Skip to main content

Visco-plasticity and plasticity an alternative for finite element solution of material nonlinearities

  • Elements Finis
  • Conference paper
  • First Online:
Book cover Computing Methods in Applied Sciences and Engineering Part 1

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 10))

Abstract

In this paper, authors present a formulation and some computational details dealing with a general elastic/visco-plastic material where nonlinear elasticity is admissible and the flow rule and yield condition need not be associated.

If, in a visco-plastic solution method, stationary conditions are reached for the displacements, the solution to an equivalent plasticity problem is obtained. The visco-plastic approach thus provides an alternative technique to solve elasto-plastic problems, and which is found to possess considerable merits vis à vis other iterative processes.

In particular, non-associated flow rules and strain softening can be dealt with in a general purpose program without requiring specific numerical artifices. Further, by providing always an equilibrating solution (within the approximations of the finite element discretisation) and, at displacements stationarity, ensuring a plastically admissible stress distribution, results always give a lower bound to collapse.

The paper includes several examples to illustrate the application of the method to some problems of practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APPLEBY, E. J. and PRAGER, W. ‘A problem in visco-plasticity’ J. Appl. Mech., 29, 381–384 (1962).

    Google Scholar 

  2. ARGYRIS, J. H. and SHARPF, D. W. ‘Methods of elasto-plastic analysis'. Symp. on Finite Element Techniques, Stuttgart (1969).

    Google Scholar 

  3. BAUER, F. and REISS, E. L. ‘On the numerical determination of shrinkage stresses'. A.S.M.E. Trans., J. Appl. Mech., March 1970, 123–27 (1970).

    Google Scholar 

  4. BINGHAM, E. C. ‘Fluidity and Plasticity’ Chapter VIII, 215–218, McGraw-Hill, New York (1922).

    Google Scholar 

  5. CHABOCHE, J. L. ‘Calcul des déformations visco-plastiques d'une structure soumise à des gradients thermiques évolutifs’ Faculté des Sciences d'Orsay. Paris. Thèse (1972).

    Google Scholar 

  6. DINNO, K. S. and GILL, S. S. ‘An experimental investigation into the plastic behaviour of flush nozzles in spherical pressure vessels’ Int. J. Mech. Sci., 7, 817 (1965).

    Article  Google Scholar 

  7. DRUCKER, D. C., PRAGER, W. and GREENBERG, H. J. ‘Extended limit design theorems for continuous media’ Quart. Appl. Math., 9, 381–389 (1952).

    Google Scholar 

  8. FREUDENTHAL, A. M. and GEIRINGER, H. ‘The mathematical theories of the inelastic continuum’ Encyclopedia of Physics, Vol. VI, 229–433 (1958).

    Google Scholar 

  9. GREENBAUM, G. A., and RUBINSTEIN, M. F. ‘Creep analysis of axisymmetric bodies using finite elements'. Nucl. Eng. and Design, 7, 4, 378–397 (1968).

    Google Scholar 

  10. LEMAITRE, J. ‘Elasto-visco-plastic constitutive relations for quasi-static structures calculations’ ONERA publication TP 1089 — Chatillon (France) (1972).

    Google Scholar 

  11. MARCAL, P. V., and KING, I. P. ‘Elastic plastic analysis of two dimensional stress systems by the finite element method'. Int. J. Mech. Sci., 9, 143–155 (1967).

    Article  Google Scholar 

  12. NAYAK, G. C. and ZIENKIEWICZ, O. C. ‘Convenient form of stress invariants for plasticity’ Proc. A.S.C.E., 98, ST4, 949–954 (1972).

    Google Scholar 

  13. NAYAK, G. C. and ZIENKIEWICZ, O. C. ‘Elasto-plastic stress analysis. Generalization for various constitutive relations including strain softening'. Int. J. Num. Meths. in Eng., 5, 113–135 (1972).

    Article  Google Scholar 

  14. NGUYEN, Q. S. and ZARKA, J. ‘Quelques méthodes de résolution numérique en élastoplasticité classique et en élastoviscoplasticité’ Séminaire Plasticité et Viscoplasticité, Ecole Polytechnique, Paris (1972).

    Google Scholar 

  15. PERZYNA, P. ‘Fundamental problems in viscoplasticity’ Advances in Applied Mechanics, 9, 243–377 (1966).

    Google Scholar 

  16. REINER, M. ‘Rhéologie théorique’ Dunod, Paris (1955)

    Google Scholar 

  17. SUTHERLAND, W. H. ‘AXICRP. Finite element computer code for creep analysis of plane stress, plane strain and axisymmetric bodies’ Nucl. Eng. and Design, 11, 269–285 (1970).

    Article  Google Scholar 

  18. TREHARNE, G. ‘Applications of the finite element method to the stress analysis of materials subject to creep’ Ph.D. thesis, University of Wales, Swansea (1971).

    Google Scholar 

  19. WHITE, J. L. ‘Finite elements in linear viscoelasticity’ Proc. 2d. Conf. Matrix Methods Struct. Mech. AFFDL-TR-68-150, pp. 489–516, Wright-Patterson A.F.B., Ohio (1968).

    Google Scholar 

  20. WIERZBICKI, T. ‘A thick-walled elasto-visco-plastic spherical container under stress and displacement boundary value conditions'. Archiwum Mech. Stos. 2, 15, 297–308 (1963).

    Google Scholar 

  21. WIERZBICKI, T. ‘Impulsive loading of rigid viscoplastic plates’ Int. J. Solids and Struct., 3, 635–647 (1967).

    Article  Google Scholar 

  22. WIERZBICKI, T. and FLORENCE, A. L. ‘A theoretical and experimental investigation of impulsively loaded clamped circular viscoplastic plates'. Int. J. Solids and Struct., 6, 553–568 (1970).

    Article  Google Scholar 

  23. ZARKA, J. ‘Généralisation de la théorie du potentiel multiple en visco-plasticité'. J. Mech. Phys. Solids, 20, 179–195 (1972).

    Article  Google Scholar 

  24. ZIENKIEWICZ, O. C., WATSON, M. and KING, I. P. ‘A numerical method of visco-elastic stress analysis’ Int. J. Mech. Sci., 10, 807–827 (1968).

    Article  Google Scholar 

  25. ZIENKIEWICZ, O. C. and VALLIAPPAN, S. ‘Analysis of real structures for creep, plasticity and other complex constitutive laws'. Int. Conf. on Struct., Sol. Mech., Eng. Design and Civ. Eng. Mat., Southampton (1969).

    Google Scholar 

  26. ZIENKIEWICZ, O. C., VALLIAPPAN, S. and KING, I. P. ‘Elasto-plastic solutions of engineering problems. Initial stress, finite element approach'. Int. J. Num. Meths. Eng., 1, 75–100 (1969).

    Article  Google Scholar 

  27. ZIENKIEWICZ, O. C. ‘The finite element method in Engineering science’ McGraw-Hill, London (1971).

    Google Scholar 

  28. ZIENKIEWICZ, O. C. and CORMEAU, I. C. ‘Viscoplasticity solution by finite element process'. Archives of Mechanics, 24, 5–6, 873–888 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Glowinski J. L. Lions

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zienkiewicz, O.C., Cormeau, I.C. (1974). Visco-plasticity and plasticity an alternative for finite element solution of material nonlinearities. In: Glowinski, R., Lions, J.L. (eds) Computing Methods in Applied Sciences and Engineering Part 1. Lecture Notes in Computer Science, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015179

Download citation

  • DOI: https://doi.org/10.1007/BFb0015179

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06768-9

  • Online ISBN: 978-3-540-38374-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics