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Abstract. Coalgebraic specification and semantics, as used earlier for object-oriented 
programming, is extended with temporal aspects. The (non-temporal) expression 
s.meth expressing that method meth is applied in state s is extended to a.n expres
sion s.meth@a:, where a is a time parameter. It mea.l:ls: in state s let the state evolve 
for a units of time, a.nd then apply method meth. With this formalism we specify 
various (elementary) deterministic hybrid systems (and give a few simulations). We 
also define a notion of model for such a specification, and define what it means for a 
model to be terminal. Terminal models are "optimal" in the sense that they involve a 
minimal set of states, as will be illustrated in a number of examples. This shows that 
standard model theory can be applied to temporal (coalgebraic) specifications. 

1 Introduction 

Hybrid systems combine discrete and continuous dynamics. They involve a combination of au
tomata theory and differential equations. A typical hybrid system is a thermostat keeping the 
temperature in a room close to a goal temperature that can be set by a user. There are different 
control laws describing the temperature in the room as a function of time, depending on whether 
the heater is switched on or off. And if the temperature rises above the goal temperature then 
the heater will be switched off, and if the temperature falls below the goal, then the heater will 
be switched on. These discontinuities in the control law through internal actions are based on 
internal pre-programmed decisions. Further, the user can set a new goal temperature, causing a 
discontinuity as a result of an external action. Such a hybrid system can be seen as a kind of 
automaton, with different differential equations describing the continuous behaviour in different 
discrete states. 

In this paper we propose a temporal specification format for (deterministic) hybrid systems that 
grew out of earlier work on object-oriented programming (see [16, 8, 10, 9]). This format is called 
"coalgebraic", because the underlying models are based on "coalgebras". These are the formal 
duals of algebras, in which one only has "destructors" (or "observers") as operations, instead of 
"constructors" in algebras. Coalgebras may be seen rui abstract machines, consisting of a state 
space together with certain operations acting on this space. But typically, we have no means for 
constructing elements of the state space. Cofree coalgebras are used in [9] to describe inheritance. 
Here we extend this coalgebraic specification format as used for object-oriented programming with 
temporal aspects. We introduce a notation which allows us to indicate that a method (object
oriented terminology for operation) will be applied after a certain time delay. The new specification 
format of "temporal" coalgebraic specification contains assertions for reasoning both about states 
and about time. Thus we combine object-oriented specification with time, but we do not consider 
non-determinism or parallelism (at this stage). And we use assertional methods (in contrast to 
process algebraic methods) to describe and reason about these systems. 

The additional time component in specification asks for an extension at the semantic level. We 
shall describe the influence of the elapse of time on a state space via a so-called "monoid action", 
acting on the state space. And the monoids we use are the monoids (N, 0, +) and (ll;::o, 0, +) of 
discrete and real time. Monoid actions are fundamental in system theory see e.g. [11, Definition 1.1] 
(the "consistency" and "composition" conditions for the state transition function of a dynamical 
system). They occur in the form of an "evolution function" in [13, Definition 2.1]. These monoid 



521 

actions arise naturally via (unique) solutions of differential equations. A model of a temporal 
coalgebraic specification will consist of a coalgebra together with a monoid action. The monoid 
action captures the continuous dependence of attributes on time, and also the internal actions, 
but the external (input and output) actions are described by the coa.lgebra. A subtle point is 
what definition should be taken for "homomorphism of models". The obvious notion of both 
a homomorphism of monoid actions (also called an equivariant mapping, see e.g. [3, 3.2.1 and 
3.2.2]) and a homomorphism of coalgebras does not work (in the sense that it does not yield the 
terminal characterization of the intended models). Therefore we introduce a different notion, see 
Definition 5.1 below. It tells us what a "terminal model" is: it is characterized by the property
dual to the property that determines initial models-that from an arbitrary model there is a 
unique homomorphism to the terminal model. We will show in various examples that terminal 
models are "optimal" models in the sense that they have the minimal set of states. They form 
minimal realizations, in the terminology of [5]. And the terminal model is usually the intended 
model of a specification. Terminal models are special because they identify all observationally 
indistinguishable (bisimilar) states (see e.g. (17]). We find that forcing oneself to identify the 
terminal model is a great way to get one's specification right. In writing out the details of the 
terminal model it often became clear (in our experience) that the specification was incomplete, 
and that extra assertions had to be added. 

Since we have a clear separation between specification and implementation, our work falls 
under the "two-language approach" distinguished in [15]. In the coalgebraic approach that we 
introduce below, invariance conditions form pa.rt of specifications (and need not be derived), since 
they describe essential aspects of models. Also, in contrast to the descriptions of hybrid systems 
as used in (13, l], coalgebraic specifit:ations are somewhat verbose, and contain many details. But 
with these details one can easily compute the values of attributes (see for example the computation 
after the REACTA specification below). What we see as advantages of the coalgebraic framework 
are: it is intuitively clear, easy to manipulate, has a precise semantics, and offers the perspective 
of incorporating useful object-oriented notions like inheritance (for incremental specification and 
implementation, see [18, 9]) into the study of hybrid systems (see also [2]). 

2 Monoids of time, and monoid actions 

We recall that a monoid is a 3-tuple {M, 0, +) consisting a set M with a distinguished "zero" element 
0 EM, and with a bina.ry operation +:M x M-+ M which is associative: a+(.B+"Y) = (a+,B)+'"t 
and has 0 E M as neutral element: a + 0 = a and 0 + a = a. Often we write M for the 3-tuple 
(M,O,+) when O,+ are understood from the context. We shall mainly use the (commutative) 
monoids (N, O, +} of discrete time and {ll~o, 0, +} of real time, where B.~o = {a E JI. I a ~ 0} 
is the set of positive reals. Actually we shall also use that these are ordered monoids (i.e. monoids 
in the category of posets). 

Let (M, O, +} be an arbitrary monoid. An action of this monoid on a set U consists of a 
function µ: U x M -+ U satisfying the following two requirements. 

µ(x,O) = x and µ(x, a+ ,B) = µ(µ(x, a), ,8). 

