
Intensional Negation of Logic Programs:
examples and implementation techniques

Roberto Barbuti, Paolo Mancarella, Dino P edreschi, Franco Turini

Dipartimenm~Informafi~

U n i v f f N ~ Nsa

Co~oltalia, 40

56100Pisa-Italy

Ab~ra~

Intensional negation is a transformation technique which, given the Horn

clause definitions of a set of predicates Pi, synthesizes the definitions of

new predicates PF the meaning of which is the effective part of'the

complement of Pi' S success set. The main advantage with respect to the

standard negation as failure rule is the symmetry in handling both positive

and negative information, up the ability of computing non ground negative

goals as well as producing non ground output as result of negative

queries.

1. Introduction

In the field of deductive data bases [8] and expert systems construction [6, 10, 11] logic programming

is gaining momentum. On the other hand the expressiveness of logic programming is still too

inadequate for addressing such problems in a natural way. In particular, the ability of handling

negative knowledge is a recognized weak point of the logic programming approach.

Up to now, the only kind of negation which has been thoroughly studied is the so called negation as

failure [7]. Negation as failure is a meta inference rule allowing to prove the negation of a ground

goal, when the proof of the corresponding positive goal finitely fails.

The rule has been proved sound and complete for a particular transformation of Horn theories

97

(completed Horn theories) [9]. Furthermore, the soundness and completeness has been proved for

certain classes of general logic programs, i.e. programs containing negative literals in the body of

clauses [3, 5, 7, 14, 15, 19, 20].

The major drawback of the negation as failure inference role is that it works correctly only if, during

the refutation process, each seIected negative literal is ground. In [7, 14, 15, 19, 20] classes of logic

theories with the above properties are characterized.

The main contribution of this paper consists in allowing the correct computation of non ground

negative goals. As a consequence, the correct answer substitutions for negative goals can be

computed. This result is obtained by transforming a Horn logic program (not containing negative

literals) into the corresponding negative one and querying the latter with the negative goal.

The key idea supporting the transformation is the following. A logical term t (with respect to a first

order language L which provides constant and constructor symbols) can be viewed as an intensional

representation of the set of all its ground instances. If t does not contain multiple occurrences of the

same variable then also its set-theoretic complement can be intensionally represented by means of a

finite set of terms [13]. For example, given the usual representation of natural numbers (0, s(0), ...),

the complement of the term s(0) can be intensionally represented by the set of terms { 0, s(s(x)) }. This

process can be shown correct provided that all the values of each interpretation domain are obtained

by the application of constructors to the constants in L. As an example, the above complement of the

term s(0) is correct w.r.t, all the domains satisfying the axiom Vx (x=0 v By x=s(y)). This kind of

axiom will be referred to, in the sequel, as domain closure axiom (DCA) as in [14]. Actually,

intensional negation is based upon the ability of finitely representing the complement of the terms

occurring in the clause heads, and this is possible avoiding multiple occurrences of variables in clause

heads [13]. This restriction is met by a suitable transformation which turns logic programs into a

left-linear form.

The intensional negation approach can be viewed as an extension of the approach presented in [18] in

two main respects. First of all, intensional negation is able to deal with logic programs in the general

case. Secondly, the ability of computing non ground answer substitutions to negative queries is an

attractive feature of intensional negation which, in general, is not met by the approach in [18].

The transformation technique allows a symmetric representation of positive and negative knowledge.

Indeed the negative program is a general logic program, i.e. negation as failure can be used in clause

bodies. In this respect, the transformation technique leads to a computable (by means of a suitable

inference role), intensional representation of the negative knowledge implicit in a logic program. The

possibility of handling an intensional representation of negative knowledge is a powerful knowledge

engineering method. Indeed, in many applications of deductive data bases and expert systems, the

ability of directly checking the implicit negative information can help in debugging and tuning

knowledge bases.

98

2. Proving negative formulm in logic programming

This section presents some well known results on gathering negative information in logic

programming. A thoroughly presentation of this subject can be found in [16]. As pointed out in the

introduction, the most important rule for negation is the so called negation as failure rule (nay) which

approximates in an effective way the closed world assumption (CWA) [171. The CWA inference rule

states that if a ground atom A is not a logical consequence of a program P then it is possible to infer

---aA.

