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Abstract 

In the study of process semantics, trace equivalence and bisimulation equivalence constitute the 
two extremes of the so-called linear time-branching time spectrum. In this paper, we study the 
complexity and decidability issues of deciding trace and bisimulation equivalences for the model 
of systems with many identical processes with respect to various interprocess communication 
structures. In our model, each system consists of an arbitrary number of identical finite-state 
processes using Milner's calculus of communicating systems (CCS) as the style of interprocess 
communication. As it turns out, deciding trace and bisimulation equivalences are undecidable for 
star-like and linear systems, whereas the two problems are complete for PSPACE and PTIME, 
respectively, for fully connected systems. 

I. Introduction 

In concurrency theory, various notions o f  equivalence have been proposed for cap- 

turing the essence of  two concurrent systems being behaviorally equivalent, According 

to the degree of  coarseness, the so-called linear time-branching time hierarchy of  
equivalences listed in [22] defines a rich set of  equivalences (and their coarseness 

relationships) of  interest in the semantics o f  concurrency theory. Of  many equiva- 
lence notions defined in the literature, bisimulation equivalence and trace equivalence, 
constituting the two extremes o f  the spectrum of  the linear time--branching time hier- 

archy, define the finest and the coarsest equivalences, respectively. Trace equivalence 
is identical to the language equivalence in automata theory. That is, by regarding all 
states as accepting states, two concurrent systems are said to be trace equivalent if  the 

two languages associated with the automata representing the two concurrent systems 
are identical. Intuitively speaking, the branching behaviors of  a concurrent system are 
ignored when dealing with trace equivalence; hence, such an equivalence notion is 
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considered the coarsest of all. In contrast, for two concurrent systems to be bisimula- 
tion equivalent, any of them must be able to 'mimic' the actions of its opponent on 
a step-by-step basis; as a result, bisimulation equivalence constitutes the finest among 
the above hierarchy. 

Of many problems that are of interest in the study of concurrent systems, the de- 
cidability and complexity issues of the equivalence problem (i.e., that of determining 
whether two systems are "behaviorly equivalent") with respect to various equivalence 
notions are relatively well-studied for finite-state systems, see, e.g., [2, 17, 19, 20]. It 
is not surprising that for finite-state systems, the equivalence problem is decidable 
for all the equivalences proposed in the literature. Recently, considerable efforts have 
been directed to the study of the decidability and complexity issues of the equivalence 
problem for infinite-state systems including basic process algebra (BPA) [l 1], basic 
parallel processes (BPP) [4, 13, 15], context-free processes [6, 14, 16], and Petri nets 
[12, 18]. The reader is referred to [5] for a nice survey of such results. 

In a recent article [9], deciding bisimulation equivalence has been shown to be 
undecidable for systems with indefinite number of  identical processes with respect to 
propositional linear temporal logic' even without the next-time operator. (Two systems 
are said to be bisimulation equivalent if for every formula f written in propositional 
linear temporal logic, the sets of computations of the two systems satisfying f are 
identical.) This work can be thought of  as an extension to that of [8, 21] in which 
the problem of determining whether a given system satisfies a specification given in 
propositional linear temporal logic without next-time operator (i.e., the model checking 
problem) for systems with many identical processes has been investigated. 

In this paper, we study the decidability and complexity issues of deciding bisimu- 
lation and trace equivalences for systems with many identical processes with respect 
to the following structures of interprocess communication: fully-connected topology, 
star-like topology, and linear topology. In our setting, each system consists of an arbi- 
trary number of finite-state processes using Milner's CCS as the style of interprocess 
communication. Given two such systems, our main interest lies in deciding whether 
the behaviors of two finite-state processes (taken from the two given systems) are 
bisimulation equivalent (or trace equivalent). Our results are summarized in Table 1. 
Despite the similarity in the underlying model, our work differs from that of [9] in 
many aspects. What follows are the primary differences. First, all the processes in our 
model are identical. In [9], however, a so-called synchronizer is in presence whose 
structure may differ from the remaining user processes. Second, our underlying notions 
of bisimulation and trace equivalences are identical to those defined in the literature [5] 
(tailored to the model of systems with many identical processes), whereas the notion 
of 'bisimulation' defined in [9] was built upon linear temporal logic (in their setting, 
two systems are 'bisimulation equivalent' iff they "witness" the same set of formulas). 
Finally, our results reveal an additional dimension of complexity regarding systems 
with many identical processes, namely, the structure through which processes commu- 
nicate. Our results suggest that even in the absence of temporal logic, deciding bisim- 
ulation (as well as trace) equivalence is undecidable for star-like and linear systems. 
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Table 1 
Complexities of the equivalence problem for a variety of systems with many identical processes 

447 

Disimulation equivalence Trace equivalence 

Fully connected PTIME-complcte PSPACE-complete 
Star-like Undecidable Undecidable 
Linear Undecidable Undecidable 

In contrast, it is not clear whether the hardness (more precisely, undecidability) result 
of  [9] results from the model of  many identical processes itself, or from the expres- 
siveness of  temporal logic. For more about systems with many identical processes, the 
interested reader is referred to [1,3, 7-10, 21,23]. 

The remainder of this paper is organized as follows. In Section 2, we give the def- 
initions of  systems with many identical processes as well as the notions of trace and 
bisimulation equivalences for such systems. Section 3 concerns itself with the complexi- 
ties of deciding trace and bisimulation equivalences for systems with a fully connected 
interprocess communication structure. For systems connected in a star-like (respec- 
tively, linear) fashion, deciding trace and bisimulation equivalences will be shown to 
be undecidable in Section 4 (respectively, Section 5). 

2. Definit ions 

We begin with the definition of systems with many identical processes (or simply 
systems if  they are clear from the context). Our model is essentially the one proposed 
in [8]. A process is a 6-tuple P = (Q, 6, Z, q0, F, L), where 
• Q is a finite set of  states, 

• q0(E Q) is the initial state, 

• 6 ( c  Q × Q x { + , - }  × S) is the transition relation, 

• Z is a finite set of messages, 

• F: a finite set of  labels, and 
• L: ( 6 ~ F )  a labeling function which assigns labels to transitions. 
In our model, interprocess communication is based on the "hand-shaking" notion. Given 
a "c" in I2, we can think o f - c  as the action of sending message c and +c  as the action 
of receivin9 message c. For convenience, we denote (q,q ' ,c)  as q c > q,. We write 
to denote the complement of  c, i.e., ~ = - c  and ----~ = +c. 

Given two systems $1 and $2 and two designated processes P1 and P2 (in $l and 
$2, respectively), our main concern in this paper is to determine whether P1 and P2 
are bisimulation (or trace) equivalent in the presence of arbitrary numbers of  iden- 
tical processes in their respective systems with respect to the following interprocess 
communication structures: 

1. fully connected topology (see Fig. l(a)), 
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Fig. 1. System topology. 

2. star-like topology (see Fig. l(b)), and 
3. linear topology (see Fig. l(c)). 

The designated process is referred to as the target process throughout this paper. Notice 
that the target and the remaining processes are identical. 

Given a process P, we write pF (pS and pL, respectively) to represent the system 
consisting of an arbitrary number of  process P connected in a fully connected (star-like 
and linear, respectively) fashion, or P ~  if the underlying interconnection topology is 
not important. We also write {pr}, {pS}, and {pL} to denote the classes of fully 
connected, star-like, and linear systems, respectively. In order to define the notion of  a 
global state in a rigorous manner, we assign a unique integer in Z (the set of integers) 
to each process as indicated in Fig. 1. Notice that, without loss of generality, the target 
process is labeled 0. For {pF} and {pS}, the labeling scheme for the remaining system 
is arbitrary; for {ph}, however, we assume the labeling scheme depicted in Fig. l(c). 

