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Abstract. The past twenty years has seen a rapid growth of interest in stochas-
tic search algorithms, particularly those inspired by natural processes in physics
and biology. Impressive results have been demonstrated on complex practical op-
timisation problems and related search applications taken from avariety of fields,
but the theoretical understanding of these algorithms remains weak. This results
partly from the insufficient attention that has been paid to results showing certain
fundamental limitations on universal search agorithms, including the so-called
“No Free Lunch” Theorem. This paper extends these results and draws out some
of their implications for the design of search algorithms, and for the construction
of useful representations. The resulting insights focus attention on tailoring alg-
orithms and representations to particular problem classes by exploiting domain
knowledge. This highlights the fundamental importance of gaining a better the-
oretical grasp of the ways in which such knowledge may be systematically ex-
ploited as a major research agenda for the future.

1 Overview

Thelast two decades has seen increasing interest in the application of stochastic search
techniques to difficult problem domains. Strong biological metaphors led to the devel-
opment of several schools of evolutionary computation, including work on genetic alg-
orithmsand classifier systems (Holland, 1975), evolution strategies (Rechenberg, 1973,
1984; Baeck & Schwefel, 1993), evolutionary programming (Fogel et al., 1966) and ge-
netic programming (Koza, 1991). Physical anal ogues provided both the motivation and
theoretical framework for the method of simulated annealing (Kirkpatrick et al., 1983).
Other randomi sed methods, such astabu search (Glover, 1986) and avariety of stochas-
tic hill climbers and related search techniques have al so attracted much interest.
Although some theoretical progress has been made in the study of stochastic sea-
rch techniques, most attention hasfocused on the artificial situation of arbitrary (“black-
box™) search problems. Despite occasional warnings from various researchers (Vose &
Liepins, 1991; Radcliffe, 1992, 1994; Wolpert & Macready, 1995) a great deal of re-
search seems oblivious to the fact that in such a situation there is no scope for distin-
guishing any of these biased sampling methods from enumeration—random or fixed—
as we demonstrate below. There are exceptions to this, for example the convergence
results for simulated annealing which exploit knowledge of the problem domain (e.g.
Laarhoven & Aarts, 1989, Shapiro et al., 1994) but much effort continuesto be devoted



to the “general” case, (Vose, 1992; Goldberg, 1989c, 1989a, 1989b). While such stud-
ies lead to elegant mathematics, and provide occasional insights into stochastic search,
their practical utility in guiding—or even making contact with—practitioners tackling
real search problemsremainsto be demonstrated.

This paper explicitly demonstrates these fundamental limitations on search algor-
ithms, and highlights the necessity of theory incorporating knowledge of the problem
domain of interest. Much interest in this topic has been aroused lately as awareness has
grown of theso-called“No Free Lunch Theorem” (Wolpert & Macready, 1995), which—
broadly—statesthat if asufficiently inclusive class of problemsis considered, no search
method can outperform an enumeration. This paper discusses the conseguences of this
and other fundamental limitations on search for the practical design of stochastic search
algorithms, particularly evolutionary algorithms, and emphasizes that there are many
possible improvementsthat are not strongly limited by the theorems.

A moreaccessibleand general form of the No FreeLunch Theoremisfirst presented,
based on arguments put forward previously (Radcliffe, 1992, 1994). Strictly, this result
showsthat over the ensemble of all representations of one space with another, all algor-
ithms (in arather broad class) performidentically on any reasonable measure of perfor-
mance. This has as an immediate corollary the No Free Lunch Theorem, and provides
an interesting context for the “minimax” results given in Wolpert & Macready (1995).

Having proved the main results, attention turns to adiscussion of their implications.
First, issues concerning searches that re-sample points previously visited are discussed.
After this, representational issues are discussed and restricted problem classes are con-
sidered in two stages. Thefirst focuses on the case in which some unspecified represen-
tation is used which is known—in an appropriately defined sense—to fit the problem
class well, and it is shown that different algorithms can be expected to perform differ-
ently in these cases. The second focuses on how knowledge concerning the structure of
some class of functions under consideration can be used to choose an effective algor-
ithm (consisting of a representation, a set of move operators and a sampling strategy).
In particular, the critical rble of representation in determining the potential efficacy of
search algorithms is once again highlighted.