Using the SLD resolution it is possible to prove --,A with respect to a program P under the CWA if the

goal ~---A has a finitely failed SLD-tree. Obviously, a SLD-tree is not always finitely failed; any proof

procedure is semi-decidable and can loop forever. As a consequence, the naf rule has been introduced

[7], which states that if A is in the SLD finite failure set of a program P, then it is possible to infer--,A

with respect to a completed program P (in [16] the notation comp(P) is used instead of P),

According to [16, 2], the SLD finite failure set of P is defined to be the set of all A e Bp (the

Herbrand base of P) for which there exists a finitely failed SLD-tree for Pu{~,---A}. The soundness

and completeness results for the nafrule are given with respect to the completed program P [9, 7].

The completeness result for the nafrule states that if P is a program and A ~ Bp, then if --,A is a

logical consequence of P then A is in Fp, i.e, the finite failure set of P. This result is independent of

the implementation of the proof procedure. Using a fair SLD resolution [16, 12], a sound and

complete implementation of F,p is obtained, i.e. the SLD finite failure set is equal to Fp.

3. Intensional negation

In this section the approach to the synthesis of negative programs is presented by means of examples

of increasing complexity. The approach is based on the completion of a logic program which, roughly

speaking, corresponds to replace the if connectives (~-) in the program with iff connectives (e ,) , and

the domain closure axiom.

In the sequel, programs with no multiple occurrences of the same variable in clause heads are termed

left-linear, and a variable occurring in a clause body but not in the corresponding clause head is

termed right-free. The following subsections present the application of intensional negation to

left-linear programs without right-free variables, to left-linear programs with fight-free variables and

to non left-linear programs respectively.

3.1. Le•linear programs without right-free variables

The following program Even defines the set of even numbers, represented as terms of the Herbrand

universe {0, s(O), s(s(O)) }.

even(O)
even(s(s(x))) ~-- even(x)

99

The completed program Even corresponding to Even is

Even

Vx (even(x) ¢=~ x=0 v 3y (x=s(s(y)), even(y)))

We are omitting here the axiomatization of the equality theory on the Herbrand universe, defining

predicate =, and the associated DCA [14]. Subformul~e such as 3y x=s(s(y)) will be referred in the

sequel as positive guards (for variable x).

The aim is to synthetize the definition of a new predicate, even-, such that even~(n) holds iff even(n)
is provably false or, in other words, the theory Even u{even(n)} has no models. The flavor of the

transformation can be obtained by the examination of its main steps.

1) Applying logical negation to the axiom for even and interpreting occurrences of negative atoms

--even(t) as occurrences of the positive atom even-(t), we obtain the axiom

Vx (even~(x) ¢:~ --1 (x=0), ~ 3y (x=s(s(y)), even(y)))
which can be further transformed into

Vx (even~(x) ¢=> xe0, Vy (x~s(s(y)) v even~(y)))

2) Let x be an arbitrary term, then the subformula Vy (x~s(s(y)) veven~(y)) can be shown equivalent

to

Vy (xes(s(y))) v 3y (x=s(s(y)),even-(y)).

Hence, by substituting Vy (x#s(s(y)) v even-(y)) with this last formula and by A-distribution we

obtain

Vx (even~(x) ¢~ x#0, Vy x#s(s(y)) v

xeO, 3y (x=s(s(y)),even-(y))).

Subformul~e such as Vy x¢s(s(y)) are termed negative guards (for variable x).

3) The next step consists in transforming negative guards into (a disjunction of) positive guards, still

preserving their logical meaning, i.e. computing the intensional complement of the term involved in

the right hand side of a negative guard. The technique has been introduced for the negation of

predicates in the framework of symbolic evaluation [1]. Here the technique is implemented by a

transformation, named Ex, which will be discussed in section 4. The application of Ex to the

negative guards in the example yields:

• Ex(x~0) - 3 y x=s(y)

• Ex(Vy x#s(s(y))) - x=0 v 3z (x=s(z), Ex(Vv z#s(v))) - x=0 v 3z (x=s(z), z=0)

--- x=O v x=s(O)

The definition of even- becomes:

100

Vx (even~(x) e , 3y x=s(y), x=0 v

3y x=s(y),x=s(0)) v

3z x=s(z), 3y (x=s(s(y)),even-(y))),

4) Conjunctions of formulae with positive guards for the same variable can be turned into a single

formula by finding the most general unifier, if any, of their guards, and propagating this m.g.u, to the

remaining parts. In the example

• 3yx=s(y) ,x=0 =~ ff Since the m.g.u, of s(y) and 0

does not exist

• 3y x--s(y), x=s(0)) ~ x=s(0) m.g.u.(s(y), s(0)) = {<y,0>}

• 3y x=s(y), 3z x=s(s(z)) :=:, 3z x=s(s(z)) m.g.u.(s(y),s(s(z))))={<y,s(z)>}

Hence one obtains the completed definition of even-
Vx (even~ (x) ¢~ x=s(0) v 3y (x=s(s(y)),evenN(y))).

5) Finally, the logic program for the new predicate is

even~(s(O))
even-(s(s(x))) e-- even-(x)

which, as one might expect, defmes exactly the set of odd numbers.

Querying such a program with a ground goal such as <--- even-(s(O)) yields the same answer as

querying the original program with a goal ~ nafeven(s(O)), where naf stands for the negation as
failure operator. Indeed, such a goal is nothing but a test (which does not involve computing answer

substitutions) and this is the only kind of goal that the query evaluation process based on the nafrule
is able to handle correctly. More properly, the evaluation of a non ground goal such as e-- naf
even(x) is simply a way to prove whether Vx ~even(x) holds or not w.r.t, to the completed

program. On the other hand, the goal e-- even~(x) using intensional negation is a way to prove

whether 3x ~even(x) holds or not and, as usual, to compute the values for x which make the

formula true, In the example, the goal <-- nafeven(x) fails while the goal e-- even-(x) succeeds

enumerating the odd numbers as solutions. This provides a nice notion of symmetry between the use

of positive and negative knowledge.

Consider. as a further example, the following program LessOrEqual wich defines the relation "<" on

natural numbers.

LessOrEqual(O, x) <---

LessOrEqual(s(x), s(y)) <--- LessOrEqual(x, y).

t01

The completed definition of LessOrEqual is

Vx (LessOrEqual(x 1, x2) ¢=~ Xl--0 v

qYlY2 (xl=s(Yl), x2=s(Y2), LessOrEqual(yl, Y2)))

The next steps of the Wansformation yield the following results:

Vx (LessOrEqual~(x 1, x2) ¢:~

x1~O, (Vy I xl~:s(yl) v Vy 2 x2~s(y2)) v

x1~'O, 3YlY2 (x1=s(Yl), x2=s(Y2), LessOrEqual~(Yl,)'2)))

Vx (LessOrEqual~(x 1, x2) ¢~

3y 1 xl=s(Yl), x2--0 v

3YlY2 (Xl=S(Yl), x2=s(Y2), LessOrEqual~(Yl, Yg)))

The logic program corresponding to the above defmkion is

LessOrEqual~(s(x), O) ~--

LessOrEqual~(s(x), s(y)) <--- LessOrEqual-(x, y)

which is the expected definition of the relation ">".

As mentioned before, intensional negation allows querying a logic program with arbitrary goals

containing also negative atoms. As an example, the query

<--- LessOrEqual~(x, s(s(0))) (*)

gives the only answer x=s(s(s(y))) which denotes the set of numbers greater than 2, while the

corresponding query using the nafrule

<--- naf LessOrEqual(x, s(s(0))) (.,)

fails. One might wonder that the behavior of (°) can be simulated using the original program extended

with the clauses

nat(O)

nat(s(x)) ~-- nat(x)

and rephrasing (..) as

<--- nat(x), naf LessOrEqual(x, s(s(0))) (.--)

In this way nat acts as a generator for numbers and the negative atom is selected with ground terms

bound to x. Nevertheless, this query is somewhat weaker than (-), since the evaluation of (°) gives the

whole solution in one shot, whereas (.°.) diverges enumerating all the ground solutions. As this

example shows, the symmetry between the treatment of positive and negative knowledge is pervasive

102

up to the ability of producing non ground output.

3.2. Left-linear programs with right-free variables

The sample programs which have been considered so far do not contain right-free variables, i.e.

variables occurring only in the body of a clause. Consider for instance the program

p(x) ~- q(x,z)

q(a,b) e--

Applying the same transformation steps of the previous examples, one would obtain the following

intensional negation for predicates p and q

p-(x) ~ q-(x,z) (*)

q~(b,x) e-
q~(a,a)

Then, both p(a) and p-(a) are provable in the whole theory, i.e. the theory is inconsistent since p~ is

viewed as an effective counterpart of ~p. The problem is that the right-free variables (such as z in the

clause of p) are unguarded existentially quantified variables in the completed definition and thus they,

become unguarded universally quantified variables in the negative program. The completed definition

of p is

Vx (p(x) ¢ . 3z q(x,z))
hence

Vx (~p(x) ¢~ Vz ~q(x,z))

while the actual meaning of (*) is

Vx (p~(x) ¢:* 3z q~(x,z)).

Although it is possible to replace negative guards (i.e. universally quantified formube involving

predicate =) with some appropriate existentially quantified construction, this is not the case when

arbitrary predicates are involved, as in Vz ---q(x,z). However, for any substitution of a term t for x, if

the proof of q(t,z) finitely fails (resp. succeeds) we obtain a proof of Vz ~q(t,z) (resp.

~Vz ~q(t,z)) [9]. This means that the nafrule is appropriate to compute formube of such kind, since

there is no need to gather output substitutions for the free variables as z in the example. Thus, in the

program obtained by intensional negation, a formula like Vz ~q(x,z) can be implemented by

q~(x,w), naf q(x,z) (.)

where nafq(x,z) is called a nafliteral. The evaluation of nafq(x, z) succeeds if and only if the goal

~-- q(x,z) finitely fails. From a computational point of view, the evaluation of q-(x,w) in (o) provides

candidate substitutions t 1, t 2 for x, such that 3w --,q(ti,w) holds, and the computation of naf
q(tl,z) filters those substitutions t i such that Vz ~q(ti,z) holds too. It is worth noting that the use of

different variable names for right-free variabIes avoids undesired interferences between the

computations of the two subformul~e. The appropriate refutation procedure (SLDIN resolution [4])

103

for programs with intensional negation has to cope with non ground nafliterals which, as shown

above, act as filters for correct solutions. To accomplish this task, the SLDIN refutation procedure

uses a computation rule which selects anaf literal if the whole goal is composed of nafliterals only,

and applies the negation as failure rule to naf literals. Thus, SLDIN guarantees that naf literals are

selected after the non-naf literals have provided the candidate solutions.

It is worth noting that SLDIN resolution deals with queries which are non allowed queries for

SLDNF resolution [16]. Nevertheless, when a naf literal is selected the SLDIN resolution never

flounders [15] since the negation as failure rule is actually used only to prove a universally quantified

theorem.

Concluding the example, the intensional negation is

p~(x) *-- q~(x,w), nafq(x,z) p(x) e-- q(x,w)

q~(b,x) e-- q(a,b) e-

q~(a,a) e-

Again, a non ground query such as ~ p~(x) succeeds with the answer x=b while ~nafp(x) fails.

Moreover the inconsistency pointed out above does not hold anymore since ~ p-(a) fails under

SLDIN resolution.

In the case of clauses with right-free variables occurring in more than one literal in its body, as in

p(x,y) ~ q(x,w), r(w,y)

intensional negation is carried out in two steps. First, the clause is replaced by an equivalent one with

only one literal in its body, introducing a new predicate symbol. In the example

p(x,y) <--- s(x,y,w)

s(x,y,w) <--- q(x,w), r(w,y).

Second, intensional negation of the transformed program is computed as in the previous example and

a nafliteral is introduced for each definition with right-free variables. In the example

p~(x,y) <--- s-(x,y,w), naf s(x,y,z)

s~(x,y,w) ~-- q~(x,w)

s-(x,y,w) <--- r-(w,y).

Whenever a clause contains only fight-free variables, as in

p(a) ~ q(x)

the definitions computed by intensional negation only contain naf titerals. In the example this leads to

the definition

p-(a) ~ nafq(x).
Notice that in the body of the clause defining p~(a) there is no need to introduce the conjunction

q~(x), nafq(y) since no candidate solution has to be computed. In fact, from the completed definition
of p we obtain

p(a) ¢:~ 3y q(y) i.e. ~p(a) ¢~ Vy ~q(y).

