
Finite-state Transducers

as Regular Böhm Trees

Gérard Huet and Henri Laulhère

INRIA, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

Abstract. We present a uniform translation from finite-state transduc-
ers to regular Böhm trees presentations. The corresponding Böhm tree
represents directly the trace semantics of all finite and infinite behaviours
of the given transducer. We consider variations on this basic idea, and
generalisations of finite-state transducers suggested by the general for-
malism of regular Böhm trees. This work suggests the use of recursive
Böhm trees combinators as a machine-language for reactive program-
ming.

Introduction

We give a uniform translation from finite-state transducers to regular Böhm
trees. We assume familiarity with the formalism of recursive Böhm trees com-
binators as introduced by Huet in [3]. Roughly speaking, Böhm trees are the
completion of normal forms in the λ-calculus into infinite trees. Regular Böhm
trees are those which may be defined by finite families of mutually recursive
combinators of a simple kind.

1 Finite-state transducers

We assume a deterministic finite-state transducer described as follows. Its input
alphabet is A = {a1, ..., an}. Its output alphabet is B = {b1, ..., bp}. Its set of
states is S = {S1, ..., SN}. Its set of transitions is described by a set of transition
rules T = {TS,a|S ∈ S, a ∈ A} with TS,a = (S′,b) where S′ ∈ S and b ∈ B∗.
Meaning “In state S, reading input a, the transducer outputs b and goes in
state S′.” A deterministic transducer is defined by the quadruple of the input
alphabet, the output alphabet, the states and the transition rules : 〈A,B,S, T 〉.
Actually this quadruple defines a family of transducers indexed by S. The index
corresponds to the initial state of one transducer in the family.

2 Translation to a Böhm tree presentation

2.1 The encoding

We associate a Böhm tree presentation ε to the transducer. This notion, defined
in [3], presents forests of Böhm trees as families of recursive combinator defini-
tions of a simple kind. In this particular case, the set of combinators is S plus a



set of auxiliary combinators T containing m members for each rule in R whose
output word b is of length m. For every state S, we write a set of combinator
definitions as follows:

For each input letter a ∈ A and state S ∈ S, let TS,a = (S′,b) with b =
b1 . . . bm. We introduce m combinators TS,a,j with 1 ≤ j ≤ m. Let u, v1, . . . vp

be distinct variables. We define terms Ma,j with 1 ≤ j ≤ m + 1 as follows:

Ma,m+1 is S′(v1, . . . , vp)

Ma,j with 1 ≤ j < m is TS,a,j(v1, . . . , vp)

and we write the m definitions:

TS,a,j v1 . . . vp := vbj
(Ma,j+1) with 1 ≤ j < m.

Let Na be Ma,1. We finally write the definition for S as

S v1 . . . vp u := u(N1, . . . , Nn) with Ni = Nai

where n and p are respectively the cardinality of the input alphabet A and
the output alphabet B. Variable u represents the input of the transducer, while
vi represents the ith element of the output alphabet.

Remark. In this encoding we assume that the transducer is total, i.e. for every
state S ∈ S and every letter in the input alphabet a ∈ A there is a transition rule
in R. If the transducer is partial (not total), we may use dummy combinators,
without defining equations in ε, to represent absent transitions. We have two
solutions:

1. using the same combinator ⊥ for all the absent transitions. In this case we
define Ni as ⊥ (v1, . . . vp).

2. using a different combinator for each absent transition. In this case we define
Ni as US,a(v1, . . . vp). US,a is an unknown combinator without a definition.

The advantage of the second solution is that it may be completed in an
incremental way by adding separate definitions for the various US,a.

2.2 An example

The transducer. We define a particular transducer. Its input alphabet is A =
{a1, a2}. Its output alphabet is B = {b1, b2, b3}. Its set of states is S = {S1, S2}.



Its set of transition rules is defined by the following automaton graph:

S1 S2

a2;b3

a2;b1b2

a1;b2a1;ε

The corresponding regular Böhm tree presentation

S1 v1 v2 v3 u := u(S1(v1, v2, v3), T1(v1, v2, v3))

T1 v1 v2 v3 := v1(T2(v1, v2, v3))

T2 v1 v2 v3 := v2(S2(v1, v2, v3))

S2 v1 v2 v3 u := u(T3(v1, v2, v3), T4(v1, v2, v3))

T3 v1 v2 v3 := v2(S2(v1, v2, v3))

T4 v1 v2 v3 := v3(S1(v1, v2, v3)).