Finally, an agendafor future research is set forward, focusing on integrating the re-
strictions stated herein with the wide scope for theory incorporating domain-specific
knowledge. Theauthorsdraw attentionto what they feel areimportant unanswered ques-
tions concerning performance measurement, comparison of families of stochastic algor-
ithmsand difficulty of real-world problem domains, and suggest a new methodol ogy for
comparing search algorithms.

2 Terminology

2.1 Search Space Concepts

Before formulating theorems about search, it will be useful to introduce some termi-
nology, to reduce the scope for misinterpretation. A search problem will be taken to be
characterised by a search space, S—the set of objects over which the search is to be
conducted—and an objective function, f, which is a mapping from S to the space of



objective function values, R, i.e.
f:S§—R. (1)

Althoughthemost familiar situation ariseswhen R = R (the set of real numbers) and the
goal isminimisation or maximisation of f, it is not necessary to require this for present
purposes. For example, R could instead be avector of objectivefunction values, giving
rise to a multicriterion optimisation.

Note that the set of all mappingsfrom S to R isdenoted RS, 0 f € RS.

2.2 Representation

The issue of selecting an appropriate representation is central to search, as arguments
in this paper will once again confirm. The present section gives a formal definition of
arepresentation space, but further motivation for concentrating on representation as an
issueisgivenin section 5.

A representation of S will be taken to be a set C (the representation space, or the
space of chromosomes) of size at least equal to S, together with a surjective function g
(the growth function) that mapsC onto S:

g:C—S. 2

(Surjectivity is simply the requirement that ¢ maps at least one point in C to each point

inS.) The set of surjective functionsfrom € to S will be denoted S¢, so g € S¢ C SC.

If C and S have the same size, then g is clearly invertible, and will be said to be a
faithful representation.

Objective function values will also be associated with points in the representation
space C through composition of f with g,

fog:C— R (3

being given by
fog(x) = flg(x)). @
The relationship between C, S and R is shown in figure 1.

2.3 Sequences

Given any set .4, S(A) will be used to denote the set of all finite sequences over A,
including the empty sequence (), i.e.:

S(A)é{(al,a2,...,an>|aieA,1§i§n}. (5)



Fig. 1. The growth function g maps the representation space C onto the search space S,
which is mapped to the space of objective function values R by the objective function
f.If g isinvertible, the representation is said to be faithful.

2.4 Permutations

Most of the “work” in the following theoremsis achieved by using a permutation, i.e. a
re-labelling of the elements of one of the spaces (usually C). A permutation of a set A
isarelabelling of the elements of the set, i.e. an invertible mapping

T: A— A (6)

The set of all permutationsof A objectswill be denoted P (A). The changesto afaithful
representation of a search space S by arepresentation space C under al possible permu-
tations of the elements of C are shown in figure 2.

Fig. 2. This figure shows the 4! invertible mappings between a representation space C
(in this case binary strings) and an arbitrary search space S of the same size. Note that
1/4 of the mappings (each shown in grey) map the global optimum (shown with a star)
to the string 00.



2.5 Search Algorithms

For the purposes of the present paper, a deterministic search algorithm will be defined
by a function which, given a sequence of points (x;), with each z; € C, and the cor-
responding sequence of objective function values for those points under the composed
objective function f o g, generatesanew point z,,+1 € C. Thus, asearch algorithmis

defined by a mapping A
S(C) xS(R) — C. (7)

X
Thefirst point in the search sequence (A;) € S(C) associated with the algorithm defined
by Ais

with subsequent points being recursively defined by
Ant1 ZA(ANL (o g(A)) ). )

A stochastic search algorithmwill betaken to be exactly the same asadeterministic sea-
rch algorithm except that it al so uses aseed for a pseudo-random number generator used
to influenceits choice of the next point z,, ;. Formally, astochastic search agorithmis
then defined by amapping A’ of the form

A" S(C) x S(R) x Z — C. (10)

(The seed is of course a constant, the same at every application of A’.) This processis
illustrated in figures 3 and 4.

g(Al) ____________ ng(Al)

Fig.3. The first point in the search is determined by the algorithm and the seed,
A = A((), (), k). The next point, A, is determined by these values together with the
new information f o g(A;). Note that the algorithm has no information about the point
g(A1) inS which was used to generate the observed function value: thisis entirely con-
trolled by the representation g.