104

Thus, in order to prove p~(a) is sufficient to test whether Vy~q(y) holds or not, which is just

accomplished by means of the naf literal naf q(y).

As a final example, consider the intensional negation of a program for the ancestor relation, where

Parent(x,y) means y is a parent of x, Ancestor(x,y) means y is an ancestor of x.

Parent(John, Mary) ~-
Parent(John, Bill) ~--

Parent(Mary, Paul)

Parent(Bill, Anne) ,--

Ancestor (x,y) ~-- Parent(x,y)

Ancestor (x,y) ~-- Ancestor(x,z), Parent(z,y).

First of all, since the last clause contains right-free variables in more than one literal, it is replaced by a

new clause which makes use of a new predicate symbol, say ProperAncestor. This transformation

yields the following program

Parent(John, Mary) e -

Parent(John, Bill) ~--

Parent(Mary, Paul) +--

Parent(Bill, Anne)

Ancestor (x,y) ~-- earent(x,y)
Ancestor (x,y) ~-- ProperAncestor(x,y,z)
ProperAncestor(x,y,z) e-Ancestor(x,z), Parent(z,y).

The definitions computed by intensional negation are

Parent-(John, John) e -

ParentM(John, Paul) ~--

Parent~(Paul, Mary) e -

Ancestor-(x,y) ~- Parent-(x,y), ProperAncestor~(x,y,z), naf ProperAncestor(x,y,w)
ProperAncestor-(x,y,z) ~ Ancestor-(x,z)

ProperAncestor~(x,y,z) ~ Parent~(z,y)

Notice that the clause defining Ancestor~ states that y is not an ancestor of x if neither y is a parent of

x nor y is a proper ancestor of x through any z. Under SLDIN-resolution the query

+--Ancestor-(Mary,y) succeeds enumerating the solutions Mary, Bill, John, Anne.

105

3.3. Non left-linear programs

A final issue concerns intensional negation of non left-linear programs, i.e. programs with clauses

containing multiple occurrences of the same variable in their heads. Consider the following program

which states the relation between a number and its successor:

plusl(x, s(x))

The first step is to apply a linearization algorithm which turns each program into an equivalent

left-linear form, thus turning back to the previous cases. The linearization of plus1 is"

plusl(x,s(y)) ~- eq(x,y)

where eq is the equality predicate defined by the clause

eq(x, x) ~ .

Furthermore, the completion of plus1 over which intensional negation acts is:

Vx 1 x 2 (plus1(x 1, x2) ¢=~ By (x2=s(y), eq(x 1, y)) (1)

Notice that we have distinguished = from eq: The former is introduced when the completion is carried

out, while the latter is introduced by the linearization algorithm in order to turn the program into a

left-linear form. From a semantic point of view both = and eq are the identity relation over the

Herbrand universe, but they are handled differently by intensional negation. Consider the intensional

negation of (1):

Vx 1 x 2 (plus1~(x 1, x2) ¢=~ Vy (x2=s(y) v eq~(x 1, y))

As before, we distinguish between ~ and eq-: In particular # appears only in negative guards which

can be further transformed into a disjunction of positive guards, while eq~ is handled like an ordinary

predicate symbol. In the case of our running example:

Vx I x 2 (plus1~(x 1, x2) ¢:~ x2--0 v By (x2=s(y) v eq~(x 1, y))

Putting the above def'mition into its Horn clause form one gets:

plus1~(xt, 0) ~--

plus1-(Xl, s(y)) ~-- eq-(x 1, y)

which defines exactly the set of pairs of naturaIs <n, m> such that m~a+l, provided that eq- defines

the set of pairs <n, m> such that man. This is achieved providing the following ad hoc intensional

negation of the predicate eq:

eq-(O, s(x))

eq-(s(x), 0)

eq~(s(x), s(y)) ~ eq-(x, y).

Indeed, = and eq make explicit two different roles played by unification in logic programming. In fact

the latter makes explicit the use of unification to state constraints of the kind the same (unspecified)

object must occur in different positions within the terms of a clause head. In the previous example,

plus(x, s(x)) ~ means that the relation plus1 holds between a generic natural number n and the

natural number obtained applying the constructor s to n itself.