2.3 Global variant

There are several variations on such encodings. The Böhm tree corresponding to
the above encoding has a bound variable u for each value in the input stream.
We can use a different encoding where all these u’s are shared. We define the
terms Ma,j with 0 ≤ j ≤ m as follows.

Ma,m+1 is S′(v1, . . . , vp, u)

Ma,j with 1 ≤ j < m is TS,a,j(v1, . . . , vp, u)

and we write the m definitions:

TS,a,j v1 . . . vp u := vbj
(Ma,j+1) with 1 ≤ j < m.

Let Na be Ma,1. We finally write the definition for S as

S v1 . . . vp u := u(N1, . . . , Nn) with Ni = Nai
.



Example. The global encoding of the preceding example is as follows:

S1 v1 v2 v3 u := u(S1(v1, v2, v3, u), T1(v1, v2, v3, u))

T1 v1 v2 v3 u := v1(T2(v1, v2, v3, u))

T2 v1 v2 v3 u := v2(S2(v1, v2, v3, u))

S2 v1 v2 v3 u := u(T3(v1, v2, v3, u), T4(v1, v2, v3, u))

T3 v1 v2 v3 u := v2(S2(v1, v2, v3, u))

T4 v1 v2 v3 u := v3(S1(v1, v2, v3, u)).

Discussion on the encodings The basic ideas behind our encodings are is-
sued from the classical λ-calculus encodings of arithmetic worked out by Church.
In these codings, data structures are explained as unsaturated control struc-
tures. Thus the pairing constructor is defined as p := λx y u.u(x, y) and the
pair (x, y) is thus represented as λu.u(x, y). This functional object may then
be applied to a selector function in order to project on its components, with
π1 := λx y.x and π2 := λx y.y. More generally, the n-tuple constructor is
λx1 . . . xn u.u(x1, . . . , xn). This idea is exploited directly in the definition of the
state combinators S above. They correspond in the Böhm tree to a node with n

subtrees. Remember that n is the cardinality of the input alphabet. The n sub-
trees correspond to all the transitions issued from state S. Dually, the outputs
are coded as projection functions, with letter bj represented as λv1 . . . vp.vj . The
transition combinators T are defined as the application of the corresponding let-
ter encoding in the output string to a unique subtree argument, which represents
the “continuation”, i.e. either a transition combinator if the output string is not
exhausted, or the next state combinator otherwise.

In the first representation, a fresh variable u is generated at each state tran-
sition, whereas in the global variant all the n-tuple constructors are identified
as a unique variable u bound at the top root of the tree. The first representa-
tion has the advantage that the combinator expressions may directly be used
to simulate by reduction the behavior of the automaton, by applying the state
nodes to actual input characters coded as projections. The global representation
is not so different actually, since the unique top u may be instantiated by the
n-tuple constructor, which will generate a fresh u at each level. This trick is
well known from the Böhm-out construction which is the basis for the proof of
Böhm’s theorem[4].

3 Semantics of finite state transducers

We shall now actually formalize this intuitive explanation of the link between
the Böhm forest represented by our combinator presentation and the forest of
all the behaviors of the corresponding transducer family.



3.1 Derivation tree

Definition. The derivation forest of the transducer family is the forest of all its
possible traces. It is potentially infinite. A tree in the forest has the following
shape:

S1

S2

Sn

S0

S11

S12

S1n

...

...

...

...
Ts0an

Ts1a1

Ts0a1 Ts1an

This defines the tree of behaviors of the finite automaton underlying the trans-
ducer. The nodes of the tree are labeled by states, the arcs are labelled by the
corresponding transitions. The top node of the tree is the initial state. In other
words, each tree in the forest is the unfolding of the automaton graph, starting
at the initial state.

3.2 Associated Böhm tree

We now associate a (possibly infinite) Böhm tree to each such derivation tree,
where we replace the arc labels by linear Böhm trees encoding the output strings.
Assuming that S0 is the initial state, we associate to the root of the tree the
Böhm tree

D(S0) = λ v1 v2...vp u.u(D(TS0,a1
), . . . ,D(TS0,an

))

where D(TS,ai
) are the Böhm trees associated to the arcs of the derivation tree.

To each arc in the tree TS,a = (S′,b) with b = b1 . . . bm, we associate the
Böhm tree:

D(TS,a) = vb1(vb2(. . . (vbm
(D(S′)) . . .).

To each non-root node of the tree we associate the Böhm tree:

D(S) = λu.u(D(TS,a1
), . . . ,D(TS,an

)).

Fact: The Böhm tree D(S0) and the Böhm tree BS0
defined by (ε, S0) are

identical.
Proof. D(S0) is a solution of ε (left to the reader). By the Banach fixpoint

theorem we know that there is only one solution to this system. This proves that
BS0

, the Böhm tree associated to ε and D(S0) associated to the derivation tree
are identical.



