
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 170 (1996) 445464

Deciding bisimulation and trace equivalences for systems
with many identical processes

H s u - C h u n Yen*, Shi -Tsuen Jian, Ta -Pang Lao

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 106,
Republic of China

Received March 1995
Communicated by M. Nivat

Abstract

In the study of process semantics, trace equivalence and bisimulation equivalence constitute the
two extremes of the so-called linear time-branching time spectrum. In this paper, we study the
complexity and decidability issues of deciding trace and bisimulation equivalences for the model
of systems with many identical processes with respect to various interprocess communication
structures. In our model, each system consists of an arbitrary number of identical finite-state
processes using Milner's calculus of communicating systems (CCS) as the style of interprocess
communication. As it turns out, deciding trace and bisimulation equivalences are undecidable for
star-like and linear systems, whereas the two problems are complete for PSPACE and PTIME,
respectively, for fully connected systems.

I. Introduction

In concurrency theory, various notions o f equivalence have been proposed for cap-

turing the essence of two concurrent systems being behaviorally equivalent, According

to the degree of coarseness, the so-called linear time-branching time hierarchy of
equivalences listed in [22] defines a rich set of equivalences (and their coarseness

relationships) of interest in the semantics o f concurrency theory. Of many equiva-
lence notions defined in the literature, bisimulation equivalence and trace equivalence,
constituting the two extremes o f the spectrum of the linear time--branching time hier-

archy, define the finest and the coarsest equivalences, respectively. Trace equivalence
is identical to the language equivalence in automata theory. That is, by regarding all
states as accepting states, two concurrent systems are said to be trace equivalent if the

two languages associated with the automata representing the two concurrent systems
are identical. Intuitively speaking, the branching behaviors of a concurrent system are
ignored when dealing with trace equivalence; hence, such an equivalence notion is

* Corresponding author. E-mail: yen@cc.ee.ntu.edu.tw.

0304-3975/96/$15.00 (~) 1996--Elsevier Science B.V, All rights reserved
PH S0304-3975(96)00176-4

446 H.-C. Yen et al./ Theoretical Computer Science 170 (1996) 445-464

considered the coarsest of all. In contrast, for two concurrent systems to be bisimula-
tion equivalent, any of them must be able to 'mimic' the actions of its opponent on
a step-by-step basis; as a result, bisimulation equivalence constitutes the finest among
the above hierarchy.

Of many problems that are of interest in the study of concurrent systems, the de-
cidability and complexity issues of the equivalence problem (i.e., that of determining
whether two systems are "behaviorly equivalent") with respect to various equivalence
notions are relatively well-studied for finite-state systems, see, e.g., [2, 17, 19, 20]. It
is not surprising that for finite-state systems, the equivalence problem is decidable
for all the equivalences proposed in the literature. Recently, considerable efforts have
been directed to the study of the decidability and complexity issues of the equivalence
problem for infinite-state systems including basic process algebra (BPA) [l 1], basic
parallel processes (BPP) [4, 13, 15], context-free processes [6, 14, 16], and Petri nets
[12, 18]. The reader is referred to [5] for a nice survey of such results.

In a recent article [9], deciding bisimulation equivalence has been shown to be
undecidable for systems with indefinite number of identical processes with respect to
propositional linear temporal logic' even without the next-time operator. (Two systems
are said to be bisimulation equivalent if for every formula f written in propositional
linear temporal logic, the sets of computations of the two systems satisfying f are
identical.) This work can be thought of as an extension to that of [8, 21] in which
the problem of determining whether a given system satisfies a specification given in
propositional linear temporal logic without next-time operator (i.e., the model checking
problem) for systems with many identical processes has been investigated.

In this paper, we study the decidability and complexity issues of deciding bisimu-
lation and trace equivalences for systems with many identical processes with respect
to the following structures of interprocess communication: fully-connected topology,
star-like topology, and linear topology. In our setting, each system consists of an arbi-
trary number of finite-state processes using Milner's CCS as the style of interprocess
communication. Given two such systems, our main interest lies in deciding whether
the behaviors of two finite-state processes (taken from the two given systems) are
bisimulation equivalent (or trace equivalent). Our results are summarized in Table 1.
Despite the similarity in the underlying model, our work differs from that of [9] in
many aspects. What follows are the primary differences. First, all the processes in our
model are identical. In [9], however, a so-called synchronizer is in presence whose
structure may differ from the remaining user processes. Second, our underlying notions
of bisimulation and trace equivalences are identical to those defined in the literature [5]
(tailored to the model of systems with many identical processes), whereas the notion
of 'bisimulation' defined in [9] was built upon linear temporal logic (in their setting,
two systems are 'bisimulation equivalent' iff they "witness" the same set of formulas).
Finally, our results reveal an additional dimension of complexity regarding systems
with many identical processes, namely, the structure through which processes commu-
nicate. Our results suggest that even in the absence of temporal logic, deciding bisim-
ulation (as well as trace) equivalence is undecidable for star-like and linear systems.

H.-C Yen et al./ Theoretical Computer Science 170 (1996) 445-464

Table 1
Complexities of the equivalence problem for a variety of systems with many identical processes

447

Disimulation equivalence Trace equivalence

Fully connected PTIME-complcte PSPACE-complete
Star-like Undecidable Undecidable
Linear Undecidable Undecidable

In contrast, it is not clear whether the hardness (more precisely, undecidability) result
of [9] results from the model of many identical processes itself, or from the expres-
siveness of temporal logic. For more about systems with many identical processes, the
interested reader is referred to [1,3, 7-10, 21,23].

The remainder of this paper is organized as follows. In Section 2, we give the def-
initions of systems with many identical processes as well as the notions of trace and
bisimulation equivalences for such systems. Section 3 concerns itself with the complexi-
ties of deciding trace and bisimulation equivalences for systems with a fully connected
interprocess communication structure. For systems connected in a star-like (respec-
tively, linear) fashion, deciding trace and bisimulation equivalences will be shown to
be undecidable in Section 4 (respectively, Section 5).

2. Definit ions

We begin with the definition of systems with many identical processes (or simply
systems if they are clear from the context). Our model is essentially the one proposed
in [8]. A process is a 6-tuple P = (Q, 6, Z, q0, F, L), where
• Q is a finite set of states,

• q0(E Q) is the initial state,

• 6 (c Q × Q x { + , - } × S) is the transition relation,

• Z is a finite set of messages,

• F: a finite set of labels, and
• L: (6 ~ F) a labeling function which assigns labels to transitions.
In our model, interprocess communication is based on the "hand-shaking" notion. Given
a "c" in I2, we can think o f - c as the action of sending message c and +c as the action
of receivin9 message c. For convenience, we denote (q,q ' ,c) as q c > q,. We write
to denote the complement of c, i.e., ~ = - c and ----~ = +c.

Given two systems $1 and $2 and two designated processes P1 and P2 (in $l and
$2, respectively), our main concern in this paper is to determine whether P1 and P2
are bisimulation (or trace) equivalent in the presence of arbitrary numbers of iden-
tical processes in their respective systems with respect to the following interprocess
communication structures:

1. fully connected topology (see Fig. l(a)),

448 H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464

target

°,,

target

• .. ~ ' ° °

°.°

(a) (b) (c)

Fig. 1. System topology.

2. star-like topology (see Fig. l(b)), and
3. linear topology (see Fig. l(c)).

The designated process is referred to as the target process throughout this paper. Notice
that the target and the remaining processes are identical.

Given a process P, we write pF (pS and pL, respectively) to represent the system
consisting of an arbitrary number of process P connected in a fully connected (star-like
and linear, respectively) fashion, or P ~ if the underlying interconnection topology is
not important. We also write {pr}, {pS}, and {pL} to denote the classes of fully
connected, star-like, and linear systems, respectively. In order to define the notion of a
global state in a rigorous manner, we assign a unique integer in Z (the set of integers)
to each process as indicated in Fig. 1. Notice that, without loss of generality, the target
process is labeled 0. For {pF} and {pS}, the labeling scheme for the remaining system
is arbitrary; for {ph}, however, we assume the labeling scheme depicted in Fig. l(c).

A global state s of a system P ~ , where P = (Q , f , Z , qo, F,L), is a mapping from
Z to Q such that s(i) represents the current state of the process labeled i. Initially,
the system is in its initial state So with so(i) = qo, Vi E Z. For convenience, we write
S(P ~) to denote the set of all global states of system P ~ . Given two global states
s,s p, and an action symbol c G 27, we say processes i and j , for some i , j G Z, can
communicate through the exchange of action symbol c in state s if the following hold:

(1) Processes i and j are connected to each other,

(2) s(i) +c q (resp., s(i) ~ q) and s (j) ~ q' (resp., s (j) +c> q') are defined in
states s(i) and s(j) , respectively, for some q and qP, and

q, l = i ,
(3) g (l) = q', l = j ,

s(l), otherwise.

In this case, we write s ~__,c c s ~ {i,j} st, or simply s ~ ~ if process names i and j are
not important. A (global) transition s ~ - ~ g is said to be of type 1 if 0EA (i.e., the
target process is involved); otherwise, it is of type 2.

A (global) computation is a sequence a : So ~--~; sl ~-*~2 2 . ' . ~'-~aA" " sn, where

so,sl , . . . ,sn are global states and Vi, ai E ~. (We sometimes write so ~ ~> Sn as a

H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464 449

shorthand for the above.) Global state s~ is said to be reachable through computation a.
A local state q is said to be reachable if there exists a computation tr such that so L ~ ~ s
and s(i) = q, for some i EZ. Given a global computation a : S O ~ . . ~ a A l l S 1 ~ _ ~ , a t 2 2 . . . ~_~A
we define p(a) to be a string blb2.. .bnEF* such that

b i =

L(t)

(the empty string)

if OEAi and t is the transition performed by
the target process (i.e., process 0) at si-1,
otherwise.

Intuitively, p(a) is the projection of transition labels of a on the target process. Given a
system po~, where P = (Q, fi, X, qo, F, L), the trace set of P ~ , denoted by Trace(P ~) ,
is {p(a) la is a global computation in P~} .

Given two systems P ~ and P ~ , where P3 = (Q1,~I,ZI,q~,F1,L1) and P2 =
(Q2, 62,Z2,q20,F2,L2), a "bisimulation" is an equivalence relation R over S (P ~) x
S (P ~) such that for every (sl,s2)ER,

(1) for each sl , " ' , s~ and p(al) = a (E F1), there exists an sl2, s2 ~ , s'2, p(a2) = a,
and t t (Sl,S2)ER, and

(2) for each s2, ~2 s2' and p(a2) = a (E F2), there exists an s 1, sl s l, p(al) = a,
and (s~, s~) E R.