Now, consider the definition p(x, x) ~--, which means that each object is related via p with itself

and with no other object. Answering the question which objects are not related via p? one can just say

objects which are not identical. Hence, the definition p~(x, y) ~-- is incorrect, since it would imply

106

also that an object is not related via p with itself, and this is unconsistent with respect to the definition

of p. A correct definition of p~ can be achieved using the eq- predicate: p-(x, y) e - eq~(x, y), which

means/fobjects x and y are not identical, then they are not related via p.

On the other hand, the = predicate makes explicit the use of unification to describe the structure that

objects should exhibit in order to be candidate components of a tuple satisfying some relation. This is

what is done by positive guards. Take for instance the definition p(s(x)) <--- q(x), which means a

number is in the set denoted by p / f i) it is the successor of some other number n, and ii) n satisfies q.

With the if and only / f interpretation one can safely say that a number which is not the successor of

any other number is in the complement of p. This is exactly the meaning of the definition p~(x) e-

Vy xes(y) i.e. p~(0) e - . Furthermore one has to state that a number is in the complement of p if

it satisfies the condition i) above but it does not satisfiy the condition ii). This is exactly the meaning

of the definition p-(s(x)) e - q-(x). The use of predicate = makes explicit the role of conditions

analogous to condition i) above.

It is important to notice that the predicate eq~ is not computationally equivalent to, say,

non-unification : for instance, the unification of the terms x and s(x) fails because of the occur check,

while the refutation of 6-- eq~(x, s(x)) diverges, even if any ground instance of such a goal succeeds.

This suggests that intensional negation is not equivalent to non-unification: The results in [4]

characterize the behavior of intensional negation in terms of a suitable theory. But the use of predicate

eq (and hence eq-) guarantees that all programs that are to be intensionally negated can be brought

into a left-linear form, and this makes possible to translate systematically negative guards into finite

disjunctions of positive guards [13]. Looking at the clausal program resulting from intensional

negation, it is worth noting that guards (involving predicate =) are absorbed again into unification,

while the occurrences of predicate eq- are not, since eq is handled like any other predicate symbol. As

a consequence, intensional negation yields always left-linear programs, apart from the predicate eq

which is handled in a special way.

4. Computing transformations of negative guards

A central issue in the intensional negation approach is the transformation of negative guards into their

existential form. As mentioned in the introduction, a (positive or negative) guard can be viewed as an

intensional definition of a subset of the Herbrand universe [1]. For instance, referring to the Herbrand

universe of naturals, the positive guard 3y x=s(y) denotes the set {x I x>t }, while the negative

guard Vy x~s(s(y)) denotes the set {0,1}. Under DCA, a set S described by a negative guard can

always be described by a disjunction of positive guards, corresponding to an intensional constructive

definition of S, since each universally quantified variable occurs exactly once in a negative guard [13].

Thus, a transformation Ex which, given a negative guard Vy x~t builds the equivalent disjunction of

positive guards, can be defined by structural induction on the term t. The general definition of Ex can

be found in [4], while an instance of Ex is shown below with respect to the Herbrand universe of

naturals.

107

(1) Ex ('V'y xcy) - ff

(2) Ex (x¢O) - 3y x=s(y)

(3) Ex (Vy xcs(t)) = x=O v 3z x=s(z), Ex (Vy zct).

For instance,

Ex (Vy xCs(s(y))) -= x=0 v x=s(0)

Ex (xcs(O)) -- x=O v 3z x=s(z), Ex (z¢:O) -= x--O v 3z x=s(z), 3y z=s(y) -

x=O v 3y x=s(s(y))

The last step uses the obvious reduction

3z x=t, 3y z=t' - 3y x=t [t7z]

A simple way to implement Ex is achieved using the Horn clause definition of the inequality predicate

eq~ and querying it with appropriate goals. This technique is shown by the following example.

Consider the Herbrand universe over constants a and b and the binary constructor f. The predicateeq~

is defined by

eq- (a,b)

eq~ (a, fix,y)) <--

eq~ (h,a) <--

eq- (b, fix,y)) <---

eq- (fix,y), a) ~-

eq~ (fix,y), b)

eq- (fix,y), f(v,w)) <-- eq~ (x,v)

eq- (fix,y), f(v,w)) <-- eq~ (y,w).