A global state s of a system P ~ ,  where P = ( Q , f , Z ,  qo, F,L),  is a mapping from 
Z to Q such that s(i) represents the current state of the process labeled i. Initially, 
the system is in its initial state So with so(i) = qo, Vi E Z. For convenience, we write 
S(P ~ )  to denote the set of all global states of system P ~ .  Given two global states 
s,s  p, and an action symbol c G 27, we say processes i and j ,  for some i , j  G Z, can 
communicate through the exchange of  action symbol c in state s if the following hold: 

(1) Processes i and j are connected to each other, 

(2) s(i) +c q (resp., s(i) ~ q) and s ( j )  ~ q' (resp., s ( j )  +c> q') are defined in 
states s(i) and s( j ) ,  respectively, for some q and qP, and 

q, l = i ,  
(3) g ( l )  = q', l = j ,  

s( l), otherwise. 

In this case, we write s ~__,c c s ~ {i,j} st, or simply s ~ ~ if process names i and j are 
not important. A (global) transition s ~ - ~ g  is said to be of type 1 if 0EA (i.e., the 
target process is involved); otherwise, it is of  type 2. 

A (global) computation is a sequence a : So ~--~; sl ~-*~2 2 . ' .  ~'-~aA" " sn, where 

so,sl , . . . ,sn are global states and Vi, ai E ~. (We sometimes write so ~ ~> Sn as a 
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shorthand for the above.) Global state s~ is said to be reachable through computation a. 
A local state q is said to be reachable if there exists a computation tr such that so L ~ ~ s 
and s(i) = q, for some i EZ. Given a global computation a : S O ~ . . ~ a A l l S 1 ~ _ ~ , a t 2 2  . . . ~_~A 
we define p(a) to be a string blb2.. .bnEF* such that 

b i = 

L(t) 

(the empty string) 

if OEAi and t is the transition performed by 
the target process (i.e., process 0) at si-1, 
otherwise. 

Intuitively, p(a) is the projection of transition labels of a on the target process. Given a 
system po~, where P = (Q, fi, X, qo, F, L), the trace set of P ~ ,  denoted by Trace(P ~) ,  
is {p(a) la  is a global computation in P~} .  

Given two systems P ~  and P ~ ,  where P3 = (Q1,~I,ZI,q~,F1,L1) and P2 = 
(Q2, 62,Z2,q20,F2,L2), a "bisimulation" is an equivalence relation R over S ( P ~ )  x 
S ( P ~ )  such that for every (sl,s2)ER, 

(1) for each sl , " ' ,  s~ and p(al)  = a (E F1), there exists an sl2, s2 ~ ,  s'2, p(a2) = a, 
and t t (Sl,S2)ER, and 

(2) for each s2, ~2 s2' and p(a2) = a (E F2), there exists an s 1, sl s l, p(al) = a, 
and (s~, s~) E R. 

Two systems P ~  and p]o are said to be trace equivalent, denoted by P ~  ~ P ~ ,  
iff Trace(P~ ) = Trace(P~ ). P ~  and P ~  are bisimilar (or bisimulation equivalent), 

denoted by P ~  ~ P ~ ,  iff there exists a bisimulation R such that 1 2 (s o, s o) E R, where 
s I and So 2 are the initial global states of P ~  and P ~ ,  respectively. The bisimulation 
equivalence (resp., trace equivalence) problem is that of, given two systems with many 

p ~  identical processes P ~  and 2 , determining whether P ~  ~ P ~  (resp., P ~  ~ P ~ ) .  

3. Fully connected systems 

In this section, we derive the complexities of deciding trace and bisimulation equiv- 
alences for {pF} (i.e., fully connected systems with many identical processes). As it 
turns out, the trace equivalence problem is complete for PSPACE, whereas the bisim- 
ulation equivalence problem is PTIME-complete. The idea behind our derivation relies 
on showing that, given two systems P1F and P2 F, we can construct (in polynomial time) 

two finite-state processes /51 and P2 in such a way that pF r p2 F (resp., P~ ~ pF) 

iff Pl ~ /32 (resp., /31 ~ /32). That is, deciding trace and bisimulation equivalences 
for fully connected systems with many identical processes can be equated with that 
for finite-state processes. As a result, our complexity results follow immediately from 
known results concerning the latter [20]. Before going into the details, we define trace 
equivalence and bisimulation equivalence for finite-state processes first (see [20] for 
more details). 