In the examples below, the set U will be the set of states of a certain abstract ~achine, and the 
function µ: U x M -+ U may be seen as giving for a state x E U and amount of time a E M a new 
state µ(x, a) E U obtained by letting the ma.chine run for a units of time starting in state .x. The 
above two conditions express a certain linearity of this action: µ(x, 0) = x says that letting the 
machine run for 0 units oftime does not change the state, and µ(x,a+,B) = µ(µ(x,a),/3) expresses 
that the effect of letting the machine run a+/3 units of time is the same as first _letting it run a u~ts 
of time, and then f3 units of time. But there are many more (non-tempor~) instances of in:on~1d
a.ctions: for example, modules and vector spaces are monoid-actions, given by the appl~cat1on 
(a, v) >-+ a. v of a scalar a to a vector v; it satisfies 1 · v = v and (ab) · v =a· (b · v) and is thus 
a monoid action with respect to the (multiplicative) monoid structure on the scalars. Als_o, for 
a deterministic automaton with alphabet A and transition function 8: X X A -+ X there IS (by 
induction) an extended transition function 8*: X x A*-+ X forming a monoid action with respect 
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to the (free) monoid A* of words. Finally, unique solutions to differential equations give rise to 
monoid actions, see e.g. [7, 8.7) (where they are ea.lied flows). 

We mention a paradigmatic (temporal) example of a monoid action. It involves the "monus" 
function .!. (also called truncated subtraction) defined as follows. 

• 0 { x-y ifx:2'.y 
x - y = max ( ' x - y) = 0 otherwise. 

This monus will be used as a function N x N -+ N, and also as a function llho x lli>o -+ llho. Let 
U = { s E lE.;::o I s s 10} be the set of states of a (real-time) timer, where th; state ; E U in-dicates 
that the timer will give a signal in s units of time. There is then an action µ: U x l.>o -+ U given 
by µ(s, a) = s .!. a. Thus, if we have a state 5 EU indicating that a signal will be gi~en in 5 units 
of time, then the state µ(5, 3) obtained by letting the timer run for 3 units of time, is 2 E U. It is 
not hard to see that µ satisfies the two equations of a monoid action. 

3 Coalgebraic specification 

What distinguishes coalgebraic specification from algebraic specification is the use of "destructors" 
instead of "constructors" as atomic function symbols. Typically, if X is an unknown type that we 
are specifying and A is a constant set, then a map of the form A --> X is a constructor, since 
it tells us how to form elements of X, and a map X--> A is a destructor since it gives us some 
observations about what is in X. In the coalgebraic specification format in this paper we shall 
restrict ourselves to two kinds of destructors, of the form at: X ___. A, and proc: X x B --t X. 
The first of these is an attribute giving us some information about X, and the second one is a 
procedure which allows us to produce a new state (from a given one and a parameter element in 
a constant set B). Attributes correspond to (instance) variables, whose values may be changed 
by procedures, see the example below. We mostly use the object-oriented dot-notation instead of 
the functional notation. Hence for a states EX we writes.at for at(s) and s.proc(b) for proc(s, b). 
Thus s.proc(b).at is the result of applying in states the procedure proc with parameter b, and then 
applying the attribute at to its outcome. Functionally this would be written as at(proc(s, b)). 

Here is a typical example of a coalgebraic specification, provided with some comments after the 
#-sign. 

class spec: FF 
methods: 

val:X--+ {0,1} 
on:X--+ X 
off:X--+ X 

assertions: 
s.on.val = 1 
s.off.val = 0 

creation: 
new.val = 0 

end class spec 

# 'FF' is the name of the specification; it stands for 'flip-flop' 
# object-oriented terminology for function symbols 
# this is an attribute, with output values 0 or 1. 
# this a procedure without parameter, giving a new state. 
# same thing 
# statements imposing some behavioural restrictions, where s E X 
# thus, after 'on' in a state s the value is 1 
# now the end result is 0 
# requirement for the initial state new 
# hence newly created instances of FF have value 0. 

The typically coalgebraic aspect of such a specification is that it tells nothing about what is 
inside X; it only describes the operations on X, and the constraints that they satisfy. We restrict 
equations (here and below) to be exclusively between attribute values, and not between states. This 
is in line with the coalgebraic philosophy in which states are not directly accessible. More examples 
may be found in [10, 9], giving coalgebraic specifications and models for classes in object-oriented 
languages. 

A model of such a flip-flop specification consists of three parts. First, it consists of an interpre
tation U = [ X ] of the unknown type X as a set (of states). Secondly, the methods are interpreted 
as functions [ val]: U -+ {O, 1 }, [on]: U --+ U and [off]: U -+ U acting on the state space U, which 
should be such that the above assertions are satisfied. Usually we omit these interpretation braces 
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[ - D. Thirdly, there should be an initial state u0 E U satisfying the creation condition, i.e. satisfy
ing val( uo) = 0. The three (interpretations of the) methods can be combined into a single function 
U-> {O, l} x U x U, giving us a coalgebra on U of the functor X ,__. {O, 1} x X x X. 

Such a model (U -+ {O, 1} x U x U, uo E U) is called terminal if for every model (V -> 

{O, 1} x V x V, vo E V) there is a unique function /: V -. U preserving the operations and the 
initial state: 

valu of= valv, onu of== f o onv, offu of== f o offv, f(uo) == vo. 

Terminal models form "minimal realizations" (in the terminology of [5]): they consist of the 
minimal set of states needed to perform the required behaviour. For example, the terminal model 
of the above flip-flop specification is the set U = {O, 1} of attribute values, with operations: 

{0,1} ~ {0,1} 
x r-> x 

{O, l} 
on 

---> {0,1} 
1 

{O, l} ~ {O, l} 
x .......... 0 

and with 0 E {O, 1} as initial state. Indeed, for every model (V ._, {O, 1} x V x V, v0 E V) there 
is a unique homomorphism f: V -> {O, 1} satisfying the above requirements, namely f = valv. 
There are plenty of other models of this specification; for example, any set V with at least two 
elements can be turned into a model of this specification. But terminal models of coalgebraic 
specifications distinguish themselves as "optimal" models, in the same sense that initial (term) 
models of algebraic specifications are "optimal". See [4] for more information on the semantics of 
algebraic specifications. 

Although we have described the notion of model only for a particular coalgebraic specification, 
it should be clear what a model is for an arbitrary coalgebraic specification: a carrier set together 
with functions acting on it which interpret the attributes and procedures, and satisfy the assertions, 
together with an initial state satisfying the creation conditions. 

4 Temporal coalgebraic specification 

In this section we extend coalgebraic specifications as above, with temporal aspects, and present 
a number of examples of the resulting "temporal coalgebraic specifications", together with a few 
simulations, using the OmSim simulator of 0MOLA [2]. Semantics will be postponed until the next 
section. 

