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A b s t r a c t  
This paper addresses the problem of determining the intrinsic and extrinsic parameters of a mobile 
camera. We present an optimal solution which consists of the following steps: first~ the camera 
is calibrated in several working positions and for each position, the corresponding transformation 
matrix is computed using a method developed by Faugcras and Toscani [1]; next, optimal intrin- 
sic parameters are searched for all positions; finally, for each separate position, optimal extrinsic 
parameters are eamputed by minimizing a mean square error through a closed form solution. Ex- 
perimental results show that such a technique yields a spectacular reduction of calibration errors 
and a considerable gain relative to other existing on-site calibration techniques. 

1 Introduction 
This paper addresses the problem of determining the optical (internal) camera parameters (called 
intrinsic parameters) and the three-dimensional (3-D) position and orientation of the camera frame 
relative to some predefined world coordinate frame (extrinsic parameters). 

This problem is a major part of the general problem of camera calibration and is the starting 
point for several important applications in Computer Vision and Robotics. 3-D object tracking and 
dynamic scene reconstruction, stereo vision, stereo calibration and stereo reconstruction, object 
recognition and localization from a single view, and sensory based navigation, are just a few 
situations where camera calibration is explicitly needed. 

Calibrating a camera is determining the relationship between the 3-D coordinates of a point 
and the corresponding 2-D coordinates of its image. Such a relationship is usually expressed 
in terms of a 3 × 4 matrix M, which is called the perspective transformation matrix [2,7]. In 
other words, a camera is considered being calibrated if for each of its working positions, the 
corresponding matrix M can be derived. If the camera is fixed, the calibration problem is reduced 
to the problem of computing a single matrix M. If the camera moves arbitrarily, calibration 
involves Computation of both intrinsic and extrinsic parameters, the latter being necessary for the 
hand/eye calibration [5,9,10]. 

Numerous techniques tackling the general calibration problem exist in the literature. An ex- 
cellent Survey of these techniques is given by Tsai in [8]. There are two main approaches for 
calibrating a moving camera. One approach is to compute the perspective transformation matrix 
from which the camera parameters are derived, [1,2,6]. In a second approach, that of Tsai [7], and 
Tsai and Lenz [9], no perspective transformation matrix is explicitly calculated. This method seeks 
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the solution of a linear matrix equation in five unknowns merely consisting of extrinsic parameters, 
from which~ the rest of the parameters can be easily recovered. This method is based on a priori 
knowledge of two intrinsic parameters. In [9], a method is proposed to compute all intrinsic camera 
parameters by performing a preliminary off-site calibration stage. This in turn, is likely to cause 
additional difficulties, since the camera parameters may be altered accidentally when fixing the 
camera on its working place. Their results in terms of accuracy are similar to those reported by 
Faugeras and Toscani. 

We have performed camera calibration on several camera positions using the technique proposed 
by Faugeras and Toscani [1]. Among different camera positions, significant differences between ho- 
mologous intrinsic camera parameters occurred. While the method turns out to be particularly 
accurate in the computation of the perspective matrix for a given camera position, nevertheless, 
when the intrinsic and extrinsic parameters are derived from this matrix, the results are disap- 
pointing. This is due to the noisy 2-D and 3-D data  and to the instability of equations allowing to 
compute these parameters (see Section 3). Note also, the fact that  the perspective matrix is accu- 
rate and the intrinsic parameters are sometimes inaccurate, implies that  the extrinsic parameters 
are also affected by errors. 

If one particular set of intrinsic parameters (corresponding to a given position) is assumed to be 
valid everywhere, and is associated with the extrinsic parameters corresponding to another camera 
position, the resulting errors are enormous (see section 5). 

O u r  a p p r o a c h  
Our technique can be summarized as follows: a camera is calibrated at several (N) positions and 
in each position, a perspective transformation matrix is computed by  using the direct method 
(without applying extended Kalman filtering) of Faugeras and Toscani. Once the N matrices are 
available, the problem of computing correct intrinsic and extrinsic parameters is broken down into 
three successive steps: 1) a minimization criterion is formulated leading to the computation of  
optimal intrinsic parameters; 2) an optimal rotation is computed for each camera position; 3) an 
optimal translation is computed for each camera position. 