Two systems P ~ and p]o are said to be trace equivalent, denoted by P ~ ~ P ~ ,
iff Trace(P~) = Trace(P~). P ~ and P ~ are bisimilar (or bisimulation equivalent),

denoted by P ~ ~ P ~ , iff there exists a bisimulation R such that 1 2 (s o, s o) E R, where
s I and So 2 are the initial global states of P ~ and P ~ , respectively. The bisimulation
equivalence (resp., trace equivalence) problem is that of, given two systems with many

p ~ identical processes P ~ and 2 , determining whether P ~ ~ P ~ (resp., P ~ ~ P ~) .

3. Fully connected systems

In this section, we derive the complexities of deciding trace and bisimulation equiv-
alences for {pF} (i.e., fully connected systems with many identical processes). As it
turns out, the trace equivalence problem is complete for PSPACE, whereas the bisim-
ulation equivalence problem is PTIME-complete. The idea behind our derivation relies
on showing that, given two systems P1F and P2 F, we can construct (in polynomial time)

two finite-state processes /51 and P2 in such a way that pF r p2 F (resp., P~ ~ pF)

iff Pl ~ /32 (resp., /31 ~ /32). That is, deciding trace and bisimulation equivalences
for fully connected systems with many identical processes can be equated with that
for finite-state processes. As a result, our complexity results follow immediately from
known results concerning the latter [20]. Before going into the details, we define trace
equivalence and bisimulation equivalence for finite-state processes first (see [20] for
more details).

A finite-state process/3 is a four-tuple (Q, tS, Z, qo), where Q is a finite set of states,
z is a finite set of symbols, qo (E Q) is the initial state, and fi defines the transition

450 H.-C. Yen et al./ Theoretical Computer Science 170 (1996) 445-464

function. A computation is a sequence a : q0 c , ql c2 c, • "" ~ qn, where qi E Q
and ei E Z, qi-I ci a > qi is defined in 6, for all 1 <~i<~n. We write qo ~ ~ qn as a
shorthand for the above. The label of a, written as p(a) , is c l c z . . . c n . The trace

of /5 , written as Trace(/5), = {p(a) lqo ~ ~ qn, for some q,}. (Notice that the trace
set is exactly the language accepted by the finite-state process, assuming that all
states are accepting states.) Given two finite-state processes /s t = (Q1,61, Zl ,q~) and

/52 = (Q2, 62, s2, q~),/51 and/32 are trace equivalent, written as t31 •/52, iff Trace(~51) =

Trace(~52). A bisimulation is an equivalence relation /~ over Q1 x Q2 such that
for every (ql, q2) Ek ,

1. for each ql c > q~, there exists ' c q2, q2 ~ q~2 and (q~, q~) E/~.
2. for each q2 _L. q~, there exists ql,ql' c , ql' and (qtl,q~2)CR,

/51 and/52 are bisimulation equivalent, denoted by/51 ~/52, i f there is a bisimulation
/~ such that (q~,q~)ER.

For {pF}, any pair o f processes are connected to each other; hence, a simpler form
will be used in this section to describe a global state. Given a system pF, where
P : (Q,6 ,Z , qo, F,L) , we establish an ordering on Q by letting Q : {qo, q l , . . . , q k } ,

for some k. Throughout the rest o f this paper, we assume the existence of such an
ordering. A global state is a (k + 1)-tuple s : (q, nl nk), where q represents a
state of the target process, and n i (EN) denotes the number of processes in state q~ in
the remainder of the system. Notice that the number of processes in state q0 need
not be kept in the global state description, for it is always arbitrarily large. For
ease of explanation, we use [s] to denote q, and (s) to denote the k-dimensional
vector (nl ,nk). (Hence, (s)(i) = ni.) Initially, the system is in global state

so = (q 0 , 0 , . . . , 0) .

To prove our main results, a few lemmas are required.

Lemma 1. Given a system pF, the set o f all reachable local states o f P can be
constructed in polynomial time.

Proof. We begin with a procedure that generates the set o f all reachable local states
in a greedy fashion. The procedure was proposed in [23]; see also [8].

Procedure Reachable_Set;
/* Given the description of a process P = (Q ,6 ,S , qo, F,L) , */
/* the output 5 a consists o f all reachable local states. */

5 p :----- {qo};
Fori := 0 to I Q I - 1 do

begin

I f 3 p, q E 5 ~, p +c p,, q -~ q' E r, for some c E E, and p~(or q ') ¢~5 a,
then ~ := 5 a U { p / , q ' } ;
else return (Se);

end;
end procedure.

H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464 451

It is obvious that if states p and q of processes P and Q, respectively, are reachable
through computation paths belonging to two distinct groups of processes, and p c ~ p,

q~ and q , are two transitions defined in p and q, respectively, then there is a global
computation reaching a global state in which the states of P and Q are p' and q J,
respectively. Since the number of processes is arbitrary, the validity of the procedure
is easy to observe, and the complexity of the procedure is clearly in polynomial time
(in the size of (Q,6,Z, qo, F,L)). [~

Throughout the rest of this section, the above set of reachable local states will be
denoted as Rs(pF). It is important to note that, if necessary, every transition emanating
from a state in RS(P F) can take part in a (global) computation an arbitrary number of
times. Again, this is due to the availability of an arbitrary number of processes.