A "temporal" coalgebraic specification is, like before, given by a collection of methods consisting 
of attributes and procedures, but the crucial difference lies in the formulations of the assertions. 
They will contain temporal information. For an arbitrary method meth and a state s we shall use 
the new notation 

s.meth@a for the result of applying method meth in state s after a delay of o units of time. 

Or, more operationally, s.meth@a means: in state s, wait a units of time and then apply method 
meth. We shall consider examples where a ranges over N (discrete time) and also over ll;:::o (real 
time). We allow o to be 0, so that meth1@0.meth2@0 means that meth2 is applied immediately 
after meth1 (which is applied after a delay of o time units). We assume that messages arrive in 
sequential order: if we write s.meth@o, then it is assumed that meth is the first method to be 
applied in state s (after a units of time), and that no other method was applied in the meantime. 
If meth is a method that takes a parameter b E B we shall write s.meth(b)@a for the result of 
applying meth (b) after a units of time. 

Let us consider an elementary example, building on the flip-flops from the previous section. 
Suppose we wish to specify flip-flops which can be switched on, and will automatically switch off 
after 10 units of discrete time. We specify these as follows. 

DT-class spec: DTFF # 
methods: # 

val: X-+ {O, l} 
on:X-->X # 

'DT' for 'discrete time'; name 'DTFF' for 
'discrete time flip-flop' 

(the method off is not used) 



assertions: 
s.val@a = 0 f- s.val@(a + {3) = 0 
f3 ~ 10 f- s.val@,8 = 0 
f3 < 10 f- s.on@a.va1@.B = 1 

creation: 
new.val@O = 0 

end class spec 
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# a.s before s EX; a.nd a.,{3 EN (discrete time) 
# "monotony", forming an invariant 
# also an invariant 

We explain the meaning of the assertions. We use the turnstile f- to describe conditional assertions. 
The :first "monotony" assertion tells that if at some time a. the value in state s is 0, then this value 
is still 0 at some later time a.+ {3. Hence the flip-flop does not simply switch on (get value 1) 
by itself. In this temporal coalgebraic format we have to indicate explicitly what the values of 
attributes are as a function of time. The second assertion tells us that no matter in what state our 
flip-flop is, if we wait at least 10 units of time, then its value will be 0. And :finally, if we switch it 
on at some time a, a.nd then inspect it at some time f3 less than 10 units later, then it will have 
value 1. This formally captures our informally described timer. Finally, the creation clause tells us 
that newly created instances have value 0 immediately after their creation. Then we can deduce 
new.val@a. = 0 for any a, from the :first assertion. 

In order to familiarize the reader with this formalism, we consider some variations. Notice that 
a timed flip-flop satisfying the above specification can be switched on (again) if it has value 1. In 
this way we can keep it with value 1 for a longer time than 10. Suppose we wish to alter this and 
stipulate that the flip-flop can only be switched on if it has value 0. We can achieve this by taking 
the following two assertions, instead of the above third assertion. 

s.val@a = 0,,8 < 10 f- s.on@a.va1@{3 = 1 
s.val@a = 1 f- s.on@a.va1@,8 = s.val@(a + ,8). 

The :first new assertion is like above, except that it now has an extra assumption that the value is 
0 at the moment a that the 'on-event' happens. This reflects our modification. And the second 
assertion tells us that at a moment a. when the value is 1, an 'on-event' has no effect on the value: 
looking at the value f3 time later is the same as looking at the value a+ f3 time after the original 
state. For example, if we have a state s with s.val@2 = 0, then if we switch it on 2 units after s, 
switch it on again 5 units later, and inspect 7 seconds later, then the value will be O, although the 
inspection took place less than 10 units after an on-event. Formally: 

s.on@2.on@5.va1@7 = s.on@2.va1@12 since s.on@2.va1@5 = 1, 

since s.val@2 = 0 and 5 < 10 

0 since 12 ~ 10. 

We can further modify this example by requiring that after the timer has had value 1, it must 
remain with value 0 for at least 20 units (say) of time. This comes close to the (single) traffic light 
specification for pedestrians in [6] with value 0 standing for "red light" and 1 for "green light". 
We need an auxiliary (possibly private) attribute waiting: X ---> {yes, no} telling us if we have 
waited long enough in a state with value 0 (to switch the flip-flop on again). Details of such a 
specification are left to the reader. Another variation on the above discrete-time flip-flop DTFF 
is a corresponding real-time RTFF, which will be discussed in Example 5.3 below. Similarly one 
can coalgebraica.lly specify more standard examples from the literature-like a railway crossing 
explicitly taking account of the times needed to open and close the gate, or a watch-dog surveying 
a number of processes and expecting signals that everything is all-right at regular intervals (see 
e.g. [12, 19]). 

We turn to some examples from chemistry, showing the interaction between the discrete struc
ture of method-events and the continuous structure associated with the elapse of time, typical of 
hybrid systems. Assume we have control over a confined reaction space into which we can inject a 
chemical substance A. In this space, A will start reacting and transforming itself to another sub
stance, with a reaction speed proportional to the available amount of A. If we write this amount as 
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a function A = A( o:) depending on a time parameter o: E li;:::o, then we have a differential equation 

dA 
00 = -kA where k E li;:::o is a reaction constant. 

The solution of this equation is the function A(o:) = A(O) . e-ka. It is used in the following 
specification. 

RT-class spec: REACTA 
methods: 

amountA: X ---+ li>o 
add A: X x li>o __; X 
clear: X ---+ X 

assertions: 
s.addA(x )@o:.amountA@O = (s.amountA@a) + x 
s.clear@a.amountA@O = 0 
s.amountA@(a + /3) = (s.amountA@a) · e-kfJ 

creation: 
new.amountA@O = 0 

end class spec 

Hence the amountA attribute tells us how much A there is (in our confined reaction space). And 

with the two procedures addA and clear we can inject a certain a.mount of A (using the parameter 

of the method), and clear the space in which we are working. This explains the first two assertions. 

The third assertion incorporates the solution of the differential equation: it tells what at any time 

/3 after o: the amount of A is, in terms of the a.mount of A at o: and the elapsed time (3. 