The optimization of the rotational and translational parameters is achieved by minimizing a 
mean square error. All these optimizations are performed using closed-form algorithms. Such a 
technique yielded a spectacular reduction of errors and a gain in precision of a factor up to 50, 
relatively to the Faugeras-Toscani approach. 

2 T h e  c a m e r a  m o d e l  

The camera model that  we use is the pinhole model. This is the most frequently used model existing 
in the bibliography [1,2,6,7]. The underlying mathematical model is the perspective transformation: 
a 3-D point P = (X,Y,  Z)' is projected on a 2-D point p = (u,v) ~ in the image plane (see figure 1) 
where: 

with: 
(su, sv, s ) ' =  M (X, Y, Z, 1)' (2) 

Coordinates of P are expressed relatively to some scene coordinate frame, and coordinates of 
p are expressed relatively t o  the image frame in pixels. M = (roll) is a 3 × 4 matrix called the 
perspective transformation matrix and is defined up to a scale factor. Coefficients rni i depend on 
10 independent parameters which are the following: 

• a~ and ~ ,  the scale factors on axes u and v of the image frame; 
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Figure 1: Mathematical model of the camera 

* u0 and v0, the coordinates in the image frame of the intersection of the optical axis with the 
image plane; 

* t=, t~ and t~, the coordinates of a translation vector t; 

• r=, r~, and r~, the coordinates of a rotation vector ~'. 
The first four parameters depend only on the physical characteristics of the camera and are 

called the (ntrinsie camera parameters. The last six parameters define the geometric transform T 
between the camera frame and a given scene coordinate frame. They depend on the position of 
the camera relative to the scene coordinate frame. They are called extrinsic camera parameters. 
Let us define a few notations: 

M =  m2 m24 T =  ~ t~ 
r~3 m34 ~s t~ 

where r~  and ~ are (1 x 3) row vectors. Vectors ~ define a rotation matrix p. Let 0 be the angle, 
= (n=, n~, nz) ~ the unit vector defining the axis and ~ = (rz, r v, r~) ~ the vector of rotation. These 

variables are related by the expressions (see [3]): 

cos8 + r~g(8) rzrvg(8 ) - r~f(8) rzr~g(O) + r~f(O) 
p -- r=r~g(O) + r~f(0) cos 0 + r~g(0) rvr~g(O ) " r j (O) ) (3) 

r=r,g(O) - r~f(O) r~r~g(O) -t- r~f(O) cos 0 + r~g(O) 

f(0) - sin 0 1 - cos 0 ~r~ + r~ -I- 
0 ' g ( 0 )  = 02 , 0 = r~ ,  ~ =  Og 

Notice that ~ as rows of a rotation matrix define an orthonormal frame. 
The expression of M as a function of the intrinsic and extrinsic parameters is: 

( a,£l + uo~ a,  tz + uot= ) 
M = w a~£2 + Uo£s a~t v + uot= 

~3 t, 
(4) 

w is the scale factor of matrix M. As r'3 is a unit vector, w can be identified with sqrt~a~.r~. In 
the sequel, M is considered with w equal to 1. 
The intrinsic and extrinsic parameters can be calculated by identifying coefficients m~j with their 

expxession given by (4), and by using properties of vectors ~. This method is presented and 
analyzed in the following section. 
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3 I n s t a b i l i t y  i n  t h e  c o m p u t a t i o n  o f  t h e  p a r a m e t e r s  

The following equalities can be derived from the orthogonality of vectors ~: 

= 3s  (5) 

U0 = m l . m S  

v0 = 3~.3s (6) 

{ ~. : 113,×3~11 (7) 
= 113, × 3~1i 

(8) 1/~,,,(3~ - voS~) 

t. -- l id . (m1,-  ~0ms,) 

tz = m 3 4  

The equations above are non linear and give rather unstable results, especially the first four ones 
which allow the computation of the intrinsic parameters and the  rotational part of the extrinsic 
parameters. 

