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Intensional negation is a transformation technique which, given the Horn 

clause definitions of a set of predicates Pi, synthesizes the definitions of 

new predicates PF the meaning of which is the effective part of'the 

complement of Pi' S success set. The main advantage with respect to the 

standard negation as failure rule is the symmetry in handling both positive 

and negative information, up the ability of computing non ground negative 

goals as well as producing non ground output as result of negative 

queries. 

1. Introduction 

In the field of deductive data bases [8] and expert systems construction [6, 10, 11] logic programming 

is gaining momentum. On the other hand the expressiveness of logic programming is still too 

inadequate for addressing such problems in a natural way. In particular, the ability of handling 

negative knowledge is a recognized weak point of the logic programming approach. 

Up to now, the only kind of negation which has been thoroughly studied is the so called negation as 

failure [7]. Negation as failure is a meta inference rule allowing to prove the negation of a ground 

goal, when the proof of the corresponding positive goal finitely fails. 

The rule has been proved sound and complete for a particular transformation of Horn theories 
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(completed Horn theories) [9]. Furthermore, the soundness and completeness has been proved for 

certain classes of general logic programs, i.e. programs containing negative literals in the body of 

clauses [3, 5, 7, 14, 15, 19, 20]. 

The major drawback of the negation as failure inference role is that it works correctly only if, during 

the refutation process, each seIected negative literal is ground. In [7, 14, 15, 19, 20] classes of logic 

theories with the above properties are characterized. 

The main contribution of this paper consists in allowing the correct computation of non ground 

negative goals. As a consequence, the correct answer substitutions for negative goals can be 

computed. This result is obtained by transforming a Horn logic program (not containing negative 

literals) into the corresponding negative one and querying the latter with the negative goal. 

The key idea supporting the transformation is the following. A logical term t (with respect to a first 

order language L which provides constant and constructor symbols) can be viewed as an intensional 

representation of the set of all its ground instances. If t does not contain multiple occurrences of the 

same variable then also its set-theoretic complement can be intensionally represented by means of a 

finite set of terms [13]. For example, given the usual representation of natural numbers (0, s(0), ...), 

the complement of the term s(0) can be intensionally represented by the set of terms { 0, s(s(x)) }. This 

process can be shown correct provided that all the values of each interpretation domain are obtained 

by the application of constructors to the constants in L. As an example, the above complement of the 

term s(0) is correct w.r.t, all the domains satisfying the axiom Vx (x=0 v By x=s(y) ). This kind of 

axiom will be referred to, in the sequel, as domain closure axiom (DCA) as in [14]. Actually, 

intensional negation is based upon the ability of finitely representing the complement of the terms 

occurring in the clause heads, and this is possible avoiding multiple occurrences of variables in clause 

heads [13]. This restriction is met by a suitable transformation which turns logic programs into a 

left-linear form. 

The intensional negation approach can be viewed as an extension of the approach presented in [18] in 

two main respects. First of all, intensional negation is able to deal with logic programs in the general 

case. Secondly, the ability of computing non ground answer substitutions to negative queries is an 

attractive feature of intensional negation which, in general, is not met by the approach in [18]. 

The transformation technique allows a symmetric representation of positive and negative knowledge. 

Indeed the negative program is a general logic program, i.e. negation as failure can be used in clause 

bodies. In this respect, the transformation technique leads to a computable (by means of a suitable 

inference role), intensional representation of the negative knowledge implicit in a logic program. The 

possibility of handling an intensional representation of negative knowledge is a powerful knowledge 

engineering method. Indeed, in many applications of deductive data bases and expert systems, the 

ability of directly checking the implicit negative information can help in debugging and tuning 

knowledge bases. 



98 

2. Proving negative formulm in logic programming 

This section presents some well known results on gathering negative information in logic 

programming. A thoroughly presentation of this subject can be found in [16]. As pointed out in the 

introduction, the most important rule for negation is the so called negation as failure rule (nay) which 

approximates in an effective way the closed world assumption (CWA) [171. The CWA inference rule 

states that if a ground atom A is not a logical consequence of a program P then it is possible to infer 

---aA. 