For example, we can do the following. In arbitrary state s, we first clear our working space, 1 

time unit later we inject 10 units of A, then 8 time units later we decide to inject another 5 units 

of A, and then we check 3 time units later. The result can be computed as: 

s.clear@O.addA (10)@1.addA (5)@8.amountA@3 

s.clear@O.addA (10)@1.addA (5)@8.amountA@(O + 3) 

(s.clear@O.addA (10)@1.addA (5)@8.amountA@O) · e-3k 

(s.clear@O.addA (10)@1.amountA@8 + 5) · e-3k 

((s.clear@O.addA(lO}@l.amountA@O) · e-8k + 5) · e-3" 

= ((s.clear@O.amountA@l + 10) · e-8k + 5). e-3k 

(((s.clear@O.amountA@O) · e-k + 10) · e-8k + 5) · e- 3k 

(10 . e-Sk + 5) . e-3k 

10. e-llk + 5. e-31:. 

The first factor shows the amount of A after inserting 10 units of A and waiting 11 time units, 

whereas the second factor shows the amount after waiting 3 time units starting from 5 units of A. 

This shows that one can actually calculate with a coalgebraic specification. 
A more interesting example arises when we can (independently) insert two substances A and 

B, which can engage in reactions A=+ B, both with reaction speed proportional to the amount of 

transforming substance, and such that an x-amount of A (resp. B) is transformed into an x-amount 

of B (resp. A). This leads to the differential equation 

dA 
- =-kA+f.B 
da 

where A(a) + B(a) = A(O) + B(O). 

In the first equation, k, f. are constants (in li;:::o ). The second equation tells that the total amount 

of A plus B must be constant (and equal to the sum at initiation). The solution of this equation is 

A(a) 

B(a) 

_l_ ((kA(O) - lB(O)) · e-(k+t)a + £(A(O) + B(O))) 
k+£ 
A(O) + B(O) - A(a). 



This leads to the following specification. 

RT-class spec: REACTA+:!B 
methods: 

amount A: X __, ll>o 
addA:X x li>o _.:; X 
amountB: X :._. ls.>o 
addB:X x lil>o _.:; X 
clear: X --+ X 

assertions: 
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s.addA(x)@cr.amountA@O = (s.amountA@a) + x 
s.addB{x)@cr.amountA@O = s.amountA@a 
s.clear@cr.amountA@O = 0 

s.amountA@(a + /3) = k~l ( (k(s.amountA@a) - £(s.amountB@a)) · e-(k+l)i' 

+l((s.amountA@cr) + (s.amountB@cr))) 
s.addB(x)@cr.amountB@O = (s.amountB@a) + x 
s.addA(x)@cr.amountB@O = s.amountB@a 
s.clear@a.amounts@O = 0 
s.amountB@(a + /3) = (s.amountA@cr) + (s.amounts@a)- (s.amountA@(cr + /3)) 

creation: 
new.amountA@O = 0 
new.amountB@O = 0 

end class spec 

Lets be an arbitrary state, and putt= s.clear@O.addA(lO)@O. Then one can show that, as the 
time /3 goes to infinity, the amount t.amountA@/3 of A in state tat time f3 goes to d:t · 10, and the 
amount t.amountB@/3 of B goes to Ih · 10. What we have is an abstract description of a mini
chemical plant, in which two substances can be put together at controlled times and quantities, and 
their presence over time can be monitored. We have a "passive" hybrid system, because control is 
on the outside. See Figure 1 for the output of a simulation in OmSim [2]. 

16 ~\~ 
',,~',.._ ·:0'-------- -------------

/ 
0 lt 

,...----

0 10 20 30 40 50 

Figure 1: Initially: A = 10, B = 0. Additions of B: 10 at time = 8, and again 10 at time = 25. 
(The values of the constants in this simulation are: k = 0.2 and £. = 0.3. Hence the eventual ratio 
~is n 

Our final hybrid example in this section involves a thermostat, and is adapted from [14, 1] (and 
put in coalgebraic format). We shall describe a "passive" and an "active" version. The passive 
thermostat PTHERM: lets the user regulate the temperature in a room, via 'on' and 'off' switches 
of a heater (like for the earlier :flip-:flops). There are two attributes, namely 'val' describing whether 
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the heater is on or off, and 'temp' describing the temperature in the room. We have to consider 
the following two cases. 

• When the heater is off, the temperature in the room is determined by "Newton's law of 
cooling": the rate of change ~~ of the temperature T = T( a) in the room is proportional to 
the difference between the temperature T in the room and the temperature of its surround
ings. For convenience we assume the latter to be constantly O, so that we have a differential 
equation 

dT 
-=-kT da , with solution T(o:) = T(O) · e-ka. 

• If the heater is switched on, we assume that the change of temperature due to heating is 
constant. Hence we have an extra constant i in our differential equation: 

dT 
- =-kT+i da , with solution T(a) = (T(O)- ~) · e-ka + ~-

(These solutions are also used in [14, l].) We thus arrive at the following specification. 

RT-class spec: PTHERM 
methods: 

val: X--+ {O, l} 
temp: X --+ li>o 
on:X--+ X -
off:X--+ X 

assertions: 
s.val@(a + /3) = s.val@a 
s.on@a.val@O = 1 
s.off@a.val@O = 0 
s.on@a.temp@O = s.temp@a 
s.off@a.temp@O = s.temp@a 
s.val@a = 0 I- s.temp@(a + /3) = (s.temp@a) · e-lc/3 
s.val@a = 1 I- s.temp@(a + /3) = ((s.temp@a) - f) · e-k/3 + f 

creation: 
new.val@O = 1 
new.temp@O = 0 

end class spec 

What is interesting about this example is that different states have different dynamic control 
laws: different formulas are used for the temperature in the room (as a function of the elapsed 
time) whether the heater is on (value 1) or off (value 0). In the last case only the natural loss of 
temperature is described: if fJ -> oo, then the temperature at time a+ /3 goes to 0. But if the 
heater is on there is an extra factor raising the temperature: if /3 --> oo, then the temperature at 
a+ /3 goes to the ratio f; this is the highest temperature that we can achieve by heating the room: 
it forms an equilibrium between heating and cooling. Notice that newly created thermostats have 
their heater on, and have a temperature equal to 0 {which is the temperature of the environment). 