Notethat astochastic search algorithmisperfectly at liberty toignorethe given seed,
and in this sense will be taken to include the case of a deterministic search algorithm.



Az = A((A1, A2), (f 0 g(A1), [ o g(A2)), k)

———————————— fog(AQ)

—_——— e —

Fig. 4. The next point in the search is simply obtained by iterating the mapping. Notice
that if f o g(A42) = f o g(A1), theagorithm cannot “know” whether or not it visited a
new pointin S (i.e. whether g(A») = g(A1)).

Because of this, results derived for the stochastic case also apply to the deterministic
case. These definitions of algorithm are certainly broad enough to include all familiar
classes of stochastic search algorithms as actually used (e.g. hill climbers, evolutionary
algorithms, simulated annealing, tabu search). Theissue of “insisting” on use of arep-
resentation is discussed further in section 5.

We shall abuse the notation slightly by identifying a search algorithm with the func-
tion that definesit, i.e. the search algorithm defined by the mapping A will aso be de-
noted A.

Note particularly that in both cases, the sequence of points (z;) is not assumed to
be non-repeating except when this is explicitly stated. Further, search algorithms will
aways be assumed to run until they have searched the entire representation space C,
though performance measures will be at liberty use only some smaller number of func-
tion values (such asthefirst V).

2.6 Valid Search Sequencein S

It will sometimes be convenient to refer to avalid search sequencein S in the context of
somerepresentationg € Sg and some non-repeating search algorithm A. A valid search
sequenceis simply onethat can be generated as the image under g of a (non-repeating)
search sequencein C. For example, if C contains one more element that S, each (com-
plete) valid search sequencein S contains one member of S twice and al others exactly
once.

2.7 Performance Measures

All the results below will refer rather cavalierly to “arbitrary performance measures’,
soit will be useful to make clear exactly what the assumed scope of such a performance
measure actually is. A performance measure for a search algorithm will be taken to be



any measure that depends only on the sequence of objective function values of the im-
ages under g of the pointsin C chosen by the algorithm. Formally, a performance mea-
sure u will be taken to be any function

w:S(R) — M (12)

where M isany set used to measurethe” quality” of some sequenceof objectivefunction
values. Thus, abusing the notation further, we will define the performance of an algori-
thm A to be

p(A) = u((f o g(4)))- (12)

Thereisanimportant distinction between algorithmsthat revisit pointsin C and those
that do not. The performance measures defined here exclude those that can distinguish
between objective function values deriving from newly visited pointsin C and points
previously visited. Rather, we regard the non-revisiting algorithm derived from an alg-
orithmthat doesrevisit pointsin C asadifferent algorithm with potentially different per-
formance.

We will aso consider the performance of an agorithm over an (unordered) set of
functions. By an overall performance measure we will mean any measure of the quality
of acollection of sequencesof objectivefunction values. Given that two different objec-
tive functionsmay generate the same sequence of values, this collectionwill, in general,
be amultiset (bag) of such sequences (i.e. sequences may appear more than once in the
collection). Notice also that the collection is taken to be unordered, so that an overall
performance measure is insensitive to the order in which the functions are presented. A
simple example of such an overall performance measureis the average number of func-
tion evaluations required to find aglobal optimum.

3 NoFreeLunch Theorems

Thefirst task in formulating limitations on search is to define what it means for two alg-
orithmsto be isomorphic. Very simply, theideais that two algorithms are isomorphic if
one can be obtained from the other by a permutation of the representation space. Thisis
what the following definition says.