A finite-state process/3 is a four-tuple (Q, tS, Z, qo), where Q is a finite set of states, 
z is a finite set of symbols, qo (E Q) is the initial state, and fi defines the transition 
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function. A computation is a sequence a : q0 c ,  ql  c2 c, • "" ~ qn, where qi E Q 
and ei E Z, qi-I ci a > qi is defined in 6, for all 1 <~i<~n. We write qo ~ ~ qn as a 
shorthand for the above. The label of  a, written as p(a) ,  is c l c z . . . c n .  The trace 

of /5 ,  written as Trace(/5), = {p(a)  lqo ~ ~ qn, for some q,}. (Notice that the trace 
set is exactly the language accepted by the finite-state process, assuming that all 
states are accepting states.) Given two finite-state processes /s t  = (Q1,61, Zl ,q~)  and 

/52 = (Q2, 62, s2,  q~),/51 and/32 are trace equivalent, written as t31 •/52, iff Trace(~51 ) = 

Trace(~52). A bisimulation is an equivalence relation /~ over Q1 x Q2 such that 
for every (ql, q2) Ek ,  

1. for each ql c > q~, there exists ' c q2, q2 ~ q~2 and (q~, q~) E/~. 
2. for each q2 _L.  q~, there exists ql,ql' c ,  ql' and (qtl,q~2)CR, 

/51 and/52 are bisimulation equivalent, denoted by/51 ~/52,  i f  there is a bisimulation 
/~ such that (q~,q~)ER. 

For {pF}, any pair o f  processes are connected to each other; hence, a simpler form 
will be used in this section to describe a global state. Given a system pF, where 
P : (Q,6 ,Z ,  qo, F,L) ,  we establish an ordering on Q by letting Q : {qo, q l , . . . , q k } ,  

for some k. Throughout the rest o f  this paper, we assume the existence of  such an 
ordering. A global state is a (k + 1)-tuple s : (q, nl . . . . .  nk), where q represents a 
state of  the target process, and n i (EN) denotes the number of  processes in state q~ in 
the remainder of  the system. Notice that the number of  processes in state q0 need 
not be kept in the global state description, for it is always arbitrarily large. For 
ease of  explanation, we use [s] to denote q, and (s) to denote the k-dimensional 
vector (nl . . . .  ,nk). (Hence, (s)(i) = ni.) Initially, the system is in global state 

so = ( q 0 , 0 , . . . , 0 ) .  

To prove our main results, a few lemmas are required. 

Lemma 1. Given a system pF, the set o f  all reachable local states o f  P can be 
constructed in polynomial  time. 

Proof.  We begin with a procedure that generates the set o f  all reachable local states 
in a greedy fashion. The procedure was proposed in [23]; see also [8]. 

Procedure Reachable_Set; 
/* Given the description of  a process P = (Q ,6 ,S ,  qo, F,L) ,  */ 
/* the output 5 a consists o f  all reachable local states. */ 

5 p :----- {qo}; 
Fori  := 0 to I Q I - 1  do 

begin 

I f  3 p, q E 5 ~, p +c p,,  q -~ q' E r, for some c E E, and p~(or q ' )  ¢~5 a, 
then ~ := 5 a U { p / , q ' } ;  
else return (Se); 

end; 
end procedure. 



H.-C. Yen et al. I Theoretical Computer Science 170 (1996) 445-464 451 

It is obvious that if states p and q of processes P and Q, respectively, are reachable 
through computation paths belonging to two distinct groups of processes, and p c ~ p, 

q~ and q , are two transitions defined in p and q, respectively, then there is a global 
computation reaching a global state in which the states of P and Q are p' and q J, 
respectively. Since the number of processes is arbitrary, the validity of the procedure 
is easy to observe, and the complexity of the procedure is clearly in polynomial time 
(in the size of (Q,6,Z, qo, F,L)). [~ 

Throughout the rest of this section, the above set of reachable local states will be 
denoted as Rs(pF). It is important to note that, if necessary, every transition emanating 
from a state in RS(P F) can take part in a (global) computation an arbitrary number of 
times. Again, this is due to the availability of an arbitrary number of  processes. 

Lemma 2. Given a system pF and a global state s, for every m > O, there exist a tr 
and a global state s' such that s J ~ ~ s', Is] = Is'], (s')(i)>~m, for every i such that 
qiERS(pF), and all transitions in tr are of type 2. 

Proof. For any qi E RS(P r), qi can be reached through a computation along which all 
transitions are of type 2. For any m > 0, we allocate m distinct groups of processes 
(excluding the target process) each of which participates in the above computation (i.e., 
reaching state qi). By concatenating the computations of m such groups, a global state 
Si (S01 ai> Si ) with (si)(i)>>.m can clearly be reached for a given qi ERS(PF). Again 
by utilizing a distinct group of processes for each o" i and letting a = ala2. . .ak ,  the 
desired computation is constructed. Clearly, along this computation the target process 
remains idle; hence, [s] = [s~]. [] 

As mentioned earlier, the key idea behind our derivation is to reduce the deciding 
equivalence between fully connected systems with many identical processes to that 
between finite-state processes. Consider a system pV, where P = (Q, 6, Z, qo, F,L), the 
associated finite-state process/5 = (0,  ~, ~, q0) is constructed as follows: 

• O = RS(P ), 

• qo-----qo 

l 
• (q,q' , l)  (i.e., q ~ q'), where q ,q 'EQ and I E S ,  is defined in 6 if  there exist a 

c E Z, r, r' E RS(P F), such that 
1. (q,q' ,+,c),  ( r , r ' , - , c ) E 3  (or (q ,q ' , - , c ) ,  (r ,r ' ,+,c)E6) ,  and 
2. L((q,q' ,+,c))  = 1 (or L(q,q~,- ,c)  = l). 

The idea is to retain transition (q,q', +, c) (or (q, q ' , - , c ) )  that can be paired with a 
transition emanating from a state r E RS(P F). Furthermore, the label of such a transition 
is L((q,q' ,+,c))  (or L((q ,q ' , - ,c ) ) ) .  Also notice that the above construction can be 
carried out in polynomial time. Throughout the rest of this paper, /5 is called the 
reduced finite-state process of system PV. To give the reader a better feel for how the 
above construction is done, consider a simple example shown in Fig. 2. It is not hard 
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+ a  

I 
P P 

L(1 ~ 2) = r, L(1 7_~ 3) = s, L(2 :-~ 4) = r, 

L(2 +-g 5) = t, L(3 _7~ 5) = t, L(3 ~ 1) : r. 

Fig. 2. System pV. 

t 

5 

Fig. 3. The reduced finite-state process/~. 

to see that  the set o f  all reachable  local  states for  pF  shown in Fig.  2 is RS(P  r)  = 

{ 1 , 2 , 3 , 5 ) .  Hence,  the reduced finite-state p rocess  P is the one shown in Fig.  3. 

L e m m a  3. Let  P be the reduced finite-state process o f  a system pV, and s (with 

[s] = qi EP,  fo r  some i) be an arbitrary global state o f  P F. Then for  every transition 
c ~T 

qi ~ q j, f o r  some j ,  in P, there exists a sequence ~ in pF such that s ~ ~ s p, Is ~] = qy 

and p(  g ) = c. 
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Proof. Let qi ~ qj (in P)  be the transition from which qi ~ qj (in/5) is obtained 
in the construction from pF to /5. (For simplicity, the sign of t is omitted. Also notice 
that L(qi t > qj) = c.) By the construction of/5, there must exist a reachable local 

state qr in which qr ~ > qu is defined, for some qu. According to Lemma 2, there exists 
0 -t  

a sequence a',s,  ) s" [s"] = qi, such that (s")(r) > 0, and a'  (if not empty) utilizes 
only type 2 transitions. Let tr = trtt. Clearly, s~ > s', for some s' with [s'] = qj and 
p(a) = c. [] 

By repeatedly applying Lemma 3, we can easily show the following. 

