolean algebra to circuits in which there are two voltages.  We sometimes say

that there are 0s and 1s in a computer's memory, or that there are trues and falses.  Of

course that's nonsense;  there are neither 0s and 1s nor trues and falses in there;  there are

low and high voltages.  We need symbols that can represent truth values and voltages

equally well.

Boolean expressions have other applications, and the notations we choose should be

equally appropriate for all of them.  Computer programs are written to make computers

work in some desired way.  Before writing a program, a programmer should know which

ways are desirable and which are not.  That divides computer behavior into two kinds, and

we can use boolean expressions to represent them.  A boolean expression used this way is

called a specification.  We can specify anything, not just computer behavior, using boolean

expressions.  For example, if you would like to buy a table, then tables are of two kinds:



those you find desirable and are willing to buy, and those you find undesirable and are not

willing to buy.  So you can use a boolean expression as a table specification.  Acceptable

and unacceptable human behavior is specified by laws, and boolean expressions have been

proposed as a better way than legal language for writing laws.

For symbols that are independent of the application, I propose the lattice symbols  and

, pronounced “top” and “bottom”.  Since boolean algebra is the mother of all lattices, I

think it is appropriate, not a misuse of those symbols.  They can equally well be used for

true and false statements, for high and low voltages (power and ground), for satisfactory

and unsatisfactory tables, for innocent and guilty behavior, or any other opposites.

We seem to be settling on the symbols  ∧ and  ∨ for conjunction and disjunction, although

they are still not universal.  They are explained by the use of the words “and” and “or”;

even when they are explained by their “truth tables” we remember them by the fact that

x∧y is  exactly when both  x and y are  , and similarly for  ∨ .

We are less settled on a symbol for implication.  Symbols in use include

→ ⇒ ∴ ⊃
The usual explanation says it means “if then”, followed by a discussion about the meaning

of “if then”.  Apparently, people find it difficult to understand an implication whose

antecedent is  false .  Such an implication is called “counter-factual”.  For example, Charles

Navarre declared [4]:  “If my mother had been a man, I'd be the king of France.”.  Some

people are uneasy with the idea that  false implies anything, so some researchers in

Artificial Intelligence have proposed a new definition of implication.  The following truth

table shows both the old and new definitions.

old new
a b a⇒b a⇒b
———————————————

true true true true

true false false false

false true true unknown

false false true unknown

where  unknown is a third boolean value.  When the antecedent is  false , the result of the

new kind of implication is  unknown .  This is argued to be more intuitive.  I believe this

proposal betrays a serious misunderstanding of the use of logic.  When someone makes a

statement, they are saying that the statement is  true .  Even if the statement is “if a then b ”

and  a is known to be  false , nonetheless we are being told that “if a then b ” is  true .  It is

the consequent  b that is unknown.  And that is represented perfectly by the old

implication:  there are two rows in which  a is  false and  a⇒b is  true ;  on one of these

rows,  b is  true , and on the other  b is  false .



There are two other symbols

———   

that mean something like implication. We are told that these are not implication, but you

must admit that the distinction is subtle.  The explanations sound similar:  if the left (or top)

side is a theorem, then the right (or bottom) side is too.  And the Deduction Theorem says

that  coincides with implication for a large part of logic.  It is just such complications that

keep logic out of use, even by mathematicians.

In case you think that confusion is just for beginners or philosophers, consider the

explanation of implication in Contemporary Logic Design, 1994 [5]:

“As an example, let's look at the following logic statement:

IF the garage door is open

AND the car is running

THEN the car can be backed out of the garage

It states that the conditions — the garage is open and the car is running — must be

true before the car can be backed out.  If either or both are false, then the car cannot

be backed out.  If we determine that the conditions are valid, then mathematical logic

allows us to infer that the conclusion is valid.”

Even a Berkeley electrical engineering professor can't get implication right.

Implication is best presented as an ordering, and for primary school students, all the

explanation necessary can be carried by its name.  If we are still calling the boolean values

“true” and “false” then we can call it “falser than or equal to”, or if you prefer, “as false as”.

