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Abstract  

Model-based recognition methods often use ad hoc techniques to decide if a 
match of data to a model is correct. Generally an empirically determined threshold 
is placed on the fraction of model features that must be matched. We instead 
rigorously derive conditions under which to accept a match. We obtain an expression 
relating the probability of a match occurring at random to the fraction of model 
features accounted for by the match, as a function of the number of model features, 
the number of image features, and a bound on the degree of sensor noise. 

Our analysis implies that a proper matching threshold must vary with the num- 
ber of model and data features, and thus should be set as a function of a particular 
matching problem rather than using a predetermined value. We analyze some exist- 
ing recognition systems and find that our method predicts thresholds similar those 
determined empirically, supporting the technique's validity. 

1. I n t r o d u c t i o n  

A central problem in machine vision is recognizing partially occluded objects from noisy 
data. Recognition systems generally search for a match between elements of an object 
model and instances of those elements in the data, thereby recovering a transformation 
that maps part of the model onto part of the image. Approaches to model-based recogni- 
tion (see [3, 2] for reviews) include clustering in parameter space (e.g: [17, 18]), searching 
a tree of corresponding model and image features (e.g., [9, 13, 5, 16, 1, 6, 15]), and directly 
searching for possible model-to-image transformations (e.g.,J8, 14]). These approaches all 
must decide if an object is present or absent on the basis of geometric evidence acquired 
from the sensory input. Here, we analyze this decision process and develop a formal means 
for deciding when a match should be accepted as correct. 

Most recognition systems use ad hoc methods to determine what constitutes an ac- 
ceptable match of a model to an image. For example, many systems order the possible 
interpretations of the data in terms of some measure of completeness, (e.g. the percentage 
of the model accounted for), and accept the best interpretations under this measure. If 
instances of the object model are present in the scene, this approach generally will find 
them. If no instance of the object is present, the interpretations that best account for the 
data are in fact incorrect. In this case, one must either accept false interpretations or have 
some means of deciding if the object is present. To reduce the computational complexity 
of recognition, the measure of completeness is often used to terminate the search once an 
interpretation is found that  exceeds some empirically determined threshold. Once again, 
it is necessary to determine if an interpretation is good enough to accept as correct. 

1Research funded in part by ONR URI grant N00014-86-K-0685, in part by NSF Grant IRI-8900267, 
and in part by DARPA under Army contract DACA76-85-C-0010 and ONR contract N00014-85-K-0124. 
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Current methods for deciding if a match is correct are based on empirically determined 
thresholds. In this paper we instead rigorously analyze what constitutes a good match of 
a model to an image. Specifically, we addresg the following question: 

Suppose that  we are given a model with m features, a set of s data features, 
and bounds e v and e~ on the positional and orientational error in the data. 
Further, suppose that  some recognition method has found a match accounting 
for a fraction f ( f  E [0,1]) of the m model features. What  is the relation 
between f and the likelihood ~ that  such a match can occur at random? 

We use this relation to set a threshold on the minimum fraction of model features that 
must be matched, f0, so that the likelihood of such a match occurring at random is small 
(e.g., ~ < .001). Note that there may not be a value of f0 for all choices of ~ (e.g., as 

gets very small, or as m, s, %, or e~ get very large there may be no fraction of model 
features that limits the probability of a random match to ~). 

There are three basic steps to our analysis. First, given a particular feature type, 
the type of transformation from model to image, and a bound on the sensor error, we 
characterize the set of transformations consistent with a single pairing of a model and 
image feature. This set of transformations defines a volume V in the transformation 
space, P (a d-dimensional space with one dimension for each of the d parameters of 
the transformation). We then use an occupancy model [7] to determine the probability, 
Pr{v > l} that  the number of volumes intersecting at a common point in transformation 
space is at least l. This provides an estimate of how often a match of I features will occur 
at random. Finally, the probability that  l volumes will intersect at random is used to 
set a threshold on the minimum fraction of model features, f0, that must be matched in 
order for an interpretation to have a small probability of occuring at random. 

2. T h e  Space  of  T r a n s f o r m a t i o n s  

A rigid object's pose is characterized by a transformation from model to sensor coordi- 
nates. We focus on the case of a similarity transformation (i.e., a translation, rotation, 
and scaling). The set of possible poses can be viewed as a transformation space having 
one dimension for each parameter of thetransformation from model to sensor coordinates. 
A point in this transformation space defines a pose of an object, which in turn defines a 
possible solution to the recognition problem. For example, with a 2D image and world, 
~he transformation space is 4D (translation in x and y, planar rotation, and scaling). 