Using the SLD resolution it is possible to prove --,A with respect to a program P under the CWA if the 

goal ~---A has a finitely failed SLD-tree. Obviously, a SLD-tree is not always finitely failed; any proof 

procedure is semi-decidable and can loop forever. As a consequence, the naf rule has been introduced 

[7], which states that if A is in the SLD finite failure set of a program P, then it is possible to infer--,A 

with respect to a completed program P (in [16] the notation comp(P) is used instead of P), 

According to [16, 2], the SLD finite failure set of P is defined to be the set of all A e Bp (the 

Herbrand base of P) for which there exists a finitely failed SLD-tree for Pu{~,---A}. The soundness 

and completeness results for the nafrule are given with respect to the completed program P [9, 7]. 

The completeness result for the nafrule states that if P is a program and A ~ Bp, then if --,A is a 

logical consequence of P then A is in Fp, i.e, the finite failure set of P. This result is independent of 

the implementation of the proof procedure. Using a fair SLD resolution [16, 12], a sound and 

complete implementation of F,p is obtained, i.e. the SLD finite failure set is equal to Fp. 

3. Intensional negation 

In this section the approach to the synthesis of negative programs is presented by means of examples 

of increasing complexity. The approach is based on the completion of a logic program which, roughly 

speaking, corresponds to replace the if connectives (~-) in the program with iff connectives ( e , ) ,  and 

the domain closure axiom. 

In the sequel, programs with no multiple occurrences of the same variable in clause heads are termed 

left-linear, and a variable occurring in a clause body but not in the corresponding clause head is 

termed right-free. The following subsections present the application of intensional negation to 

left-linear programs without right-free variables, to left-linear programs with fight-free variables and 

to non left-linear programs respectively. 

3.1. Le•linear programs without right-free variables 

The following program Even defines the set of even numbers, represented as terms of the Herbrand 

universe {0, s(O), s(s(O)) . . . .  }. 

even(O) 
even(s(s(x))) ~-- even(x) 
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The completed program Even corresponding to Even is 

Even 

Vx (even(x) ¢=~ x=0 v 3y (x=s(s(y)), even(y))) 

We are omitting here the axiomatization of the equality theory on the Herbrand universe, defining 

predicate =, and the associated DCA [14]. Subformul~e such as 3y x=s(s(y)) will be referred in the 

sequel as positive guards (for variable x). 

The aim is to synthetize the definition of a new predicate, even-, such that even~(n) holds iff even(n) 
is provably false or, in other words, the theory Even u{even(n)} has no models. The flavor of the 

transformation can be obtained by the examination of its main steps. 

1) Applying logical negation to the axiom for even and interpreting occurrences of negative atoms 

--even(t) as occurrences of the positive atom even-(t), we obtain the axiom 

Vx (even~(x) ¢:~ --1 (x=0), ~ 3y (x=s(s(y)), even(y)) ) 
which can be further transformed into 

Vx (even~(x) ¢=> xe0, Vy (x~s(s(y)) v even~(y)) ) 

2) Let x be an arbitrary term, then the subformula Vy (x~s(s(y)) veven~(y)) can be shown equivalent 

to 

Vy (xes(s(y))) v 3y (x=s(s(y)),even-(y)). 

Hence, by substituting Vy (x#s(s(y)) v even-(y)) with this last formula and by A-distribution we 

obtain 

Vx (even~(x) ¢~ x#0, Vy x#s(s(y)) v 

xeO, 3y (x=s(s(y)),even-(y))). 

Subformul~e such as Vy x¢s(s(y)) are termed negative guards (for variable x). 

