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ABSTRACT 

Normal order functional languages (NOFLs) offer conceptual simplicity, expressive power, and 
attractiveness for parallel execution. However, current implementations of NOFLs on conventional yon 
Neumann machines are not competitive with those of imperative languages, The central reasons for 
this poor performance include the high control overhead (e.g. demand evaluation) and fine object code 
granularity (e.g. SKI combinators) used in most NOFL implementations. Strictness analysis gathers 
information that helps to overcome these inefficiencies through optimized compilation. We propose 
here a rule-based strategy for such compilation, working from a new textual representation for 
strictness analyzed source programs. This representation offers readability and ease of manipulation. 
while expressing all essential strictness information, including basic block structure and block 
dominance and disjunction relationships. The rules presented here show how to compile this 
intermediate form into optimized single processor G-machine code. In addition, this representation 
appears to be useful for a number of other execution methods, including interpretation, compilation 
into conventional Lisp with "promises", and mapping into "supercombinators" for parallel 
architectures. ] 

I, NOFLs and Strictness Analysis 

1 . 1 .  B a s i c  C o n c e p t s  
Most m o d e m  functional languages are based on normal order semantics,  where divergence of 

a program occurs only if the program's overall result directly depends on a divergent subexpression. 
Customary implementations of NOFLs ensure this property by individually operationalizing the 
normal order characteristics of each operator, e.g. through demand evaluation or combinator 
reduction. 

NOFLs offer many advantages in programming practice, including clean treatment of I/O 
streams, overlapped production and consumption of large data objects, and the facile representation 
of feedback systems, For example, functional modeling of non-trivlal hardware systems seems to 
require normal order evaluation in a fundamental  sense [15]. 

Another appeal of NOFLs is their suitability for distributed evaluation on innovative 
architectures, e.g. via graph reduction. However, a more pressing need exists for efficient NOFL 
implementations on today's machines,  to gain (i) experience with large-scale software engineering in 
NOFLs, and (ii) a better understanding of what  is familiar about their implementation, as well as 
what is exot/c. In comparison, one must  be impressed with the rapid acceptance that  has  greeted 
Prolog. and acknowledge that  this has  been greatly aided by the early availability of efficient 
implementations on conventional computers [17]. 

One of the most  promising avenues currently under  investigation for improving the efficiency 
of NOFLs is strictness analysis [14]. Under this technique strict subsets of operators, i.e. groups 
unconditionally executable together, are determined at compile time. The major str ictness analysis 
research areas at the moment  include: 

* "non-fiat" domains [6, 8, 16], and 

* hlgher-order functions [1.4, 1 I]. 
While str ictness analysis theory appears to be developing apace, its application to actual code 
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generation seems to be lagging. An exception is the recent paper [3], which uses  a finite domain. We 
attempt here to fill this  gap, by showing a method which relates well to existing compiler technology, 
and sheds  light on the similarities and differences in compiling NOFLs for single- and multi-processor 
machines.  

1.2. Overview o f  Method 
Our method involves four processing steps, from source program to optimized object code: 

1. The source program is converted to function graph form, after exhaustive common sub- 
expression (CSE) detection and elimination. CSEs are represented via binary output, single 
input f o r k  operators, e.g. (~, v) = £ork(~). 

2. Strictuess analysis is performed on the function graph representation, using abstract 
interpretation on a "non-fiat" infinite domain of predicted pat terns  of evaluation. 

3. The resulting annotated graph is converted to textual form, which may be viewed as a 
semantically attributed abstract  syntax tree. 

4. Finally, the textual form is translated to object code, optimized by observance of the block 
structure,  predicted prior evaluation, and type information conveyed by the semantic 
attributes. 

1.3. Analys i s  Method 
The first two steps of our method are reported in [12] and [13]. We briefly summarize their 

essentials here, by way of background for our new results involving steps 3 and 4 above. 

1.3.1. Simplified Domain 
It is useful to describe our method first via a simplified abstract interpretation domain, and 

then  an augmented domain. The former represents  the effects of a slr~le source of hypothesized 
demand, while the latter analyzes the effect of all sources of demand throughout the program, on a 
"wholesale" basis. 

The primitive elements of our simplified domain are as follows: 

• ± expresses a total lack of compile time information as to whether an expression will be 
evaluated, and if it is, what datatype wfl result. 

• d represents  a compile-time hypothesis or inference that  an expression will be subjected to at 
least one level of evaluation, ie. to an atom or tuple (possibly with suspended components). 

• d* conveys the information that  an expression will be subjected to an exhaustive evaluation 
attempt, i.e. to an atom, or a finite or infinite composition of tuples of atoms or error 
indicators, (but with no a pr/or/expectation of which case, if any, will result). 

• a generically designates all atomic values, including functions. However, a can also be 
interpreted as  "demand with atomic result required. 

• T indicates conflicting information on the value of an expression, i.e. values which are 
constrained simultaneously to be atomic and nonatomic. This indicates a rudimentary type 
e r r o r ,  

This primitive element set is closed with binary Cartesian cross products, representing pairs 
produced by the cor~s operator. The resulting set, constitutes the domain I) used in [12]. The 
operators receiving non-± annotations as a result of a non_± hypothesis on a particular arc is termed 
a strictness subset of the graph. 

1.3.2. Augmented Domain 
Reference [13] presents  an augmentation of this simplified domain, supporting '~holesale" 

str ictness analysis on an entire function graph. In comparison to the former approach, the analysis 
method is extended in two respects: 

1. ± has  been removed from the domain. This reflects the fact that,  although prediction of 
evaluation causality at  compile time is imperfect, 

a. code mus t  be compiled for every operator in a function, and 

b. when that  code is executed, it will certainly be executed under  at least simple 
demand. 
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H e n c e  t h e  role of  ± in  t h e  d o m a i n  is  p layed by  d. 

2. However,  t h e  fac t  t h a t  a d is  p laced  w h e r e  a k wou ld  prev ious ly  have  a p p e a r e d  on  a n  arc  
m u s t  n o t  be  c o n s t r u e d  a s  neces sa r i l y  ex tend /ng  a s t r i c t n e s s  s u b s e t .  Ra the r ,  it m u s t  indica te  
t h e  i n t r o d u c t i o n  of a n e w  s t r i c t n e s s  s u b s e t ,  w h i c h  m i g h t  h a v e  a r i s e n  f rom a n  independent 
appl ica t ion  of t h e  p rev ious  m e t h o d  wi th  d a s s e r t e d  i n s t e a d  of ± on  t h e  a rc  in  ques t i on .  

To e s t a b l i s h  s u c h  a s u b s e t  b o u n d a r y ,  we a u g m e n t  D to i nc lude  n a t u r a l  n u m b e r  subscripts on  
e a c h  deno ted  level of  eva lua t ion .  In  an t i c ipa t ion  of the i r  u l t i m a t e  u s e  for code  genera t ion ,  we 
t e r m  s u c h  s u b s c r i p t s  block numbers. 

* Initially, all b lock  n u m b e r s  are  cons ide red  to be  dis t inct .  A s  t h e  a n a l y s i s  proceeds ,  
s o m e  b lock  n u m b e r s  b e c o m e  equlvatenced, a n d  the i r  a s s o c i a t e d  s t r i c t n e s s  s u b s e t s  are  
t h e r e b y  merged .  