A geometrical interpretation of the above calculation shows this instability. Figure 2 depicts 
the geometrical situation of the vectors ~ and ~. In this figure, we volunteerly magnified vectors 
~. For the cameras commonly in use, the order of magnitude of ~u and a~ is 1000 and the order of 
magnitude of uo and v0 is 250. The problem of finding the rotation and the intrinsic parameters is 
equivalent to the problem of properly "placing" the orthonormal vectors ~1, r'2 and ~3 relatively to 
31, 32 and 33 and of calculating the projections of 31 and 32 onto the vectors ~.. This is done 
through the above equalities by: 

1. identifying ~ with 33 (equality (5)); 

2. calculating f'l and r'2 as the vectors orthogonal to f's in the planes defined by ~'~ and 31 and 
~s and rfi~, respectiyely (equality (8)); 

3. calculating the projections of 3~ and 32 onto the vectors F~ (eq (6) and (7)). 
The consequences of such a method are: 

• even a small error on 3 s badly propagates and can cause very significant errors in the 
calculation of vectors ~ and of the intrinsic parameters, (notice that especially u0 and v0 are 
extremely sensitive to 33),  

• the resulting vectors ~ are not necessarily orthogonaI; notice here that the "c" factor intro- 
duced by Toscani [1] not only reflects the non-orthogonallty of the u and v axes of the image 
frame but also the errors produced in vectors 3 i  and ~/as well; 

• even if the values of the parameters are wrong, they are mutually compatible: if the matrix 
M is recomputed from these values, results are quite good. 

In order to give quantitative estimations of the numerical instability, the intuitive geometrical 
interpretation given above can be completed with calculations of error propagation through the 
equations (5) to (7). This is done in appendix A. 

4 A n  o p t i m a l  s o l u t i o n  f o r  c o m p u t i n g  t h e  p a r a m e t e r s  

The basic principles of our method are the following: 
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Figure 2: Geometrical interpretation of the calculation of the parameters 

1. the intrinsic parameters are computed after having computed the perspective transformation 
matrix M on sewral positions. The underlying idea is to compute a unique set of intrinsic 
parameters that  is correct for every position of the moving camera; 

2. using the formerly computed intrinsic parameters for each calibration position, the extrinsic 
parameters are computed by two successive optimization algorithms: one for the rotational 
and one for t:he translational parameters. 

4 . 1  C o m p u t i n g  t h e  i n t r i n s i c  p a r a m e t e r s  

We suppose that  we have computed N perspective transformation matrices M(0 corresponding to 
N different positions i of the camera: 

( c~O + u°~) ~"t(~) + u°t(~) 
M (') -- a~g ' )+ )u0g  ') o~t(v')+ Uot(') (10) 

The principle of the calculation is to look for invariants which are independent of the extrinsic 
parameters and which allow one to calculate the intrinsic parameters. The most obvious possibility 
is to choose for these non varying quantities the intrinsic parameters that  we could calculate for 
each separate position. For each position i, we can write: 

{ : ~(i)~(1),,.i ""~3 { a(') = ]'m~i) X m~i)N 

The optimal value for u0 is that  which minimizes the criterion: 

N 
c = E ( u 0  - 4'))  ' 

i=l 

This is the mean value of u(00: 
N 

uo = 1/N ~_,U(o 0 
i=l 

The same reasoning holds for the other three intrinsic parameters. 

4 . 2  C o m p u t i n g  t h e  e x t r i n s i c  p a r a m e t e r s  

For each camera position, a perspective transformation matrix M is available, and a set of intrinsic 
parameters have been computed. Now we focus on the calculation of the extrinsic parameters. 
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Let Xj denote the 3-D points used for the calibration (expressed in the scene coordinate frame) 
and (uj ,v i )  ~ the 2-D coordinates of their projections onto the image plane. Eliminating s in 
equations (1) and (2) gives: 

{ (,,i.~ - , ~ l ) . X j  + ( ~ j , , ~ ,  - , , , , )  = o (11) (~ .~  - , ~ , ) . x ;  + ( ~ m , ,  - m , , )  = 0 

Expressing r~ i as functions of intrinsic and extrinsic parameters leads to: 

{ , , . (Gx; + t.) + (~o - ,~;) (e,.x; + t.) = o 
(12)  

~o(~, .xj  + t,)  + (~o - ~)(e~.x~ + t,) o 

The problem is now to find F1, ~,  ~ ,  t, ,  t~, t, so that equations (12) are verified for all points 
Xj. To separate the calculation of the translational part from the rotational part, we must first 
state the following lemma: 
L e m m a  1 If  X j  is considered as the unknown in equations (11), then the point Xo = - p - : i ' i s  a 
solution for all j .  

Proof :  (F1.Xo+ t , ) ,  (£2.X0 + tv), (~'3.X0 + tz) are the coordinates of the point pXo + ~. This vector 
is equal to ( _pp - :~+  t-), or the zero vector. The three coordinates are equal to zero and X0 is then 
a solution of equations (12) for all j ,  and consequently a solution of the equations (11) which are 
equivalent. [] 

Putting all equations (11) together gives a linear system. Its solution X0 can be calculated by 
a least squares procedure. 
The geometrical interpretation of lemma 1 is that X0 represents the coordinates of the optical 

center of the camera, expressed in the scene coordinate frame. The equalities (11) considered as 
equations whose unknown is Xj are the equations defining the locus which is projected in (uj, vj) ~. 
This locus is the straight line passing through the optical center and the point (ui, vi) t of the 
image plane, When considering all equations for all j ,  the unique solution is the point which is 
the intersection of all these lines: this is the optical center. 

4.2.1 C o m p u t i n g  the  r o t a t i o n  

Equalities (11) are now equivalent to: 

{ (~j)'~3 -- rT~l).Xj -}- (ujml)4 - m14) = (u /m3  - r~ l ) .Xo  -}- (ujrr).,34 - )n14) (13) 

which leads to: 
{ a ,e , .CX i - Xo) ÷ (uo - ui)5.CX~ - Xo) = 0 (14) 

~°5.(X;  - X0) + (~0 - , ; )5 . (X;  - X0) = 0 

As ~.(Xj - X0) is the i 'h coordinate of the vector p ( X  i - Xo), the first of equations (14) 
means that p(Xj  - Xo) is orthogonal to the vector (a, ,0,  (u0 - uj)). For the same reason the 
second equation means that the vector p(Xj  - Xo) is orthogonal to the vector (0, a~, (v0 - vj)). 
This implies that the direction of the vector p ( X  i - Xo) is given by the cross-product of the two 
previous vectors: 

N i  = ,~ . ("o  - v;)  
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The geometrical interpretation of this result is that for every point X i ,  the line joining the optical 
center and X i must be colinear to the line joining the optical center and the image point (u i , v i ) .  

Let us define: 
G X i - Xo and Qi  = iiNill s i  = IIx~ - Xoi) 

The problem of finding the rotation is finally equivalent to finding p which minimizes the 
criterion: 

M 

G = ~ llps~ - Q?I ~ 
i=1 

To solve this problem, we consider the unit  quaternion q associated with p. It is shown in ap- 
pendix B that q is the unit eigenvector associated with the smallest eigenvalue of the positive 
symmetric matrix B where: 

M 

i=l 

B i = 

with B i given by: 

o - s i ,  + Q~, - s j ,  + Qi,  - s ~ ,  + Qi ,  
s~, - Qi ,  o s j ,  + Qj,  - s i r  - Q~, 
s~  - Q ~  - s ~ ,  - Qj ,  o s~, + Q~, 
s i , - Q j ,  s iv+Q~ - s i , - Q i ,  o 

(15) 

4.2.2 C o m p u t i n g  the  t r a n s l a t i o n  

Equalities (12) can now be considered as equations whose unknowns are G, t~, G: 

{ ( , . , y .x~) t .  + (uo - ,,i)t.  + ,~.fl.x~ + (,,o - . i )e~ .x ;  = o (18) 
(,~,e~.xi)t~ + (vo - v i ) t ,  + ,~o~.x~ + (vo - ,~)~s.Xi = o 

These equations are linear and we have two of them available for each calibration point X i. The 
optimal value for ~=  (tz, t v, t , )  t is computed with a classical least-squares algorithm. 

5 E x p e r i m e n t a l  re su l t s  

E x p e r i m e n t a l  s e tup  
The experimental setup is shown on figure 3. A Pulnix TM 560 R camera is mounted on a robot 
wrist. This camera has a 2/3 inches, 500 × 582 elements, CCD sensor with a 16mm TV lens. We 
use a VME board for image acquisition. The calibration pattern is a grid of lines drawn with a 
laser printer. A 3-D calibration point is determined as the intersection of two lines. The calibration 
pattern is fixed on an horizontal metal plate moving along the z axis. The images are taken at an 
approximate distance from 40 to 50 cm. The number of points used for the calibration is about 
100, lying on two to four distinct planes. The 2-D calibration points in the image are determined 
by extracting junctions.  These junctions are found as intersections of lines segments detected in 
the image. 