A match of a model feature and an image feature (e.g., an edge or vertex) defines a 
range of possible transformations, i.e., a volume in the transformation space. The size 
and shape of this volume depends on the type and accuracy of the feature. In this section 
we present an analytic expression for the size of this volume. The development is similar 
to that  in [11], however here we consider a continuous space as opposed to one that is 
uniformly tesselated. The discussion is limited to the case of 2D problems where the 
transformation is an isometry (translation and rotation without scaling), and the features 
are linear edge fragments or points. A similar analysis holds for 3D problems and for 
problems involving change of scale, and is described in [12]. 

Consider the problem of recognizing a two-dimensional polygonal model from noisy, 
occluded data. We let M j  be the vector from the origin to the midpoint of the jth model 
edge, T.~ be the unit tangent of the edge, and Lj  be the length of the edge, all measured 
in the model coordinate system, .Ad. We let mj,  t j ,  ej denote similar parameters for the 
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Figure 1: The range of feasible translations. Left: fixed 0 without error, the line in direc- 
tion RTi denotes set of feasible translations. Right: allowing error, the region enclosed 
in solid lines shows slice S(O, j, J) for a particular 0. Dashed region shows helical path of 
slice as 0 varies. 

jth data edge, measured in the sensor coordinate system, 2". (Note that we use upper case 
for model parameters and lower case for data parameters.) 

The transformation from model to sensor cqordinates may be represented by 

V ,  = R o Y  M ~- V 0 

where VM is a vector in model coordinates, Ro is a rotation matrix of angle O, V0 is a 
translation offset, and v, is the corresponding vector in sensor coordinates. 

What transformations will map a model edge to a data edge? If tj > L j, the two edges 
cannot match. Thus, suppose that ij <_ LJ. Then the rotation matrix Ro,, is defined 
by the angle Om between ' r j  and {j. Many translations will cause the edges to overlap, 
because tj _< L3. If one endpoint of the data edge coincides with a transformed model 
edge endpoint, the translation is the difference between them: 

Lj  - ~j Ro,,T-j V0 = mj - Ro,,, M j  =i: 2 

where the + indicates the two cases. Because any intermediate position is also acceptable, 
the set of translations consistent with matching model edge J to data edge j is 

Hence, matching model edge J to data edge 3 gives a set of points in transformation space, 
with a single value for the rotation and a set of values for the translation, corresponding 
to a line of length Lj  - ~i, with orientation Ro,,q2j in the x-9 plane (Figure 1 Left). 

This ignores the issue of noise in the measurements. In practice, we may only know the 
position of the data edge's endpoints to within some ball of radius %, and the orientation 
to within an angular error of ~.  For 2D lines, these error ranges are related. Given 
endpoint variations of %, the maximum angular variation occurs when the correct line is 
tangent to circles of radius % about the two endpoints, and provided ~ > 2%, is given by 

Inclusion of error effects on position measurements imply that the line of feasible 
translations, for a given rotation, (equation (1)), must be expanded to include any points 
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in the parameter space within % of that line. Further, this expansion into a region must be 
repeated for each value of O in [0m -e~, Om +e~]. Note that this carves out a skewed volume 
in transformation space [4], because the region's center and orientation are functions of 
O, as illustrated in Figure 1 Right. 

Thus given M j ,  T j ,  Lj ,  m j , t j ,  and fj, if gj - 2 %  > L j  then there are no consistent 
transformations, otherwise the set of feasible transformations is denoted by the volume 

) ; ( j , J )  = (.J S ( 8 , j , J )  

where an individual set of translations is denoted by: 
t 

Lj  
$ ( 8 , j , J )  = {(O, Vo) 37, [~/1 ~_ 2 ~j' Hmj - ReMj  + 7Re'rJ - V0[[ _~ ep/ .  