* The re  a re  a l so  t h e  i m p o r t a n t  n o t i o n s  of  b lock  dominance a n d  disjunction, d i s c u s s e d  in  
s ec t ion  1.3.3. 

In  refer r ing  to a n  e l e m e n t  of  D, it is  i m p o r t a n t  a t  ce r t a in  t i m e s  to refer  to i ts  o u t e r m o s t  b lock  
n u m b e r ;  o t h e r  t imes ,  t h a t  n u m b e r  is  i rrelevant .  To he lp  m a k e  t h i s  d i s t inc t ion  clear,  we adopt  t he  
following no ta t ion :  

• W h e n  t h e  o u t e r m o s t  b lock  n u m b e r  of  a n  e l ement  of  D m u s t  be  m e n t i o n e d ,  t h a t  e l emen t  will be  
deno ted  b y  a s u b s c r i p t e d  ear ly a l p h a b e t  Greek  letter,  e.g. a i ,  ~j, ?~. 

• W h e n  t h e  o u t e r m o s t  b lock  n u m b e r  of a n  e l emen t  of  D is  i r relevant ,  t h a t  e l e m e n t  will be  deno ted  
by  a n o n - s u b s c r l p t e d  late a l p h a b e t  r o m a n  letter,  e.g. x, y, z. 

O u r  d o m a i n  D is  a s  follows: 

Domain: 
D = {di, dei , ai, Ti} ~ [u, v] i i = 0, 1, .... and u, v • D 

Equality: 
a i = ~j (~ not a pair) ¢~ i -= j 

[u, vii = [x, ylj ¢~ i =- j A u = x A V = Y 

Partial Ordering: 
d i < dej <~ i -= j 

del < aj ¢~ i ~ j 

d i < [x, y]j ~ i -= j 

del < [x, y]j ~ i -= j ^ dei < x A dei -< y 

[u, v]i <- [x, y]j ¢=~ i =- j A U -< x A V _< y 

~i<Tj ¢~ i~ j 

Note t h a t  t h e s e  r u l e s  imply: 

i .  de± is  n e v e r  a lower b o u n d  o n  a n y  e l e m e n t  of  D in w h i c h  a n  a j  a p p e a r s  for s o m e  j no t  
equ iva len t  to i .  

2. Similarly,  d e i  i s  n e v e r  a lower b o u n d  on  arty e l emen t  of  D in  wh ich  d~ a p p e a r s  for a n y  k .  
Fa i lure  o f  e i the r  of  t h e s e  p roper t i e s  to ho ld  would  indica te  a dec rease  in "commitment '*  to eva lua te  
fully the deno ted  e x p r e s s i o n  wi th in  b lock  i ,  once  t h e  eager  eva lua t ion  ind ica ted  by  dei h a s  b e g u n .  

1.3.3.  Dominance  and Disjunct ion 
A pr inc ipa l  r e s u l t  of  t h e  s t r i c t n e s s  a n a l y s i s  m e t h o d  ou t l ined  in [13] is  t h e  f inal  equ iva lence  

re la t ion  der ived a m o n g  b lock  n u m b e r s .  However,  a n o t h e r  i m p o r t a n t  r e l a t ionsh ip  ex i s t s  a m o n g  
b locks ,  ref lect ing n e c e s s a r y  eva lua t ion  order.  

Definition. A block i dominates a block J, denoted i Z J, If whenever block j is executed, that  
execution is a consequence of block i also being executed. 

D o m i n a n c e  a m o n g  b locks  is  a n  i m p o r t a n t  concep t  t h a t  faci l i ta tes  t h e  g e n e r a t i o n  of efficient 
object  code, For  example ,  ff a CSE is  s h a r e d  b e t w e e n  two b locks  bea r ing  a d o m i n a n c e  re la t ionship ,  
t h e n  eva lua t ion  of t h a t  CSE c a n  be  m o v e d  into t h e  d o m i n a t i n g  block. 

F o u r  a x i o m s  gove rn  t h e  d o m i n a n c e  re la t ionshlp:  

a. (Vi, j) i Z j 
(Vm, n) m -= i A n ~ j ~ m Z n (equivalence consistency) 

b. (Vi )  i / i (reflexivity} 
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C. ( V i ,  j ,  k) i / j ^ j L k ~ i L k (transitivity) 

d. ( V i ,  j )  i L j ^ j L i ~ i -= j (antisymmetry). 

Lastly,  a d i s j u n c t i o n  re la t ionsh ip  a m o n g  block n u m b e r s ,  deno ted  i = j v k, is also 
d e t e r m i n e d  b y  o u r  ana lys i s .  T h i s  too is m a d e  c o n s i s t e n t  over equiva lence  c l a s se s ,  e.g. i fm =- i ,  n ~- 
J, a n d  p - k, t h e n  m = n v p in  t h e  example  above. D i s j u n c t i o n s  are  u s e d  to a s soc i a t e  b locks  t ha t  
are  re la ted  t h r o u g h  c o n d  opera tors .  If, for example ,  a CSE is  s h a r e d  b y  b o t h  a r m s  ( t h e n / e l s e  par ts)  
of  a condi t ional ,  t h e n  t h a t  e x p r e s s i o n  c a n  be  "hoisted" to t h e  s u r r o u n d i n g  uncond i t i ona l  block. 

1.3.4. Sample rules 
We deno te  t h e  s t r i c t n e s s  a n n o t a t i o n s  of a n  a rc  v by  Z(v). The  a n a l y s i s  m e t h o d  p roceeds  by  the  

appl ica t ion  of strictness rules, e x p r e s s e d  in t e r m s  of precondition - postcondition pairs .  T h e s e  s h o u l d  
be  in t e rp re t ed  a s  "if t h e  precondition is t rue ,  m a k e  the  postcondition t rue".  Notice f rom the  par t ia l  
o rder ing  specif ied in  s ec t ion  1.3.2 t h a t  " m a k i n g  a pos t cond i t i on  t rue" c a n  m a n d a t e  b lock  n u m b e r  
equiva lencing .  For  example ,  s u p p o s e  v = ident (~t), wi th  g(v) = ct i a n d  X{~t) = ~y  T h e n  t h e  
p o s t c o n d i t i o n  ct£ _< X(li) e n s u r e s  t h a t  i is  equ iva lenced  to j .  T h i s  c a p t u r e s  t h e  idea  t h a t  i d e n t  is  
s t r ic t  in  i t s  a r g u m e n t ,  a n d  s h o u l d  n o t  c o n s t i t u t e  a b o u n d a r y  b e t w e e n  s t r i c t n e s s  s u b s e t s .  Hence  
b lock  i i s  m e r g e d  wi th  b lock  j .  

O u r  s t r i c t n e s s  a n a l y s i s  r u l e s  are  des igned  to be  monotonic in  t he  s e n s e  tha t :  

• If a va lue  in  D is c h a n g e d ,  it is  a lways  to a greater va lue  in  the  par t ia l  order.  