As an example, assume we have an arbitrary states in which the value is 0 (heater is off), then 
if we switch the heater on after a time units, and then read the temperature f3 units later we get: 

s.on@a.temp@,B s.on@a.temp@(O + /3) 

((s.on@a.temp@O) - il · e-k/3 + f since s.on@a.val@O = 1 

= ((s.temp@a) - f) · e-k/3 + f 
(s.temp@(O +a) - f) · e-k/3 + f 
((s.temp@O) · e-ka - f) · e-k/3 + f since s.val@O = 0 

= (s.temp@O) · e-lt(«+/3) + ~ · (1 - e-lt/3). 
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We call this a "passive" hybrid system because the heater will be switched on or off only 
as a result of an action of a client. A more user-friendly system allows a client to set the goal 
temperature, whereupon the system "actively" regulates the temperature. We shall specify such a 
system in which the temperature (after some time for adjustment) is kept in the interval [z -1, z + 
1) ~ lll?;o around the clients choice z. Therefore we assume that the highest possible temperature f 
in the room is bigger than 2, and that the clients choice z lies in the open interval (1, f - 1) ~ li?;o. 

The specification below has three attributes val, temp, goal for respectively the value of the 
heater (O=off, l=on), the actual temperature in the room, and the goal temperature as set by the 
client. (Initially this goal will be set to t-,., i.e. to half of the maximal temperature.) There is one 
procedure set, which allows a client to feed the desired temperature into the system. We shall use 
the abbreviations 

j(s, Q) ~ sup {I' I ((s.temp@a) - kl· e-kP + f < (s.goal@a) + 1} 
= 1 1 ( f. - k(s.temp@a) ) 

k n f. - k((s.goal@Q) + 1) 
J.(s,a) ~ sup{!' I (s.temp@a) ·e-kP > (s.goal@Q)-1} 

= 1 1 ( s.temp@a ) 
k n (s.goal@a) - 1 

for the time l(s,Q) needed in states at a to reach the maximum (s.goal@a) + 1 by heating, and 
the time !(s, a) needed to reach the minimum (s.goal@a) - 1. These abbreviations will be used 
for "time can proceed" (tcp) predicates-like in [13]-in the following specification. 

RT-class spec: ATHERM 
methods: 

val: X-+ {O, 1} 
temp: X -+ li>o 
goal:X-+ (1,-f -1) 
set:X x (1, f -1)--> X 

assertions: 
s.temp@a < ~ 
s.goal@(Q + /3) = s.goal@a 
s.temp@Q < (s.goal@Q) -1 f- s.val@a = 1 
s.temp@a > (s.goal@a) + 1 f- s.val@a = 0 
s.temp@a ~ a f- s.set(a)@a.val@O = 0 
s.temp@a < a f- s.set(a)@Q.val@O = 1 
s.set(a)@a.temp@O = s.temp@a 
s.set(a)@a.goal@O =a 
s.val@Q = 1, /3 < l(s, a) f- s.val@(a + /3) = 1 
s.val@a = 1,/3 < j(s,a) f-s.temp@{a +.B) = ((s.temp@a)- f) · e-kP + f 
s.val@a = 1 f- s.val@(a + i(s,a)) = 0 
s.val@Q = 1 f- s.temp@(a + l(s,a)) = (s.goal@a) + 1 
s.val@a = 0, /3 < !(s, a) f- s.val@(a + /3) = 0 
s.val@a = 0,/3 < !(s,a) f- s.temp@(a + .B) = (s.temp@a) · e-kP 
s.val@a = 0 f- s.val@(a + !(s,a)) = 1 
s.val@a = 1 f- s.temp@(a + !(s, a))= (s.goal@a) -1 

creation: 
new.val@O = 1 # in fa.et, this can be deduced 
new.temp@O = 0 
new.goal@O = f,. 

end class spec 

We leave it to the reader to verify that for a states with (s.goal@a)-1 :S s.temp@a $ (s.goal@a)+l, 

s.temp@a = s.temp@(a + j(s.goal@a) + !(s.goal@a)) 

s.val@a = s.val@(a + j(s.goal@a) + !(s.goal@a)) 
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where T z (resp. l z) is the time that is required for the temperature to rise from z - 1 to z + 1, 
(resp. to fall from z + 1 to z - 1). Hence, once the temperature has reached the required region 
around the goal temperature, it will oscillate around this goal with a periodicity of i(s.goal@a} + 
l(s.goal@a:), and it will stay within this region [(s.goal@a}-1, (s.goal@a) + l]. Further, the heater 
will be switched on and off with the same periodicity. See Figure 2 for an OmSim simulation. 

Figure 2: Initially: goal temperature = 15. Goal is set to 3 at time = 150, and to 10 at time = 
350. The dashed line describes the resulting temperature, and the blocks at the bottom indicate 
whether the heater is on or off. 

5 Models of temporal coalgebraic specifications 

We now turn to semantics. In this section notions of "model" and of "terminal model" will be 
introduced for the temporal coalgebraic specifications from the previous section. Subsequently, 
terminal models will be identified for these example specifications. 

First, we reconsider the specification DTFF of discrete-time flip-flops as described in the be
ginning of the previous section. A model of such a specification will first of all be a model of 
the "underlying" coalgebraic specification as in Section 4-obtained by ignoring aspects of time; 
that is, by taking the time parameters a, f3 equal to 0 in the specification. Thus we should have 
a carrier set U of states, together with operations val:U-+ {O, 1} and on:U-+ U, and an initial 
state u 0 E U. What we further need (in this discrete time case) is an N-action µ: U x N -+ U 
describing the influence of time on the state space. Then we can interpret timed methods as: 

s.val@a = val(µ(s, a)) and s.on@a: = on(µ(s, a:)). 

This interpretation corresponds with our earlier operational explanation: s.val@a means: first wait 
a: units of time and take the resulting state µ(s, a) emerging after this period of time, then apply 
the val-method. Notice that s.val@O = s.val, because µ is an action. Similarly for the procedure 
on. 

In order to find concrete examples of models it is useful to think of elements of the carrier set 
U as internal states needed to display the specified behaviour. In this case we can take as internal 
states the elements s E N with s ~ 10. Such a state s can be seen as the number of units of 
time before the value of the flip-flop becomes O. This explains the maximum 10. We thus take 
U = {O, 1, ... , 10} ~ N as underlying state state space, with action 

µ: {O, 1, ... , 10} x N -+ {O, 1, .. ., 10} 

The interpretations of the methods are then: 

given by (s, a) ,.__. s .!.. a. 

{ } val { } • { 0 if S = 0 0, 1, ... , 10 -+ 0, 1 is s ,_, 1 else and {0,1, ... ,10}~{0,1, ... ,10} is sr+lO. 
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And as initial state in this model we take 0 E {O, 1, ... , 10}. We verify that the assertions of the 
DTFF specification hold in this model. 

