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Abstract� The most important open problem in the study of termination for
logic programs is that of existential termination� In this paper we present a pow�
erful transformational methodology that provides necessary �and� under some
conditions� su�cient� criteria for existential termination� The followed approach
is to develop a suitable transformation from logic programs to Term Rewriting
Systems �TRSs�� such that proving termination of the obtained TRS implies
existential termination of the original logic program� Thus� all the extensive
amount of work on termination for TRSs can be automatically used in the logic
programming setting� Moreover� the approach is also able to cope with the
dual notion of universal termination� in fact� a whole spectrum of termination
properties� said k�termination� is investigated� of which universal and existential
termination are the extremes� Also� a satisfactory treatment to the problem
of termination for logic programming with negation is achieved� This way we
provide a unique� uniform approach covering all these di�erent notions of termi�
nation�

� Introduction
The study of program termination is a fundamental topic in computer science� In the
�eld of logic programming� however� the power of the paradigm� together with the way
in which it is implemented �e�g� in Prolog�� make the study of termination extremely
hard� Two kinds of termination are distinguished for logic programs� existential and
universal�

The key property of existential termination is the natural notion of termination
from the programmer�s viewpoint� if the program is run with an input� it must stop
��nding a solution to the problem or saying there are not solutions��

Unfortunately� existential termination is still the most important open problem
�see �	
�� in the �eld of termination for logic programs� Very few works so far tried to
shed some light on the problem� namely ��� 	
� ��� without giving satisfactory results
�cf� �	
��� all of them give results of expressibility nature� saying that the Prolog
operational semantics can be in principle codi�ed into some formalism� like �rst�order
logic for instance� and thus termination and other properties could be studied by trying
to use some kind of inductive reasoning or the like�

On the other hand� the �dual� notion of universal termination is the much stronger
property that says a program must terminate not only existentially� but for every
further invocation� by the user� of backtracking� and moreover that the number of
solutions to the problem must be �nite�

This property has been the subject of a great number of works �cf� �	
�� but� due
to the intrinsic complexity of the problem� even in this much more restrictive case�
most of the works are only of theoretical nature and extremely di�cult to implement�



A noticeable exception is given by the so�called �transformational approach� started
by Rao� Kapur and Shyamasundar in ���� and further investigated in �	�� 	� 
� �
� ���
consisting in giving a transformation from logic programs into TRSs such that to prove
the universal termination of a logic program it su�ces to prove the termination of the
transformed term rewriting system�

This transformational approach has several advantages� The main one is that for
TRSs the study of termination� in sharp contrast to the logic programming case� is
much easier� being available plenty of powerful criteria and many automatic or semi�
automatic implementations to test termination� for instance path orderings� polyno�
mial orderings� semantic labelling� general path orderings and many others �see e�g�
�	�� 	�� 	���� The reader is referred to ���� for a nice application of the transformational
approach to compiler veri�cation�

Another advantage of this approach is that giving such a translation we do not
obtain only one criterion but a bunch of� every �present or future� criterion of termi�
nation for TRSs becomes automatically a criterion for logic programs

In this paper� we address the open problem of existential termination by developing
a suitable powerful transformational approach able to cope with this fundamental
property� This way� we also gain all the aforementioned bene�ts proper of this kind of
approach�

In fact� we will tackle a much more general problem� introducing and studying
the more expressive property of k�termination� roughly speaking� given an ordinal k a
program k�terminates if its �rst k derivations are �nite� k�termination generalizes both
existential and universal termination �corresponding respectively to 	�termination and
�� 	�termination�� providing a hierarchy of intermediate properties�

We also show how the presented method can cope without di�culties even with
the corresponding strong versions of termination �cf� �	
��� i�e� termination not only
w�r�t� one input but w�r�t� all the possible inputs�

This way� we provide a unique� uniform way to cope with all these di�erent notions
of termination�

Moreover� we do not limit to de�nite logic programming� but we cover also ter�
mination of normal logic programming� i�e� programs with the important feature of
negation� as implemented in Prolog� The primary importance of negation for applica�
tions in non�monotonic reasoning and in arti�cial intelligence is well�known� However�
even in the restricted ambit of universal termination a fully satisfactory treatment of
termination of programs with negation has been so far out of scope� since the problem
is tightly related to existential termination� for instance� a program universally ter�
minates w�r�t� a ground literal not A if and only if it existentially terminates w�r�t� A�

The analysis is taken even further� it is carefully studied to what extent we get
not only su�cient criteria for all these kinds of termination� but even necessary ones�
thus allowing to formally state what is the �minimum power� of the method�

So� for instance� the presented method� when restricted to universal termination
only� is by far more powerful than all the other works based on the transformational
approach�

Another point is that� unlike the other works based on the transformational ap�
proach� here we followed a modular technique� Instead of presenting a very complicated
transformation for a main class of logic programs� we built the transformation as a
composition of two smaller submodules� This way we split the complexity of a big
transformation into a composition of two easier sub�transformations� making the anal�
ysis easier� also� subsequent improvements can be obtained separately enhancing one



of the submodules� without having to rebuild a whole transformation from the scratch�

The work is organized as follows� First� we develop a transformation to TRSs for
a core subclass of logic programs� that of Regularly Typed programs �RT for short��
This core transformation is proven to completely preserve k�termination� hence giving a
necessary and su�cient criterion for k�termination �or� better� plenty of them� for what
we said earlier�� We then show how this subclass can be extended to the bigger class
of Safely Typed programs �ST�� via a suitable transformation �which is of independent
interest� from ST logic programs to RT logic programs� Then� all the results are
extended to normal logic programming� thus covering negation� Finally� an accurate
comparison with the related work is presented�

� Preliminaries
We assume basic knowledge of logic programming and term rewriting systems� For
standard logic programming terminology� we will mainly follow ��	�� whilst for TRSs we
use standard notations from �	��� Logic programs will be considered as executed with
leftmost selection rule and depth��rst search rule� that is the standard way in which
logic programming is implemented �for example� in Prolog�� Also� we will consider in
full generality conditions that can constrain both the logic program and the goal� so�
for notational convenience we will talk by abuse of a class of logic programs meaning
a collection both of logic programs and of goals�

��� Notation
We assume that the logic program is written using the �in�nite� set of variables Var
and a signature � � fp�� p�� �� � f�� f�� �� g where pi are the predicate symbols and fi
the function symbols �constants are nullary functions�� Usually� the employed � will
be just the minimal signature in which the considered logic program can be written�
hence a �nite one�

Given a substitution �� Dom��� and Ran��� indicates� respectively� its domain and
range� ��� denotes its inverse mapping� and �jV its restriction to some set of variables
V � Composition of two functions f and g will be indicated with f � g� Sequences
of terms will be written in vectorial notation �e�g� �t�� Sequences in formulae should
be seen just as abbreviations� for instance� ��t�� with �t � t�� �� � tm� denotes the string
�t�� �� � tm�� Accordingly� given two sequences �s � s�� �� � sn and �t � t�� �� � tm� �s� �t stands
for the sequence s�� �� � sn� t�� �� � tm�

Given a family S of objects �terms� atoms� etc��� Var�S� is the set of all the
variables contained in it� moreover� S is said to be linear if no variable occurs more
than once in it� For every term �or sequence� t� a linearization of t �via �� is a linear
term �sequence� t� such that� for some substitution �� t�� � t� Dom��� � Var�t���
Var�t�� � Var�t� � �� and Ran��� � Var �i�e�� we simply replace repeated variables
with di�erent fresh ones to make the term linear� for instance� if t � f�X�g�X�Y ��
we could take t� � f�Z�g�V�W �� and � � fZ�X�V�X�W�Y g��

To make formulae more readable� we will sometimes omit brackets from the argu�
ment of unary functions �e�g� f�g�X�� may be written fgX�� Also� given a sequence
�t � t�� �� � tn and a unary function f � we use f�t as a shorthand for f�t��� �� � f�tn��

��� Goals as Clauses
Being goals and clauses di�erent objects� when describing a class of logic programs
one usually has to provide di�erent descriptions both for the goal and for the clauses�
In this paper we will overcome this di�culty using the following de�nition�



De�nition ��� A class P is said regular if P � f� A�� �� �Amg � P �
P � fgoal� A�� �� � Amg � P �where goal is a new nullary predicate symbol�� �

Using regular properties allows to de�ne a class of logic programs and goal giving
only the de�nition for programs� hence making de�nitions much shorter�

Assumption � All the classes we consider in this paper are understood to be regular�

In the context of this paper� this will be even more useful� since we are going to
introduce transformations that translate logic programs �possibly together with a goal�
into logic programs �possibly with a goal� or into TRSs �possibly together with a term��
we can again shorten the de�nitions of such transformations by de�ning them only on
logic programs� goals G are identi�ed with the clause goal� G �and analogously�
for TRSs terms t are identi�ed with a produced �rule� of the form goal 	 t�� This
automatically gives a translation for the goal�s� eventually present�

� The Program Classes
De�nition ��� A mode for a n�ary predicate p is a map from f	� �� � ng to fin�outg�
A moding is a map associating to every predicate p a mode for it� A moded program
is a program endowed with a moding� An argument position of a moded predicate is
called input �resp� output� if it is mapped by the mode into in �resp� out�� �

Multiple modings can be de�ned by renaming the predicates�
p��s� �t� denotes a moded atom p having its input positions �lled in by the sequence

of terms �s� and its output positions �lled in by �t� We denote with in�p� and out�p�
respectively the number of input and output positions of p�

A moded predicate should be roughly seen as a function from its input arguments
to its output ones� For instance� a predicate p with moding �in� in�out� should be
viewed as a function having two inputs �the �rst two arguments� and one output �the
third one��

The programs that we will consider are typed� Any type system can be used�
provided only it satis�es the following�

Assumption � Every type is closed under substitutions�

We denote with Types the set of types used in the chosen type system� For example�
possible types are Any �all the terms�� Nat �the terms �� s���� s�s����� �� �� Ground �all
the ground terms�� List �all the lists�� NatList �all the lists of Naturals� and so on� In
the following examples we will assume these basic types are in the type system� Also�
we say a type is ground if it is contained in Ground�

A term t of type T will be indicated with t � T � If �t � t�� �� � tn and �T � T�� �� � Tn
are respectively a sequence of terms and types� �t � �T is a shorthand for t� �T�� �� � tn �Tn�

Just like modes� types can be associated to predicates as well�

De�nition ��� A type for an n�ary predicate p is a map from f	� �� � ng to Types� A
typing is a map associating to every predicate p a type for it� A typed program is a
program endowed with a typing� An argument position of a typed predicate is said of
type T if it is mapped by the type into T � �

We write p�m� �T�� �� �mn �Tn� to indicate that a predicate p has moding �m�� �� �mn�
and typing �T�� �� � Tn��

To reason about types� we employ the standard concept of type checking� an
expression of the form �s � �S j� �t � �T indicates that from the fact that �s has type �S we
can infer that �t has type �T � More formally� �s � �S j� �t � �T if for every substitution ��
�s� � �S implies �t� � �T � For instance� X �Any� Y �List j� �XjY � �List�

Another concept we need is the following�



De�nition ��� A term t is a generic expression of the type T if every s � T having
no common variables with t and unifying with it is an instance of t �i�e� 
�� t� � s���

For example� variables are generic expressions of Any� every term is a generic
expression of Ground� � �� �X�� �XjX�� �XjY �� �X�Y jZ� etc� are generic expressions of
List�

We will use types and generic expression in such a way that during a program
execution uni�cation behaves in a more regular way� that is to say it can be performed
using repeated applications of pattern matching �see �
� ����� So� we now introduce
the main class studied in the paper�

De�nition ��� A program is said to be Safely Typed �ST� if for each of its clauses
p���t� � �T�� �sn�� � �Sn���� p���s� � �S�� �t� � �T��� �� � pn��sn � �Sn� �tn � �Tn� we have�
� �t� � �T�� �� � �tj�� � �Tj�� j� �sj � �Sj �j � �	� n� 	��
� each term in �ti is �lled in with a generic expression for its corresponding type in �Ti
� if a variable X occurs twice in �t�� �� � �tn� then there is a �ti �� � i � n� s�t� X � Var��ti��
X 
� Var��t�� �� � �ti���� and every term r � �ti has a corresponding ground type� �

For example� the program quicksort using di�erence lists �see Example ���� is
Safely Typed� The scope of the class ST is quite large� it is comparable to the
class of Well Typed programs introduced in ���� for instance� the great majority of
the programs in ���� and �	�� are safely typed� Finding whether a program is ST or
not is a problem that can be addressed using one of the many existing tools to �nd
moding and typing information of a logic program �e�g� �	�� �
� ���� Moreover� the
syntactical nature of the class makes it suitable to be used just as a strongly typed
logic programming language on its own� This is the direction followed in many recent
systems� in many cases the moding�typing information can be optionally supplied� in
others� like the state�of�the�art fastest compiler� Mercury �cf� �	���� modes and types
are just the adopted syntax�

We note how� when the type system contains only the type Ground� the ST class
collapses into the well�known class of Well Moded programs �cf� �����

De�nition ��� A program is said to be Regularly Typed �RT� if it is Safely Typed
and for each of its clauses p���s�� �t��� p���s�� �t��� �� � pn��sn� �tn� we have that �t�� �� � �tn is

a linear sequence of variables and �i � �	� n��Var��ti� �
Si

j��
Var��sj� � �� �

Example ��� The usual program to add two numbers

add���X�X�� add�s�X�� Y� s�Z��� add�X�Y�Z�

with moding�typing add�in �Ground� in �Any�out �Any� is regularly typed�
Also� the standard basic programs append � reverse� quicksort � member etc� are

�with suitable modings�typings� all in RT� �

It is interesting to notice that many parts of logic programming codes are written�
more or less consciously� in the form given by the RT class� Indeed� this class properly
contains the class of simply moded and well typed �SWT� programs introduced in �
��
and that class has already been shown to be quite expressive �see for instance the list
of programs presented in �
���

We remark how the above de�nitions concern de�nite logic programs only �i�e�
programs without negation�� In Section 
 these classes will be extended to normal

logic programs �i�e� programs with negation��

� k�termination
Suppose a logic program P is run with goal G� Let us denote with answerP�G�	� the
�rst obtained answer� it is equal to



	� � if the computation terminates successfully giving � as computed answer substi�
tution�
�� Fail if the computation terminates with failure�

� � if the computation does not terminate�
�here� Fail and � are special symbols used to denote failure and nontermination re�
spectively��

In case 	� the user can activate backtracking to look for the second answer answerP�G����
and so on till for some k � 	 answerP�G�k� returns Fail or � �in case of in�nite answers�
we assume k � � and answerP�G��� � ���

Now� the answer semantics �P �G� of a logic program P w�r�t� a goal G is de�ned
as the �possibly in�nite� sequence

�P �G� � answerP�G�	�� �� �answerP�G�k�

We can now provide a formal de�nition of termination�

De�nition ��� Given a program P and a goal G� suppose its answer semantics is
�P �G� � ��� �� � �m� Then P is said to existentially �resp� universally� terminate w�r�t�
G if �� 
� � �resp� if �m 
� ��� �

Hence� a program existentially terminates if its �rst answer is di�erent from � �i�e� it is
not an in�nite derivation�� and universally terminates if it does not give � answers at
all �i�e� the program returns a �nite number of answers and then halts with a failure��

There is however a more general concept of termination� that encompasses the
previous two�

De�nition ��� Given a program P and a goal G� suppose its answer semantics is
�P �G� � ��� �� � �m� Then� for every ordinal k� P is said to k�terminate w�r�t� G if
�i 	 k� �i 
� �� �

k�termination provides a complete spectrum of termination properties� with in�
termediate degrees between the two extremes consisting of existential and universal
termination� Indeed� it is immediate to see that existential termination corresponds to
	�termination� whereas universal termination corresponds to �� 	�termination� Note
that for every ordinal k 
 � � 	� k�termination coincides with � � 	�termination�
hence universal termination is the strongest termination property in this hierarchy�
Observe also that every program trivially ��terminates� and hence we can without loss
of generality restrict our attention to k�termination with 	 � k � � � 	�

Example ��� The termination property closest to universal termination in the k�
termination hierarchy is ��termination� that says a program cannot enter an in�nite
derivation �but might perform an in�nite number of �nite derivations�� �

��� Strong k	termination
In this paper we will also investigate strong k�termination� that is k�termination not
only for a single goal� but for all the goals in the given class�

De�nition ��� Given a class P of logic programs� and an ordinal k� a program
P � P is said to strongly k�terminate w�r�t� P if P k�terminates w�r�t� G for every goal
G � P� �

The big di�erence with the previous case of k�termination w�r�t� a goal is given by
this result �to be precise� we remark that it holds under the assumption of persistent
classes �i�e� closed via resolution� see ������ an assumption always satis�ed in this
paper��

Theorem ��� Strong existential termination and strong ��termination coincide�



That is to say� in the strong termination case the k�termination hierarchy collapses
into two properties only �plus the trivial strong ��termination�� strong existential and
strong universal termination�

In the sequel� when talking about strong termination w�r�t� some class P� we will
usually omit mentioning P� it will be clear from the context what class is meant�

� The Basic Transformation
In this section we provide the transformation ERT from regularly typed program to
TRSs that will be the core of the subsequent transformations� Before giving the formal
de�nition� we need some preliminary notions�

In the corresponding TRS we will utilize� besides the symbols of the original logic
program� some new symbols�

We will employ so�called ��lists� that is lists where the constructors are the binary
symbol c and the constant �� we will use the notation ht�� �� � tni to denote such lists
�e�g� ht�� t�i � c�t�� c�t�������

The unary symbol M will be used as a marker to indicate that its argument is�
roughly speaking� a �result� �i�e� a datum that doesn�t need to be processed further��
Also� we will make use of symbols of the form �t�t� � that can be roughly seen as the
function �t��t� �i�e� it expects a datum of the form t� and gives as output t��� the
exact formalization of this �lambda operator� will be given later�

De�nition ��� Take a regularly typed clause C � p���t�� �sn���� p���s�� �t��� �� � pn��sn� �tn��
Then FLOW�C� is de�ned as

�
�M�sn�� �

�MV 	n
�M�tn�
�
�MV 	n
jpn �M�sn��

�MV 	n��
�M�tn�� �
� � � �

�MV 	�
jp� �M�s���

�MV 	�
�M�t��
�M�t��

where V �k� � �k��i�� Var��ti�� �

The idea behind the FLOW de�nition is that every clause p���t�� �sn���� �� provides
a way to calculate p��M�t�� �i�e� p� applied to its input arguments�� Its output value
�M�sn��� is obtained in the following way�

Informally� V �k� denotes the Variables of p�� �� � pk�� that could be needed for the
input arguments of pk��� �� � pn and for the output argument of the head predicate p�
�i�e� �sk��� �� � �sn����

We start with the input data �M�t��� Then� applying the �rst operator �
�MV 	�
jp� �M�s���
�MV 	�
�M�t��

we calculate p��M�s�� �that gives its output values for M�t��� together with the values
from M�t� that are needed in the sequel to calculate some other pi�M�si� or the �nal
output �M�sn��� �i�e� V �	��� The process goes on till all the p�� �� � pn have been pro�

cessed� and the last operator �
�M�sn�� �

�MV 	n
�M�tn�
simply passes to the �nal output �M�sn���

the values previously computed �present in �MV �n��M�tn���

Example ��� After Example 
��� let C be the clause add�s�X�� Y� s�Z��� add�X�Y�Z�
�recall the moding�typing was add�in �Ground� in �Any�out �Any��� Then

FLOW�C� � �
�Ms	Z
�
�MX�MY�MZ� �

�MX�MY jadd�MX�MY ��
�Ms	X
�MY � �Ms�X��MY � �

De�nition ��� The map V from terms to terms is inductively de�ned this way�

V�f�t�� �� � tk�� � f�V�t��� �� �V�tk�� �f � ��
V�X� � v �X � Var�

where v is a special new constant� �



Hence� the map V simply replaces every variable of a term with the special constant
v� for instance� V�f�X�g�Y� a��� � f�v� g�v� a���

De�nition ��� 
Uni�cation Engine�
For every term t� its uni�cation engine UNIFYt is de�ned as follows� Let t� be a
linearization of t �via ��� Then the rules de�ning UNIFYt are�

UNIFYt�X�	 Ut�X�L�V�t��X��
Ut�t

�� true�	
V

X�Var�t�

fX�����Xkg��
���X�

V
i���� k�� L�Xi�Xi���

Ut�X� false�	 false

L�v�X�	 true
L�f�X�� �� �Xm�� f�Y�� �� � Ym��	 �i����mL�Xi� Yi� �f � ��
L�f�X�� �� �Xm�� g�Y�� �� � Yn��	 false �f� g � �� f 
� g�

true � true 	 true
X � false 	 false
false �X 	 false

�note that we write �i�� as a synonymous for true�� �

The uni�cation engine of a term t formalizes in the TRS the concept of uni�cation�
it tests whether or not a given term is uni�able with t�

Informally� the behaviour of UNIFYt can be summarized as follows� The L test
performs a kind of restricted Martelli�Montanari algorithm� as can be easily seen look�
ing at the rewrite rules de�ning it� roughly speaking� it performs uni�cation of Linear
terms� The only rule not immediate to understand is L�v� X�	 true� it simply says
that whenever the �rst argument is a variable �denoted by the special constant v��
then everything uni�es with it� This is the reason why the V operator was introduced
�De�nition ��
�� it performs the �is�a�variable� test at a syntactic level�

UNIFYt invokes L several times� since it must also face the problem of all the
repeated variables �i�e� non�linear terms�� this is done in the rules de�ning Ut� where
repeated variables are in sequence� via an �and� operator �written in�x for easier read�
ability� imposed to have a common uni�er�

Note that the uni�cation engine is built to work with the terms produced by the
transformation only �i�e� when invoked in the transformation it properly performs the
uni�cation test� but it does not work in general for all the terms��

Example ��� Take the term t � f�X� g�X�Y ��� and a corresponding linearization
t� � f�Z�g�V�W ��� Then the �rst two rules de�ning UNIFYf	X�g	X�Y 

 are�

UNIFYf	X�g	X�Y 

�Z�	 Uf	X�g	X�Y 

�Z�L�f�v� g�v� v���Z��
Uf	X�g	X�Y 

�f�Z�g�V� W ��� true�	 L�Z�V � � true �

We are now ready to provide the formal de�nition of ERT� its explanation will be
given soon afterwards�

De�nition ��� 
Transformation ERT�
The transformation ERT�P � of a regularly typed logic program P is de�ned this way�

�� For every predicate p � �� take the de�nition of p in P �

���
��

p��t
	�

� � �s

	�

n���

�� � � � �C��
���

���

p��t	k
� � �s	k
nk��
�� � � � �Ck�



Then produce the following rewrite rules �i � 	��k�� plus the corresponding uni�cation
engines�

p�MX�� �� �MXin	p
�	 B hENC 	�

p �MX�� �� �MXin	p
�� �� �ENC

	k

p �MX�� �� �MXin	p
�i

B ENC 	i

p �MX�� �� �MXin	p
�	 TRY 	i


p ��MX�� �� �MXin	p
��UNIFY��t�i�
�

�
�X�� �� �Xin	p
��

TRY
	i

p ��M�t

	i

� �� true�	 FLOW�Ci� TRY

	i

p �X� false�	 �

�� For every �t�t� so far introduced� produce�

�t�t� t� 	 t� �t�t��	 � B �t�t�X 	 �t�t�B X

�t�t�h�MX�� �� �MXin	p
�jY i 	 h�t�t� �MX�� �� �MXin	p
�j�
t�
t�
Y i �p � ��

�� Finally� produce�

B hXjY i 	 hB XjY i B �	 �
B B X 	 BX h�jY i 	 B Y �

Observe that in Point 	 in case p is not de�ned in P � i�e� k � �� the transformation
simply produces p�MX�� �� �MXin	p
�	 B ��

The behaviour of ERT can be intuitively illustrated as follows�
We said earlier every clause de�ning a predicate p provides a way to calculate p

applied to its input values� In Point 	 of the transformation the �rst rule says that
in order to calculate p we have at our disposal the de�nition given in the �rst clause

�encoded via ENC 	�

p �� � ���� till that in the last clause �ENC 	k


p �� � ���� All these di�erent
choices are grouped together� in left to right order� using a ��list�

The B symbol present in the rule before this ��list represents the �backtracking
command� which activates a computation�

This backtracking command can penetrate into the possibly complicated structures
it encounters� via the rules �produced in Points � and 
 respectively� B �t�t�X 	 �t�t�B X
and B hXjY i 	 hBXjY i�

Also� the backtracking command is idempotent �rule B B X 	 B X��
As soon as B �nds an ENC operator �encoding a certain clause�� it tries to activate

it via the second rules produced in Point 	� It must be checked that the �representation
in the TRS of the� selected atom in the goal and the �representation of the� head of
the clause unify� and this is performed via the test UNIFY

��t�i�
�

�
�X�� �� �Xin	p
��

In case the test succeeds� the rule TRY 	i

p ��M�t	i
� �� true�	 FLOW�Ci� applies the

clause� in case it does not� the rule TRY
	i

p �X� false�	 � says that no result �i�e� ��

has been produced�
The rule �produced in Point 
� h�jY i 	 B Y says that whenever in a group of

choices �contained in a ��list� the �rst argument produced no results �i�e� ��� then it
is discarded and another �backtracking command� B is generated and applied to the
remaining choices �B Y �� Note that if� instead� a result is produced� no backtracking
command is generated� and so the execution stops�

Eventually� if B �nds no results it gives no results as well �rule B �	 ���
The last thing that remains to consider is the behaviour of the �t�t� operators�

As said at the beginning of the section� �t�t� is supposed to act roughly like the

function �t��t�� this is expressed by the rule �t�t�t� 	 t�� The di�erence is that it
has also to deal with the other kinds of structures that can crop up� in case it �nds



no results� it produces no results �rule �t�t�� 	 ��� and in case it �nds more choices
�grouped in a ��list�� it applies itself to all of them via the last rules produced in
Point ��

Observation ��� An useful shorthand is to consider only atomic goals� i�e� goals
of the form G � � p��s� �t�� This way we can simply de�ne the translation ERT�G�
of the goal as p�M�s� �hence without using the convention of Subsection ����� From
now on� for brevity� we will only consider examples with atomic goals� As an aside�
note that in general this is not restrictive since� e�g�� a regularly typed goal of the
form � p���s�� �t��� �� � pn��sn� �tn� can be split into a goal � p��s�� �t�� �� � �tn� and a clause
p��s�� �t�� �� � �tn�� p���s�� �t��� �� � pn��sn� �tn� �where p is a new predicate� that are both
regularly typed� giving an equivalent program� �

Example ��
 Consider the program de�ning the integers �������

int���� int�s�X��� int�X�

and the goal � int�X� �where the moding�typing is int�out �Any���
Its translation via ERT is �i � 	� ���

int� �	 B hENC 	�

int

� ��ENC 	�

int

� �i

B ENC 	i

int

� �	 TRY 	i

int

�� ��UNIFY� �� �� TRY 	�

int

�� �� true�	 �
�M��
� � � �

TRY 	�

int

�� �� true�	 �
�Ms	X
�
�MX� �

int� �
� � � � TRY 	i


int
�X� false�	 �

and the term int� � �plus the rules of the uni�cation engine and of steps � and 
 of the
ERT De�nition�� The corresponding reduction of the term in the TRS is�

int� �	 B hENC
	�

int

� ��ENC
	�

int

� �i 	� hTRY
	�

int

�� ��UNIFY� �� ����ENC
	�

int

� �i 	�

hTRY 	�

int

�� �� true��ENC 	�

int

� �i 	 h��M��
� � � ��ENC 	�


int
� �i 	 h�M���ENC 	�


int
� �i �

The TRSs produced by ERT have a quite regular structure�

Lemma ��� For every regularly typed program P � ERT�P � is weakly con�uent� If
ERT�P � is terminating� then it is also con�uent�

We now state what existential termination properties ERT enjoys�

Theorem ���� Let P and G be respectively a regularly typed program and goal� then
P existentially terminates w�r�t� G i	 ERT�P � terminates w�r�t� ERT�G��

Theorem ���� Let P be a regularly typed program� then P strongly existentially
terminates i	 ERT�P � terminates�

Hence via the above two theorems we obtain a characterization of existential ter�
mination for the class of regularly typed programs�

Example ���� Graph structures are used in many applications� such as representing
relations� situations or problems� Consider the program CONNECTED� that �nds
whether two nodes in a graph are connected�

connected�X�Y �� arc�X�Y � connected�X�Y �� arc�X�Z��connected�Z�Y �

with moding�typing connected�in �Ground�out �Ground�� arc�in �Ground�out �Ground��
Suppose the graph G is de�ned via the facts

arc�a� b�� arc�b� c�� arc�c� a��

When the graph is cyclic �like in this case�� the program CONNECTED �G does not
strongly universally terminate� However� using Theorem ��		� we can prove that it is
strongly existentially terminating� �



Example ���� Reconsider the integer program of Example ��
� This program does
not strongly universally terminates� as it is trivial to see� However� the obtained TRS
can be proven to be terminating� hence showing� via Theorem ��		� that the integer
program strongly existentially terminates� �

� From ST to RT
In this section we show how to extend the previous results to the whole class of safely
typed programs� using a transformation which is of independent interest�

Given a safely typed clause C � p���t�� �sn���� p���s�� �t��� �� � pn��sn� �tn�� de�ne ��C�
as the number of �ti�s that do not satisfy the RT condition� Thus� ��C� is somehow a
measure of how much of C does not belong to RT� viz� how many atoms in a clause
are �bad� ones �note that ��C� � � i� C � RT��

Extend � to a program P in the obvious way� ��P � �
P

C�P
��C��

Now we can de�ne a transformation C that translates a safely typed program into
a regularly typed one�

De�nition ��� 
Transformation C�
Let P be a safely typed program� If P is already regularly typed� then C leaves it

unchanged �C�P � � P ��

So� suppose that P is not RT� i�e� that ��P � 
 �� Take a clause C of P with
��C� 
 ��

C � p���t�� �sn���� p���s�� �t��� �� � pn��sn� �tn�

Take an i 
 � such that �ti makes the RT condition fail �i�e� pi��si� �ti� is a �bad�
atom of the body�� Then� replace C with the following two clauses�

p���t�� �sn���� p���s�� �t��� �� � pi����si��� �ti����
pi��si�X�� �� � Xout	pi
��

EQC�pi

�
X�� �� �Xout	pi
�Var��ti� �

Si��

j�� Var�
�tj��Var��ti� n

Si��

j�� Var�
�tj�
�
�

pi����si��� �ti���� �� � pn��sn� �tn�

EQC�pi

�
�ti�Var��ti� �

Si��

j��
Var��tj��Var��ti� n

Si��

j��
Var��tj�

�
�

where X�� �� �Xout	pi
 are fresh variables and EQC�pi
is a new predicate symbol� note

its mode and type is given implicitly by the above clauses�
It is not di�cult to prove that this new program P � so obtained is still safely typed�

and moreover ��P �� � ��P �� 	�
Hence� repeating this process� we �nally get a program Q with ��Q� � � �therefore

regularly typed�� and let C�P � � Q� �

The intuition is that we patch the bad atoms in a program� if pi��si� �ti� is bad�
we force it back to RT by inserting in place of �ti new fresh variables� next we check
that these variables have been instantiated to something uni�able with �ti via the
introduction of the new EQ predicate�

Example ��� Take the QUICKSORTDL program using di�erence lists �after ����
page ������

C� quicksort�Xs�Ys�� quicksort dl�Xs�Ys� � ��
C� quicksort dl��XjXs��Ys�Zs�� partition�Xs� X�Littles�Bigs�� quicksort dl�Littles�

Ys� �XjYs
���quicksort dl�Bigs�Ys
 �Zs�
C� quicksort dl�� ��Xs�Xs��

�plus the rules for partition�� with moding�typing quicksort�in �NatList� in �NatList��
quicksort dl�in �NatList� in �NatList�out �NatList�� partition�in �NatList� in �Nat�out �



NatList�out �NatList�� This program is safely typed but not regularly typed because
of the �rst and second clause� the atom quicksort dl�Xs�Ys� � �� in C� and the atom
quicksort dl�Littles�Ys� �XjYs
�� in C� are the only �bad� ones ���QUICKSORTDL� �
��� Applying C� we obtain in place of C� and C� the clauses�

C �
� quicksort�Xs�Ys�� quicksort dl�Xs�Ys�X���EQ��X��

C ��
� EQ��� ���

C �
� quicksort dl��XjXs��Ys�Zs�� partition�Xs�X�Littles�Bigs�� quicksort dl�Littles�

Ys�X���EQ��X��X�Ys
�� quicksort dl�Bigs�Ys
 �Zs�
C ��
� EQ���XjYs
��X�Ys
��

where EQ� is moded�typed �in�NatList� and EQ� �in �NatList� in �Nat�out �NatList��
�

Observe that the transformation C can in general introduce some extra computa�
tions since it delays the test on the output arguments �via EQ�� However� it somehow
retains the original structure of the program� since it preserves the logical meaning in
the following sense�

Theorem ��� Let P and G be a safely typed program and goal� Then � is an SLD
computed answer substitution for C�P � fGg� i	 �jVar	G
 is an SLD computed answer
substitution for P � fGg�

The proof of the above theorem makes use of fold�unfold techniques�

As far as termination is concerned� the following result holds�

Lemma ��� Let P and G be a safely typed program and goal� For every ordinal k�
if C�P � k�terminates w�r�t� C�G� then P k�terminates w�r�t� G� and if C�P � strongly
k�terminates then P strongly k�terminates�

Hence we can analyze the termination behaviour of a safely typed program by
applying the compound transformation

EST � ERT � C

Theorem ��� Let P and G be respectively a safely typed program and goal� then P
existentially terminates w�r�t� G if EST�P � terminates w�r�t� EST�G��

Theorem ��� Let P be a safely typed program� then P strongly existentially termi�
nates if EST�P � terminates�

� The k�termination case
So far� we have presented only criteria on existential termination� In this section� we
provide more general results to cope with the whole spectrum of k�termination�

Through this section� A and S denote two new fresh symbols�

Theorem ��� Let P and G be a regularly typed �resp� safely typed� program and
goal� Then for every k s�t� � 	 k 	 �� P k�terminates w�r�t� G i	 �resp� if�
EST�P � � fA�S�X�� h� �jW i� 	 A�X�BW �� A�S�X�� h�Y jZ�jW i� 	 A�X�BW �g ter�
minates w�r�t� A�S � � � S� �z 	

k��

��EST�G���

The intuition is that we consider reductions in the TRS not of the original term
EST�G�� but of the term A�S � � � S��EST�G�� that �counts� how many answers have
been so far produced� The counter is stored in the �rst argument of A� initially set to
a unary representation of k� 	� Each time one answer has been found� one of the two
added rules de�ning A is applied� forcing a new backtracking �BW � and decrementing
the counter by one� till all the k answers have been found�



As far as ��termination is concerned� it is so close to universal termination that
there seems to be no way to provide a speci�c criterion for ��termination� to infer ��
termination once can nevertheless use a criterion for universal termination �see later��

Example ��� Consider the following program PATH computing paths in a graph
�the goal asks for paths from a� to b��

� path�a��b�X�

path�X�Y��X�Y��� arc�X�Y�
path�X�Y��XjXs��� arc�X�Z�� path�Z�Y�Xs�

With moding�typing path�in � Ground� in � Ground�out � List�� arc�in � Ground� in �
Ground� �in the �rst clause� and arc�in�Ground� out �Ground� �in the second clause��
it is regularly typed�

Suppose the graph Gk is de�ned via the facts

arc�a�� b�� � �� �arc�ak� b�� � arc�a�� a��� � �� �arc�ak � ak���� � arc�ak��� ak����

Using the above Theorem ��	� we can prove that for every � 	 k 	 �� the program
PATH � Gk is k�terminating� Note also that all these programs do not universally
terminate� PATH � Gk is not k � 	�terminating� Incidentally� this also provides a
proof that� unlike in the strong termination case� in the case of termination w�r�t� a
goal the k�termination hierarchy does not collapse� �

Theorem ��� Let P and G be a regularly typed �resp� safely typed� program and goal�
Then P universally terminates w�r�t� G i	 �resp� if� EST�P � � fA�h� �jZi�	 A�B Z��
A�h�XjY �jZi�	 A�B Z�g terminates w�r�t� A�EST�G���

We turn now our attention towards strong k�termination�
Since� by Theorem ���� strong k�termination with 	 � k � � coincides with strong

existential termination� Theorem ��� su�ces in all these cases� The only remaining
case is strong universal termination�

Theorem ��� Let P be a regularly typed �resp� safely typed� program� Then P
strongly universally terminates i	 �resp� if� EST�P � � fA�h� �jZi�	 A�B Z��
A�h�XjY �jZi�	 A�B Z�g terminates�

Example ��� Consider the program QUICKSORTDL seen in Example ���� via the
above theorem we can prove that it is strongly universally terminating�

Analogously� we can prove for instance that the program to solve the Hanoi towers
problem �cf� ���� pp� ������� with moding�typing hanoi�in �List�out �List�� the usual
quicksort program ����� page ���� with quicksort�in �List�out �List�� and the English
sentences parser ����� pp� ������
�� with sentence�in �Ground�out �Ground� are all
strongly universally terminating� �

	 Normal Logic Programs
After having analyzed de�nite logic programming� we extend the results previously
obtained to normal logic programming� that is allowing usage of negation� As usual
in Prolog� negated atoms are solved using the negation as �nite failure procedure� i�e�
they succeed if and only if they �nitely fail� Since we have already de�ned classes of
de�nite logic programs� we can give the de�nition of their extensions to normal logic
programs inductively on the number of negative literals�

De�nition 
�� A clause is normal safely typed i� either it is safely typed� or�
if the clause is of the form p���t�� �sn���� p���s�� �t��� �� �not �pk��sk� �tk��� �� � pn��sn� �tn��
then both both p���t�� �sn���� p���s�� �t��� �� � pk��sk� �tk� and p���t�� �sn���� p���s�� �t��� �� �
pk����sk��� �tk���� pk����sk��� �tk���� �� � pn��sn� �tn� are normal safely typed�
A program is Normal Safely Typed �NST� if each of its clauses is�
The class of Normal Regularly Typed �NRT� logic programs is de�ned analogously� �



Example 
�� Suppose p and q have both moding�typing �in �Any�out �Any�� Then
the clause p�X�f�Z��� q�X�Y ��not �p�Y� Z��� q�Y� Z� is normal regularly typed since
both p�X�f�Z��� q�X�Y �� p�Y� Z� and p�X�f�Z��� q�X�Y �� q�Y�Z� are regularly
typed� �

Now we have to extend the de�nition of ERT to cope with negation� The modi��
cation is quite simple� The de�nition of FLOW �cf� Def� ��	� is extended this way� it
acts like before� only that if a predicate pi in the body of the clause is negated� i�e� of
the form not pi�� � ��� then in the produced term it appears as the compound function
not � pi� where not is de�ned as follows�

not�	 h� �i not h� �jXi 	 � not h�XjY �jZi 	 �

The explanation of these rules is perfectly natural� since not pi�� � �� succeeds i�
pi�� � �� �nitely fails� in the TRS we �rst calculate pi�� � �� and then apply to it the not
operator� if no answers are returned ���� it outputs a result � � via the rule not �	 h� �i
�� � corresponds to the fact that a successful negative literal produces no bindings��
whereas if a result is returned� it outputs no result �via the other two rules��

This way we obtain a new basic transformation ENRT that extends ERT from reg�
ularly typed to normal regularly typed programs� Hence� all the transformations
previously de�ned �and their results� extend to normal logic programs� with the cor�
respondence RT�NRT� and ST�NST�

For brevity� we only cite the cases of strong existential and universal termination�
all the others are similarly obtained using the above syntactic correspondence�

Theorem 
�� Let P be a normal regularly typed �resp� normal safely typed� program�
then P strongly existentially terminates i	 �resp� if� ENST�P � terminates�

Theorem 
�� Let P be a normal regularly typed �resp� normal safely typed� program�
Then P strongly universally terminates i	 �resp� if� ENST�P ��fA�h� �jZi�	 A�B Z��
A�h�XjY �jZi�	 A�B Z�g terminates�

Example 
�� Consider the following normal program

p� not q q� q� q

Via Theorem 
�
� we can prove this program is strongly existentially terminating�
Nevertheless� it is not universally terminating� �

Example 
�� A much more complicated example of normal program is given by the
Block�World Planner of ���� pp� ��	������ that with moding�typing transform�in �
State� in � State�out � Plan� �State and Plan are suitable types� can be proven via
Theorem 
�
 to be strongly existentially terminating� �

Example 
�� The normal program to solve e�ciently the n�queens problem� after
���� page �		�� moded�typed queens�in �Ground�out �List�� can be proven via Theorem

�� to be strongly universally terminating� �


 Relations with previous work
As said� the main contribution of the paper is aimed towards the open problem of
existential termination� indeed� as mentioned in the introduction� the very few works
on the subject ���� 	
� ��� give only expressibility results and are� presently� of no
practical use �cf� �	
��� Also� they do not cope with the intermediate degrees of k�
termination �� � k � ��� Very recently� other two works have addressed the subject�
namely ���� ���� The �rst work ���� has introduced the concept of k�termination� and
shown how it can be studied using functional programming techniques� However� the
class of normal logic programs to which this analysis can be applied is rather limited�
since the main goal of the work is completely di�erent� namely to identify what part



of logic programming is just functional programming in disguise� The second work is
����� but besides do not treating negation� its practical importance is at the moment
unclear�

Thus� in order to make a comparison with other works we have to restrict our
approach to the universal termination case only� A �rst point that can be made is
that our approach is able to satisfactorily cope with negation� the only works that
manage to cover some aspects of negation are� to the best of our knowledge� very few�

In ��� a theoretical criterion �acceptable programs� is given� however� this result
is considered as a main theoretical foundation� rather than an e�ective methodology�
no practical way to automate or semi�automate the criterion is known� since it heavily
relies on semantical information �e�g� it must be provided a model of the program
which is also a model of the completion of its �negative part��� Recently� a novel
methodology that overcomes some of the di�culties of this method due to the use of
the semantic information� has been introduced in �����

In �
�� a su�cient criterion for termination of normal logic programs is presented�
This criterion su�ers from the same drawback of ���� it is far from being easily im�
plemented being exclusively semantically�based �in addition� it requires its main se�
mantical information to be provided by some other proof method�� Also� treatment
of negation is coped with by assuming that every negated literal will always succeed �
which readily limits by far the usefulness of the approach to negation�

Another recent work is �		�� the importance of this work is that it manages to
treat not only logic programming� but the whole class of �normal� constraint logic
programming� even in the presence of delays� Moreover� it also provides a characteri�
zation of termination when negation is not present� A limitation is that the treatment
of negation is analogous to the aforementioned �
���

Theoretically� comparing the power of all these approaches with ours gives the
result that they overlap but no one is strictly more powerful than the other�

Turning to all the other works on the subject� which do not cover negation� we have
already discussed in the introduction what are the advantages of the transformational
approach towards all the other methods �for a panoramic� see �	
��� Hence� it remains
to ask how our approach �ts w�r�t� all the other papers based on the transformational
approach �cf� ���� 	�� 	� 
� �
� ����

First� all the cited works only cover the �strong universal termination� case�
Second� all the works �but for ��
�� can only treat well moded programs �i�e�� cf�

Section 
� the class obtained from ST when the unique type allowed is Ground�� hence
restricting by far the applicability scope�

Third� call a transformation T� at least as powerful as T� �notation T� � T�� if�
for every logic program P � T��P � terminates implies that T��P � terminates �i�e�� every
program that can be proven terminating by T� can be proven terminating even by
T��� Call T� strictly more powerful than T� if T� � T� and T� 
� T�� Then� with the
exception of one of the two transformations of ��
� �Tfwm�� which seems to be only of
theoretical interest� we have the following result�

Theorem ��� Even when restricting to a type system with the only type Ground� our
transformation is strictly more powerful than all the transformations in �
�� 
�� 
� ��

�� ���
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