Next, consider the negative guard Vy x~f(a,y). The solutions for x satisfying this guard can be

obtained querying the above program with the goal ~ eq~ (x, f(a,any)) where any is a new constant

symbol which acts as a universal Skolem constant. These solutions are x=a, x=b, x=f(b,y),

x=f(f(y,z),w). The use of the constant any forces the failure of recursive calls like eqN (z,any), as in

case (1) of the definition of Ex. Interpreting a solution like x=f(b,y) as 3y x=f(b,y) and taking the

disjunction of all the solutions we obtain the formula (x=a v x=b v 3y x=f(b,y) v

3yzw x=f(f(y,z),w)) which is exactly Ex (Vy xcf(a,y)).

The use of this implementation technique is twofold. Of course, it can be viewed as an implementation

of the Ex transformation, as mentioned above. On the other hand, it can be used as the basis for a

slight variant of intensional negation which directly replaces negative guards with appropriate calls of

predicate eq~, possibly involving the any constant.

108

Referring back to the predicate even~ of sec. 3.1., after step 2) of the transformation, Le.

Vx (even- (x) ¢m x~0, Vy x¢s(s(y)) v

x~-O, 3y (x=s(s(y)),even~ (y)))

the guards can be replaced by appropriate calls to predicates eq and eq~ as follows

Vx (even- (x) ¢~ eq~ (x,0), eq~ (x, s(s(any))) v

eq~ (x,0), eq (x,s(s(y))),even- (y))).

At last, the clausal definition of even- is

even- (x) ~-- eq~ (x,0), eq- (x, s(s(any)))

even- (x) ~ eq~ (x,0), eq (x, s(s(y))), even- (y).

Finally, notice that this implementation technique is particularly useful in some application area of

logic programming, such as deductive databases and expert systems, where the knowledge domain is

likely to change dynamically. In such cases, using the standard form of intensional negation one is

compelled to recompute the negative predicates whenever the knowledge domain changes, since the

clauses for negative predicates embed the transformation of negative guards. On the other hand, the

explicit use of predicates eq and eq~ avoids this overall recomputation, since the redefinition of eq and

eq~ is only needed.

5. Conclusions

In [4] the formalization of intensional negation is carried out. The main results concern the soundness

and completeness of SLDIN-resolution. The soundness theorem states that if the proof of p-(t)

succeeds under SLDIN-resolution with answer substitution ~., then ~p(t ~,) can be inferred under the

negation as failure rule. This result implicitly gives the semantic equivalence between intensional

negation and the negation as failure rule. On the other hand, if ~ is a substitution such that ~p(t~) can

be inferred under the negation as failure rule, than the proof of p~(t) under SLDIN-resolution

succeeds with a (possibly infinite) collection of answer substitutions {~,i} such that each instance of t~

can be obtained as an instance of t~ i, for some i. If only left-linear programs are taken into account,

this completeness result can be strenghtened, in the sense that the finiteness of the collection {Xi} is

guaranteed. Roughly speaking, if non left-linear programs are the matter of concern, intensional

negation makes use explicitly of the predicate e q - which in some cases gives an infinite set of

solutions. As an example, consider the program

p(x, x)

defined over natural numbers. In order to compute its intensional negation, the clause is transformed

into its semantically equivalent left-linear form

109

p(x,y) <-- eq(x,y)

and than the computed definition for p - is

p~(x,y) ~ eqN(x,y).

As shown in a previous example, the definition of eq~ in this case is

eq-(O, s(x)) ~--

eq~(s(x), 0) ~--

eq-(s(x), s(y)) ~-- eq~(x, y).

Now, the proof of ~ p(x,s(x)) finitely fails under standard SLD-resolution because of occur

checking. On the other hand, the proof of ~ p~(x,s(x)) under SLDIN-resolution diverges with

answer substitutions x=0, x=s(0), x=s(s(0)) since these are the substitutions computed by the

derived goal <--- eq-(x, s(x)).

The work described in the paper is only a first step of a larger and more ambitious research effort. The

general aim of this effort could be summarized by the motto putting logic theories together as a

knowledge engineering tool. This means providing a number of operators on logic theories capable,

for example, of joining them, negating them and so forth. Such a set of operators along with

constructs for composing them would provide a sound, formal tool for manipulating chunks of

knowledge represented as logic programs.