Since each slice S(O, j ,  J)  consists of two hemicircles and a rectangle, it is easy to show 
that the volume of the region V(j, J)  is given by 

c .  = [2 p(Lj - + 

T h e  term in braces is the area of one slice. Integration over a range of angles yields the 
2e~ term. For simplicity, we let the data edge have a length £j = (I - o~jg)Lj where a i j  
denotes the amount of occlusion of the edge, so that the volume is 

c ,  = 2~o [2~pa~Lj + ~ ] .  (2) 

If we are dealing with point features, rather than extended edges, the above result can 
be specialized. Here Lj --* 0 so that  equation (2) becomes cij = 2e~Tre~. What  is e~ in 
the case of a point feature? For a vertex, its orientation is the direction of the bisector 
of the two edges defining the vertex, and hence e~ is a bound on the error in measuring 
that orientation. For a curvature extremum or inflection, the local tangent of the curve 
defines the orientation, and e~ is again defined by a bound on measuring this orientation. 
For truly isolated points, e~ = ~r. In any event, our analysis provides estimates for cjj 
both for edge features and for vertices. 

For the case of a rigid 2D isometric transformation, we have characterized in (2) the 
volume of transformation space, cjj, consistent with a single data-model pairing (j, J). 
The expression is a function of the noise in the data measurements, % and e~, and in the 
case of edges is further a function of the amount of occlusion, ai j ,  and the length of the 
model edge, Lj .  In [12] we consider adding scaling to the transformation as well as the 
case of 3D transformations. We now turn to the question of how these volumes interact. 

3. T h e  P r o b a b i l i t y  of  a C o n s p i r a c y  

The intersection, if any, of two volumes in transformation space defines the set of transfor- 
mations consistent with both pairings. Thus a correct match of a model to an image will 
lie in the intersection of several volumes. In this section we consider the likelihood that  l 
volumes in transformation space will intersect at random. Such an event corresponds to 
an arrangement of image features that happens to be consistent, within error, with t of 
the model features, but which does not actually correspond to an instance of the object. 

The likelihood that l transformation space volumes will intersect at random is a func- 
tion of their number and size. The number depends on the number of model and image 
features. The size depends on the noise, the feature type, and for edge features, the 
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amount of occlusion. To be confident that a match with 1 model features is correct, we 
would like I to be large enough that  a r andom matching of that  size is very unlikely. 

To characterize the likelihood that several volumes will intersect at random we use 
a statistical occupancy model. In the discrete case, if r events are uniformly randomly 
distributed across n buckets, an occupancy model can be used to estimate the probability 
that a given bucket will contain k events. The events in our case are points in the volumes 
in transformation space, and t he  buckets are points in the transformation space itself. 
These quantities are continuous, and thus we consider the limiting case as n, r --~ oo. 

The volume of transformation space defined by each incorrect model and image feature 
pairing is independent of the correct match. We assume that the image features are also 
independent of one another, so we can model the volumes in transformation space as 
independent random events. The distribution of these volumes depends on the image 
features, which are unknown, so we assume the uniform distribution as an approximation. 

While the volumes in transformation space can reasonably be viewed as independent 
random events, we are modeling the probability of events occurring at points  in these 
volumes. As the number of volumes, R, gets large (compared with the ratio of the total 
size of the transformation space to the size of each volume, V / c )  the overall distribution 
of points in the space also is random. For the cases of interest here Rc >> V, so the 
assumption of independent random pointwise events is a reasonable approximation. 

Given a uniform random distribution of r events into n cells, a number of different 
statistical occupancy models can be used to characterize the likelihood, pk, that a given 
cell wilt contain exactly k events. We use the Bose-Einstein statistic, where it is assumed 
that  each assignment of counts to cells occurs with equal probability [7]. Under this 
model, for large r and n, where ~ --4 A, the limiting case is the geometric distribution, 

(1 + A) +I • (3) 

We are interested in establishing conservative bounds on the likelihood that a large number 
of volumes will intersect at random, thus we use the Bose-Einstein statistic because it 
provides a higher estimate of this likelihood than do other models. 

The parameter A of the occupancy model is the ratio of the occupied volumes of 
the transformation space to the total size of the transformation space. From equation 
(2) we know that  each pair of model and image features defines a volume of size cjj  in 
transformation space. There are m s  such volumes for m model features and s image 
features, so the occupied volume of the transformation space is given by the sum of c j j  
for j = 1, ...,s and J = 1, .. . ,m. 