* If t h e  equ iva lence  re la t ion is  c h a n g e d ,  it  i s  a lways  t h r o u g h  equ iva lenc lng  two b lock  n u m b e r s ,  
t h e r e b y  coarsening it. 

• T h e  d o m i n a n c e  a n d  d i s j u n c t i o n  re la t ions  a re  c h a n g e d  on ly  t h r o u g h  e x t e n s i o n  by  equiva lence  
cons i s t ency .  

O u r  m e t h o d  t e r m i n a t e s  w h e n  n o  f u r t h e r  a n n o t a t i o n  c h a n g e s  r e su l t  f rom ru le  appl icat ion,  or  
w h e n  it  is  d e e m e d  t h a t  suff ic ient  i n fo rma t ion  h a s  b e e n  ob ta ined  for compi la t ion  needs .  There  is  
evidence t h a t  u n i f o r m  t e r m i n a t i o n  of  o u r  m e t h o d ,  a n d  o the r s  involving inf ini te  d o m a i n s ,  c a n n o t  be  
g u a r a n t e e d  [I0]. 

A r e p r e s e n t a t i v e  s a m p l e  of o u r  s t r i c t n e s s  a n a l y s i s  r u l e s  a re  e n u m e r a t e d  in  [13]. To s u g g e s t  
the i r  flavor, we exhibi t  h e r e  t h e  'q)ackward" or  " d e m a n d  flow" r u l e s  for a [lazy} tup le  c o n s t r u c t o r  a n d  
selector.  

v 0 = c o n s ( v 1 ,  v2 ) ,  w h e r e  ;((v o) = ct± ^ X(v I) = ~j ^ X ( v 2 )  = 8 k 

Precondi t ion  1: 
[u, v] i < a± 

Pos tcond i t i on  I: 
U ~ Z(V|) A v ~ Z(V2) 

Precondition 2: 

de l  _< Cci 
Pos tcond i t ion  2: 

de l  ~ ~(Vl) A de i -< Z(V2) 

v 0 = c a r ( v l ) ,  w h e r e  X(v o) = a i 

Precondi t ion:  
(none) 

Postcondi t ion:  
[a  i ,  dk] £ < ~(V1) 

(laziness; j and  k not made =- i)  

(eagerness; j and k made =- i) 

(new k,  cf. ±) 

2.  R e s u l t i n g  Graph  S t r u c t u r e  

Given a f u n c t i o n  g r a p h  wi th  f inal  a n n o t a t i o n s  a n d  the i r  a s s o c i a t e d  equiva lence  relat ion,  bas ic  
b locks  c a n  be  formed.  We collect t oge the r  all ope ra to r s  v = OP ( . . .  ) ,  whe re  X(v) = a± for equiva len t  
i .  F o u r  var le t ies  of  b a s i c  b locks  resul t :  

* F u n c t i o n  bodies ,  

* Condi t iona l  a r m s .  

* A c t u a l  p a r a m e t e r s .  

• Tup le  c o m p o n e n t s .  
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The first  two syntac t ic  occu r rences  a lways cause  block b o u n d a r i e s  to be  formed.  The last  two m a y  or  
m a y  no t  occur  a t  b lock  boundar i e s ,  depend ing  on the  s t r eng th  of  t h e  s t r i c tnes s  analys is  resul ts .  To 
i l lustrate,  we s h o w  a n  a n n o t a t e d  g raph  t a k e n  f rom [13]. 

t44 

Dominanc~ 

Disjunction 

Figure 2-1: Sample  anno ta t ed  func t ion  graph.  

2.1.  Bas ic  B lock  Structure  

The bas ic  b locks  tha t  resu l t  have several  impor tan t  propert ies:  

1. They nes t  in a m a n n e r  cons i s t en t  with t he  dominance  relat ion previously obtained.  

2. Within  a block, the  arc anno ta t ions  convey only da ta type  informat ion  (i.e. a tomic  vs. pair  
value predict ions) .  Hence  the  s u b s c r i p t s  u sed  to accompl ish  block par t i t ioning m a y  now be  
discarded.  

3. The a rcs  c ross ing  block bounda r i e s  r ep resen t  values  p roduced  in one b lock and  c o n s u m e d  in 
another .  

We categorize a rcs  c ross ing  b lock b o u n d a r i e s  into th ree  kinds ,  depend ing  on  the  t rans i t ion  in 
block level t ha t  each  r e p r e s e n t s  (see figure 2-2): 

1. Ascending: a r g u m e n t s  to nons t r i c t  operators ,  e.g. cons ,  c o n d  and  a p p l y .  

2. Descending: a CSE usage,  e.g. {v o, v I) = fork{v2), where  Z(Vo) = c~ i,  Z(vl) = J)j, and  Z(v2) = 7k, 
w i t h i Z  j o r k = i v j .  

3. Lateral: a CSE as  above, b u t  with i and  j incomparable .  

Ascending Descending Laterat 
Figure 2-2: Arcs  be tween  bas ic  blocks.  
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2.2. Applicative Order Interpretation of Basic Blocks 

A s  r e m a r k e d  in s e c t i o n  2.1, t h e  o u t c o m e  of  o u r  s t r i c t n e s s  a n a l y s i s  m e t h o d  h a s  two 
c o m p o n e n t s :  (i) d e t e r m i n a t i o n  of b a s i c  b locks ,  a n d  (il) a t o m / l i s t  type a n n o t a t i o n  of t h e  r e s u l t  va lue  
deno ted  b y  e a c h  arc.  T h i s  i n fo rma t ion  is  u s e d  in  compi la t ion  for two d i s t inc t  pu rpose s :  (i) 
conve r s ion  to appl icat ive  order  eva lua t ion ,  a n d  (il) g e n e ra t i on  of code in  w h i c h  r e d u n d a n t  exp re s s ion  
eva lua t ion  a n d  type  c h e c k i n g  ope ra t i ons  are  omit ted.  We first  cons ide r  conve r s ion  to applicat ive 
order,  a n d  r e t u r n  to r e d u n d a n t  opera t ion  s u p p r e s s i o n  in  sec t ion  2.3. 

In  fact ,  once  i so la t ion  of  bas i c  b locks  in  a NOFL p r o g r a m  h a s  b e e n  accompl i shed ,  t he  p r o g r a m  
h a s  in  a s e n s e  a l r eady  b e e n  conver ted  to appl icat ive order  form. Th i s  s t a t e m e n t  will be  given s h a r p e r  
m e a n i n g  in  s ec t ion  3, w h e r e  a t ex tua l  r e p r e s e n t a t i o n  for a derived appl icat ive order  l a n g u a g e  is 
specified. However,  in tui t ive  s u p p o r t  for t h i s  c l a im c a n  be  offered a s  follows: 

1. We informal ly  def ine  a p p l i c a t i v e  o r d e r  eva lua t ion  o n  th i s  '~blocked" g r a p h  r e p r e s e n t a t i o n  a s  
follows: 

* W h e n e v e r  t h e  r e su l t  of a b lock is  n e e d e d  at  r u n  t ime,  all t h e  ope ra to r s  local to t h e  block 
are  eva lua t ed  in  b o t t o m  u p  m a n n e r .  T h i s  c a n  be  done by  u n c o n d i t i o n a l  code execu t ing  
in  a n y  o rder  t h a t  obse rves  d a t a  d e p e n d e nc i e s ,  i.e. sy s t ema t i ca l l y  left to r ight ,  in  s o m e  
o t h e r  o rder  opt imiz ing  reg is te r  u s a g e ,  or  even  In parallel .  