It is easy to see that  false is falser than or equal to  true , and that  false is falser than or

equal to  false .  As we get into boolean expressions that use other types, this explanation

remains good:  x>6  is falser than or equal to  x>3 , as a sampling of evaluations illustrates.

If we are calling the boolean values “top” and “bottom”, we can say “lower than or equal

to” for implication.  With this new pronunciation and explanation, three other neglected

boolean operators become familiar and usable;  they are “higher than or equal to”, “lower

than”, and “higher than”.  For lack of a name and symbol, the last two operators have been

treated like shameful secrets, and shunned.  Even implication has often been defined as a

“secondary” operator in terms of the “primary” operators negation and disjunction:

(a⇒b)  ≡ ¬a ∨ b

This avoids the philosophical explanation, but it makes an unsupportable distinction

between “primary” and “secondary” operators, and hides the fact that it is an ordering.  If

we present implication as an ordering, as I prefer, then we face the problem of how to use

this ordering in the formalization of natural language reasoning.  Philosophers and linguists

can help, or indeed dominate in this difficult and important area.  But we shouldn't let the



complexities of this application of boolean algebra complicate the algebra, any more than

we let the complexities of the banking industry complicate the definition of arithmetic.

That implication is the boolean ordering, with  and  at the extremes, is not known to

all who use boolean algebra.  In the specification language Z, boolean expressions are used

as specifications.  Specification A refines specification B if all behavior satisfying A also

satisfies B.  Although increasing satisfaction is exactly the implication ordering, the

designers of Z defined a different, complicated ordering for refinement where  is not

satisfied by all computations, only by terminating computations, and  is satisfied by

some computations, namely nonterminating computations.  When even they can get it

wrong, logic is not well understood or used.

Symmetry and Duality

In choosing binary infix symbols, there is a simple principle that really helps our ability to

calculate:  we should choose symmetric symbols for symmetric operators, and asymmetric

symbols for asymmetric operators, and choose the reverse of an asymmetric symbol for the

reverse operator.  The benefit is that we get a lot of laws for free:  we can write an

expression backwards and get an equivalent expression.  For example,  x + y < z is

equivalent to  z > y + x .  By this principle, the arithmetic symbols  +  × <  >  =  are well

chosen but  –  and  ≠  are not.  The boolean symbols  ∧ ∨ ⇒ ⇐ ≡ ⊕ are well chosen,

but  is not.

Duality can be put to use, just like symmetry, if we use vertically symmetric symbols for

self-dual operators, and vertically asymmetric operators for non-self-dual operators with the

vertical reverse for their duals.  The laws we get for free are:  to negate an expression, turn

it upside down.  For example,  (∧ – ) ∨ is the negation of  ( ∨ – ) ∧ if you

allow me to use the vertically symmetric symbol  –  for negation, which is self-dual.  There

are two points that require attention when using this rule.  One is that parentheses may need

to be added to maintain the precedence;  but if we give dual operators the same precedence,

there's no problem.  The other point is that variables cannot be flipped, so we negate them

instead (since flipping is equivalent to negation).  The well-known example is deMorgan's

law:  to negate  a ∨ b , turn it upside down and negate the variables to get  –a ∧ –b .  By this

principle, the symbols  –  ∧ ∨ are well chosen, but  ⇒ ⇐ ≡ ⊕ are not.  By

choosing better symbols we can let the symbols do some of the work of calculation,

moving it to the level of visual processing.



Booleans and Numbers

I have long thought it was a mistake to identify booleans with numbers, even if just by the

reuse of symbols.  It's a type error.  The C language continues the mistake.  Thus we can

write (1 && 1) + 1 and get 2.  I have recently changed my mind.  I now think the

association —even the identification— between booleans and numbers is right, but not the

association we are used to.