The total  size of the transformation space is just the product of the ranges for the 
space's dimensions. Each rotational dimension ranges over [0,2~r], and each translational 
dimension ranges over [0, D], where D is the linear extent of the image. Thus for a 2D 
isometry (translation and rotation) we get 

z~ = E;----1 EJ%l  ejj 
2~ D2 = ms'd, 

where E is the average normalized volume size. For 2D edges, from equation (2) we obtain 

2e~ + 
(4) 

= 2~D 2 = 

where T is the average edge length and ~ is the average amount of occlusion of the edges 
(the average value of a j j ) .  As expected ~ increases as the noise ~ , %  increases, and as 
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the average amount of occlusion of the edges ~ increases. In the case of 2D points (with 
associated orientations), the average normalized volume size is ~ = e~e~/D 2. Note that 
we can restrict e~ _< 7r and e v < D. In the extreme, this can lead to ~ > 1, which does not 
make physical sense. We should really take the minimum of the above expressions and 
unity, but in practice ~ << 1 and hence we ignore this special case. 

A particular recognition task thus defines a value for ~, based on the type of trans- 
formation from model to image, the type of features, the number of model features, m, 
and data features, s, and a bound on the positional and angular error, ep and e~. Given a 
value for A, the probability that  1 or more of the volumes intersect at random is given by 

I - 1  

Pr{v 2 I} = i - ~ p k .  (5) 
k--O 

This corresponds to an arrangement of data features occurring at random such that I pairs 
of model and data features are consistent with one another (within the error bounds). 
From Pr{v > 1} we can determine the fraction of model features, f0, such that the 
probability of mfo features being matched at random is less than some predefined level, 
6. This value is just the smallest f such that  Pr{v > m f}  < 6, i.e., 

fo = min{f lPr{v >_ mr} < 6}. (6) 

4. Der iv ing  F o rma l  T h r e s h o l d s  

We have used an occupancy model to determine an expression for the probability that l 
or more volumes in transformation space will intersect at random, as a function of the 
number of features, the type of features, and bounds on the sensor error. The expression 
was then used to set a threshold, fo, on the fraction of model features that  must be 
matched in order to limit the probability of a random matching to some level. In this 
section we derive a closed-form expression for f0. 

The probability that  there will be t or more events occurring at random at a point in 
transformation space is given by (5). Thus to distinguish a correct interpretation from a 
random one we set the threshold, f0, such that the probability of I = mfo events coinciding 
at random is less than 6. Substituting mfo for I and equation (3) for Pk in (5), we obtain 

mfo-1 /~k 
P r { v > m f } = l -  ~ ( l+A)k+l  <6" 

k=O 

Using the geometric series relationship, we can isolate f0 by appropriate algebra: 

log (~) 
f0 >- (7) mlog(l+ ) 

Thus to obtain a value for the fraction of model features that must be matched in 
order to limit the probability of a random conspiracy to 8, we simply need to compute 

for the particular parameters of our recognition task, and then use (7) to compute fo. 
The value of ~ depends on the particular type of feature being matched and the bounds 
on the sensor error. In the case of 2D edge fragments, we derived ~ in (4). 

Note that  equation (7) exhibits the expected behavior. If the noise in the data in- 
creases, then ~ increases, and so does the bound on f0. Similarly, as the amount of 
occlusion increases, then so does ~ and thus the bound on f0- As either m or s increases 
so does the bound on fo, and as 6 decreases f0 increases. Also note that for large values 
of ms, one gets the approximation f0 > s~log 1/6. Thus, in the limit, the bound on the 
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Figure 2: Bounds on threshold. Left: f0 as a function of s. Middle: f0 as a function of m. 
Right: f0 as a function of error. Percentage of error along horizontal axis p defines sensing 
errors of e~ = pr  and ep = pL. The three plots in each case are for 6 = .0001, .001, .01 
from top to bot tom respectively. 

fraction of the model is linear in the number of sensory features, linear in the average 
size of the volumes in transformation space, and varies logarithmically with the inverse 
probability of a false match. 

The expression for f0 in (7) can yield values that are greater than 1.0, which makes 
no sense as a fraction of the model features. When f0 is greater than 1.0 it means that 
for the given number and type of features, and the given bounds on sensor error, it is not 
possible to limit the probability of a false match to the chosen 6 (even if all the model 
features are matched to some sensor feature). 

There are several possible choices for 6. One could simply set 6 to be some small 
number, e.g., 6 = .001, so that  a false positive is likely to arise no more than one time 
in a thousand. One could also set 6 as a function of the scene complexity, e.g., some 
multiple of the inverse of the total number of data  model pairings, (i.e., -~.) A third 
possibility is to set 6 so that  the likelihood of a false positive, integrated over the entire 
transformation space, is small (e.g., < 1). The idea is to determine the appropriate value 
of 6 such that one expects no random matches to occur. If we let u be a measure of the 
system's sensitivity in distinguishing transformations, then we could choose 6 = u/27rD 2. 
For example, we could set u to be a function of the noise in the data  measurements, given 
by the product in uncertainties: (2e=)0re~). In this case, we get 

log ~ 
f0 _ (8) 

mlog (1 + -~'~) " 

We graph examples of f0 in Figure 2. Figure (2 Left) displays values of f0 as a function 
of s, with m = 32, ¢ = .0002215 (these numbers are taken from the lh~F system analyzed 
in section 5). Each graph is for a different value of 6. Note that as s gets large, the graphs 
become linear, as expected. Figure (2 Middle) displays f0 as a function of m for different 
values of 6. Here, s = 100, e = .0002215. Note that as expected, when m becomes large, 
fo becomes a constant independent of m. Figure (2 Right) displays f0 as a function of 
the sensor error, for different values of 6. Here, s = 100, m = 32. The percentage of error 
along the horizontal axis, p, is used to define sensing errors of e~ = plr and ep = pT. As 
expected, the threshold on fo increases with increasing error. 

We can modify our preceding analysis to handle weighted matching methods as well. 
One common scheme is to use the size of each data feature as a weight. In the case of 
2D edges, for example, a data-model pairing (j, J)  would carry a weight of £j (the length 
of the data  edge), so that  transformations consistent with pairings of long data edges to 
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Occlusion 
0.0 
0.2 
0A 
0.6 
0.8 
1.0 

0.225 
0.263 
0.301 
0,337 
0.374 
0.409 

/, (~ = .oo1) i ,  (6 = .OOOl) 
0.173 0.230 

0.202 1 0,270 0.231 0.308 
0.259 0.346 
0.287 0.383 
0.315 0.420 

/, (~ = T) 
0.119 
0.153 
0.188 
0.222 
0.257 

I, (~ = .7~T) 
0.091 
0.116 
0.142 
0.168 
0.194 

I, (~ =-~:) 
0,062 
0.079 
0.097 
0.114 
0.131 

Table 1: Predicted bounds on termination threshold, as a function of amount of occlusion. 
First three cases are unweighted, second three use edge length as a weight. 

model edges would be more highly valued than those involving short data edges. Working 
through similar algebra [12], where ~ is the average length of the data edges, leads to: 

log 
f0 _> (9) 

rnTlog (1 + ~ ) "  

5. Some Real  World  Examples  

To demonstrate the utility of our method, we analyze some working recognition systems 
that utilize a threshold on the fraction of model features needed for a match. The anal- 
ysis predicts thresholds close to those determined experimentally, suggesting that the 
technique can be profitably used to analytically determine thresholds for model-based 
matching. Because our analysis shows that the proper threshold varies with the number 
of model and data features, it is important to be able to set the threshold as a function 
of a particular matching problem rather than setting it once based on experimentation. 

We first consider the interpretation tree method [13, 5, 16] for recognizing sets of 
2D parts. In this approach, a tree of possible matching model and image features is 
constructed. Each level of t he  tree corresponds to an image feature. At every node of 
the tree there is a branch corresponding to each of the model features, plus a special 
branch that accounts for model features that do not match the image. A path from 
the root to a leaf node maps each image feature onto some model feature or the special 
"no-match" symbol. The tree is searched by  maintaining pairwise consistency among the 
nodes along a path. Consistency is checked using distance and angle relations between 
the model and image features specified bythe nodes. If a given node is inconsistent with 
any node along the path to the root then the subtree below that point is pruned from 
further consideration. 

A consistent path from the root to a leaf that accounts for more than some fraction of 
the model features is accepted as a correct match. This threshold is chosen experimentally. 
In our analysis of thresholds for the interpretation tree method, we use the parameters 
for the examples presented in [t3]. These values are substituted into equation (2), and 
then a threshold f0 is computed using equations (7) and ~).  In the experiments reported 
in [13], the following parameters hold: m = 32, s = 100, L = 23.959, % = 10, Q = ~ .  