* The  n e e d  for t h e  r e s u l t  of  a n  i n n e r  b lock  is  a r u n  t ime  event  no t  predic tab le  by the  
compi le  t ime  ana lys i s .  A s  no ted  in s ec t ion  2, t he re  are  four  t y p e s  of b locks ,  b u t  only 
t h r e e  c a n  o c c u r  a s  i n n e r  b locks .  We c o n s i d e r  e ach  in  t u rn .  

• C o n d i t i o n a l  a r m s :  The  predica te  a n d  a n y  CSE 's  s h a r e d  a c r o s s  s ib l ing  condi t iona l  
a r m s  are  eva lua t ed  in t h e  s u r r o u n d i n g  block. Once  t he  pred ica te  is eva lua ted ,  
t h e  t h e n  or e l s e  pa r t  is se lected a s  appropr ia te ,  a n d  i ts  b lock  is  eva lua ted  in  
appl icat ive  order.  

• A c t u a l  p a r a m e t e r s :  Iso la t ion  of  a n  ac tua l  p a r a m e t e r  into a s e p a r a t e  b lock  
ind ica te s  compi le  t ime  u n c e r t a i n t y  of t he  n e e d  for i t s  eva lua t ion .  In  ou r  
appl icat ive  order  in te rpre ta t ion ,  we view s u c h  a b lock a s  eva lua t ing  at  func t ion  
call t ime  to a s u s p e n s i o n ,  e n c a p s u l a t i n g  t he  b lock ' s  code a n d  v a l u e s  en te r ing  
t h r o u g h  d e s c e n d i n g  arcs .  

• T u p l e  c o m p o n e n t s :  Tuple  c o m p o n e n t s  appea r ing  a s  s e p a r a t e  b locks  indicate  
s imi la r  eva lua t ion  u n c e r t a i n t y  a t  compi le  t ime.  T h e s e  a re  a lso compi led  into 
s u s p e n s i o n s ,  for s u b s e q u e n t  eva lua t ion  a s  n e e d e d  by  a n  appropr ia te  selector,  

2. T h i s  appl icat ive  i n t e rp re t a t i on  h a s  m a n y  advan tages :  

• Eva lua t ion  order  is  ou t e rmos t - f i r s t  wi th  r e spec t  to b lock  nes t ing .  This .  t oge the r  wi th  
o u r  d a t a  d e p e n d e n c y  b a s e d  eva lua t ion  order  w i th in  b locks ,  m e a n s  t h a t  all a rc s  
d e s c e n d i n g  into a n  i n n e r  b lock  ca r ry  v a l u e s  wh ich  are  necessa r i ly  p re - eva lua t ed  w h e n  
a c c e s s e d  f rom within .  

• Since  i n n e r  b lock  n e s t i n g  is s tat ic ,  t h e s e  v a l u e s  will be  located in  k n o w n  reg i s t e r s  or  
s t a c k  loca t ions  w h e n  compi led  code is  u sed .  S u c h  v a l u e s  are  u s e d  directly wi th in  
condi t iona l  a r m s ;  for a c t u a l  p a r a m e t e r s  a n d  tup les ,  t he  v a l u e s  a re  speedi ly  a c c e s s e d  at  
s u s p e n s i o n  c rea t ion  t ime,  a s  follows, 

• F o r m a l  p a r a m e t e r  a c c e s s e s  m a y  tr igger  t he  eva lua t ion  of a n  ac tua l  pa rame te r ,  
ex is t ing  a s  a s u s p e n s i o n .  T h e s e  c a n  be  r e p r e s e n t e d  a s  f u n c t i o n  appl ica t ions ,  
c losed  wi th  a full p a r a m e t e r  se t  conveying  e n v i r o n m e n t  v a l u e s  (i.e. t h o s e  on 
d e s c e n d i n g  a rcs  en te r ing  t h e  c o r r e spond ing  ac tua l  p a r a m e t e r  block). Hence  
n o r m a l  apply opera to r  s e m a n t i c s  a n d  i m p l e m e n t a t i o n  t e c h n i q u e s  c a n  be  
employed.  

. Selector  a c c e s s e s  b e h a v e  similarly.  

2.3. Datatyping Information 

The  dataty-pe i n fo rma t ion  in  arc a n n o t a t i o n s  provides  reliable da t a type  informat ion ,  in  t he  
s e n s e  t h a t  if a n  a rc  Is a n n o t a t e d  wi th  a da t a type  ind ica tor  t ,  we m a y  be  s u r e  t h a t  (i) a n y  va lue  v 
conveyed  b y  t h a t  a rc  a t  r u n  t ime  will be  c o n s i s t e n t  wi th  t ,  a n d  (it} all u s a g e s  of v will be  c o n s i s t e n t  
wi th  t .  o r  will c h e c k  t h e  type  m o r e  specifically. 

T h i s  m e a n s  t h a t  m a n y  opera tors ,  e.g. c a r ,  c a n  be  appl ied to v a l u e s  w i t h o u t  r u n  t ime  type 
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testing ff the value's type annotation, e.g. [d±, dj ] k, so indicates. If the type annotation is simply dl, 
then we know the  value will be prior evaluated, ISut to an unknown type. In this case the c a r  can  be 
compiled with  type testing, but  without an internal eva1 providing for the case when the value is a 
suspension.  

Even more important  are guarantees of prior evaluation as shown by equivalence of 
subscripts across type descriptor levels. For example, [di,  j] ± indicates that  when the pair is 
computed in block i ,  its first component will also be computed, to at least an atom or pair (possibly 
of suspensions}, The exhaustive demand indicator d e, signalling full applicative order, is particularly 
useful since call by value implementation may be used in thoroughly this case. 

2.4.  S o u n d n e s s  

Formal proof of the soundness  of our applicative order interpretation is beyond the scope of 
this paper. However, it can be informally argued as follows: 

• Will w e  evaluate enough? Yes, because all assumptions of prior evaluation are validated by our 
method observing outermost-first evaluation order among blocks (observing dominance) and 
bottom up evaluation order within blocks (observing data dependencies). 

• Will w e  evaluate too much? No, because the only dangers are infinite data construction 
[protected by tuple suspensions), and non data producing runaway recursions (which, in 
keeping with [14], can only occur earlier in our method}. 

3.  T e x t u a l  R e p r e s e n t a t i o n  

We now turn  to the new program representation developed since the preparation of our 
previous two papers. 

3.1.  Why a Tex tua l  R e p r e s e n t a t i o n ?  
The graphical representat ion of strictness information is conceptually pleasing, but  poses 

some practical difficulties. These include awkwardness of t ransmission through input and output 
devices, and unfamiliarity as a programming notation. As an alternative, we have developed a textual 
notation which captures all the essential information in an annotated graph, while facilitating 
subsequent  processing, especially code generation. 