The intensional negation we have proposed is only a small part of this overall construction. Indeed,

the most needed extension is the possibility of writing general programs, in the sense of using the

negation of the paper freely in building logic programs. This further extension, besides providing a

fully usable operator for manipulating theories (for example with such an extension pN_= p can be

proved) has some advantages per se. Indeed, as discussed in the paper, the evaluation of a goal p~(t)

where t is a non-ground term leads to the computation of all the instances t' of t such that the proof of

p(t') finitely fails. This possibility seems a notable extension to the expressive power of logic

programming in that it allows queries of the form all elements for which a certain property does not

hold. The extension seems to be of importance especially in deductive data bases applications and

expert systems where the negative knowledge is essentially finite. Work done so far in this direction

seems to point out that the computation rule SLDIN extends smoothly to the case of general

programs.

Another drawback of intensionai negation seems to be the inefficiency of the resulting programs. An

open problem is the study of optimization techniques able to improve this situation.

110

References

[1] Ambriola,V., Giannotti,F., Pedreschi,D., Turini,F. "Symbolic Semantics and Program
Reduction". IEEE Trans. on Soft. Eng. SE-11,8 (Aug.85) 784-794.

[2] Apt,K.R., Van Emden, M.H. "Contribution to the Theory of Logic Programming". J.ACM,
29, 3, (1982) 841-862.

[31 Aquilano,C., Barbufi,R., Bocchetti,P., MarteUi,M. "Negation as Failure: Completeness of the
Query Evaluation Process for Horn Clause Programs with Recursive Definitions".Journal of
Automated Reasoning, 2 (1986) 155-170.

[4] Barbufi,R, Mancarella,P., Pedreschi,D., Turini,F. "Intensional Negation of Logic Programs".
submitted for publication to the Journal of Logic Programming (1986).

[5] Barbuti,R., Martelli,M. "Completeness of the SLDNF-Resolution for a Class of Logic
Programs". Proc. of 3rd Int. Conf. on Logic Programming, London, July 14-I8 (1986).

[6] Barr,A., Feigenbaum,E.A. (Eds.) The Handbook of Artificial Intelligence. Vol.1,
Pitman, London (1981).

[7] Clark,K.L. "Negation as Failure". in Logic and Data Bases (Gallaire, H. and Minker, J.
Eds.) Plenum, New York (1978) 293-322.

[8] Gallaire,H., Minker,J., Nicolas,J.M. "Logic and Databases: a Deductive Approach". ACM
Comp.Surv. 16,2 (June 1984) 153-186.

[9] Jaffar, J., Lassez,J.-L., Lloyd,J.W. "Completeness of the Negation-as-Failure Rule". Proc. 8th
Int. Joint Conf. on Art. Int., Karlsruhe (1983) 500-506.

[1t3] Kowalski, R.A. Logic for Problem Solving. Elsevier North Holland, New York (1979).

[11] Kowalski, R.A. "Logic Programming". Proc. IFIP 83, Paris (1983) 133-145.

[12] Lassez,J.-L., Maher,M. "Closures and Fairness in the Semantics of Logic Programming". TCS,
29 (1984)

[13] Lassez,J.-L., Marriot,K. "Explicit and Implicit Representation of Terms Defined by Counter
Examples". to appear in Journal of Automated Reasoning.

[14] Lloyd,J.W., Topor,R.W. "A Basis for Deductive Data Base Systems". Journal of Logic
Programming, 2,2 (1985) 93-103.

[15] Lloyd,J.W., Topor,R.W. "A Basis for Deductive Data Base Systems II". Journal of Logic
Programming, 1 (1986) 55-67.

[16] Lloyd,J.W. Foundations of Logic Programming. Springer Symbolic Computation Series,
Berlin (1984).

[17] Reiter, R. "On Closed World Data Bases". in Logic and Data Bases (Gallaire, H. and
Minker,J. Eds.) Plenum, New York (1978) 55-76.

[18] Sato,T., Tamaki,H. "Transformational Logic Program Synthesis". Proc. Conf. on Fifth
Generation Computer Systems, (1984).

[19] Shepherdson,J.C. "Negation as Failure: a Comparison of Clark's Completed Data Bases and
Reiter's Closed World Assumption". Journal of Logic Programming, 1,1 (1984) 51-79.

[20] Shcpherdson,J.C. "Negation as Failure IF'. Journal of Logic Programming, 2,3 (1985)
185-202.