Definition (Isomor phism for search algorithms). Let A and B be non-repeating sto-
chastic search algorithmswith an objectivefunction f € RS, agrowthfunctiong € S¢
and (fixed) seeds k4 and kg respectively. Then A and B will be said to be isomorphic
with respect to f and g if and only if there exists a permutation 7 € P(C) such that

(9(4i)) = (gom(Bi)). (13)

The idea of isomorphism between search algorithms is important because the fol-
lowing resultswill demonstrate that isomorphic algorithms perform equally in some ex-
tremely strong senses.



Theorem (Isomor phism for non-repeating algorithms). Let A and B be non-repeat-
ing stochastic search algorithms using the same objective function f and the same rep-
resentation space C. Then for every representation g € S¢, A and B are isomorphic
with respect to f and g.

Proof. Let g, ¢ betwo different growth functionsin S¢ . Clearly, A must visit adiffer-
ent sequence of pointsin S under g and g'. (This may be clarified by looking again at
figures 3and 4. Sincethefirst point, A1, chosen by A isindependent of the growth func-
tion, itiseasy to seeinductively that if A visited the same sequence of pointsin S under
gandg’,then g and g’ would in fact be equal, asevery pointin C will eventually be vis-
ited by a non-terminating, non-repeating algorithm.) This shows that any valid search
sequencein S under some g € SS definesthat g uniquely (for the algorithm A4). Con-
versely each growth function ¢ defines a unique search sequencein S, namely (g(A;)).
Itisthusclear that for every g € S, yielding search sequence (g(A4;)), there exists
ag' € S suchthat (¢’ (B;)) = (g(A;)). Further, it is easy to seethat some permutation
7w € P(C) existssuchthat ¢’ = g o r—specificaly, 7(B;) = A;, whichisapermutation
of C sinceboth (A4;) and (B;) are non-repeating enumerations of C. Thisis exactly the
permutation required to demonstrate isomorphism of A and B with respect to f and g.
O

Theorem (Isomor phic algorithms perform equally over permutationsof C). Let A
and B be stochastic search algorithms that are isomor phic with respect to some objec-
tive function f € RS and some set of growth functions G C S¢ that is closed under
permutation of C. Then their overall performance on the ensemble of search problems
defined by all growth functionsin G isidentical, regardless of the performance measure
chosen.

Proof. For any valid search sequence (g(A;)) € S(S), we can find a permutation = €
P(C) suchthat (gom(B;)) = (g9(A;)) fromthedefinition of isomorphism. By symmetry,
the converse is also true, so every search sequence in S generated by either algorithm
is also generated by the other. Since it was shown in the proof of the previous theorem
that different growth functions define different search sequences, this suffices to show
that the set of search sequencesin S generated by G isthe same for the two a gorithms,
so their performance over G must be equal. O

Perhaps the most interesting consequence of this theorem is that if the entire ensemble
of representationsin S< is considered, the only factor that differentiates algorithmsis
the frequency with which they revisit points. Thisis because, over this ensemble of rep-
resentations, visiting one new point is no different from visiting any other.

Corollary (Overall Performance Measures). Consider searchalgorithmsinwhichthe
representation spaceC isthe same asthe search space S. Theoverall performanceof all
search algorithmsthat do not revisit pointsin C on the ensemble of search problems de-
fined by all objective functionsin R isidentical, regardless of the overall performance
measure chosen.

|



Proof. For al functionsin Ri , theresult follows directly from thetheoremsby atrivial
relabelling (figure 5) where we take S = R, f to be the identity mapping and G to be
the set of all functionsfrom S to R. Similarly, for any set of functions surjective onto a
subset of R, the theorem still clearly holdstaking R asthe given subset of R. Since the
set of all functionsin R< isclearly just the union over such surjective subsets, we have
the required result.

Fig. 5. Therelabelling above, with 7 astheidentity mapping, establishesthat all isomor-
phic algorithms have identical overall performanceover all functionsin R against any
overall performance measure. If f isnot surjective, the problem has to be reformul ated
using theimage f(S) in place of R for the theorem to apply directly, but since the theo-
rem appliesto each such image, it clearly also appliesto their union. A further corollary
to thisisthe “No Free Lunch” Theorem (Wolpert & Macready, 1995).

Corollary (The No Free Lunch Theorem). The mean performance of all isomorphic
search algorithmsisidentical over the set of all functionsin R for any chosen perfor-
mance measure.

Proof. Thisfollowsimmediately from the previous corollary. O

Wolpert & Macready (1995) conjecturethat there may bewhat they term* minimax”
distinctions between pairs of agorithms. Here they have in mind * head-to-head” com-
parisonson a“function-by-function” basis, where, for example, onea gorithm (A) might
outperformanother (B) on some performance measure more often thanthereverseisthe
case. Thisisclearly true, astable 1 shows. Notice, however, that such comparisons may
be non-transitive, i.e. given athird algorithm C', it might be that case that

(C>BandB > A) A C > A, (14)

where > means “outperforms’ in the minimax sense described above. An example of
exactly this situation, whereC' > B and B > A but A > C isaso showninthetable.

Corollary (Enumeration). No non-repeating search algorithmcan outperformenumer-
ation over the ensemble of problems defined by RS.

Proof. Thisis also immediate from the theorem, noting that no search can sample any
proportion of the search space faster than enumeration. O



Function Time to Minimum Winner Winner Winner
f((1,2,3)) A B C Avs.B Bvs.(C Cvs A

(0,0,0) 1 1 1 tie tie tie
(0,0,2) 1 1 2 tie B A
(0,1,0) 1 2 1 A c tie
(0,1,2) 1 3 2 A C A
(1,0,0) 2 1 1 B tie c
(1,0,2) 2 1 3 B B A
(1,1,0) 3 2 1 B c o
(1,1,2) 1 1 1 tie tie tie
Overall winner B C A

Table 1. Consider al functionsfromS = {1,2,3} to R = {0,1} and three sea-
rch agorithms A, B and C, each of which simply enumerates S. In particular, take
(A;) = (1,2,3), (B;) = (2,3,1) and (C;) = (3,1,2). Thetablelists al eight func-
tionsin RS and compares the algorithms pairwise with respect to the particular perfor-
mance measure ‘ number of steps to find a globa minimum’. Thisillustrates the “ mini-
max” distinction conjectured by Wolpert & Macready (1995), but also showsthat thisis
non-transitive. Indeed, the overall performanceof each algorithmisidentical, regardiess
of what overall performance measure is chosen. (Columns 2, 3 and 4 are permutations
of each other, illustrating this.)

4 Search Algorithmsthat Revisit Points

Before considering representational issues in more detail—which is the main theme of
this paper—it is first useful to consider the implications of the restrictions of the ear-
lier theorems to non-revisiting searches. In the form that they state the No Free Lunch
Theorem, Wolpert & Macready only consider algorithms that do not revisit points al-
ready considered, and seem to regard the issue of revisiting as atrivial technicality. In
fact, most searches do not have this property, and it is worth noting that there are good
reasons for this. Perhaps the most obviousis finite memory of real computers, but this
is not the most important explanation. For while there are undoubtedly searches carried
out for which it would be impossibletoday to store every point visited, as main memory
sizes increase, this becomes ever less of an issue. At the very least it istypically feasi-
ble to store a much larger history than even most population-based algorithms choose
to do. Much more significant is the time needed to process large amounts of data—even
merely to performacheck against every point so far evaluated requires, at best, log time.
Depending on the details of the algorithm, other functions may take even longer. Asan
example, ranking schemes used in some genetic algorithms (Baker, 1987) require their
populationsto be sorted.