3) The next step consists in transforming negative guards into (a disjunction of) positive guards, still 

preserving their logical meaning, i.e. computing the intensional complement of the term involved in 

the right hand side of a negative guard. The technique has been introduced for the negation of 

predicates in the framework of symbolic evaluation [1]. Here the technique is implemented by a 

transformation, named Ex, which will be discussed in section 4. The application of Ex to the 

negative guards in the example yields: 

• Ex(x~0) - 3 y  x=s(y) 

• Ex(Vy x#s(s(y))) - x=0 v 3z (x=s(z), Ex(Vv z#s(v))) - x=0 v 3z (x=s(z), z=0) 

--- x=O v x=s(O) 

The definition of even- becomes: 
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Vx (even~(x) e ,  3y x=s(y), x=0 v 

3y x=s(y),x=s(0)) v 

3z x=s(z), 3y (x=s(s(y)),even-(y))), 

4) Conjunctions of formulae with positive guards for the same variable can be turned into a single 

formula by finding the most general unifier, if any, of their guards, and propagating this m.g.u, to the 

remaining parts. In the example 

• 3yx=s(y) ,x=0 =~ ff Since the m.g.u, of  s(y) and 0 

does not exist 

• 3y x--s(y), x=s(0)) ~ x=s(0) m.g.u.(s(y), s(0)) = {<y,0>} 

• 3y x=s(y), 3z x=s(s(z)) :=:, 3z x=s(s(z)) m.g.u.(s(y),s(s(z))))={<y,s(z)>} 

Hence one obtains the completed definition of even- 
Vx (even~ (x) ¢~ x=s(0) v 3y (x=s(s(y)),evenN(y))). 

5) Finally, the logic program for the new predicate is 

even~(s(O)) 
even-(s(s(x))) e-- even-(x) 

which, as one might expect, defmes exactly the set of odd numbers. 

Querying such a program with a ground goal such as <--- even-(s(O)) yields the same answer as 

querying the original program with a goal ~ nafeven(s(O)), where naf stands for the negation as 
failure operator. Indeed, such a goal is nothing but a test (which does not involve computing answer 

substitutions) and this is the only kind of goal that the query evaluation process based on the nafrule 
is able to handle correctly. More properly, the evaluation of a non ground goal such as e-- naf 
even(x) is simply a way to prove whether Vx ~even(x) holds or not w.r.t, to the completed 

program. On the other hand, the goal e-- even~(x) using intensional negation is a way to prove 

whether 3x ~even(x) holds or not and, as usual, to compute the values for x which make the 

formula true, In the example, the goal <-- nafeven(x) fails while the goal e-- even-(x) succeeds 

enumerating the odd numbers as solutions. This provides a nice notion of symmetry between the use 

of positive and negative knowledge. 

Consider. as a further example, the following program LessOrEqual wich defines the relation "<" on 

natural numbers. 

LessOrEqual(O, x) <--- 

LessOrEqual(s(x), s(y)) <--- LessOrEqual(x, y). 
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The completed definition of LessOrEqual is 

Vx ( LessOrEqual(x 1, x2) ¢=~ Xl--0 v 

qYlY2 (xl=s(Yl), x2=s(Y2), LessOrEqual(yl, Y2)) ) 

The next steps of the Wansformation yield the following results: 

Vx ( LessOrEqual~(x 1, x2) ¢:~ 

x1~O, (Vy I xl~:s(yl) v Vy 2 x2~s(y2) ) v 

x1~'O, 3YlY2 (x1=s(Yl), x2=s(Y2), LessOrEqual~(Yl, )'2)) ) 

Vx ( LessOrEqual~(x 1, x2) ¢~ 

3y 1 xl=s(Yl), x2--0 v 

3YlY2 (Xl=S(Yl), x2=s(Y2), LessOrEqual~(Yl, Yg)) ) 

The logic program corresponding to the above defmkion is 

LessOrEqual~(s(x), O) ~-- 

LessOrEqual~(s(x), s(y)) <--- LessOrEqual-(x, y) 

which is the expected definition of the relation ">". 