I like to prove things about the execution time of programs, and for that purpose I use a

number system extended with an infinity (because that's the execution time of some

programs).  For some purposes I use integers extended with infinity, and for others I use

reals extended with infinity.  For a list of axioms of this arithmetic, please see the appendix;

for more detail, please see [6].  Here I mention only that infinity is maximum  x ∞  and it

absorbs additions  ∞+1=∞ .  For my purposes, I have not needed a lot of infinite

cardinalities;  a single infinity is enough.  The association I want to make between booleans

and numbers is the following.

boolean number

top ∞ infinity

bottom –∞ minus infinity

negation ¬ – negation

conjunction ∧ minimum

disjunction ∨ maximum

“nand” ⇑ negation of minimum

“nor” ⇓ negation of maximum

implication ⇒ order

reverse implication ⇐ reverse order

strict implication < strict order

strict reverse implication > strict reverse order

equivalence ≡ = equality

exclusive or ⊕ ≠ inequality

I have temporarily invented a few symbols to fill in some gaps.  The remaining three unary

operators and six binary operators are degenerate, so I have not included them.  With this

association, all number laws employing only these operators correspond to boolean laws.

For example,



boolean law number law

≡ ¬ ∞ = – –∞
a ≡ ¬¬a x = – –x

a ∨ ≡ x ∞  = ∞
a ∧ ≡ x –∞  = –∞
a ∨ ≡ a x –∞  = x

a ∧ ≡ a x ∞  = x

a ⇒ x ∞
⇒ a –∞ x

a ∨ (b ∧ c)  ≡ (a∨b) ∧ (a∨c) x (y z)  =  (x y) (x z)

a ∧ (b ∨ c)  ≡ (a∧b) ∨ (a∧c) x (y z)  =  (x y) (x z)

a ∨ b ≡ ¬(¬a ∧ ¬b) x y =  –(–x –y)

a ∧ b ≡ ¬(¬a ∨ ¬b) x y =  –(–x –y)

There are, however, boolean laws that do not correspond to number laws.  For example,

boolean law number non-law

∞
¬ – –∞
a ∨ ¬a ≡ x –x = ∞
a ∧ ¬a ≡ x –x = –∞
( ⇒ a)  ≡ a (∞ x)  = x

( ≡ a)  ≡ a (∞ = x)  = x

Number algebra has developed by the desire to solve equations, or more generally, to solve

boolean expressions.  This has resulted in an increasing sequence of domains, from

naturals to integers to rationals to reals to complex numbers.  As we gain solutions, we lose

laws.

small domain ←→ large domain

more laws ←→ fewer laws

fewer solutions ←→ more solutions

This is because a law is essentially a universal quantification, and a boolean expression to

be solved is essentially an existential quantification.

law: ∀variables: domains· boolean expression

solution: ∃variables: domains· boolean expression

As the domain of an operation or function grows, we do not change its symbol;  addition  is

still denoted  +  as we go from naturals to complex numbers.  I will not argue whether the

naturals are a subset of the complex numbers or just isomorphic to a subset;  for me the

question has no meaning.  But I do argue that it is important to use the same notation for



natural  1  and complex  1  because they behave the same way, and for natural  +  and

complex  +  because they behave the same way on their common domain.  To be more

precise, all laws of complex arithmetic that can be interpreted over the naturals are laws of

natural arithmetic, and all equations (or more generally, boolean expressions) over the

naturals retain the same solutions over the complex numbers.  The reason we must use the

same symbols is so that we do not have to relearn all the laws and solutions as we enlarge

or shrink the domain.

I have been hammering on a point that I expect is not contentious.  If I have your

agreement, then you must conclude, as I must, that the symbols of boolean algebra and

arithmetic must be unified.  The question whether boolean is a different type from number

is no more relevant than the question whether natural and integer are different types.

What's important is that laws and solutions are learned once, in a unified system, not twice

in conflicting systems.  And that matters both to professional mathematicians who must

apply laws and solve, and to primary school students who must struggle to learn what will

be useful to them.