3.2.  In termedia te  R e p r e s e n t a t i o n  
We require an intermediate representation that  captures both the annotations placed on the 

arcs of the graph and the dominance relation between basic blocks. Typically function application 
will be represented by the intermediate form (expr  ( f  9{ (e l )  . .9I (era)) s t )  where f is the function 
being applied to arguments  also represented in our intermediate form. ~ (e i )  is the intermediate 
representation of the ith argument and sr  is the str ictness pat tern expected from the function 
application, s r  is expressed as a list structure representing values in our simplified domain (see see. 
1.3.1). Often, s r  will be stronger than  the pattern to which the function in the expression has  been 
compiled to produce, so appropriate e v a l  and type checking instructions will be compiled on the 
result. The dominance relation between blocks derived by our str ictness analysis is used to place the 
susp form defined in section 3.3. 

The individual varieties of expressions are represented as follows. 

Constants: Unstructured literals are represented directly, since no strictness information is 
required, e.g. 1, 2.34, nil, true, false etc. 

CSEs: Common subexpressions are introduced via a let construct. Each newly 
introduced variable names a CSE represented in our intermediate form. The let is 
placed local to the expr forming the basic block 91(en) local to which the CSE 
appears. 

(expr (let ( (varl 9~ (el)) 

(varm 3i (era)) ) 
9~ (en)) 

st) 

Local variables and  formal  parameters: 
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These  are represented as  (var x s r  s x ) ,  where x is the  formal parameter  or 
local variable, and  s r  is a s  explained above, s x  is the degree to which the  formal 
pa ramete r  x h a s  currently been  evaluated. Again, s r  ma y  be s t ronger  t h a n  sx.  ff 
for example a CSE is used  in a conditional context tha t  is s t ronger  t h a n  its 
uncondi t ional  prior evaluation. 

User dejqned function application: 
When all a rgumen t s  are present  in a funct ion application, the  representat ion is 
as  explained above, namely (expr (f  ~ (e l )  . , ~ (en))  s t ) .  

Functional argument and higher order functlons: 
A full t r ea tment  regarding funct ions as  first c lass  objects would be beyond the 
space limits of th is  paper. However, our  a n  intermediate representat ion and  
compilation techniques  a im at full laziness as  defined by  Hughes  [5], and  t h u s  
avoid recompnta t lon  as  m u c h  as  possible. 

Suspended Results: This  is represented as  (susp ( f  x I .  .x , )  s=) ; see section 3.3. 

3.3. Suspended results 
In th is  paper  only suspended  resul ts  for funct ion applications with all a r g u me n t s  will be 

considered. On the  G-machine as  presented by J o h n s s o n  [7], the  creation of a graph for a funct ion 
application is extremely costly, both in execution time and  heap space. We shall  see how to optimise 
th is  here. A s u s p e n d e d  resul t  for a function application (f  e l . . e n }  with all a r g u me n t s  present  is 
represented th rough  our  analys is  as  a block boundary  enclosing this  application. All the  arcs  into the  
block represent  /reports required to build the  s u s p e n s i on  ie. the  descending arcs  as  per  figure 2-2. 
We t h e n  cons t ruc t  a s u s p e n s i o n  for a new funct ion g, whose actual  paramete rs  are these  very 
imports. T h u s  the  new funct ion g is defined as  g x l . . ~ a a  = f e l . . e n ,  where x l . . x m  correspond to 
the  imported variables. Creating a s u s p e n s i o n  in this  case now simply involves building a graph for a 
m u c h  simpler application. The s= in the susp expression represents  the resul t  produced when  the 
s u s p e n s i o n  is demanded.  This information is not  utilized in this  paper. 

3.4. Example 
We illustrate our  representa t ion on the familiar append function. In figure 3-I ,  we a s s u m e  

tha t  the  s t r ic tness  s igna ture  of append  is (d, d) --> d, indicating tha t  append is a funct ion of two 
a rguments ,  both of which will be prior evaluated to either a n  a tom or a {possibly suspended)  tuple. 
Similarly, the  resul t  of append  is to be delivered already evaluated as  a n  a tom or tuple. 

(fun append (x .y) 
(expr (if (expr (null (var x d d)) a) 

(var y d d) 
(expr (cons 

(expr (hd (var x [i, I] [I, I])) ±) 
(susp (append1 x y) d)) 

[±, ±])) 
d) ) 

Figure 3-1: Textual representat ion of annota ted  append. 

Notes: 

• The definition for appendX iS a p p e n d l  x y = append ( t l  x) y, and  its s t r ic tness  s ignature  
isappendl: ([i,±] d) -~ d, 

* With the  s t r ic tness  information available for x, it is not  necessary  to create a su spens ion  for 
the  expression (hd x) .  

4.  Compi la t ion  Rules  
In [13], h a n d  generated code for figure 2-1 is given to suggest  the  quality of code tha t  might  be 

generated us ing  the  s t r ic tness  information our  method  gathers .  Our  prototype compiler is being 
written in Prolog [2] mainly  for the  power of pa t te rn  match ing  provided by unification, and  the  ease of 
adding opdmisa t ions  a s  new c lauses  to the  compiler. We now formalize the  G-code generat ion as  a 
set  of Prolog clauses .  
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4. I .  Major Rule  Groups 
The  m a j o r  c l a u s e s  a re  def ined  below, 

f (AST, G_.CODE) G e n e r a t e s  GCODE for a function definition f rom t h e  i n t e r m e d i a t e  form,  AST, The  
c l a u s e  a s s u m e s  t h a t  ac tua l  p a r a m e t e r s  will have  b e e n  p r e - e v a l u a t e d  to t he  
degree  p red ic ted  by  o u r  a n a l y s i s  before a call  to t h e  f u n c t i o n  is  m a d e .  

t(AST, MAP, SDEPTH, G CODE) 
T h i s  c l a u s e  a t t e m p t s  to pe r fo rm tail r e c u r s i o n  op t imisa t ion ,  for t he  e x p r e s s i o n  
r e p r e s e n t e d  in  AST. MAP a n d  SDEPTH are  t h e  m a p p i n g  of p a r a m e t e r s  a n d  local 
va r i ab l e s  to pos i t ions  on  t h e  s t ack ,  a n d  t he  c u r r e n t  dep th  of t he  eva lua t ion  s t a c k  
respect ively.  

e(AST, MAP, SDEPTH, G CODE) 
T h i s  c l a u s e  will eva lua te  t h e  e x p r e s s i o n  r e p r e s e n t e d  by  AST a n d  leave a po in te r  
to t h e  r e s u l t  o n  top of t h e  eva lua t ion  s t a c k  - t he  s_s tack .  

b(AST, MAP, SDEPTH, G CODE) 
G e n e r a t e s  code for a r i t hme t i c  opera t ions .  T h i s  s c h e m e  i s  a n  op t imiza t ion  to 
c o n s e r v e  o n  t h e  u t i l iza t ion  of h e a p  s p a c e  d u r i n g  t he  g e n e r a t i o n  of i n t e rmed ia t e  
r e s u l t s .  T h e  r e s u l t  of  eva lua t ing  AST is  left o n  top of a n  a r i t hme t i c  s t a c k  - t he  
a-stack. 

susp(AST, MAP, SDEPTH, a CODE) 
Crea te  a g r a p h .  AST r e p r e s e n t s  a n  i n s t a n c e  of  ou r  susp i n t e rmed ia t e  form. 

s(PATI, PAT2, G_CODE) 
G e n e r a t e s  code to ra i se  t h e  s t r i c t n e s s  p a t t e r n  of a r e su l t  f rom PAT1 to be  PAT2. 
This is typically required when the result produced by a function application is 
weaker than that required. 