As mentioned before, intensional negation allows querying a logic program with arbitrary goals 

containing also negative atoms. As an example, the query 

<--- LessOrEqual~(x, s(s(0))) (*) 

gives the only answer x=s(s(s(y))) which denotes the set of numbers greater than 2, while the 

corresponding query using the nafrule 

<--- naf LessOrEqual(x, s(s(0))) (.,) 

fails. One might wonder that the behavior of (°) can be simulated using the original program extended 

with the clauses 

nat(O) 

nat(s(x)) ~-- nat(x) 

and rephrasing (..) as 

<--- nat(x), naf LessOrEqual(x, s(s(0))) (.--) 

In this way nat acts as a generator for numbers and the negative atom is selected with ground terms 

bound to x. Nevertheless, this query is somewhat weaker than (-), since the evaluation of (°) gives the 

whole solution in one shot, whereas (.°.) diverges enumerating all the ground solutions. As this 

example shows, the symmetry between the treatment of positive and negative knowledge is pervasive 
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up to the ability of producing non ground output. 

3.2. Left-linear programs with right-free variables 

The sample programs which have been considered so far do not contain right-free variables, i.e. 

variables occurring only in the body of a clause. Consider for instance the program 

p(x) ~- q(x,z) 

q(a,b) e-- 

Applying the same transformation steps of the previous examples, one would obtain the following 

intensional negation for predicates p and q 

p-(x) ~ q-(x,z) (*) 

q~(b,x) e-  
q~(a,a) 

Then, both p(a) and p-(a) are provable in the whole theory, i.e. the theory is inconsistent since p~ is 

viewed as an effective counterpart of ~p. The problem is that the right-free variables (such as z in the 

clause of p) are unguarded existentially quantified variables in the completed definition and thus they, 

become unguarded universally quantified variables in the negative program. The completed definition 

of p is 

Vx (p(x) ¢ .  3z q(x,z) ) 
hence 

Vx (~p(x) ¢~ Vz ~q(x,z) ) 

while the actual meaning of (*) is 

Vx (p~(x) ¢:* 3z q~(x,z) ). 

Although it is possible to replace negative guards (i.e. universally quantified formube involving 

predicate =) with some appropriate existentially quantified construction, this is not the case when 

arbitrary predicates are involved, as in Vz ---q(x,z). However, for any substitution of a term t for x, if 

the proof of q(t,z) finitely fails (resp. succeeds) we obtain a proof of Vz ~q(t,z) (resp. 

~Vz ~q(t,z)) [9]. This means that the nafrule is appropriate to compute formube of such kind, since 

there is no need to gather output substitutions for the free variables as z in the example. Thus, in the 

program obtained by intensional negation, a formula like Vz ~q(x,z) can be implemented by 

q~(x,w), naf q(x,z) (.) 

where nafq(x,z) is called a nafliteral. The evaluation of nafq(x, z) succeeds if and only if the goal 

~-- q(x,z) finitely fails. From a computational point of view, the evaluation of q-(x,w) in (o) provides 

candidate substitutions t 1, t 2 .... for x, such that 3w --,q(ti,w) holds, and the computation of naf 
q(tl,z ) filters those substitutions t i such that Vz ~q(ti,z ) holds too. It is worth noting that the use of 

different variable names for right-free variabIes avoids undesired interferences between the 

computations of the two subformul~e. The appropriate refutation procedure (SLDIN resolution [4]) 
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for programs with intensional negation has to cope with non ground nafliterals which, as shown 

above, act as filters for correct solutions. To accomplish this task, the SLDIN refutation procedure 

uses a computation rule which selects anaf  literal if the whole goal is composed of nafliterals only, 

and applies the negation as failure rule to naf literals. Thus, SLDIN guarantees that naf literals are 

selected after the non-naf literals have provided the candidate solutions. 

It is worth noting that SLDIN resolution deals with queries which are non allowed queries for 

SLDNF resolution [16]. Nevertheless, when a naf literal is selected the SLDIN resolution never 

flounders [15] since the negation as failure rule is actually used only to prove a universally quantified 

theorem. 

Concluding the example, the intensional negation is 

p~(x) *-- q~(x,w), nafq(x,z) p(x) e-- q(x,w) 

q~(b,x) e-- q(a,b) e- 

q~(a,a) e-  

Again, a non ground query such as ~ p~(x) succeeds with the answer x=b while ~nafp(x) fails. 

Moreover the inconsistency pointed out above does not hold anymore since ~ p-(a) fails under 

SLDIN resolution. 

In the case of clauses with right-free variables occurring in more than one literal in its body, as in 

p(x,y) ~ q(x,w), r(w,y) 

intensional negation is carried out in two steps. First, the clause is replaced by an equivalent one with 

only one literal in its body, introducing a new predicate symbol. In the example 

p(x,y) <--- s(x,y,w) 

s(x,y,w) <--- q(x,w), r(w,y). 

Second, intensional negation of the transformed program is computed as in the previous example and 

a nafliteral is introduced for each definition with right-free variables. In the example 

p~(x,y) <--- s-(x,y,w), naf s(x,y,z) 

s~(x,y,w) ~-- q~(x,w) 

s-(x,y,w) <--- r-(w,y). 

Whenever a clause contains only fight-free variables, as in 

p(a) ~ q(x) 

the definitions computed by intensional negation only contain naf titerals. In the example this leads to 

the definition 

p-(a) ~ nafq(x). 
Notice that in the body of the clause defining p~(a) there is no need to introduce the conjunction 

q~(x), nafq(y) since no candidate solution has to be computed. In fact, from the completed definition 
of p we obtain 

p(a) ¢:~ 3y q(y) i.e. ~p(a) ¢~ Vy ~q(y). 
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Thus, in order to prove p~(a) is sufficient to test whether Vy~q(y)  holds or not, which is just 

accomplished by means of the naf literal naf q(y). 

As a final example, consider the intensional negation of a program for the ancestor relation, where 

Parent(x,y) means y is a parent of x, Ancestor(x,y) means y is an ancestor of x. 

Parent(John, Mary) ~- 
Parent(John, Bill) ~-- 

Parent(Mary, Paul) 

Parent(Bill, Anne) ,-- 

Ancestor (x,y) ~-- Parent(x,y) 

Ancestor (x,y) ~-- Ancestor(x,z), Parent(z,y). 

First of all, since the last clause contains right-free variables in more than one literal, it is replaced by a 

new clause which makes use of a new predicate symbol, say ProperAncestor. This transformation 

yields the following program 

Parent(John, Mary) e -  

Parent(John, Bill) ~-- 

Parent(Mary, Paul) +-- 

Parent(Bill, Anne) 

Ancestor (x,y) ~-- earent(x,y) 
Ancestor (x,y) ~-- ProperAncestor(x,y,z) 
ProperAncestor(x,y,z) e-Ancestor(x,z), Parent(z,y). 

The definitions computed by intensional negation are 

Parent-(John, John) e -  

ParentM(John, Paul) ~-- 

Parent~(Paul, Mary) e -  

Ancestor-(x,y) ~- Parent-(x,y), ProperAncestor~(x,y,z), naf ProperAncestor(x,y,w) 
ProperAncestor-(x,y,z) ~ Ancestor-(x,z) 

ProperAncestor~(x,y,z) ~ Parent~(z,y) 

Notice that the clause defining Ancestor~ states that y is not an ancestor of x if  neither y is a parent of 

x nor  y is a proper ancestor of  x through any z. Under  SLDIN-resolution the query 

+--Ancestor-(Mary,y) succeeds enumerating the solutions Mary, Bill, John, Anne. 
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3.3. Non left-linear programs 

A final issue concerns intensional negation of non left-linear programs, i.e. programs with clauses 

containing multiple occurrences of the same variable in their heads. Consider the following program 

which states the relation between a number and its successor: 

plusl(x, s(x)) 

The first step is to apply a linearization algorithm which turns each program into an equivalent 

left-linear form, thus turning back to the previous cases. The linearization of plus1 is" 

plusl(x,s(y)) ~- eq(x,y) 

where eq is the equality predicate defined by the clause 

eq(x, x) ~ .  