Lemma 4. Given a system P~, let /5 be the reduced finite-state process mentioned 
above. Then for any ~ E Trace(~5), there exists a sequence tr in pF such that p(a) = ~. 

Corollary 1. Trace(P F) = Trace(P), where/5 is the reduced finite-state process of  a 
system pF. 

Proof. Trace(pF)c_ Trace(P) obviously holds from the definition of/5;  Trace(/5)C_ 
Trace(P v) follows immediately from Lemma 4. [] 

Theorem 1. Given two systems pF and P~, decidin9 whether pF L p~ can be done in 
PSPACE. 

Proof. From Corollary 1, testing P~ ~ P~ is tantamount to testing/51 ~/52, which is 
known to be doable in PSPACE [20]. [] 

In what follows, we consider bisimulation equivalence. 

Lemma 5. Given two systems pF and P~, let /51 and/52 be their reduced fnite-state 

processes, respectively. Then pF ~ pF iff /51 ~ /52. 

Proof. Let Pi i ~-(Qi,~i,z~i, qo, Fi,Li)  , and/si=(Qi,~i,~i,qio), where i=1  or 2. 

(pF ~ p~ =~/51 ~/52). Let R be a bisimulation relation between pF and pF. Define 
a relation k = {(ql, q2)i (s h s2)ER, where sl and s2 are reachable global states of pF 
and P2 F, respectively, [Sl] = ql and [s2] = q2}. In what follows, we show/~ to be a 
relation witnessing the bisimilarity between/51 and/52. 

Clearly, (ql, q2)ck,  where q~ and q2 are the initial states of el and/52, respectively. 
Now suppose (ql,q2)E/~. By the definition of/~, there must exist reachable global 
states Sl and s2 o f P  F and P2 F, respectively, such that (sl,s2)ER, [ S l ] : q  1 and [s2] =q2. 
Consider the following two cases. 

Case 1: Suppose ql _ ~  r l, for some cCz~l and r 1EQI. By Lernma 3, there exists 
a computation Yl in P1F such that Sl ~ ~l > ul, for some global state Ul with [u l ]=r  1, and 

P(71) =c. Since P~ ~ °F y2 r 2, there must be a computation ))2 in P~ such that s2 ~ > u2, for 
some global state u2 with [ u 2 ] = r  2, and p ( ' y 2 ) : C .  By the c o n s t r u c t i o n  o f / 5 2 , q  2 c ) rE . 
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Since sl , r ' ,  ul,s2 ~ U2, p(71)=p(]~2)=C, and ul and u2 are reachable from the 
initial states of pF and P2 F, respectively, we immediately have ( r l , r  2) E k (by the 
definition of/~). 

Case 2: Suppose q2 c ~ r2" Using a similar argument as that in the proof of Case 
1, we can show the existence of an r 1 in/31 such that ql c ~ r 1 and ( r l , r2 )Ek .  

(/31 ~ P2 =~ pF ~ p~). Let k be a bisimulation relation between Pl and/52. Define a 
relation R = {(Sl, s2) Is1 and s2 are reachable global states of P [  and pF, respectively, 
and ([st], [sz])E/~}. In what follows, we show R to be a bisimulation between pF and 
P2 v. Suppose (Sl,S2)ER. By definition, (Is1], [s2])ER. Consider two cases: 

Case 1: Slp ~'> Ul and p(),l)=C, for some label c. By the definition of/31, [Sl] _L- 

[ul] is a transition in/31. Given the fact that/51 B/32, and ([sl], [s2])ER, there exists 
a state r 2 EQ2 such that [s2] c r2 in/52 and ([ul],r2)ER. According to Lemma 3, 
there exists a computation 72 in P~ such that s2 r 2  u2 for some global state u2 such 
that [uz]=r  2 and p(72)=c. Now by the definition of R, (Ul,Uz)ER (because both ux 
and u2 are reachable and ([ul],[u2])ER). 

Case 2: sz , ~  u2 and P(y2) = c, for some c. A similar argument can be used to 
show the existence of a computation s l ,  y~ ~ ul, for some 71 and ul, such that P(71 ) = c 
and (ul,u2)ER. [] 

Lemma 5, in conjunction with the work of [20], yields the following. 

Theorem 2. Given two systems pF and P~2, deciding whether P~ ~ pF can be done in 
PTIME. 

Now we show the lower bound. 

Lemma 6. Given two finite-state processes/31 and/32, we can construct, in polynomial- 
time, two systems pF and pF such that/31 • P2 (resp., /31 ~ /32) iff P~ • PF 2 (resp., 

). 

Proofi The construction is rather straightforward. P1 retains all the states and transitions 
of P1 except that each transition symbol, say "a",  is replaced by "+a" .  In addition, if 
"a"  is a transition symbol used in/31, then add a self-loop labeled " - a "  to the initial 
state of P1; see Fig. 4. Finally, let the label of a transition be the same as the associated 
message type. P2 is constructed exactly the same way. The remaining details are left 
to the reader. [] 

Using the above lemma and the fact that deciding trace and bisimulation equiva- 
lence are PSPACE-complete [20] and PTIME-complete [20], respectively, we have the 
following result. 

Theorem 3. Given two systems P~ and P~, deciding P~ T p~ and P1 F ~ Pf  are 
PSPACE-hard and PTIME-hard, respectively. 
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°¢. 

P P 

Fig. 4. An example illustrating the construction. 

4. Star-like systems 

To show the bisimulation equivalence problem with a "star-like" structure (see 
Fig. 1) to be undecidable, we reduce the halting problem for 2-counter machines 

[12] to our problem. (See [15, 18] for similar proofs for the models of Petri nets and 
BPPs.) 

Before we go further into the detailed proof, first consider the relation between a 
system with many identical processes system and a 2-counter machine. In a 2-counter 
machine, there are three operations associated with a counter: increment, decrement, 

and test for  zero. More precisely, a transition of  a 2-counter machine is of  one of the 
following forms: 

(1) C := C + 1; goto q (add one to counter C), 
(2) if C > 0 then C := C - 1; goto q (subtract one from counter C), 
(3) if C = 0 then goto q (test counter C for zero). 
To simulate a 2-counter machine using a system with many identical processes, 

one's first attempt might be to use the structure depicted in Fig. 5 in which the target 
process enters the box (through the exchange of message "start") which plays the 
role of  the finite-state control of  the 2-counter machine. The remaining processes (i.e. 
those emanating from the center of the star) execute those transitions that are above 
the box (see Fig. 5). Furthermore, the values of the two counters are represented 
by the numbers of  processes in states ql and q2, respectively. The "+ i l "  and " + d l "  
(resp., "+i2" and "+d2")  transitions correspond to the actions of "adding one to" 
and "subtracting one from" the first counter (resp., the second counter). A careful 
examination, however, reveals the insufficiency for the above mechanism to faithfully 
simulate "test for zero" transitions. More precisely, we cannot prevent the target process 

from cheating on a "test for zero" transition, by performing the r - a  r"  transition while 
the first counter is not zero. In view of the above, it seems that a system with many 
identical processes does not have enough power to simulate a 2-counter machine. Our 
next theorem says that if we are given two systems instead, the notion of bisimulation 
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C1.'=C 1 +1; . . . .  

goto p ' 

-i I 

-start 

~ .  

- d  I -a  

if Cl=O then 
goto r" 

",if Cl>O then 
C~:=C 1 -1; 
goto r' 

Fig. 5. Process "simulating" a 2-counter machine. 

equivalence is sufficient to "force" one of the two systems to behave exactly like a 
2-counter machine. 

Theorem 4. The bisimulation equivalence problem is undecidable for {pS}. 

Proof. It suffices to show that, given a 2-counter machine M, we can construct two 
systems P1 s and pS in a way that M does not halt i f fP s and pS are bisimilar. Let C1 
and C2 be the two counters which are zero initially. As mentioned earlier, additions 
and subtractions of  the two counters can be done easily; in what follows, we focus on 
how we can enforce the "test for zero" operation through the use of  two systems on 
which the bisimilarity requirement is imposed. 