Lemma 2. Given a system pF and a global state s, for every m > O, there exist a tr
and a global state s' such that s J ~ ~ s', Is] = Is'], (s')(i)>~m, for every i such that
qiERS(pF), and all transitions in tr are of type 2.

Proof. For any qi E RS(P r), qi can be reached through a computation along which all
transitions are of type 2. For any m > 0, we allocate m distinct groups of processes
(excluding the target process) each of which participates in the above computation (i.e.,
reaching state qi). By concatenating the computations of m such groups, a global state
Si (S01 ai> Si) with (si)(i)>>.m can clearly be reached for a given qi ERS(PF). Again
by utilizing a distinct group of processes for each o" i and letting a = ala2. . .ak , the
desired computation is constructed. Clearly, along this computation the target process
remains idle; hence, [s] = [s~]. []

As mentioned earlier, the key idea behind our derivation is to reduce the deciding
equivalence between fully connected systems with many identical processes to that
between finite-state processes. Consider a system pV, where P = (Q, 6, Z, qo, F,L), the
associated finite-state process/5 = (0, ~, ~, q0) is constructed as follows:

• O = RS(P),

• qo-----qo

l
• (q,q' , l) (i.e., q ~ q'), where q ,q 'EQ and I E S , is defined in 6 if there exist a

c E Z, r, r' E RS(P F), such that
1. (q,q' ,+,c), (r , r ' , - , c) E 3 (or (q ,q ' , - , c) , (r ,r ' ,+,c)E6) , and
2. L((q,q' ,+,c)) = 1 (or L(q,q~,- ,c) = l).

The idea is to retain transition (q,q', +, c) (or (q, q ' , - , c)) that can be paired with a
transition emanating from a state r E RS(P F). Furthermore, the label of such a transition
is L((q,q' ,+,c)) (or L((q ,q ' , - ,c))) . Also notice that the above construction can be
carried out in polynomial time. Throughout the rest of this paper, /5 is called the
reduced finite-state process of system PV. To give the reader a better feel for how the
above construction is done, consider a simple example shown in Fig. 2. It is not hard

452 H.-C. Yen et al./ Theoretical Computer Science 170 (1996) 445--464

+ a

I
P P

L(1 ~ 2) = r, L(1 7_~ 3) = s, L(2 :-~ 4) = r,

L(2 +-g 5) = t, L(3 _7~ 5) = t, L(3 ~ 1) : r.

Fig. 2. System pV.

t

5

Fig. 3. The reduced finite-state process/~.

to see that the set o f all reachable local states for pF shown in Fig. 2 is RS(P r) =

{ 1 , 2 , 3 , 5) . Hence, the reduced finite-state p rocess P is the one shown in Fig. 3.

L e m m a 3. Let P be the reduced finite-state process o f a system pV, and s (with

[s] = qi EP, fo r some i) be an arbitrary global state o f P F. Then for every transition
c ~T

qi ~ q j, f o r some j , in P, there exists a sequence ~ in pF such that s ~ ~ s p, Is ~] = qy

and p(g) = c.

H.-C. Yen et al./ Theoretical Computer Science 170 (1996) 445--464 453

Proof. Let qi ~ qj (in P) be the transition from which qi ~ qj (in/5) is obtained
in the construction from pF to /5. (For simplicity, the sign of t is omitted. Also notice
that L(qi t > qj) = c.) By the construction of/5, there must exist a reachable local

state qr in which qr ~ > qu is defined, for some qu. According to Lemma 2, there exists
0 -t

a sequence a',s,) s" [s"] = qi, such that (s")(r) > 0, and a' (if not empty) utilizes
only type 2 transitions. Let tr = trtt. Clearly, s~ > s', for some s' with [s'] = qj and
p(a) = c. []

By repeatedly applying Lemma 3, we can easily show the following.

Lemma 4. Given a system P~, let /5 be the reduced finite-state process mentioned
above. Then for any ~ E Trace(~5), there exists a sequence tr in pF such that p(a) = ~.

Corollary 1. Trace(P F) = Trace(P), where/5 is the reduced finite-state process of a
system pF.

Proof. Trace(pF)c_ Trace(P) obviously holds from the definition of/5; Trace(/5)C_
Trace(P v) follows immediately from Lemma 4. []

Theorem 1. Given two systems pF and P~, decidin9 whether pF L p~ can be done in
PSPACE.

Proof. From Corollary 1, testing P~ ~ P~ is tantamount to testing/51 ~/52, which is
known to be doable in PSPACE [20]. []

In what follows, we consider bisimulation equivalence.

Lemma 5. Given two systems pF and P~, let /51 and/52 be their reduced fnite-state

processes, respectively. Then pF ~ pF iff /51 ~ /52.

Proof. Let Pi i ~-(Qi,~i,z~i, qo, Fi,Li) , and/si=(Qi,~i,~i,qio), where i=1 or 2.

(pF ~ p~ =~/51 ~/52). Let R be a bisimulation relation between pF and pF. Define
a relation k = {(ql, q2)i (s h s2)ER, where sl and s2 are reachable global states of pF
and P2 F, respectively, [Sl] = ql and [s2] = q2}. In what follows, we show/~ to be a
relation witnessing the bisimilarity between/51 and/52.

Clearly, (ql, q2)ck, where q~ and q2 are the initial states of el and/52, respectively.
Now suppose (ql,q2)E/~. By the definition of/~, there must exist reachable global
states Sl and s2 o f P F and P2 F, respectively, such that (sl,s2)ER, [S l] : q 1 and [s2] =q2.
Consider the following two cases.

Case 1: Suppose ql _ ~ r l, for some cCz~l and r 1EQI. By Lernma 3, there exists
a computation Yl in P1F such that Sl ~ ~l > ul, for some global state Ul with [u l]=r 1, and

P(71) =c. Since P~ ~ °F y2 r 2, there must be a computation))2 in P~ such that s2 ~ > u2, for
some global state u2 with [u 2] = r 2, and p (' y 2) : C . By the c o n s t r u c t i o n o f / 5 2 , q 2 c) rE .

454 H.-C Yen et al. I Theoretical Computer Science 170 (1996) 445-464

Since sl , r ' , ul,s2 ~ U2, p(71)=p(]~2)=C, and ul and u2 are reachable from the
initial states of pF and P2 F, respectively, we immediately have (r l , r 2) E k (by the
definition of/~).

Case 2: Suppose q2 c ~ r2" Using a similar argument as that in the proof of Case
1, we can show the existence of an r 1 in/31 such that ql c ~ r 1 and (r l , r2)Ek .

(/31 ~ P2 =~ pF ~ p~). Let k be a bisimulation relation between Pl and/52. Define a
relation R = {(Sl, s2) Is1 and s2 are reachable global states of P [and pF, respectively,
and ([st], [sz])E/~}. In what follows, we show R to be a bisimulation between pF and
P2 v. Suppose (Sl,S2)ER. By definition, (Is1], [s2])ER. Consider two cases:

Case 1: Slp ~'> Ul and p(),l)=C, for some label c. By the definition of/31, [Sl] _L-

[ul] is a transition in/31. Given the fact that/51 B/32, and ([sl], [s2])ER, there exists
a state r 2 EQ2 such that [s2] c r2 in/52 and ([ul],r2)ER. According to Lemma 3,
there exists a computation 72 in P~ such that s2 r 2 u2 for some global state u2 such
that [uz]=r 2 and p(72)=c. Now by the definition of R, (Ul,Uz)ER (because both ux
and u2 are reachable and ([ul],[u2])ER).

Case 2: sz , ~ u2 and P(y2) = c, for some c. A similar argument can be used to
show the existence of a computation s l , y~ ~ ul, for some 71 and ul, such that P(71) = c
and (ul,u2)ER. []

Lemma 5, in conjunction with the work of [20], yields the following.

Theorem 2. Given two systems pF and P~2, deciding whether P~ ~ pF can be done in
PTIME.

Now we show the lower bound.

Lemma 6. Given two finite-state processes/31 and/32, we can construct, in polynomial-
time, two systems pF and pF such that/31 • P2 (resp., /31 ~ /32) iff P~ • PF 2 (resp.,

).

Proofi The construction is rather straightforward. P1 retains all the states and transitions
of P1 except that each transition symbol, say "a", is replaced by "+a" . In addition, if
"a" is a transition symbol used in/31, then add a self-loop labeled " - a " to the initial
state of P1; see Fig. 4. Finally, let the label of a transition be the same as the associated
message type. P2 is constructed exactly the same way. The remaining details are left
to the reader. []

Using the above lemma and the fact that deciding trace and bisimulation equiva-
lence are PSPACE-complete [20] and PTIME-complete [20], respectively, we have the
following result.

Theorem 3. Given two systems P~ and P~, deciding P~ T p~ and P1 F ~ Pf are
PSPACE-hard and PTIME-hard, respectively.

H.-C Yen et al. I Theoretical Computer Science 170 (1996) 445-464 455

°¢.

P P

Fig. 4. An example illustrating the construction.

4. Star-like systems

To show the bisimulation equivalence problem with a "star-like" structure (see
Fig. 1) to be undecidable, we reduce the halting problem for 2-counter machines

[12] to our problem. (See [15, 18] for similar proofs for the models of Petri nets and
BPPs.)

Before we go further into the detailed proof, first consider the relation between a
system with many identical processes system and a 2-counter machine. In a 2-counter
machine, there are three operations associated with a counter: increment, decrement,

and test for zero. More precisely, a transition of a 2-counter machine is of one of the
following forms:

(1) C := C + 1; goto q (add one to counter C),
(2) if C > 0 then C := C - 1; goto q (subtract one from counter C),
(3) if C = 0 then goto q (test counter C for zero).
To simulate a 2-counter machine using a system with many identical processes,

one's first attempt might be to use the structure depicted in Fig. 5 in which the target
process enters the box (through the exchange of message "start") which plays the
role of the finite-state control of the 2-counter machine. The remaining processes (i.e.
those emanating from the center of the star) execute those transitions that are above
the box (see Fig. 5). Furthermore, the values of the two counters are represented
by the numbers of processes in states ql and q2, respectively. The "+ i l " and " + d l "
(resp., "+i2" and "+d2") transitions correspond to the actions of "adding one to"
and "subtracting one from" the first counter (resp., the second counter). A careful
examination, however, reveals the insufficiency for the above mechanism to faithfully
simulate "test for zero" transitions. More precisely, we cannot prevent the target process

from cheating on a "test for zero" transition, by performing the r - a r" transition while
the first counter is not zero. In view of the above, it seems that a system with many
identical processes does not have enough power to simulate a 2-counter machine. Our
next theorem says that if we are given two systems instead, the notion of bisimulation

456 It.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445--464

C1.'=C 1 +1;

goto p '

-i I

-start

~ .