4.2.  Language Subse t  
For  expos i tory  r e a s o n s  a n d  to d e m o n s t r a t e  t h e  u s e  of s t r i c t n e s s  i n f o r m a t i o n  d u r i n g  code 

gene ra t ion ,  we sha l l  res t r ic t  o u r s e l v e s  to a very  s m a l l  l a n g u a g e  def ined  below. 

D {Defelitions) ::= Fun x l . . x  n = E 
E (Expressions) ::= C o n s t a n t s  i In tOp E E f RelOp E E 

c o n s E E  I L i s t O p E  I F u n E . . E  I f f E E E  
C o n s t a n t s  ::= In tegers  I Boo leans  I nfl 
In tOp ::= a d d  I s u b  I m u l t  J div 
RelOp ::= gt  [ ge I It I le I eq  I ne  
ListOp ::= h d  I tl I nu l l  
F u n  ::= Identif ier  

F u n c t i o n s  a re  appl ied  wi th  all a r g u m e n t s  p resen t ,  We now p r e s e n t  each  of  t h e  ru le  g r o u p s  in  tu rn .  
All t h e  c l a u s e s  h a v e  b e e n  ex t r ac t ed  f rom o u r  exis t ing  compiler .  However  t h e y  are p r e s e n t e d  he re  in  a 
s implif ied fo rm omi t t ing  p a r a m e t e r s  requ i red  for la te r  p h a s e s  of t h e  code genera t ion .  Also, m o s t  of 
t h e  er ror  c h e c k i n g  c l a u s e s  a n d  c l a u s e s  to t e r m i n a t e  r e c u r s i o n  have  b e e n  omi t ted  for brevity.  The  
c l a u s e s  below are  w r i t t e n  i n  t h e  D E C 1 0  Prolog s y n t a x  [2]. ± is  deno ted  by  ? i n  t he  c l a u s e s ,  

4.3 .  F - scheme:  F u n c t i o n  C o m p i l a t i o n  

F-1. f([fun, Fname, Parm, Body], GCode) :- 
length(Parm, Lp), Lpl is L + I, /* Compute stack depth */ 
args map(Parm, PMap, Lpl), /* mapping of params onto stack */ 
t(Body, PMap, LpI, GCode). /* try Tail Recursion Optimisation */ 

Given a f u n c t i o n  def ini t ion we a t t e m p t  to pe r fo rm tail  r e c u r s i o n  op t im i sa t i on  v ia  t he  
t-scheme, args map r e t u r n s  t h e  m a p p i n g  of fo rmal  p a r a m e t e r s  to pos i t ions  on  t he  s t ack .  The  defaul t  
is h a n d l e d  b y  ru le  T-3.  

4.4 .  T - scheme:  Tai l  R e c u r s i o n  O p t i m i z a t i o n  

T-I. t([expr, [F[Args], Sr], Map, Depth, GCode) :- 
type(F, FormalPrm, Sf), /* database lookup */ 
length(Args, L), length(FormalPrm, L), /* sufficient args? */ 
reverse(Args, RArgs), /* not relevant here */ 
eArgs(RArgs, Map, Depth, EArgs), /* evaluate args */ 
s(Sf, St, Strict), /* refine result pattern*/ 
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(Strict = [] -> 
append(EArgs, [[move, M], ~un, F]], GCode) ; 
flattenl ( [EArgs, [ [move, M], If call, F] ], Strict], GCode) ) 

T-2. t([expr, [if, El, E2, E3], Sr], Map, Depth, GCode) :- 
b(El, Map, Depth, ElCode), /* result on a-stack*/ 
t(E2, Map, Depth, E2Code), /* then part */ 
t(E3, Map, Depth, E3Code), /* else part */ 
(flattenl ( [EICode, [ [jtrue, LI] ], E3Code, 

[ [label, LI] ], E2Code], 
GCode) ) . 

T-3. t(E, Map, Depth, GCode) :- /* default case */ 
e(E, Map, Depth, ECode), /* evaluate and update */ 
flatenl ( [ECode, [ [update], [ret] ] ], GCode) . 

T-4. eArgs([A[ Args], Map, Depth, GCode) :- 
e(A, Map, Depth, EICode), /* evaluate arg */ 
Depthl is Depth + I, /* position for next arg*/ 
eArgs(Args, Map, Depthl, ArgsCode), /* rest of args */ 
append(EiCode, ArgsCode, GCode). 

When a user  defined function culminates in a call to another user  defined function, taft 
recursion optimlsation is possible. In Rule T. 1 we check that  the function has  been supplied with 
sufficient arguments,  and evaluate them via the e~ rgs  clause. The eArgs evaluates each of the 
arguments  using the e - s c h ~ .  Note that  the degree to which each of the arguments  is to be 
evaluated is contained in our abstract  representation. The s - s c h ~  is used to raise the pattern 
produced by the function, namely Sf, to the level s t .  Tall recursion optimisation (via the j fun  
instruction) is only possible ff this refinement code is absent. The newly created arguments  are 
moved in place of the old via the [move, M] instruction. Rule T.2 propagates the recursion scheme 
into the branches  of the conditional, with the default rule being T.3. The t - s c h ~ - ~  is extended 
naturally to the l e t  construct  by evaluating the common subexpressions to the degree required, and 
propagating the t - s c h ~  into the expression to be evaluated. The default rule evaluates the 
expression and updates  the result application node. 

4.5. E-scheme" Evaluate Expression 

E-1. e(I, _, _, [[pushint, I"]]) :- integer(I). /* no evaluation required*/ 
likewise for boolean constants and nil. 

E-2. e([var, X, Sr, Sx], Map, Depth, [[push, OFFSET][ STRICT]) :- 
assoc(X, Map, IX, OFFSET]), 
s(Sx, Sr, STRICT). /* refinement possible*/ 

E-3. e([expr, [add, Ei,E2],Sr], Map, Depth, GCode) :- /* arithmetic */ 
(Sr==d; Sr==a; Sr==de), 
b( [expr, [add, EI,E2] ,a], Map, Depth, BCode) , 
append(BCode, [ [mkint] ], GCode) . 

likewise for sub, div, mull 

E-4. e([expr,[eq, Ei,Ei],Sr], Map, Depth, C-Code) :- /* relational */ 
(Sr==d; Sr==a; Sr==de), 
b([expr, [eq, EI,E2],Sr], Map, Depth, BCode), 
append(BCode, [ [mkbool] ], GCode) . 