E r ro r  eva lua t i on  
To evaluate and compare our method with other methods, we used two criteria which are now 
presented. For each 3-D point Xi, let pj = (u i , v j )  t denote its observed projection on the image, 
and p ~ d  = ( u ~ d ,  v?°~) ' its projection given by the camera model corresponding to the parameters 
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Figure 3: The experimental setup 

that  have been found. For each point ) ( i ,  this gives an error vector ~i --- ( u ' ~  °'~ - u i ,  v ' Y  d - vJ)  t .  

These vectors ~ constitute one criterion. Another criterion is the mean module of vectors ~ .  

Resul t s  
The following table reports the mean error module for eight different calibration positions, using 
fiye different methods: 

p o s l  pos2  pos3  pos4  p o s 5  p o s 6  p o s 7  p o s 8  
method 1 0.87 5.48 48.26 10.86 57.59 5.52 2.60 13.78 
method 2 0.82 0.93 4.83 1.38 6.16 0.98 0.84 1.62 
method 3 1.82 1.22 4.81 1.15 5.77 1.33 2.22 2.81 
method 4 0.88 0.81 2.86 1.01 3.76 0.93 0.87 1.14 
method 5 0.85 0.79 1.11 0.89 1.38 0.87 0.82 0.85 

M e t h o d  1: This is the method of Faugeras and Toscanl applied to each of the eight positions. 
Intrinsic parameters of position 1 are chosen as unique values for all positions and we associate 
them with the extrinsic parameters corresponding to each position. We see that  the mean error 
module for position 1 is quite good: this shows that  associating intrinsic and extrinsic parameters 
computed in the same position yields an excellent perspective transformation matrix. This is not 
the case when intrinsic and extrinsic parameters from different positions are associated. 

M e t h o d  2: Intrinsic parameters computed in POsition 1 (also with Faugeras and Toscani's 
method) are again chosen, and optimal extrinsic parameters are computed with these selected val- 
ues, using the method presented in section 4.2. The errors are dramatically reduced. This shows 
that,  for a given set of intrinsic parameters, even if they are noisy, it is possible to find compat- 
ible extrinsic parameters which yield a positive result~ i.e., give a relative!y accurate perspective 
transformation matrix. The associated extrinsic parameters are also somewhat inaccurate. 

M e t h o d  3" Optimal intrinsic parameters are computed taking into account all eight positions 
with the method presented in section 4.1. The extrinsic parameters are simply computed Using 
equations (5), (8) and (9). With reference to method 2, the errors are reduced to a similar level. 
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Figure 4: Error vectors for various positions and methods 

Here, intrinsic and extrinsic parameters are less corrupted than for the first two methods. Notice 
also that the mean error in position 1 is worse here than the two methods above. The new values 
for intrinsic parameters are globally optimal for all the positions but not for this specific position 
itself. 

M e t h o d  4: Intril~sic parameters are the same as in method 3 and extrinsic translational 
parameters are optimized. Rotational parameters are computed using equations (5) and (8). 

M e t h o d  5: We use the complete optimal method that has been presented in this paper. This 
produces the best results. Compared with method 1, we have a gain factor varying between 1.02 
(pos 1) and 43.47 (pos 3). The average gain factor is 16.4.  

A qualitative comparison of the various methods can he done by observing the error vectors. 
These are shown in figure 4 for positions 2 and 7, and methods 1, 3 and 5 respectively. The error 
vectors are magnified by a factor of 10 for position 2 and a factor of 5 for position 7. 