Furthermore, the completion of plus1 over which intensional negation acts is: 

Vx 1 x 2 (plus1( x 1, x2) ¢=~ By (x2=s(y), eq( x 1, y) ) (1) 

Notice that we have distinguished = from eq: The former is introduced when the completion is carried 

out, while the latter is introduced by the linearization algorithm in order to turn the program into a 

left-linear form. From a semantic point of view both = and eq are the identity relation over the 

Herbrand universe, but they are handled differently by intensional negation. Consider the intensional 

negation of ( 1): 

Vx 1 x 2 (plus1~( x 1, x2) ¢=~ Vy ( x2=s(y ) v eq~( x 1, y) ) 

As before, we distinguish between ~ and eq-: In particular # appears only in negative guards which 

can be further transformed into a disjunction of positive guards, while eq~ is handled like an ordinary 

predicate symbol. In the case of our running example: 

Vx I x 2 (plus1~( x 1, x2) ¢:~ x2--0 v By ( x2=s(y ) v eq~( x 1, y) ) 

Putting the above def'mition into its Horn clause form one gets: 

plus1~( xt, 0) ~-- 

plus1-( Xl, s(y)) ~-- eq-(x 1, y) 

which defines exactly the set of pairs of naturaIs <n, m> such that m~a+l,  provided that eq-  defines 

the set of pairs <n, m> such that man. This is achieved providing the following ad hoc intensional 

negation of the predicate eq: 

eq-(O, s(x)) 

eq-(s(x), 0) 

eq~(s(x), s(y)) ~ eq-(x, y). 

Indeed, = and eq make explicit two different roles played by unification in logic programming. In fact 

the latter makes explicit the use of unification to state constraints of the kind the same (unspecified) 

object must occur in different positions within the terms of a clause head. In the previous example, 

plus(x, s(x)) ~ means that the relation plus1 holds between a generic natural number n and the 

natural number obtained applying the constructor s to n itself. 

Now, consider the definition p(x, x) ~--, which means that each object is related via p with itself 

and with no other object. Answering the question which objects are not related via p? one can just say 

objects which are not identical. Hence, the definition p~(x, y) ~-- is incorrect, since it would imply 
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also that an object is not related via p with itself, and this is unconsistent with respect to the definition 

of p. A correct definition of p~ can be achieved using the eq-  predicate: p-(x, y) e -  eq~(x, y), which 

means/fobjects x and y are not identical, then they are not related via p. 

On the other hand, the = predicate makes explicit the use of unification to describe the structure that 

objects should exhibit in order to be candidate components of a tuple satisfying some relation. This is 

what is done by positive guards. Take for instance the definition p(s(x)) <--- q(x),  which means a 

number is in the set denoted by p / f i )  it is the successor of  some other number n, and ii) n satisfies q. 

With the if  and only / f  interpretation one can safely say that a number which is not the successor of 

any other number is in the complement of p. This is exactly the meaning of the definition p~(x) e- 

Vy xes(y) i.e. p~(0) e - .  Furthermore one has to state that a number is in the complement of p if 

it satisfies the condition i) above but it does not satisfiy the condition ii). This is exactly the meaning 

of the definition p-(s(x)) e -  q-(x). The use of predicate = makes explicit the role of conditions 

analogous to condition i) above. 

It is important to notice that the predicate eq~ is not computationally equivalent to, say, 

non-unification : for instance, the unification of the terms x and s(x) fails because of the occur check, 

while the refutation of 6-- eq~(x, s(x)) diverges, even if any ground instance of such a goal succeeds. 

This suggests that intensional negation is not equivalent to non-unification: The results in [4] 

characterize the behavior of intensional negation in terms of a suitable theory. But the use of predicate 

eq (and hence eq-)  guarantees that all programs that are to be intensionally negated can be brought 

into a left-linear form, and this makes possible to translate systematically negative guards into finite 

disjunctions of positive guards [13]. Looking at the clausal program resulting from intensional 

negation, it is worth noting that guards (involving predicate =) are absorbed again into unification, 

while the occurrences of predicate eq-  are not, since eq is handled like any other predicate symbol. As 

a consequence, intensional negation yields always left-linear programs, apart from the predicate eq 

which is handled in a special way. 