E-5. e([expr, [if,EI,E2,E3],Sr], Map, Depth, GCode) :- /* conditional */ 
b(El, Map, Depth, EiCode), 
e(E2, Map, Depth, E2Code) , 
e(E3, Map, Depth, E3Code) , 
flattenl([EiCode, [~true, Ll]], E3Code, [~mp, L2]], 

[[/abel, Ll]], E2Code, [[label, L2]]], 
GCode) . 

E-6. e([expr,[null,E],Sr], Map, Depth, GCode) :- /* null operator */ 
e(E, Map, Depth, ECode), 
append (ECode, [ [null] ], GCode) . 
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E-7. e( [expr, [hd, [var,X,_, [B,_]]],A], Map, Depth, /* (hd x) */ 
[[push, OFF],[hd][ STRICT]) :- 

assoc(X, M, [X, OFF]), 
s(B, A, STRICT). /* refinement possible */ 

Likew~efortlfunct~n /* after direct access */ 

E-8. e( [expr, [hd, [var,X,_,d]],A], Map, Depth, 
[[push, oFF],[hd_check][ STRICT]) :- 

assoc(X, M, IX, OFF]), /* test required */ 
s(?, A, STRICT). /* refinement possible */ 

Likew~efor~ 

E-9. e( [expr, [hd, [var, X,_,de]],A], Map, Depth, 
[[push, OFF],[hd_check]] STRICT]) :- 

assoc(X, M, [X, OFF]), /* test required */ 
s(de, A, STRICT). /* further tests possible */ 

L~ew~efortl 

E-10. e([expr, [hd, [expr, [F[Args],_]],A], Map, Depth, GCode) :- 
type(F, P, [B,_]), 
length(P, L), length(Args, L), /* sufficient args */ 
e([expr, [FIArgs], [B,?]], Map, Depth, FCode), /* call function */ 
s(B, A, STRICT), /* refine result */ 
flattenl([FCode, [hd], STRICT], GCode). 

L~ew~efortl 

E-If. Rule 8 is extended to handle function application in a fashion similar 
to rule I0. 

E-12. Rule 9 extended to handle function application in a fashion similar to 
rule I0. 

E-13. e([expr,[hd, E],_], Map, Depth, GCode) : -  
e(E, Map, Depth, ECode), 
append(ECode, [[hd_check]], GCode). 

/* default case*/ 

E-14. e ([expr, [cons,El,E2],_], Map, Depth, GCode) :- 
e(E1, Map, Sd, Vd, EICode), /* head part */ 
Sdl is Sd +i, 
e(E2, Map, Sdl, Vd, E2Code), /* tail part */ 
flattenl([EiCode, E2Code, [[CO~S]]], Code). 

E-15. e([suspIS], Map, Depth, GCode) :- 
susp([susplS], Map, Depth, GCode). 

/* graph creation */ 

E-16. e ([expr, [F[Args],Sr], Map, Depth, GCode) : /* function application */ 
type(F, P, Sf), 
length(P, M), length(Args, M), /* sufficient args */ 
reverse(Args, RArgs), 
Depthl is Depth + I, 
eArgs(RArgs, Map, Depthl, EArgs), /* evaluate args*/ 
s(Sf, Sr, STRICT), /* refine result */ 
flattenl([[[mkhole]], EArgs, [[[call, F]], STRICT], GCode). 

E-17. e(E ....... [[error]]) :- 
error ("Cannot compile expression") . 

The  e - s c h e m e  leaves  a po in te r  to a r e s u l t  on  top of t h e  eva lua t ion  s tack .  Rule  E-2 ref ines  a 
fo rmal  p a r a m e t e r  to t h e  degree  requi red .  Ru les  E-3 a n d  E-4 t r a n s f e r  t he  code gene ra t i on  t a s k  to t he  
B - s c h e m e  w h i c h  c o m p u t e s  all t e m p o r a r i e s  o n  the  a r i thme t i c  s tack ,  un t i l  t h e  r e su l t  Is to be  finally 
t r a n s f e r r e d  to t h e  s - s t a c k  via t h e  mkbool or mk|nt i n s t r uc t i ons .  In Rule  E-6,  t he  i n s t r u c t i o n  null 
leaves  a boo lean  r e s u l t  on  t h e  a - s tack .  R u l e s  E-7 to E-13  are  op t im i sa t i ons  on  t h e  h e a d  a n d  taft 
func t ions ,  w h i c h  t a k e  a d v a n t a g e  of t h e  specific s i t u a t i o n  to gene ra t e  be t t e r  code. The  defaul t  rule  is  
E-13.  T h e  i n s t r u c t i o n  hd_eheck a c c e s s e s  the  head c o m p o n e n t  of t he  list  af ter  a type  check h a s  b e e n  
per formed.  In  Rule  E-14  we h a n d l e  f u n c t i o n  appl icat ion.  The  degree  of eva lua t ion  requ i red  by  each  of 
t h e  a r g u m e n t s  will be  m a n i f e s t  in  o u r  in t e rmed ia t e  r ep resen ta t ion .  The  mkhole i n s t r u c t i o n  m a k e s  
space  for t h e  r e s u l t  o n  t h e  h e a p ,  a n d  t h e  fcall  i n s t r u c t i o n  pe r fo rms  t he  con tex t  switch.  Th i s  rule  
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under  fully strict conditions generates code that  follow the call-by-value semantics of parameter 
passing. 

4.6. B-scheme: Compute Basic Value 

B-I. b(I ..... [[pushbaslc, I]]) :-integer(I). 
Likewise for boolean constants. 

B-2. b( 

B-3. b( 

B-4. b( 

[var, X, Sr, a], Map, Depth, [[geW, OFF]]) 
(Sr==d; Sr==a), 
assoc(X, Map, [X, OFF]). 

[expr,[add, E1,E2],Sr], Map, Depth, GCode) :- 
b(E1, Map, Depth, BICode), 
b(E2, Map, Depth, B2Code), 
flattenl([BiCode, B2Code,[[add]]], GCode). 

Likewiseforsub, mu~  div, eq, ne, gt, ge, lt, 

[expr, [if, El, E2, E3], St], Map, Depth, Code) :- 
(St == d ; Sr == a), 
b(E1, Map, Depth, EiCode), 
b(E2, Map, Depth, E2Code), 
b(E3, Map, Depth, E3Code), 
flattenl([EiCode, [~true, Ll]], E3Code, [~mp, L2], 

[label, LI]], E2Code, [[/abe[, L2]]], 
Code) . 

B-5. b(E, Map, Depth, GCode) :- 
e(E, Map, Depth, Vd, ECode), 
append(ECode, [ [get] ], GCode) . 

The B-scheme rule does the s tandard bottom up evaluation of entirely strict expressions on 
the arithmetic stack. Rule B-5, needs to resort to the e-scheme to compute the value of the 
expression E, and get its result  on the a-stack. 

4.7. Susp-scheme: Create Graph 

susp ( [susp, [F [Free],_], Map, Depth, [ [pushfun, F] [ F=eeC] ) :- 
Depthl is Depth + i, 
susp_param(Free, Map, Depthl, FreeC). 

susp_param([Xl Free], Map, Depth, [[push, OFF],[mkup]I FreeC]) :- 
assoc(X, Map, [X, OFF]), 
Depthl is Depth + i, 
susp_param(Free, Map, Depth1, FreeC). 