The CPU time needed for a whole camera calibration process (computation of the perspective 
transformation matrices and optimization of parameters) is 13 seconds on a SUN 4/110 workstation 
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for eight positions and 100 calibration points per position. This time does not include the low level 
image processing and the computation of 2-D calibration points. 
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A N u m e r i c a l  e s t i m a t i o n  of  errors in the  c o m p u t a t i o n  of  
c a m e r a  p a r a m e t e r s  

In this appendix, Auo, Avo, A~u, A~v denote the maximal errors on u0, v0, ~ and ~v respectively. 
Ar~ denotes the maximal error vector on r~i, i.e. the vector (Am~l, Ami2, Amls) t. I~iI denotes 
the vector (Imill, lm~2t, Im~sl) t. As for any two vectors ~ and ~, the following relationship holds: 
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we get the expression of Au0 and Av0 from equations (6): 

{ ~u0 = ~ , . l ~ s l + t ~ , l . ~ s  
~ 0  = ~ = . l ~ s l  + I ~ = 1 . ~ =  

We have also: 

with ® being the operation: 
Ul/~ z -~- ff, zt) V ) 

ff ® ¢ = u,v, + u,v,  
Uz~y -~- Uy~ z 

This leads to the expression of Aa~ and Aao: 

{Aa~ !r[~l = ~ x .~I.(A.~I ® I.~I + l.~l ® a.~)] 
1 - Aao = ~[Im= x ,~=I.(A,~= ® I,~=I + I,~=I ® ~,~=)] 

(17) 

These formulae allow one to calculate the maximal errors on the intrinsic parameters when 
the errors Arnii are known. However, due to the algorithm used to compute the perspective 
transformation matrix, it is difficult to calculate Arnq as a function of the errors on the 3-D 
points X i and their projections pj. Consequently, to estimate the errors Am~i, we did a Monte- 
Carlo simulation. Random errors on 2-D data whose standard deviation is 1.0 pixel leads to the 
following results: 

calibration type Auo Av0 Aau Aa~ 
4 planes 7.42 12.54 6.42 11.99 
2 upper planes 8.80 19.62 16.03 26.41 
2 lower planes 17.81 25.02 24.94 40.19 

These results show that the noise on 2-D data is amplified. With real data, we found differences 
of about 20.0 pixels on u0 and v0 for different camera positions. 

B Finding the optimal rotation 

We saw that the optimal rotation p is the rotation that minimizes the criterion: 

M 
c, -- ~ Ilpsj - Q,I I '  ( is)  

j = l  

Let q he the quaternion associated with the rotation p (notations were introduced in section 2): 

q = c o s ~ + s i n  (n,i  + nvj + n,k) 

It is possible also to consider a vector or a point as S i as a quaternion (see [4] for more details):  

s i  = s #  + si j  + s~,k 

Our demonstration is based on the three following properties: 
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P r o p e r t y  1 The quaternion q associated with the rotation p is a unit quaternion. This means 
that: 

Ilql[ ~ = q* q = 1 

where * denotes the product of quaternions and q the conjugate of q: 

q = cos ~ - sin (n , i  + n , j  + n.k)  

This implies that q-1 is equal to q. 
For the proof, calculate Ilqll z using the fact that (n , ,n , ,n , ) t  is a unit vector and cosZ~ + s i n ~  is 
equal to 1. 
P r o p e r t y  2 Representing both point Sj and rotation p with quaternions, the result of applying p 
to Sj is represented by the quaternion: 

pSj = q * Sj * q -1 

For the proof, see [4]. 
P r o p e r t y  3 For any quaternion p and any unit quaternion q, we have: 

lip * @2 = lip* ~11 ~ = Ilpll: 

Proof :  

l ip ,  qlt ~ -- ( p , q )  * ( p , q )  = p , q , q , f f = p , p =  llpl12 D 

Using successively properties 2, 1, and 3, (18) leads to: 

M M M 

cp  = ~ IIq * s~- ,  q -  Qill ~ = ~ II(q * s i  - Qj * q) * qll ~ -- ~ II(q * s i  - Qi  * q)ll 2 
j = l  i = l  j = l  

(q * Sj - Qj * q) is a quaternion which i sa  linear function of q. More precisely, this quaternion is 
equal to Bjq where Bj is the matrix introduced in equation (15). This leads to: 

M M M 
Cp = ~'~(Bjq)t(Bjq) = q t ( ~  B j ) t ( ~  Bj)q = qtBq 

j = l  j ~ l  j= l  

qtBq is minimal for q being equal to the unit eigenvector associated with the smallest eigenvalue 
of matrix B. Notice that B, as a 4 × 4 symmetric positive matrix has four positive eigenvalues. 