(i) The first assertion s.val@a = 0 I- s.val@(a + (3) = 0 holds since 

s.val@a = 0 => µ(s,a) = s .!.. a= 0 =>a~ s =>a+ f3 ~ s => s.val@(a + {3) = 0. 

(ii) The second assertion f3 ~ 10 I- s.val@/3 = 0 obviously holds, since for s E {O, 1, ... , 10} a.nd 
(3 ~ 10 one has s .!.. f3 = 0. 

(iii) And the last assertion f3 < 10 I- s.on@a. val@(3 = 1 holds since 

(3 < 10 => 10 .!.. f3 > 0 => (s.on@a) .!.. f3 > 0 => s.on@a.va1@(3 = 1. 

(iv) Finally, the initial state 0 E {O, 1, ... , 10} satisfies the creation condition, because O.val@O = 
0, since µ(0, 0) = 0 .!.. 0 = O. 

There are other models of this DTFF specification besides {O, 1, ... , 10} 5;;; N. One can also 
take the closed intervals [O, 10] ~ IQ and [O, 10] ~Ji of (positive) rational and real numbers below 
10. The definitions of the action and methods a.re as above. But in these models of rationals 
and reals there are ''too many" states1• The minimality of the model {O, 1, ... , 10} ~ N can be 
expressed mathematically using terminality. This will be formulated next. 

5.1. Definition. Consider a (discrete or real time) specification Sas above, with attributes X --+ 

Ai, ... , X --+ An and procedures X X Bi --+ X, ... , X x Bm --+ X. 
(i) A model of this specification consists of four parts: 
(a) a "state space" or "carrier set" U, serving as interpretation U = [XIl of the unknown type 

X in the specification S; elements of U will be called states; 
(b) amonoid actionµ: UxM-+ U, where Mis the monoid of discrete or real time (in accordance 

with whether Sis a discrete or real time specification); 
(c) functionsU-+ A, UxB-+ U, where A= A1 X···XAn is the product of the sets of attribute 

values a.nd B = B1 + · · · + Bm is the coproduct (disjoint union) of the procedure parameter sets, 
giving combined interpretations U -+ A; of the attributes and of the procedures U x B; -+ U, in 
such a way that the assertions of the specification S a.re satisfied; 

(d) An initial state uo E U satisfying the creation conditions in the specification S. 
We notice that the interpretations of the attributes and of the procedures form a coalgebra 

U -+ A x U8 on the state space U. Hence we are describing coalgebraic models of temporal 
specifications. 

(ii) Such a model (U ~A, U x B ~ U, U x M ...!:.. U, uo E U) is called terminal if for every 

model (V ~A, V x B ~ V, V x M ~ V, vo E V) there is a unique function f: V -+ U making 
the following three diagrams commute. 

VxM~V~A (V x M) x B ~ V x B ~ V 

Jxid l II (Jxid)xid l lJ 
UxM~U~A (U x M) x B -;;it U x B ~ U 

That is, f satisfies for v E V, a E M and b E B: 

J(v).at@a = v.at@a and f(v).proc(b)@a = /(v.proc(b)@a) and f(vo) = uo. 

A function J satisfying these three requirements will sometimes be called a homomorphism (of 
models). 

In the notion of homomorphism used in the definition, the internal time steps are not pre
served directly, but 'only indirectly via their observable effect. As an aside we mention that every 
model (V ~A, V x B ~ V, V x M ~ V,v0 E V) yields a coalgebra V -+AM x yBxM 

1 But for a client who can only use the specified methods, these differences of implementation are not noticeable. 
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by v >--+ (>.a. v.at@a, ,\(b, a). v.proc(b)@a). The notion of homomorphism used in this definition 
corresponds to a morphism of coalgebras for the functor X,...... AM x xsxM. And associated with 
this functor is a notion of bisimulation relation. It is a relation R s V x F on the carrier of a 
model V such that for all x,y with R(x,y) one has R(v(x,a),v(y,a)) and x.at@a = y.at@a and 
R(x.proc(b)@o,y.proc(b)@o), for all a EM and b E B. By a standard result, bisimilar elements 
become equal when mapped to the terminal model. 

Vie have already seen examples of models. We now present an example of a terminal model. 

5.2. Example (Discrete-time flip-flop). Consider the discrete time flip-flop specification DTFF, 
with its model U = { 0, 1, ... , 10} s N as described in the beginning of this section. This model can 
be characterized as terminal model of the specification. And this formalizes our earlier intuition 
that it involves the minimal set of states (or: forms a "minimal realization"). For any model with 
carrier set V, action v: V x N--+ V, methods val: V-+ {O, l}, on: V-> V and initial state vo E V, 
there is a function 

j:V ___.. {O, 1, ... ,10} given by f( v) = inf {,B E {O, 1, ... , 10} I v.val@,B = O}. 

Thus f maps a state v E V to the first unit of time where the value of state v is 0. We show that 
f is a homomorphism. 

(i) Commutation with val: 

f(v).val@a = 0 <=> µ(J(v),a) = J(v) .!. a= 0 

<=> a~ J(v) = inf {,BE {O, 1, ... , 10} I v.val@/3 == O} 

<=> v.val@a = 0. 

The direction(-<=) of the last step is easy, by definition ofinfimum. For(=>), assume a~ j(v), 
say a= J(v) +,B. Since v.val@f(v) = 0-because j(v) is the first time that the value is 0-we get 
v.val@(f(v) + /3) = v.val@o == 0 by the monotony assertion in the DTFF specification. 

(ii) Commutation with on: 

j(v.on@a.) inf {/3 E {O, 1, ... , 10} I v.on@a.va1@/3 = O} 

inf{/3E{O,1,. .. , 10} I µ(v.on@a,/3) == (v.on@a) .!. /3=10 .!. {3 = O} 

== inf{/3E {0,1, ... ,10} I /3~10} 
10 

f(v).on@a. 

(iii) Preservation of the initial state: 

j(v0 ) =inf{.B E {0,1, ... , 10} I vo.val@,B = O} = inf{,B E {O, 1, ... ,10} I /3 2 O} = 0. 

Finally we have to show that f is unique with these properties. If also g: V -> {O, 1, ... , 10} 
satisfies g(v).val@a = v.val@o., g(v).on@a == g(v.on@a) and g(vo) = 0, then g(v) = f(v) since: 

• g(v) S: f(v) because g(v) is a lower bound of the set {/3E{O,1, ... , 10} I v.val@,B = O}: 

v.val@,B = 0 ~ g(v).val@p = 0 ~ µ(g(v), /3) = g(v) .!. /3 == 0 => g(v) S: /3. 

• g(v) 2 J(v) because v.val@g(v) = 0. This follows since g(v).val@g(v) = 0 since µ(g(v),g(v) 
= g(v) .!. g(v) = 0. 

5.3. Example (Real-time flip-flop). We now consider a real-time version of the above timed fiip
flop. Its specification is the same as the discrete time specification (in the beginning of Section 4) 
except that in order to deal with boundary problems we add an extra "denseness" assertion 

s.val@a = 1 f- 3/3 > 0 s.val@(a + /3) = 1. 
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It tells us tha.t if the value a.t time er is 1, then we can always find a (possibly very small) non-zero 
positive rea.l number (3 such that (3 units of time later the value is still 1. As a. consequence, if 
v.val@er = 1, then the set {(3 / s.val@(er + /3) = 1} is a.n upwardly open interval [O,y) ~ ll~o. 

We claim tha.t the terminal model satisfying this RTFF specification is the closed inten'al 
[O, 10] ~ lll of positive reals Jess tha.n or equal to 10. The idea. is tha.t a sta.te s E [O, 10] represents 
the sta.te of the flip-flop in which the value will be 0 in s units of time. The (real-time) action 
µ: [O, 10] x li~o -+ [O, 10] is (s, er) H s .!. er. And the method interpretations a.re 

val: [O, 10] --> {O, 1} is s H { ~ ~f~ = O and on: [O, 10] --> [O, 10] is s ,_. 10. 

with 0 E [O, 10] as initial state-much a.s in the discrete case. We check the validity of the extra 
assertion s.val@er = 1 I- 3(3 > 0 s.val@(er + (3) = 1. If for some sta.te s E [O, 10] and time er E l.~0 
we have s.val@er = 1, then s .!. er > 0, so that er < s. But then we can find a /3 > 0 with er+ f3 < s 
because li~o is dense. This mea.ns that s.val@(a + /3) = 1. 

In order to show terminality of the model [O, 10], assume another model consisting of a carrier 
set V, with action 11: V x ll~o --+ V, method interpretations val: V-+ {O, l}, on: V-+ V a.nd initial 
state Vo E V. Then we ca.n define a function/: V-+ [O, 10] by /(v) = inf {.B E [O, 10] I v.val@/3 = O}. 
We show that /(v).val@er = v.val@er. Indeed 

/(v).val@er == 0 <::> f(v) .!. er= 0 <::> er 2::: f(v) W v.val@er = 0. 

The marked implication (<=)is easy by definition of infimum. For(=>) we use that v.val@/(v) = 0. 
Suppose not, i.e. v.val@/(v) = 1. Then we can find a r > 0 with v.val@(f(v) + r) = 1, by the 
additional assertion mentioned above. But f(v) + r is a lower bound for the /3 E [O, 10] with 
v.val@.8 == O. Hence f(v) + r 2::: f(v), because f(v) is infimum. But this is impossible. 

The remaining details that f is the unique homomorphism V ..... [O, 10] a.re as in the previous 
example, and are left to the reader. 

5.4. Example (Chemical reactions). We consider the specifications REACTA and REACTA;:B 
from the previous section. In the first case a model ha.s to keep track of the amount of the 
chemical substance A. This is done most economically by taking as state space the set ll>o of 
positive reals, elements of which represent this amount of A. The associated action µ: l.>o x m;o -+ 

li>o sends a pa.ir (x, er) consisting of the present amount x of A and the time a, to the amount 
µ{X, er) = x · e-k<> after er time units. This is an action, since µ(x, 0) = x · e0 = x · 1 == x, and 
µ(µ(x, a), /3) = µ(x, er)· e-kfJ = (x · e-ka) • e-kfJ = x · e-k(<>+fJ) = µ(x, er+ /3). The interpretations 
of the methods amountA, addA and clear are then simply: 

l.>o x lli>o 
- (x,y) 

ll~o am~t_. li~o 
x 1--+ x 

clear ,,,, 
l.~o --+ ""~O 

x ......... 0. 

As initial state we have to take 0 E lli>o. This is the terminal model, since for an arbitrary model 
V with action v: V x ll>o -+ V, attribute amountA: V --> llt>o, procedures add A: V x li>o -+ V, 
clear: V -+ V with initi~ state va E V, we get a unique homomorphism f: V -+ li>o ~namely 
f(v) = v.amountA@O. Then -

/(v).amountA@er 

µ(J(v), er) 
f(v). e-ka 

(v.amountA@O) · e-k<> 

= v.amountA@(O +er) 

v.amountA@er 

/(v).addA(x)@er 

= µ(f(v),a)+x 

= v.amountA@er + x 

= v.addA(x)@er.amountA@O 

= f(v.addA(x)@a) 

And also /(vo) = va.amountA@O = 0. Uniqueness is obvious. 

j(v).clear@er 

0 

== v.clear@er.amountA@O 

= J(v.clear@er). 

A model of the second specification REACT Ai=!B must keep track of both the amounts of A 
and of B. This suggests ll~o x lll<:o as carrier of the terminal model. We only define the action, 
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and leave further details to the reader. This action µ: (lll>o x lli>o) x Ili>o ..... (li>o x li>o) is given 
by - - - - -

µ((xA,XB),a) = (µA((xA,xe),a),xA +xB -tLA((xA,xe),a)) 

where µA((xA, XB), a) = k: £ ( (kxA - lxe) · e-(k+L)<t + l(xA + XB)) 

Notice that !LA((xA,XB),O) = k~1 (£(xA + xe) + kxA - lxs) = k~L((£ + k)xA) = XA, and thus 
tt( (xA, XB), 0) = (xA, XA +xe - XA) = (xA, xs ). The other action-equation JL(µ( (xA, XB),o.), (3) = 
µ( (x A, x B), a + ,8) is left to the interested reader. 