We have computed ~ as a function of the amount of occlusion ~, and then determined 
the corresponding threshold f0 on the fraction of model features. Note that an occlusion 
of 1 represents the limiting case in which only a point on the line is visible. The results 
are given in Table 1. The first column of the table shows the values of fo computed using 
equation (8), where 6 = Qc~/D 2. For comparison, the second and third columns of the 
table are computed using equation (7), with the probability of a random match, 6, set to 
.001 and .0001, respectively. 
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Object-I 1[ Object-2 
Occlusion f, (e~ = ,~) I f,  (ca = ,~) f, (ca = ~)  [ f, (e~ = ~g) 

0.2 0.261 0.212 0.243 0.195 
0.4 0.297 0.238 0.280 0.22t 
0.6 0.333 0.264 0.316 0.247 
0.8 0.368 0.289 0.353 0.273 

Table 2: Predicted bounds on termination threshold, as a function of the amount of 
occlusion, for the HYPER system. 

As expected, the bound on f increases as the amount of occlusion increases. Note 
that for occlusions ranging from none to all (0 to t) ,  the bound on f only varies over a 
range of 0.225 to 0.409. Empirically, running the Rk, F system on a variety of images of this 
type [13] using thresholds of f = .4 resulted in no observed false positives, while using 
thresholds of f = .25 would often result in a few false positives. Since the occlusion was 
roughly .5, this observation fits nicely with the predictions of Table 1, i.e., a threshold of 
.4 should yield no errors, while a threshold of .25 cannot guarantee such success. 

If we use the lengths of the data features to weight the individual feature matchings 
then using equation (9) in place of (8) leads to the predictions shown in the second part 
of Table 1. Again, this agrees with empirical experience for the I~F system, in which 
weighted matching using thresholds of f = .25 almost always led to no false positives, 
while using thresholds of f = .10 would often result in a few false positives. 

Second, we consider the HYPER system [1]. HYPER also uses geometric constraints to find 
matches of data to models. An initial match between a long data edge and a corresponding 
model edge is used to estimate the transformation from model to data coordinates. This 
estimate is then used to predict a range of possible positions for unmatched model features, 
and the image is searched over this range for potential matches. Each potential match 
is evaluated using position and orientation constraints, and the best match within error 
bounds is added to the current interpretation. The additional model-data match is used 
to refine the transformation estimate, and the process is iterated. 

Although not all of the parameters needed for our analysis are given in the paper, we 
can estimate many of them from the illustrations in the article. Given several estimates 
for the measurement error, a range of values for the threshold f are listed in Table 2. 
Object-t and Object-2 refer to the object labels used in [1]. In these examples, we use 
errors of e~ = 7r/10 and ~r/15 radians, and % = 3 pixels. 

In HYPER, a threshold of .25 is used to discard false positives, and no false positives 
are observed during a series of experiments with the system. For the two objects listed 
in Table 2, }£fPF_a~ found interpretations of the data accounting for a fraction of .55 of the 
model for Object-1 and accounting for a fraction of .40 of the model for Object-2. Both 
these observations are in agreement with the thresholds predicted in Table 2, for different 
estimates of the data  error. 

Thus for two different recognition systems (RAF and HYPER), using both weighted and 
unweighted matching schemes, we see that the technique developed here yields matching 
thresholds similar to those determined experimentally by the systems' designers. 

6. Conc lus ion  

In order to determine what constitutes an acceptable match of a model to an image, most 
recognition systems use an empirically determined threshold on the fraction of model fen- 
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tures that  must  be matched. We have developed a technique for analytically determining 
the fraction of model features f0 that  must be matched in order to limit the probabili ty 
of a random conspiracy of the data  to some level 5. This fraction f0 is a function of 
the feature type ,  the number of model features m, the number  of sensor features s, and 
bounds on the translation error % and the angular error ~ of the features. 

Our analysis shows that  the proper threshold varies with the number  of model and 
data  features. A threshold that  is appropriate  for relatively few data  features is not 
appropriate  when there are many  data  features. Thus it is important  to set the threshold 
as a function of a particular matching problem, rather than setting a single threshold 
based on experimentation. Our technique provides a straightforward means of computing 
a matching threshold for the values of m and s found in a given recognition situation. 
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