Because most algorithms used do revisit points, thereisthe potential, in principle, to



improve real search techniques without reference to the particular problem being tack-
led. It should be clear that the kinds of performance measures relevant in this case con-
cern the average number of points sampled, including points visited multiple times, to
reach a solution of a certain quality, or the total “wall-clock” time to achieve the same
goal. (Indeed, this “best-so-far” graph as a function of the number of function evalua-
tionsis precisely the graph shown in most empirical papers on stochastic search.) Thus,
for example, when Whitley (1989) and Davis (1991) advocate barring duplicatesin the
population, it is perfectly possible that this will indeed prove beneficial over an entire
ensemble of problems RS . The suggested benefits of enforcing uniqueness of solutions
arethat it leadsto more accurate sampling (with respect to target sampling rates, Grefen-
stette & Baker, 1989), increases diversity in the population and makes better use of the
limited “memory” that the population represents. On the other hand, thereisaclear cost
associated with maintaining uniqueness, in that it requires checking each new (tentative)
solution generated. The point here is not whether enforcing uniqueness does improve
evolutionary search in general, but that in principal it could do so. The same appliesto
any change that affects the diversity in the population, and which is therefore likely to
affect the frequency with which points are revisited.

5 Representations and Algorithms

This paper has concentrated rather heavily on representational aspects of search, andin
doing so has established some rather powerful, general results. However, the motiva-
tion for focusing on representation goes far beyond this. For present purposes, we shall
ignore the almost philosophical debate about whether it is possible to perform a search
without a representation, and simply accept that a search may be conducted “directly”
in the search space, by-passing the representational issue. Nevertheless, it isimportant
to emphasize that the representation is not being introduced in order to facilitate storage
(or coding) of solutions on acomputer or any other device, which we regard as an aux-
iliary issue. The“point” of our representation is that we assume that move operatorsare
actually formulated (defined!) in the representation space C, rather than the search space
S, and that some benefit is potentially conferred by this.

Consider the concrete example of a three-dimensional euclidean space S and the
choice of representations between cartesian coordinates (x, y, z) and spherical polars
(r,6,$). We would consider the representation used by an algorithm to be defined not
by the coordinate system in which the pointsin S were stored in a computer (whether
in terms of high-level language constructs or actual discretised bit-patternsin memory
chips), but rather by whether the move operators manipulate polar or cartesian compo-
nents. Thereare clearly problemsfor which each representation has advantages. For ex-
ample, the polar representation might be expected to offer benefits in spherically sym-
metric problems.

It should further be pointed out that representation is often given an even more sig-
nificant role than the central one discussed above (Hart et al., 1994). Davis (1991), for
example, haslong used devices such as“ greedy decoders’ to map a“ chromosome”’ ma-
nipulated by agenetic algorithmto the solution that it represents. Whilethiscan formally
be viewed as aradically different kind of search, in which the search objects are really



“hints’ or starting points for afull local search, the more intuitive picture of a particu-
larly complex growth function has some merit. Of course, fascinating new issues arise
in this context, as there is typically no particular reason to suppose that the decoder is
surjective (indeed, it would almost defeat its motivation if it were!), nor even that it can
generate points of interest (such as global optima) for any input. Moreover, the decoder
may well contain a stochastic element, further complicating matters. Thereis aneed to
try to generalise our theories of search to begin to accommodate some of these less con-
ventional, but manifestly powerful, complex representations.

Returning to more prosai ¢ representations, consider two different algorithms A and
B, operating onthe same problem f from R S and using the same representation spaceC,
but with different growth functionsg, g’ € S€. Itisclear that there are somesituationsin
whicheventhough A # B,andg # ¢, thedifferences” cancel out” so that they perform
the same search. (Indeed, an obvious case arises when the algorithms are isomorphic,
andg' = gow for somesuitable permutation.) Thismight lead usto suspect that thereis
aduality between representationsand a gorithms, so that any changethat can be effected
by altering the representation could equally be achieved by a corresponding ateration
to the algorithm, and any change made to the algorithm could equally be effected by a
corresponding changeto the representation. In fact, it has been shown (Radcliffe, 1994)
that while the first of these statements is true, the second is not, in the general case of
algorithmsthat are allowed to revisit points, or if the stochastic element is not “factored
out” by fixing the seed. The duality—if that it be—is only partial.

If, for example, we consider a canonical genetic algorithm (say the Simple Genetic
Algorithm—Goldberg, 1989c), but allow either one-point or uniform crossover, then
thereis clearly no change of representation that transforms one of these algorithmsinto
the other, either over all possible seeds for the random number generator, or even for
a particular seed when revisiting effects are considered. Moreover, there is no reason
to assume that their performance over the class of al representationsin Sg (or indeed,
all objective functions f € R°) will be the same. In terms of the theorems described
earlier, thismerely amountsto the observation that revisiting algorithmsare not, in gen-
eral, isomorphic. However, thisformally trivial statement hasrather strong practical im-
plications given that, as noted earlier, establishing whether a point has been previously
sampled requires significant computational effort.

Despite the fact that more power is available by changing the algorithm than from
merely changing the representation, the separation between representation and search
algorithm remains extremely valuable. In section 6 we shall examine how good repre-
sentations can be exploited and constructed.

6 Restricted Problem Classes

One of Wolpert and Macready’s central messages, and one with which the authors agree
strongly, isthat if algorithms are to outperform random search, they must be matched to
the search problem at hand. (“If no domain-specific knowledge is used in selecting an
appropriate representation, the algorithm will have no opportunity to exceed the perfor-
mance of an enumerative search”—Radcliffe, 1994.) It will be useful to consider theim-
plications of the limitations on search algorithmsfrom the theoremsin two stages. First,



consideration will be givento what can be expected if it is known that the representation
used does—in an appropriately defined sense—"“match” some restricted problem class
under consideration (section 6.1). These considerations apply evenif nothing morethan
thisis known. After this case has been discussed, the focus will turn to how knowledge
of a problem class can be harnessed to select algorithms that might be expected to per-
form well (section 6.2).

6.1 Assuming a Good Representation

It will first be useful to formalise what is meant by a“ good” representation. The follow-
ing definition is suggested.

Definition (Good representation, relative algorithmic performance). Let A beasea
rch algorithm that can be applied to a set of search problems defined by RS, using a
representation space C. Let D be a (proper) subset of RS (aproblem “domain”). Then
arepresentation g € Sg will be said to be a good representation for D with respect to
some performancemeasure . if and only if A achievesbetter average performancewith
respect to ;. on problemsin D than on problemsin the whole of R .

Similarly, algorithm B will be said to be better than algorithm A over D, with rep-
resentation g, if it achieves a better average performance over D with respect to p.
|
Thisisclearly arather minimalist definition of “good”, but it will serve the present pur-
pose. In particular, the notion of aquality of arepresentationisinteresting in the context
of “representation-independent” algorithms, (effectively algorithms that can be instan-
tiated for any specified representation g—Radcliffe & Surry, 1994b, 19944). These are
discussed in section 6.2.

Focusing once more on evolutionary algorithms, the kinds of representation spaces
that are typically used are high dimensional

C261XCQX~-'XCn (15)

and the operators used normally manipulate the components of members of C to some
extentindependently. The*ideal” representation that we probably typically havein mind
is one that induces alinearly separable mapping f o g from C to R, (Mason, 1993) so
that

fogller,earnven)) =Y diles) (16)
i=1

for some functions

Whilewewould expect that most reasonabl e evol utionary algorithmswould outperform
enumeration in such circumstances, using any reasonabl e performance measure, ironi-
cally, we would not expect an evolutionary algorithm to compare well with simple hill
climbers in this case. In particular, any greedy hill climber will have optimal perfor-
mance against typical performance measures on such problems. The territory in which
we actually expect sophisticated adaptive search schemes to excel is some intermedi-
ate régime between random representations and completely linearly separable (i.e. non-
epistatic) ones.



6.2 Implicationsfor Tackling Problem Classes

The observations above provide a motivation for considering ways in which both good
representationsand good al gorithms can be designed and recognised for particul ar prob-
lem classes. In the case of representations, some preliminary steps have been taken, in-
cluding work by Davidor (1990), Kauffman (1993) and Radcliffe & Surry (1994a), and
from a different perspective, there is an extensive literature on deception, a particular
form of linear non-separability (Goldberg, 1989a, 1989h; Whitley, 1991; Das & Whit-
ley, 1991; Grefenstette, 1992; Louis& Rawlins, 1993). All of these examinesomeform
of questionsabout what precisely “some degree of linear separability” means, how it can
be measured and how it may be exploited by algorithms.