Unified Algebra

Here is my proposal for the symbols of a unified algebra.

unified

top infinity

bottom minus infinity

negation – negation

conjunction ∧ minimum

disjunction ∨ maximum

“nand” negation of minimum

“nor” negation of maximum

implication order

reverse implication reverse order

strict implication < strict order

strict reverse implication > strict reverse order

equivalence = equality

exclusive or inequality

The symbols  –  <  >  =  are world-wide standards, used by school children in all

countries, so I dare not suggest any change to them.  The symbol  ≠  for inequality is the



next best known, but I have dared to stand up the slash so that all symmetric operators have

symmetric symbols and all asymmetric operators have asymmetric symbols.  (Although it

was not a consideration,  also looks more like  ⊕ .)  There are no standard symbols for

minimum and maximum, so I have used the boolean conjunction and disjunction symbols.

The “nand” symbol is a combination of the “not” and “and” symbols, and similarly for

“nor”.  Duality has been sacrificed to standards;  the pair  <  are duals, so they ought to

be vertical reflections of each other;  similarly the pair  > , and also  =  .  Since we

now have a unified boolean and number algebra, I might mention that addition and

subtraction are self-dual, and happily  +  and  –  are vertically symmetric;  multiplication is

not self-dual, but  × is unfortunately vertically symmetric.

Having unified the symbols, I suppose we should also unify the terminology.  I vote for the

number terminology in the right column, except that I prefer to call  and  “top” and

“bottom”.

In the unified algebra, the fact that  x=–x has no boolean solution but does have an integer

solution is no more bothersome than that x2=2 has no integer solution but does have a real

solution.  The fact that  x –x is a boolean law but not an integer law is no more

bothersome than that  x2 2  is an integer law but not a real law.

Quantifiers

I am told that the symbols  ∀ and  ∃ send engineers running, and I don't blame them.  For

me, the problem with these symbols is that they are associated with the words “all” and

“exist”.  I am truly sorry the word “existence” was ever used in mathematics.  We can

certainly apply mathematics to problems concerning the existence of something in the

application area, and then I once again leave it to philosophers or linguists to determine how

best to apply it, and how well the mathematical expressions can represent the existence of

some application objects.  But I don't want any debate about existence within mathematics;

to me, mathematical existence is meaningless.

The nicest, simplest presentation of quantifiers, perhaps due to Curry, begins with the

treatment of functions due to Church.  I write a function, or local scope, according to the

following example:

〈n: nat· n+1〉
Originally, instead of angle brackets, Church used a long hat over the expression to denote

the scope of the variable.  Due to the obvious typesetting difficulty, Church was persuaded

to write the hat in front of the expression rather than over it, and the most similar available



character was  λ ;  thus the lambda calculus was born.  Following van de Snepscheut, I

have returned to the original spirit, and use angle brackets to delimit scope.  Next, I want to

get rid of the idea that all possible variables (infinitely many of them) already “exist”, and

the function notation ( λ or  〈 〉 ) is said to “bind” variables, and any variable that is not

bound remains “free”.  I prefer the programmer's terminology of “local” and “global”

variables.  Variables do not automatically “exist”;  they are introduced (rather than bound)

by the function notation.

A local variable can be instantiated, in other words a function can be applied to an

argument, but at the moment I am interested in applying operators to functions.  If the body

of a function is a number expression, then we can apply  +  to obtain the sum of the

function results.  For example,

+〈n: nat· 1/2n〉
There is no syntactic ambiguity caused by this use of  + , so no need to employ another

symbol  Σ for addition.  The introduction of the dummy variable and its domain are exactly

the job of the function notation, so no need to employ another notation for variable

introduction with quantifiers.  And the notation generalizes to other binary associative

symmetric operators, such as

×〈n: nat· 1/2n〉
∧〈n: nat· n>5〉
∨〈n: nat· n>5〉

There are no scary symbols.  We talk about a maximum, not existence, because it is a

maximum, not existence.  By applying  =  and  to functions we obtain the two

independent parity quantifiers.  Even set formation, limits, and integrals can be treated this

way.

The sum of two rationals is rational;  the sum of infinitely many rationals may not be

rational.  Nonetheless, we continue to use the word “sum” and symbol  + .  Similarly, I see

no need to switch teminology from “maximum” to “least upper bound” as we generalize  ∨
from two operands to infinitely many;  we just have to learn that the maximum of a set may

not be in the set.