This scheme constructs  the graph for the susp  intermediate form. We merely need to 
determine the offset of the free variables required in the graph and connect them together via the 
m k a p  instruction. 

4.8. S-scheme: Strictness  Pattern Refinement 

s - 1 .  s ( x ,  x,  [])+ 

S-2. s (?, d, [ [eval] ]). 

S-3. s(?, a, [[eval],[atomicp]]). 

S-4. s(?, [A,B], [[eval], [llstp][ GCode]) :-s([?,?], [A,B], GCode)+ 

S-5. s(d, a, [[atomicp]]). 

S-6. s(d, [A,B], [[/~S~]l Code]) :-s([?, ?], [A, B], Code). 
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S-7. s(a, [A, BI, [[error]l) :- error("Atomic value where list expected"). 

S-8. s (de, a, [ [atomicp] ]). 

S-9. s(de, [A,B], [[/~s~][ Code]) :- 
s([de, de]r [A,B], Code). 

S-10. s([A,B], [C,D], Code) :- 
s (A, C, Code1) , 
s_head(Codel, Codel_head), 
s (B, D, Code2) , 
s_tail (Code2, Code2 tail), 
append(Codel_head, Code2_tail, Code). 

s - 1 1 .  s ( _ ,  _ ,  []). 

S-12. s head(I], []). 
S-13. s_head(Code, Code head) :- 

flattenl ( [ [ [push_top], [hd] ], Code, [ [popl ] ], Codehead) . 

S-14. s tail([], []). 
S-15. s_tail(Code, Code tail) :- 

flattenl ( [ [ [p~_top], [tl] ], Code, [ [pop] ] ], Code_tail) . 

s (Patl, Pat2, GCode) generates code to ref~e Patl to be Pat2. 

4.9. Peephole Optlmlsations 
Direct shor t  cuts  are made when  updat ing the application node with the result.  Instead of 

forming the resul t  s t ruc ture  on top of the s tack and  then  copying the resul t  into the application node 
to be updated,  we directly create the  result  on the  application node. Thus  the following optimisations 
result: 

[cons] [update] -9 [update_cons] 
[mkint] [update] --) [update_int] 
[mkbool] [update] -) [update bool] 
[mkap] [update] -) [update_appl] 

In  t h e  s a m e  spi r i t  t h e r e  ls n o  n e e d  to c rea te  a boo lean  va lue  on  t he  a - s t a c k  ff it is going to be  
immed ia t e ly  t e s t e d  a n d  r emoved  in  the  n e x t  ins t ruc t ion .  Therefore  we get  t he  following opt imisa t ion:  

[eq] [jtrue,Label] -9 [jeq, Label] 
[Itl [jtrue,Label] -) [jlt, Label] 
[null] [jtrue,Label] -~ [jnull, Label] etc. 

5. Sample Code Generated 
Below we give the code generated for the from function defined below. 

from x y = if x > y then nil else cons x (from (x + I) y); 

The  i n t e r m e d i a t e  r e p r e s e n t a t i o n  a s s u m i n g  a s t r i c t n e s s  s i g n a t u r e  of  (a a) --> de  is s h o w n  
below. T h i s  w a s  u s e d  to  g e n e r a t e  t h e  f i rs t  c o l u m n  in  f igure 5 - i .  T h e  s e c o n d  c o l u m n  in f igure 5- t  w a s  
g e n e r a t e d  a s s u m i n g  a s t r i c t n e s s  s i g n a t u r e  of  (k ±) ~ d. T h i s  i s  a conven i en t  example  to h a n d  t e s t  
t h e  r u l e s  g iven  in  t h i s  paper .  

(fun from (x y) (expr (if E1 E2 E3) de)) 
whe re 

E1 = (expr (gt2 (var x a a) (vat y a a)) a) 
E2 = nil 
E3 = (expr (cons (var x de a) 

(expr (from (expr (add2 (var x a a) I) a) 
(vary a a)) 

de) 
(de de))) 

Several  d i f ferences  s h o u l d  be  no ted  w h e n  c o m p a r i n g  t h e  code g e n e r a t e d  in  t he  two cases ,  
referred to a s  t h e  s t r i c t  v e r s i o n  (SV) a n d  t h e  n o n  s t r ic t  ve r s ion  (NSV). 
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I. getv(3) I* a_stack := x *I 
2. getv(2) /* a_stack := y */ 
3. jgt2(gO001) /* test */ 

4. push(3) /* s stack := x *I 
5. mkhole /* r~sult node */ 
6. push(2) /* s_stack := y */ 
7. getv(3) /* a_stack ;= x */ 
8. pushbasic(1) /* a_stack := 1 */ 
9. add2 
I0. mkint /* s stack := x+l */ 
II. fcall(from) /* ca~l from */ 
12. update_cons /* make result */ 
13. ret 

14. label(gO001) 
15. pushnil 
16. update 
17. ret 

I. push (3) 
2. eval 
3. atomicp 
4. get 
5. push (2) 
6. eval 
7. at omicp 
8. get 
9. jgt2 (gO002) 

/* s stack := x */ 
/* evaluate */ 
/* atom test */ 
/* a stack := x */ 
/* s stack := y */ 
/* e~a!uate */ 
/* atom test */ 
/* a stack := y */ 
/* t ~ s t  */ 

/* s stack := nil */ 

i0. push(3) /* 
11. pushfun(froml)/* 
12. push(3) /* 
13. mkap /* 
14. push /* 
15. mkap /* 
16. update cons /* 
17. ret 

param x */ 
new function*/ 
s stack:= x */ 
~ke graph */ 
s stack:= y */ 
~ke graph */ 
make result */ 

18. label(gO002) 
19. pushnil 
20. update 
21. ret 

F i g u r e  5 - 1 :  S a m p l e  C o d e  F o r  F u n c t i o n  from 

• In the SV, the parameters  are directly accessed and moved to the arithmetic stack whereas in 
the NSV, evaluation and type checking is performed. 

• The SV implements call-by-value parameter passing semantics  whereas the NSV creates a 
suspended result  to be later evaluated upon demand. 

One would expect that  in a fully strict version of a function, the G-code generated would be 
comparable to that  produced by any LISP compiler. Indeed our preliminary timing tests  seem to 
confirm this notion. 

Our analysis method is currently under  development. To be able to test  our compiler we have 
developed an annotated user  language, with type declarations, where the type information is 
propagated into the subexpressions of a function definition. The resulting intermediate form is not as 
rich as the one we expect from the analysis due to the simple nature of the pattern propagation, The 
resulting G-code is macro expanded to form a C program [9]. This has  enabled us  to perform some 
valuable comparisons, the results  of which are summarized below. All timings were measured on a 
VAX 8600 running UNIX TM. 

SV NSV 2 ML 3 Miranda PSL 4 C Pascal 
fib 20 0.7 1.4 1 26.3 0.7 0,1 0.1 
tak 18 12 6 2.1 7.2 11 87.0 1.4 0.3 0.8 
sieve 2,.500 (10 times) 3.2 7.0 13 43.0 3.2 
insertion sort 5 4.3 13.0 23 51.06 2.8 
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