4. Computing transformations of negative guards  

A central issue in the intensional negation approach is the transformation of negative guards into their 

existential form. As mentioned in the introduction, a (positive or negative) guard can be viewed as an 

intensional definition of a subset of the Herbrand universe [ 1]. For instance, referring to the Herbrand 

universe of naturals, the positive guard 3y x=s(y) denotes the set {x I x>t }, while the negative 

guard Vy x~s(s(y)) denotes the set {0,1}. Under DCA, a set S described by a negative guard can 

always be described by a disjunction of positive guards, corresponding to an intensional constructive 

definition of S, since each universally quantified variable occurs exactly once in a negative guard [13]. 

Thus, a transformation Ex which, given a negative guard Vy x~t builds the equivalent disjunction of 

positive guards, can be defined by structural induction on the term t. The general definition of Ex can 

be found in [4], while an instance of Ex is shown below with respect to the Herbrand universe of 

naturals. 



107 

(1) Ex ('V'y xcy) - ff 

(2) Ex (x¢O) - 3y x=s(y) 

(3) Ex (Vy xcs(t)) = x=O v 3z x=s(z), Ex (Vy zct). 

For instance, 

Ex (Vy xCs(s(y))) -= x=0 v x=s(0) 

Ex (xcs(O)) -- x=O v 3z x=s(z), Ex (z¢:O) -= x--O v 3z x=s(z), 3y z=s(y) - 

x=O v 3y x=s(s(y)) 

The last step uses the obvious reduction 

3z x=t, 3y z=t' - 3y x=t [t7z] 

A simple way to implement Ex is achieved using the Horn clause definition of the inequality predicate 

eq~ and querying it with appropriate goals. This technique is shown by the following example. 

Consider the Herbrand universe over constants a and b and the binary constructor f. The predicateeq~ 

is defined by 

eq- (a,b) 

eq~ (a, fix,y)) <-- 

eq~ (h,a) <-- 

eq- (b, fix,y)) <--- 

eq- (fix,y), a) ~- 

eq~ (fix,y), b) 

eq- (fix,y), f(v,w)) <-- eq~ (x,v) 

eq- (fix,y), f(v,w)) <-- eq~ (y,w). 

Next, consider the negative guard Vy x~f(a,y). The solutions for x satisfying this guard can be 

obtained querying the above program with the goal ~ eq~ (x, f(a,any)) where any is a new constant 

symbol which acts as a universal Skolem constant. These solutions are x=a, x=b, x=f(b,y), 

x=f(f(y,z),w). The use of the constant any forces the failure of recursive calls like eqN (z,any), as in 

case (1) of the definition of Ex. Interpreting a solution like x=f(b,y) as 3y x=f(b,y) and taking the 

disjunction of all the solutions we obtain the formula (x=a v x=b v 3y x=f(b,y) v 

3yzw x=f(f(y,z),w) ) which is exactly Ex (Vy xcf(a,y)). 

The use of this implementation technique is twofold. Of course, it can be viewed as an implementation 

of the Ex transformation, as mentioned above. On the other hand, it can be used as the basis for a 

slight variant of intensional negation which directly replaces negative guards with appropriate calls of 

predicate eq~, possibly involving the any constant. 
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Referring back to the predicate even~ of sec. 3.1., after step 2) of the transformation, Le. 

Vx (even- (x) ¢m x~0, Vy x¢s(s(y)) v 

x~-O, 3y (x=s(s(y)),even~ (y))) 

the guards can be replaced by appropriate calls to predicates eq and eq~ as follows 

Vx (even- (x) ¢~ eq~ (x,0), eq~ (x, s(s(any))) v 

eq~ (x,0), eq (x,s(s(y))),even- (y))). 

At last, the clausal definition of even- is 

even- (x) ~-- eq~ (x,0), eq-  (x, s(s(any))) 

even- (x) ~ eq~ (x,0), eq (x, s(s(y))), even- (y). 

Finally, notice that this implementation technique is particularly useful in some application area of 

logic programming, such as deductive databases and expert systems, where the knowledge domain is 

likely to change dynamically. In such cases, using the standard form of intensional negation one is 

compelled to recompute the negative predicates whenever the knowledge domain changes, since the 

clauses for negative predicates embed the transformation of negative guards. On the other hand, the 

explicit use of predicates eq and eq~ avoids this overall recomputation, since the redefinition of eq and 

eq~ is only needed. 

5. Conclusions 

In [4] the formalization of intensional negation is carried out. The main results concern the soundness 

and completeness of SLDIN-resolution. The soundness theorem states that if the proof of p-(t) 

succeeds under SLDIN-resolution with answer substitution ~., then ~p(t ~,) can be inferred under the 

negation as failure rule. This result implicitly gives the semantic equivalence between intensional 

negation and the negation as failure rule. On the other hand, if ~ is a substitution such that ~p(t~) can 

be inferred under the negation as failure rule, than the proof of p~(t) under SLDIN-resolution 

succeeds with a (possibly infinite) collection of answer substitutions {~,i} such that each instance of t~ 

can be obtained as an instance of t~ i, for some i. If only left-linear programs are taken into account, 

this completeness result can be strenghtened, in the sense that the finiteness of the collection {Xi} is 

guaranteed. Roughly speaking, if non left-linear programs are the matter of concern, intensional 

negation makes use explicitly of the predicate e q -  which in some cases gives an infinite set of 

solutions. As an example, consider the program 

p(x, x) 

defined over natural numbers. In order to compute its intensional negation, the clause is transformed 

into its semantically equivalent left-linear form 
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p(x,y) <-- eq(x,y) 

and than the computed definition for p -  is 

p~(x,y) ~ eqN(x,y). 

As shown in a previous example, the definition of eq~ in this case is 

eq-(O, s(x)) ~-- 

eq~(s(x), 0) ~-- 

eq-(s(x), s(y)) ~-- eq~(x, y). 

Now, the proof of ~ p(x,s(x)) finitely fails under standard SLD-resolution because of occur 

checking. On the other hand, the proof of ~ p~(x,s(x)) under SLDIN-resolution diverges with 

answer substitutions x=0, x=s(0), x=s(s(0)) .... since these are the substitutions computed by the 

derived goal <--- eq-(x, s(x)). 

The work described in the paper is only a first step of a larger and more ambitious research effort. The 

general aim of this effort could be summarized by the motto putting logic theories together as a 

knowledge engineering tool. This means providing a number of operators on logic theories capable, 

for example, of joining them, negating them and so forth. Such a set of operators along with 

constructs for composing them would provide a sound, formal tool for manipulating chunks of 

knowledge represented as logic programs. 

The intensional negation we have proposed is only a small part of this overall construction. Indeed, 

the most needed extension is the possibility of writing general programs, in the sense of using the 

negation of the paper freely in building logic programs. This further extension, besides providing a 

fully usable operator for manipulating theories (for example with such an extension pN_= p can be 

proved) has some advantages per se. Indeed, as discussed in the paper, the evaluation of a goal p~(t) 

where t is a non-ground term leads to the computation of all the instances t' of t such that the proof of 

p(t') finitely fails. This possibility seems a notable extension to the expressive power of logic 

programming in that it allows queries of the form all elements for which a certain property does not 

hold. The extension seems to be of importance especially in deductive data bases applications and 

expert systems where the negative knowledge is essentially finite. Work done so far in this direction 

seems to point out that the computation rule SLDIN extends smoothly to the case of general 

programs. 

Another drawback of intensionai negation seems to be the inefficiency of the resulting programs. An 

open problem is the study of optimization techniques able to improve this situation. 
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