If function  f has domain  D , then  f =   〈x: D· f x〉 , so quantifications traditionally written

Σx: D· f x ∀x: D· Px

which we can now write as

+〈x: D· f x〉 ∧〈x: D· Px〉
can be written even more succinctly as

+f ∧P



Using juxtaposition for composition, deMorgan's laws

¬(∀x: D· Px)   ≡ (∃x: D· ¬Px) ¬(∃x: D· Px)   ≡ (∀x: D· ¬Px)

become

–∧P =  ∨–P –∨P =  ∧–P

or even more succinctly

(–∧) =  (∨–) (–∨)  =  (∧–)

The Specialization and Generalization laws say thatif  y: D ,

(∀x: D· Px)   ⇒ Py Py ⇒ (∃x: D· Px)

They now become

∧P Py Py ∨P

which say that the minimum item is less than or equal to any item, and any item is less than

or equal to the maximum item.  These laws hold for all numbers, not just for the boolean

subset.

To define quantifiers formally, we have to say, for each domain constructor, how they

apply to functions with such domains.  The axioms follow a pattern:

∧〈x: { }· e〉   =
∧〈x: {y}· e〉 =   〈x: {y}· e〉 y

∧〈x: A∪B· e〉 =  ∧〈x: A· e〉 ∧ ∧〈x: B· e〉

∨〈x: { }· e〉   =
∨〈x: {y}· e〉 =   〈x: {y}· e〉 y

∨〈x: A∪B· e〉 =   ∨〈x: A· e〉 ∨ ∨〈x: B· e〉

+〈x: { }· e〉 =   0

+〈x: {y}· e〉 =   〈x: {y}· e〉 y

+〈x: A∪B· e〉 + +〈x: A∩B· e〉 =  +〈v: A· e〉 + +〈v: B· e〉

×〈x: { }· e〉 =   1

×〈x: {y}· e〉 =   〈x: {y}· e〉 y

×〈x: A∪B· e) × ×〈x: A∩B· e〉 =   ×〈x: A· e〉 × ×〈x: B· e〉
If there are other domain constructors, there are other axioms.  A domain can even be

defined by saying how a quantifier applies to functions with that domain.  For example,

nat can be defined by

∧〈x: nat· Px〉 =   P0 ∧ ∧〈x: nat· Px P(x+1)〉
or dually (renaming  P as its negation)

∨〈x: nat· Px〉 =   P0 ∨ ∨〈x: nat· Px < P(x+1)〉



Those who dislike formal definitions may have a desire to say in natural language how  ∧
applies to all boolean functions, regardless of how the domain was constructed.  They may

want to say that the result is  exactly when all range elements are  .  The word “all”

sounds clear and unambiguous, but we have enough experience to know that it is far from

clear and unambiguous.  (Are so-called “undefined” range elements included?)  Natural

language definitions lead to a lot of arguments, and I have lost patience with them.  Only a

formal definition, equivalent to an automated theorem prover, is clear and unambiguous.

Here's an interesting experiment:  ask a colleague if  (∀x·Px) ⇒ (∃y· Qy)  is equivalent to

∃x· ∃y· (Px ⇒ Qy)  and then listen to their efforts to find the answer.  They probably don't

find it obvious.  Those who reason informally say things like “suppose all  x have property

P ”, and “suppose some  y has property  Q ”.  They are led into case analyses by treating

∀ and  ∃ as abbreviations for “for all” and “there exists” (as they originally were).  Of the

very few who reason formally, most don't know many laws;  perhaps they start by getting

rid of the implications in favor of  ¬ and  ∨ , then use deMorgan's laws.  Let me rewrite

the question in the new notations.

(∧P ∨Q)  =  ∨〈x· ∨〈y· Px Qy〉〉
On the left, it says the minimum  P is at most the maximum  Q .  On the right it says that

some  P is at most some  Q .  Now it's more obviously a theorem, not just for booleans

but for all numbers.  To prove it, one should know (or prove)  laws like

(∧P q)  =  ∨〈x· Px q〉
(the minimum  P is less than or equal to  q if and only if some  P is less than or equal to

q ), and dually

(p ∨Q)  =  ∨〈y· p Qy〉
( p is less than or equal to the maximum  Q if and only if  p is less than or equal to some

Q ).  The proof is then

∨〈x· ∨〈y· Px Qy〉〉
= ∨〈x· Px ∨Q〉
= (∧P ∨Q)

It is not the presence of quantifiers that moves us up from zero-order logic to first-order

logic, but the presence of functions, with domains restricted to zero-order expressions.

With unrestricted domains, we move up again to higher-order logic.  Logicians seem to like

to settle the question “which logic are we in” before they do any reasoning.  Can you

imagine asking a working mathematician or engineer to decide whether they will be using

functions, and if so, what will be their domains, before beginning their work?  The answer

would be:  I'll use whatever I need when I need it.



Metalogic

Almost always, number algebra is presented without a metanotation, while logic is

presented with one.  The distinction between the metanotation and the object notation is not

easily appreciated by students, or by many teachers.

Logicians study logic.  There are no applied logicians who use logic to study something

else.  In the study of logic, at or near the beginning, logicians present the very important

symbol  to represent theoremhood.  I ask you to put yourself in the place of a beginning

student.  This symbol is applied to a boolean expression just like the boolean operators;  but

we know all the boolean operators and this isn't one of them.  To say that it is a “meta-

operator” just labels it, and doesn't explain it.  Saying that it applies to the form, rather than

the meaning, is confusing too, since the entire point of the algebra is to enable us to work

with the form and ignore the meaning.  In my opinion, the use of meta-level operators is

unnecessary and ill-conceived.

To apply an operator to the form of an expression, we do not need any new kind of

operator.  Rather, we need to do exactly what Gödel did when he encoded expressions, but

we can use a better encoding.  We need to do exactly what programmers do:  distinguish

program from data.  One person's program may be a compiler writer's data, but when it is

data, it is a character string.  We should apply  to character strings.  The character string

“a ∨ –a”  can be used as a code for the expression  a ∨ –a .  We define  s according to the

structure of boolean expressions so that  s is a theorem when the boolean expression

represented by string  s is a theorem.  We could also define another operator  that serves

a dual role to  :  it applies to character strings so that  s is an antitheorem when the

boolean expression represented by string  s is an antitheorem.  By “antitheorem” I mean

those boolean expressions that can be simplified (proven equal) to  .  In some logics,

those having negation and an appropriate proof rule, “antitheorem” means “negation of a

theorem”, but not in all.  It deserves a name and symbol just as much as  does.  It's

surprising that the dual of theorem has not been invented before.

I propose that logicians can improve metalogic in another way, by taking another lesson

from programming.  Instead of  and  , we need only one operator to serve both

purposes.  It is called an interpreter.  I want  s to be a theorem if and only if  s

represents a theorem, and an antitheorem if and only if  s  represents an antitheorem.  It is

related to  and  by the two implications

s s – s

In fact, if we have defined  and  , those implications define  .  But I want  to



replace  and  so I shall instead define it by showing how it applies to every form of

boolean expression.  Here is the beginning of its definition.

“ ”  =  

“ ”  =  

(“–” s)  =  – s

(s “∧” t)  =  s ∧ t

(s “∨” t)  =  s ∨ t

And so on.  In a vague sense  acts as the inverse of quotation marks; it “unquotes” its

operand.  That is what an interpreter does:  it turns passive data into active program.  It is a

familiar fact to programmers that we can write an interpreter for a language in that same

language, and that is just what we are doing here.  Interpreting (unquoting) is exactly what

logicians call Tarskian semantics.  In summary, an interpreter is a better version of  , and

strings make meta-level operators unnecessary.

Proof Rules

You cannot learn a programming language by reading an interpreter for it written in that

same language.  And you cannot learn logic, or a logic, by reading an interpreter for it

written in logic.  Not only is it inscrutable to a novice, but also it may be subject to more

than one interpretation.  We can, of course, present one formalism with the aid of another, a

metanotation.  But my goal is to teach boolean algebra to a wide audience, and for that

purpose I do not think it is profitable to require them to learn another formalism first.  I

think it should be presented as number algebra is presented, with a little natural language

and a lot of axioms, because axioms don't use any extra notations.

Here are the proof rules I am using.  The rules place boolean expressions into two classes:

theorems and antitheorems.  In an incomplete logic, some boolean expressions will remain

unclassified.  Note that the rules never mention any boolean operators.

Axiom Rule If a boolean expression is an axiom, then it is a theorem.  If a

boolean expression is an antiaxiom, then it is an antitheorem.

Evaluation Rule If all the boolean subexpressions of a boolean expression are

classified, then it is classified according to the evaluation tables

(truth tables).



Completion Rule If a boolean expression contains unclassified boolean

subexpressions, and all ways of classifying them place it in the

same class, then it is in that class.

Consistency Rule If a classified boolean expression contains boolean subexpressions,

and exactly one way of classifying them is consistent, then they are

classified that way.

Instance Rule If a boolean expression is classified, then all its instances have that

same classification.

There can be both axioms and antiaxioms;  is an axiom and  is an antiaxiom.  If the

logic includes both negation and the Consistency Rule, we can dispense with the words

“antiaxiom” and “antitheorem”, but I suggest we keep them for the sake of duality.  The

boolean operators all enter together with equal status via the Evaluation Rule.  The

Completion Rule includes, as a special case, that  a ∨ –a is a theorem;  constructivists will

omit this rule.  Consistency means that no boolean expression is classified both as a

theorem and as an antitheorem;  the Consistency Rule includes modus ponens as a special

case.  The Instance Rule refers to expressions obtained by replacing variables with

expressions.  In addition to these rules, we need only axioms (and perhaps antiaxioms),

and the usual substitution rules.

Terms of Honor

My final comment concerns mathematical terminology intended to honor mathematicians.

In some parts of mathematics it is standard:  Lie algebra, Stone algebra, Jordan

decomposition, Cayley transform, Hilbert space, Banach space, Hausdorff space, Borel

measure, Lebesgue integration, Fredholm index, and so on.  It is well known that the

person so honored is sometimes the wrong person;  often it is only one of many who

equally deserve to have their names attached to the idea.  I suspect that sometimes the

intention is not so much to honor a person as to use the person's prestige to lend

respectability to a subject.  Even when the intention is to honor, the effect is to obscure and

make the mathematics forbidding and inaccessible.  It may be argued that this is good,

keeping the uninitiated from thinking they understand when they don't.  I know what nand

and nor are, but I forget which is the Scheffer stroke and which the Pierce arrow.  To say

that an operator is symmetric or commutative is much more descriptive and understandable

than calling it Abelian.  DeMorgan's laws would be better named duality laws.  We who are

used to the terms forget what a barrier they pose to beginners.



The term “boolean algebra” honors George Boole.  It is popularly thought that the word

“algebra” honors someone, but according to scholars, that's a myth;  it comes from an

arabic word meaning “the reintegration and reunion of broken parts”.  In any case, the

word is now standard, known by average people everywhere.  I revere George Boole and I

want to honor him.  The greatest honor I can think of is to make the algebra that he created

a well known and well used tool, and to do that we might have to remove his name from it,

and give it a more descriptive and accessible name, like “binary algebra”.

Conclusions

Logic has been well studied and is now well understood, but it is not well used.

Programmers learn that logic is a foundation of programming, but they don't often use it to

program.  Mathematicians study about logic, but they don't often use it in their proofs.

Logic is a tool, like a knife.  People have looked at it from every angle;  they've described

how it works at great length;  now it's time to pick it up and use it.  To use logic well, one

must learn it early, and practice a lot.  Fancy versions of logic, such as three-valued logic,

temporal logic, and metalogic, can be left to university study, but there is a simple basic

algebra that can be taught early and used widely.