- d I -a

if Cl=O then
goto r"

",if Cl>O then
C~:=C 1 -1;
goto r'

Fig. 5. Process "simulating" a 2-counter machine.

equivalence is sufficient to "force" one of the two systems to behave exactly like a
2-counter machine.

Theorem 4. The bisimulation equivalence problem is undecidable for {pS}.

Proof. It suffices to show that, given a 2-counter machine M, we can construct two
systems P1 s and pS in a way that M does not halt i f fP s and pS are bisimilar. Let C1
and C2 be the two counters which are zero initially. As mentioned earlier, additions
and subtractions of the two counters can be done easily; in what follows, we focus on
how we can enforce the "test for zero" operation through the use of two systems on
which the bisimilarity requirement is imposed.

As shown in Fig. 6, process P1 consists of two copies of the finite-state control
of M. (For convenience, they are labeled M1,1 and M1,2.) Let states h l , ~ , ~ ' , and ~ "
be the "images" of states hi, rl,r~, and r~', respectively. (The "hi" represents the halt
state of M.)

Suppose "if C1=0 then goto r~'" is defined in state rl of M, then M1,1 and MI,2

-a " and ~i -a~ ~,r, respectively. (These transitions can be paired have transitions rl > r 1

with the "+-~" transition defined in state qol.) In addition, we add a transition from

rl to ~ u labeled - e (see Fig. 6). Also we let L(rl ya r 1") -= L(rl --~ r 1 ~) . P2 is
identical to P1 except with an additional transition labeled - a from hz to zz. We let

H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464 457

"t'e

©
M i d

@a

(

}
-a M ,.2

)
4re

(

}
- a

÷a

M2,1

}
-a M 2.~

P

el

p2

Fig. 6. The structures of P1 s and P~.

458 H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445~164

L(h-~ - a ~1) (= L(h2 ~ z2) = L(h-22 -a> ~-~)) be a unique symbol not used elsewhere
in P1 s and pS.

A computation in pS is said to be "valid" if during the course of the computation,
the following hold:

1. the target process utilizes only those transitions belonging to Ml,1, and

2. when taking a transition like the rl -a> r~' (in Fig. 6) which simulates a "test
for zero" for counter C1 (resp., C2), none of the remaining processes is in state q{
(resp., q{) at the moment. (What it says is that any "test for zero" transition can only
be taken while the corresponding counter of M is indeed zero.)

A "valid" computation for pS can be defined similarly.

We are in a position to argue that M does not halt iff P1 s ~ P2 s. Consider the
following two cases.

Case 1: Suppose M halts. To disprove pS ~ p2 s, first notice that F s can do what-
ever F s does. Since M halts, there exists a "valid" computation in P f reaching h2
using only those transitions belonging to M2,1. To "keep pace with" P2 s (intuitively,
this is exactly what bisimilarity is all about), pS must follow exactly the same trace
as that of P2 s in a step by step fashion. (Here, it is important to point out that pS
cannot "cheat" by entering M1,2, for none of the remaining processes can exchange
message "e" with the target process - condition (2) of a valid computation.) In the
end, P1 s and P2 s end up in states hi and h2, respectively. Hence, P1 s and P2 s cannot be
bisimilar.

Case 2: Suppose M does not halt. To prove P1 s ~ p S, consider the following sub-
cases:
• pS does not enter h2. In this case, pS can always follow suit.
• pS enters h2 through an invalid computation a. (Notice that there exists no valid

computation reaching h2, for M does not halt.)

Suppose r2 r2 is the first test-for-zero transition (in a) at which P2 s cheats,
i.e., executing a test-for-zero transition while the respective counter is non-zero. In

our design, L(rl -e> r~--i) L(rl -a> r~') L(r2 --~> " = _._ r2). pS, in this case, can

take the rl -e> Pl" transition pairing with the self-loop labeled "+e" in state q~ of
some of the remaining processes (because counter C1 is not zero at this moment).
From this point and beyond, pS will stay in M1,2, and therefore can do whatever pS
does.

In view of the above, we have that M does not halt iff pS ~ pS. Following the unde-
cidability of the halting problem for 2-counter machines, the bisimulation equivalence
problem for {pS} is also undecidable. []

Theorem 5. The trace equivalence problem is undecidable for {pS}.

Proof. Using the same construction as the one used in the proof of Theorem 4,

p1 s T p2 s iff M does not halt. The details are left to the reader. []

H.-C Yen et al. I Theoretical Computer Science 170 (1996) 445-464 459

5. Linear systems

Theorem 6. The bisimulation equivalence and trace equivalence problems for {pL}
are undecidable.

Proof. In what follows, we show that 2-counter machine computations can be faithfully
simulated by systems in {pL}. The labeling scheme depicted in Fig. 1 is assumed here
for naming processes in {pL}.