One approach that seems particularly fruitful to the authors is to measure proper-
ties of representations over well-defined problem classes, and then to seek to construct
atheory of how such measured propertiescan be exploited by algorithms. In Radcliffe &
Surry (1994a), we measured the variance of objective function value for four different
representationsfor the travelling sales-rep problem (TSP) as afunction of schemaorder
to obtain the graph shown in figure 6. (A schema—or forma—fixes certain components
of amember of C, with order measuring the number of such fixed components.) The
lower variance for the “corner” representation indicates that objective function value
is more nearly linearly separable with respect to the components of this representation
than is the case with the other representations. Although the four representations are all
highly constrained, well-defined move operators were specified solely in terms of ma-
nipulationsof C: thisiswhat ismeant by representati on-independent move operators. We
were therefore able to compare the performance of identical algorithmswith these four
representations over a range of problem instances. The results, as expected, indicated
that on standard performance metrics, most of the agorithms used worked better with
thelower variance representationsthan their higher variance counterparts. Thissuggests
strongly that developing further measurements of representation quality, together with
further ways of characterising representati on-independent operators (such asthe notions
of respect, assortment and transmission, devel oped by Radcliffe, 1991, 1994) and athe-
ory linking those together, is an urgent task.

7 Outlook

We have provided in this paper aformal demonstration of various fundamental limita-
tions on search algorithms, with particular reference to evolutionary algorithms. These
results establish clearly the central rdle of representation in search, and point to theim-
portance of devel oping amethodol ogy for formalising, expressing and incorporating do-
main knowledge into representations and operators, together with a theory to underpin
this.

The results demonstrate the futility of trying to construct universal algorithms, or
universal representations. For example, neither “binary” nor gray coding (Caruana &
Schaffer, 1988) can be said to be superior, either to each other or to any other repre-
sentation, without reference to a particular problem domain. One immediate practical
consequence of this should be a change of methodology regarding test suites of prob-
lems and comparative studies. Rather than developing afixed (small) suite of problems
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Fig. 6. The graph shows the mean standard deviation of tour length as a function of
schema (forma) order for each of four representations of the TSP. These particular re-
sults are from a single problem instance generated using 100 samples drawn from 100
randomly generated schemata at each order shown, though the graph would look nearly
identical if averaged sensibly over all 100-city TSPs.

for refining algorithms and representations, we believe that a significantly more useful
approach consists of developing algorithms for awell-specified class of problems. The
ideawould beto refine al gorithms using any small, randomly chosen subset of problems
from this class, but to compare performance only against different randomly selected
problem instances from the same class. We believe that a move towards this philosophy
of comparative studieswould allow the devel opment of much more systematic insights.

Theissues discussed in this paper seem to the authors central to gaining greater un-
derstanding of search methods, yet the questionsthat they raise receiveremarkably little
attention within the research community. On thisbasis, we conclude by suggesting some
of the key open questions that we see.

— Given aclass of problems about which we have partial knowledge, how can that
knowledgebeformalisedin away useful to constructing representationsal gorithms?
Ideas from forma analysis (Radcliffe, 1991, 1994) offer some directions here, but
thereis clearly vastly moreto be done.

— Can the quality of arepresentation be measured in any useful way?

— What kinds of predictive models of performance (if any) can be built given awell-
defined problem domain, representation and algorithm?

— What performance metrics for algorithms are useful, given the limitations imposed
by the theorems?



— Can we develop a useful methodology for determining appropriate parameters for
a stochastic algorithm, given a representation and problem domain?

— Given an agorithm, can we determinethe structure of the fitness landscape induced
by the representation and move operatorsthat is (implicitly) exploited by that algor-
ithm? (What is agenetic agorithmreally “ processing” ?) Such insights might allow
usto build more powerful models of landscapes (Jones, 1994).
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