Note. In the global variant we would obtain a very similar Böhm tree except
that there is no λu in the internal nodes (and all the u’s refer to the one bound
at the root).

This result allows us to use the combinators as a mechanism to compute the
behavior of the transducer. This formalism can be considered as a simple abstract
machine. It can be used as the output language of reactive languages compilers
since such languages are usually compiled into transducers. In particular, regular
Böhm trees are well suited for functional reactive languages like Lustre [1, 5].

Remark that equality of our Böhm trees corresponds to bisimulation of the
corresponding automata. However the notion of extensional equality studied in
[3] is not relevant here, since our Böhm trees have fixed arities, and η expansion
has no direct interpretation.

4 Discussion

The shape of the Böhm tree presentation ε associated to a transducer is very
specific. It seems that all the features of regular Böhm trees are not exploited
by our encoding.

In this short version of this note, we just evoke briefly some possible general-
isations of regular transducers suggested by the full power of our regular Böhm
combinators. These generalisations will be developed in more detail in the full
version of this paper.

1. All the input nodes are n-ary. If we relax this condition, we could have a
notion of transducer where the possible inputs depend on the current state
of the transducer. This would give a kind of typed automaton: states are
typed by the alphabet of inputs allowed to occur in the input stream. This
could have a natural interpretation in control automata where there is not
a global unique input tape, but rather each state allows certain signals to
be taken into account. Different signals could correspond to different input
variables; that is, the rôle played so far by variable u could be played by
several signal variables u1, . . . , uq given with their respective type.

2. Similarly, the output alphabet is fixed so far; i.e., the vj ’s are bound initially
in the starting state, and then just passed along in every combinator defi-
nition; instead, we could ‘forget’ certain output letters by not transmitting
them in a combinator call, and conversely ‘generate’ new members of the
output alphabet by extra bindings; this would give a kind of bounded mem-
ory to our transducers: they could output information which would actually
represent some kind of partial trace of previous states.

3. All the output nodes are unary. If we relax this condition, we would get
the notion of a multitask transducer. This transducer outputs a tree node
of arity p and forks into p automata, each of these governing one branch of
the generated output. Of course, all these automata share the same control
graph. On the other hand, several possible interpretations of how to read
the input stream may be considered.



The usefulness of these elaborations is not entirely clear. If we look at Böhm
trees in full generality, we are looking at the combinatory richness of a Turing-
complete formalism, which may emulate all possible control and data structures:
stores, environments, continuations, functional encodings of data structures, etc.
On the other hand, if we consider only those trees which may be generated from
finite systems of combinators, it is very likely that whatever construct we may
interpret could be as well encoded in a plain finite-state transducer, by standard
tricks (increasing the states, merging several input tapes into one input tape
over a larger alphabet, etc).

5 Conclusion

In this paper, we have explored expressivity of regular Böhm trees. In particular
we have shown that deterministic finite-state transducers could be encoded as
regular Böhm trees. We propose two different representations:

1. A global encoding with no internal λ binders. It is very similar to regular
trees used in the semantics of flowcharts (see [2]).

2. An encoding with internal binders. This encoding allows us to simulate the
behavior of the transducer by reduction.

We have also started to investigate how to exploit the full generality of reg-
ular Böhm trees to enrich finite-state transducers into more general reactive
automata, which could accomodate higher-level notions from languages of the
reactive paradigm family (Lustre, Signal, Estérel, Statecharts, etc). So far we
only gave a sketch of some possible interpretations of the general formalism.

A possibly more fruitful investigation would be to explore the possibility of
representing more powerful automata. For instance, there is a natural generali-
sation of regular Böhm combinators which yields pushdown automata, but this
is getting out of the scope of the present note.

References

1. P. Caspi, M. Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN Interna-
tional Conference on Functional Programming, Philadelphia, May 1996.

2. B. Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci. 25

(1983) 95–109.
3. G. Huet. Regular Böhm Trees. To appear, Math. Struct. in Comp. Science. Avail-

able at ftp://ftp.inria.fr/INRIA/Projects/coq/Gerard.Huet/RBT.ps.Z

4. G. Huet. An analysis of Böhm’s theorem TCS 121(1993) 145-167.
5. P. Raymond, N. Halbwachs, P. Caspi and D. Pilaud. The synchronous dataflow

programming language LUSTRE. Proceedings of the IEEE, 79(9) 1305-1320, 1991.

This article was processed using the LaTEX macro package with LLNCS style