5.5. Example (Thermostats). The passive and active thermostat PTHERM and ATHER.1\1 in the 
previous section also involve non-trivial actions. The terminal model in the passive case PTHERM 
has carrier set {O, 1} x lli2:o, where the first component describes whether the heater is on (1) or 
off (0), and the second component is the current temperature. This implementation contains all 
the information we need, and nothing more. The action µ,: ( { 0, 1} x li2:0 ) x lll.2:0 ..... { 0, 1} x Ii;:: 0 is 
given by 

µ((O,x),o:) = (O,x · e-"") and JL((l, x), o.) = (1, ( x - 0 · e-k<> + ~) 

where k, I. are the constants as used in the PTHERM-specification. It is not hard to check that µ 
is an action. The interpretations of the methods on the state space {O, 1} x li;::o are given by 

{O, 1} x llR;::o 
val {0,1} {O, 1} x lll.2:0 ~ li;::o ~ 

(z,x) >---+ z (z, x) >--> x 

{O, 1} x lli;::a 
on 

{O, 1} x lll.2:0 {O, 1} x lli.2:0 
off 

{O, 1} x li;::o ~ --t 

(z,x) >---+ (1, x) (z,x) >---+ (O,x). 

As initial state we take (1, 0) E {O, 1} x li2:0 , as prescribed by the specification. We leave it to the 
reader to verify that the assertions in the PTHERM-specification hold in this model. 

If we have another PTHER..\1-model with carrier set V, action V x lli>o --+ V, method inter
pretations val: V ..... {O, 1}, temp: V--+ ll!.2:0 , on: V-+ V, off: V--+ V and initial state va E V. Then 
there is a unique homomorphims f:V--+ {0,1} x Im.>o, namely f(v) = (v.val@O,v.temp@O). We 
only check that f commutes with the temperature attributes. If v.val@O = 0, then 

J(v).temp@o: = sndµ(f(v), a)= (sndf(v)) · e-k<> = (v.temp@O) · e-•" = v.temp@a:. 

And if v.val@O = 1, then 

( £) k £ ( I.) -kt> I. @ J(v).temp@a = sndf(v) - k · e- "+ k = (v.temp@O) - k · e + k = v.temp a. 

We turn to the semantics of the active thermostat ATHERM. In a model of this specification 
one has to keep track of (1) whether the heater is on or off, (2) the current temperature in the 
room, and (3) the goal temperature. The minimal set of these data is 

U = { (x, y, z) E {O, 1} x [O, ~) x (1, ~ - 1) I y < z - 1 => x :::: 1 and y > z + 1 => x = O}. 

The restriction in this definition deals with the states of adjustment, when the temperature yin the 
room is outside the region [z -1, z + 1] around the goal temperature z. The method interpretations 
on U are as follows. 

u val {0,1} u t~ [O, ~) -(x, y, z) ,___. x (x,y,z) ,___. y 

u goal 
(1,~-1) u x (1, ~ - 1) 

set u - --+ 

(x,y,z) ( (x, y, z), a) >--> { (0, y,a) if y?: a 
>---+ z (1, y, a) if y <a 
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The actionµ x li>o -+ U is more difficult. We first define, for a goal temperature z E (1, f - 1), 
a history function- h,: Ji.2!:0 -+ [O, f) describing the periodic oscillation of the temperature in the 
room around the goal temperature z, as function of time a E l.~o. Therefore we first need the 
times 

iz~~ln(l-k(z-1)) and !z~r~ln(z+l) 
k e - k(z + 1) k z - 1 

that it takes for the temperature in the room to rise from z - 1 to z + 1, respectively to fall from 
z + 1 to z + 1. The periodicity of h, is then i(z) + !(z), through the definition: 

h,(x) = (z + 1) · e-!:: ifx E [l z, i z + !z) { 
((z - 1) - f) · e-!:: + f ifx E [O, i z) 

h,(x - n(l z + ! z)) otherwise, where n EN is least with x 2:: n(i z + ! z). 

Now we define the actionµ: U x li>o -+ U as follows. We first deal with the adjustment phases: if 
y < z - 1, then -

{ 
(x, (y - f) · e-ka + f,z) if a< k ln(z_ti:(!:!: 1)) 

µ((x,y, z), a)= (( _ 1 ) - ! I (~)) otherwise. µ x,z ,z ,a k n t-k(>-lJ 

And if y > z + 1, then 

µ((x,y,z),a) = { (x,y·e-k"',z) 

µ((x,z+l,z),a-pn(ztI)) 

ifa < k In( z:¥-r) 
otherwise. 

Finally, if we are in the "stability" phase z - 1 :::; y :::; z + 1, then we can use the history function 
h, to define µ. 

µ((O,y,z),a) = (x,h,(h;1(y)+a:),z) where 

h;1 (y) E [i z, l z + !z) is unique with h,(h;1 (y)) = y, 

and x = 0 if the derivative h~(h; 1 (y) +a) < 0, and x = 1 else. 

µ((1,y,z),a:) = (x,h,(h;1(y)+a:),z) where 

h;1(y) E [O, i z) is unique with h,(h;1(y)) = y, 

and x = 0 if the derivative h~(h;1 (y) +a:) < 0, and x = 1 else. 

It is laborious, but in essence straightforward, to check that U with this action is a model of the 
active thermostat specification ATHERM; and also that it is the terminal model: for an arbitrary 
model V there is a unique homomorphism f: V--+ U given by f(v) = (v.val@O, v.temp@O, v.goal@O). 

6 Final remarks 

Terminal models play a special role in (coalgebraic) specification as minimal realizations in which all 
observationally indistinguishable states are identified. We have introduced (non-obvious) notions 
of model and of homomorphism of models for temporal coalgebraic specifications, and have shown 
in various examples that the resulting terminal models are the intended minimal models, thereby 
achieving the modest aim of this paper: to show that terminality applies in these situations as 
well. 

We have not explained where the terminal models came from. We used the intuitive (and 
quite useful) heuristics that terminal models are "minimal realizations", i.e. consist of the minimal 
set of states needed for the specified behaviour. There is a more mathematical way to find these 
terminal models by following the recipe of [8]: first find the terminal model of operations only, and 
then carve out the appropriately universal submodel satisfying the assertions, using (temporal) 
mongruences. Due to lack of space, we only give a sketch: in a situation with attribute X --+A, 
procedure X x B --+ X and monoid M, this terminal model has as carrier the function space 
A(BxM).xM of "sampling observations". And for the second step, one uses the greatest "temporal 
mongruence" which is contained in the subset determined by the equations, where a temporal 
mongruence is a. subset of the carrier set of a model, which is closed under the monoid action and 
under the procedure. 
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