Given a 2-counter machine M with two counters C1 and C2, the process structure
designed to simulate M is shown in Fig. 7, which, for ease of explanation, is par-
titioned into five regions, namely, A, B, GA, GB, and D. For the sake of simplicity,
messages used in regions B and GB are omitted. Here, it is important to point out that
messages used in A and GA differ from that in B and G~. Before presenting the detailed
simulation, we first give the intuition. As before, region D is used for simulating the
finite-state control of M. (In particular, transitions involving "p - p'", "r - r/' ' , and
" r - r " " are examples of "adding one to Cl", "subtracting one from C1", and "testing
Cl for zero", respectively.) Regions A and B are designed to simulate the two counters.
Region GA and GB serve as two "gateways" through which unwanted messages can
be "filtered out" for performing counter operations correctly. More will be said about
this as our discussion progresses. A process is said to be "dormant" if it is in state q0
(i.e., the initial state of the process).

To simulate M, consider the following computation:
1. By exchanging messages "g~" and "Ob" with its two neighbors, process 0 enters

region D and starts simulating M's computations. Depending on the order in which P0
communicates with P-1 and P~, we have the following two cases:

(i) P- l and P1 enter regions GA and GB, respectively, or
(ii) P-1 and Pl enter regions GB and GA, respectively.

In case (i), process P,-, i~< - 2 (respectively, i>~2), takes part in the simulation of

counter C1 (respectively, C2).
Case (ii) is symmetric. Without loss of generality, we assume case (i) throughout

the rest of the proof.
2. At any time, the number of processes P~, i <~ - 2 , whose current states reside in

region A represents the value of counter C1. Furthermore, if the state of P~, for some
i ~< - 2 , is in region A, so are P-2 P/. (In other words, if j , j ~< - 2 , is the smallest
index such that Pfs current state is not in A, then counter C1 equals IJl - 2.)

3. At any time, the number of processes P/, i>~2, whose current states reside in
region B represents the value of counter C2. Furthermore, if the state of P/, for some
i ~> 2, is in region B, so are P2,... , P/. (In other words, if j , j >/2, is the smallest index
such that Pfs current state is not in B, then counter C2 equals j - 2.)
We are in a position to describe the detailed simulation.

Increment C1: The simulation begins with P0 sending message 'T ' (using p - i 2)

to its left neighbor (i.e., P - l) and ends with receiving message "'aek" (using 2 +ock p,)
from P-1. Recall that P-1 is in region GA at this moment. Upon receiving i from P0

460 H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464

I I

I I

' c lc I I

I I

, -ack ~.~ ¢
' - a c k '

' " '

I I

I I

I I

I I
I I

I I

I I

+ g ~

c~ C

+gb
.

+ack~@/~--d A ~ -ga ~ B ~ O /
. I .

.

~ +ack

®

D

~ - g h

~.(~)~,

+ac~/ ~+ack,
@ @

@
Fig. 7. The structure of the process used in proving the undecidability result for {pL).

H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464 461

p~ p ~., P i.2 P~ P-2 P., Po

Fig. 8. Increment of C1.

(using q3 +it 13), P-1 propagates message i using transition 13 --i> 14 to /°-2. The
propagation continues until a dormant process, say Pj, j ~< - 2 , is reached. Pj then

executes qo +i -ack , 5 > ql, constituting an increment in C1. While doing so, message
"ack" is sent to the right which eventually reaches P0. See Fig. 8 for a pictorial
description of some of the above moves (with irrelevant information omitted). It is
worth pointing out that process P-1 serves as a "gateway" to filter out messages not
belonging to those recognizable by P-2, P-3 (Recall that P-2,P-3 simulate the
content of counter C1.) Without this gateway, however, it is possible for P- l , P0, P1
to enter regions A, D, A, respectively, violating properties 2 and 3 mentioned earlier.

- d
Decrement CI: The simulation begins with P0 sending message "d" (using r , 3)

to P- l , and ends with receiving "ack" (using 3 +~ck r ') from P-1. After passing through

the gateway (i.e., P- l) , message "d" is propagated to the left (using transitions q~ +d

462 H.-C Yen et al./Theoretical Computer Science 170 (1996) 445-464

p, p,., pj.~ e, P.~ e, Po

Fig. 9. Decrement of CI.

9 ~ 11) until a dormant process, say Pj (j~< - 2) , is reached. Py and Pj+I exchange
message "b"; Pj-1 propagates message " a c k " to the right and then becomes dormant,
constituting a decrement in C1. The remaining details are left to the reader; see also
Fig. 9. Notice that if C1 is empty, then P-1 and P0 will get stuck in states 16 and 3,
respectively.

T e s t C1 f o r zero: It is reasonably easy to observe that the test for zero transition
--b +ack Ftt r ~ 4 can be executed iff/°-2 is dormant; see Fig. 7.

H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464 463

Pj Pj+I Pi-I Pi P-2 P-1 PO

I I I I
I I

activated by Pj activated by Po

Fig. 10. Two processes entering region D.

What we have discussed so far is based on the assumption that exactly one process

(i.e,, Po) enters region D. Furthermore, M halts iff there exists a computation leading

Po to state h. To complete the proof, it remains to show that even in the presence
o f two or more processes entering region D, state h can only be reached through

"valid" computation. In other words, if, for some reason, the operations of those pro-

cesses activated by Po (in order to keep track of the contents o f C1 and C2) are
obstructed by other processes, then state h cannot be reached as a result of such an "in-

valid" computation. Take Fig. 10 for example. Processes P-1 P/ and P/-1 Pj+I

are activated by Po and Pj, respectively, and both are simulating counter C1. Now
suppose P0 issues an "add one to C1" command. An i message will be sent from

Po toward P/; this message will pass through P,-I Pj+t before reaching Pj, which is
in region D. In our design, however, no " + i " can be paired with the arrival of this i

message. As a consequence, the computation originated from P0 gets stuck thereafter,

which is perfectly okay for no further computation can mistakenly enter the halt state.
The remaining cases in which normal computations are obstructed are left to the reader.

From the above discussion, it is easy to observe that M halts iff there exists a
computation behaving in the above way, and eventually reaching the halt state h.

Hence, systems in {pL} are powerful enough to simulate 2-counter machines; the two

problems are undecidable. []

R e f e r e n c e s

[1] P. Attic and E. Emerson, Synthesis of concurrent systems with many similar sequential processes, in:
Proc. POPL'89 (Austin, TX, 1989) 191-201.

[2] J. Balchzar, J. Gabarr6 and M. S~intha, Deciding bisimilarity is P-complete, Formal Aspects Comput.
4 (1992) 638-648.

[3] M. Browne, E. Clark and O. Griimberg, Reasoning about networks with many identical finite-state
processes, Inform. and Comput. 81 (1989) 13-31.

[4] S. Christensen, Y. Hirshfeld and F. Moiler, Bisimulation equivalence is decidable for basic parallel
processes, in: Proc. CONCUR'93, Lecture Notes in Computer Science, Vol. 715 (Springer, Berlin,
1993) 143-157.

[5] S. Christensen and H. Hiittel, Decidability issues for infinite-state processes - a survey, Bull of the
EATCS, 51 (1993) 156-166.

[6] S. Christensen, H. Hiittel and C. Stifling, Bisimulation equivalence is decidable for all context-free
process, Inform. and Comput. 111 (1995) 143-148.

464 H.-C. Yen et al./ Theoretical Computer Science 170 (1996) 445-464

[7] V. Garg, Analysis of distributed systems with many identical processes, in: Proc. IEEE Int. Conf. on
Distributed Computing Systems (1988) 358-365.

[8] S. German and A. Sistla, Reasoning about systems with many processes, J. ACM 39 (1992) 675-735.
[9] M. Girkar and R. Moll, Undecidability of bisimulations in concurrent systems with indefinite number of

identical processes, CMPSCI Tech. Report 93-86, Dept. of Computer Science, Univ. of Massachusetts,
December 1993.

[10] M. Girkar and R. Moll, New results on the analysis of concurrent systems with an indefinite number
of processes, in: Proc. CONCUR'94, Lecture Notes in Computer Science, Vol. 836 (Springer, Berlin,
1994).

[11] J. Groote and H. Hiittel, Undecidable equivalences for basic process algebra, Inform. and Comput. 115
(1994) 354-371.

[12] Y. Hirshfeld, Petfi nets and the equivalence problem, in: Proc. CSL'93, 1993 Conf. of European
Association for Computer Science Logic, Lecture Notes in Computer Science, Vol. 832 (Springer,
Berlin, 1994) 165-174.

[13] Y. Hirshfeld, M. Jerrum and F. Moller, A polynomial time algorithm for deciding bisimulation
equivalence of normed basic parallel processes, Mathematical Structures in Computer Science 6 (1996)
251-259.

[14] Hirshfeld, Y. and F. Moiler, A fast algorithm for deciding bisimilarity of normed context-flee processes,
in Proc. CONCUR'94, Lecture Notes in Computer Science, Vol. 836 (Springer, Berlin, •994) 4843.

[15] H. H/ittel, Undecidable equivalences for basic parallel processes, in: Proc. lnt. Syrup. on Theoretical
Aspects of Computer Software, Lecture Notes in Computer Science, Vol. 789 (Springer, Berlin, 1994)
454-464.

[16] D. Huynh and L. Tian, Deciding bisimilarity of normed context-flee process is in _r;, Theoret. Comput.
ScL 123 (1994) 183-197.

[17] D. Huynh and L. Tian, On deciding some equivalences for concurrent processes, Theoret. Inform. and
Appl. 28 (1994) 51-71.

[18] P. Janrar, Undecidability of bisimilarity of Petri nets and some related problems, Theoret. Comput.
Sci. 148 (1995) 281-301.

[19] P. Kanellakis and S. Smolka, On the analysis of cooperation and antagonism in networks of
communicating processes, Algorithmica 3 (1988) 421-450.

[20] P. Kanellakis and S. Smolka, CCS expression, finite-state processes, and three problems of equivalence,
Inform. and Comput. 86 (1990) 43~58.

[21] A. Sistla and S. German, Reasoning with many processes, in: Proc. 2nd IEEE Symp. on Logic in
Computer Science (New York, 1987) 138-152.

[22] R. van Glabbeek, The linear time - branching time spectrum, in: Proc. CONCUR'90, Lecture Notes
in Computer Science, Vol. 458 (Springer, Berlin, 1990) 278-297.

[23] H. Yen, Priority systems with many identical processes, Acta Inform. 28 (1991) 681~592.