Number algebra is used by scientists and engineers everywhere.  It is used by economists

and architects.  It is taught first to 6-year olds, very concretely as addition and subtraction

of numbers.  Then variables and equations are introduced, and always the applications are

emphasized.  As a result of that early and long education, scientists and engineers and

mathematicians are comfortable with it.  Boolean algebra, or logic, can be equally useful if

it is taught the same way.  At present, it is not in a good state for presentation to a wide

audience.  We need to simplify the terminology, choose some good symbols, adopt the

view that proof is calculation, detach it from its dominant application in which the boolean

values represent true and false statements, free it from philosophy and explain it as algebra.

There is a small advantage to choosing uniquely boolean symbols:  we can give them a

precedence after the arithmetic operators, which reduces the need for parentheses.  On the

other hand, there is a large advantage to uniting boolean and number symbols in the way I

have suggested:  the laws and solutions are familiar and can be interpreted either as

booleans or numbers.  In addition, by placing booleans in the same context as numbers, we

move quickly away from philosophical explanations, and we are less likely to introduce

strange kinds of implication or strange kinds of logic.  The fact that the booleans can be

embedded in the extended integers just as smoothly as the integers are embedded in the

rationals seems a compelling reason to do so.



Quantifiers can be simplified, made uniform, and generalized by treating them as operators

on functions.  We should stop speaking about “existence”, and speak instead about the

maximum of a function.  Similarly, we should stop speaking about “all”, and speak instead

about the minimum of a function.

An interpreter serves the same purpose as the meta-level theoremhood operator with the

added advantage that it gives antitheoremhood as well as theoremhood.  And by applying it

to strings, we don't need to introduce a separate meta-level of operators.  Metalogic is an

advanced topic, not a good introduction to logic for those who are new to the subject.

Appendix

Let  d be a sequence of (zero or more) digits, let  x ,  y , and  z be any expressions.  Then

the following axioms are a unified boolean and number theory.  The transitive operators

= <  are used in a continued (conjunctional) syntax.  In addition to these axioms, we

need proof rules (presented earlier), substitution rules, and evaluation tables (truth tables).

Minimality is not claimed.

–

x = x reflexivity

(x=y) = (y=x) symmetry

(x=y) ∧ (y=z)  (x=z) transitivity

(x y) = –(x=y)

– (x<x) irreflexivity

– ((x<y) ∧ (y<x)) antisymmetry

(x<y) ∧ (y<z) (x<z) transitivity

– ((x<y) ∧ (x=y)) exclusivity

(x y)  =  (x<y) ∨ (x=y)

(x>y)  =  (y<x)

(x y)  =  (y x)

(x<y) ∨ (x=y) ∨ (x>y) totality, trichotomy

d0+1 = d1 counting

d1+1 = d2 counting

d2+1 = d3 counting

d3+1 = d4 counting

d4+1 = d5 counting

d5+1 = d6 counting



d6+1 = d7 counting

d7+1 = d8 counting

d8+1 = d9 counting

d9+1 = (d+1)0 counting

+x = x identity

x+0 = x identity

x+y = y+x symmetry

x+(y+z)  =  (x+y)+z associativity

( <x< ) ((x+y = x+z) = (y=z)) cancellation

– –x = x self-inverse

–(x+y) = –x + –y distributivity

–(x×y) = –x × y semi-distributivity

x–y =  x + –y

( <x< ) (x–x = 0) inverse

( <y< ) (x – y + y =  x) inverse

( <x< ) (x×0 = 0) base

x×1 = x identity

x×y = y×x symmetry

x×(y+z) = x×y + x×z distributivity

x×(y×z) = (x×y)×z associativity

( <x< ) ∧ (x 0) ((x×y = x×z) = (y=z)) cancellation

( <y< ) ∧ (y 0) (x/y×y = x) inverse

( <x< ) (x0 = 1) base

x1 = x identity

xy+z = xy × xz

xy ×z = (xy)z

<0<1< direction

( <x< ) ((x+y < x+z) = (y<z)) cancellation, translation

(0<x< ) ((x×y < x×z) = (y<z)) cancellation, scale

(x<y) = (–y<–x) reflection

x extremes

+1 = additive absorption

(0<x) (x× = ) multiplicative absorption

(0<x) (x/0 = )

( <x< ) (x/ = 0)
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