As shown in Fig. 6, process P1 consists of  two copies of  the finite-state control 
of  M. (For convenience, they are labeled M1,1 and M1,2.) Let states h l , ~ , ~ ' ,  and ~ "  
be the "images" of  states hi, rl,r~, and r~', respectively. (The "hi" represents the halt 
state of  M.)  

Suppose "if  C1=0 then goto r~'" is defined in state rl of  M, then M1,1 and MI,2 

-a  " and ~i -a~ ~,r, respectively. (These transitions can be paired have transitions rl > r 1 

with the "+-~"  transition defined in state qol.) In addition, we add a transition from 

rl to ~ u  labeled - e  (see Fig. 6). Also we let L(rl ya  r 1") -= L(rl --~ r 1 ~ ) .  P2 is 
identical to P1 except with an additional transition labeled - a  from hz to zz. We let 
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Fig. 6. The structures of  P1 s and P~. 
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L(h-~ - a  ~1) (= L(h2 ~ z2) = L(h-22 -a> ~-~)) be a unique symbol not used elsewhere 
in P1 s and pS. 

A computation in pS is said to be "valid" if during the course of the computation, 
the following hold: 

1. the target process utilizes only those transitions belonging to Ml,1, and 

2. when taking a transition like the rl -a> r~' (in Fig. 6) which simulates a "test 
for zero" for counter C1 (resp., C2), none of the remaining processes is in state q{ 
(resp., q{) at the moment. (What it says is that any "test for zero" transition can only 
be taken while the corresponding counter of M is indeed zero.) 

A "valid" computation for pS can be defined similarly. 

We are in a position to argue that M does not halt iff P1 s ~ P2 s. Consider the 
following two cases. 

Case 1: Suppose M halts. To disprove pS ~ p2 s, first notice that F s can do what- 
ever F s does. Since M halts, there exists a "valid" computation in P f  reaching h2 
using only those transitions belonging to M2,1. To "keep pace with" P2 s (intuitively, 
this is exactly what bisimilarity is all about), pS must follow exactly the same trace 
as that of P2 s in a step by step fashion. (Here, it is important to point out that pS 
cannot "cheat" by entering M1,2, for none of the remaining processes can exchange 
message "e" with the target process - condition (2) of a valid computation.) In the 
end, P1 s and P2 s end up in states hi and h2, respectively. Hence, P1 s and P2 s cannot be 
bisimilar. 

Case 2: Suppose M does not halt. To prove P1 s ~ p S, consider the following sub- 
cases: 
• pS does not enter h2. In this case, pS can always follow suit. 
• pS enters h2 through an invalid computation a. (Notice that there exists no valid 

computation reaching h2, for M does not halt.) 

Suppose r2 r2 is the first test-for-zero transition (in a)  at which P2 s cheats, 
i.e., executing a test-for-zero transition while the respective counter is non-zero. In 

our design, L(rl -e> r~--i) L(rl -a> r~') L(r2 --~> " = _._ r2 ). pS, in this case, can 

take the rl -e> Pl" transition pairing with the self-loop labeled "+e"  in state q~ of 
some of the remaining processes (because counter C1 is not zero at this moment). 
From this point and beyond, pS will stay in M1,2, and therefore can do whatever pS 
does. 

In view of the above, we have that M does not halt iff pS ~ pS. Following the unde- 
cidability of the halting problem for 2-counter machines, the bisimulation equivalence 
problem for {pS} is also undecidable. [] 

Theorem 5. The trace equivalence problem is undecidable for {pS}. 

Proof. Using the same construction as the one used in the proof of Theorem 4, 

p1 s T p2 s iff M does not halt. The details are left to the reader. [] 
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5. Linear systems 

Theorem 6. The bisimulation equivalence and trace equivalence problems for {pL} 
are undecidable. 

Proof. In what follows, we show that 2-counter machine computations can be faithfully 
simulated by systems in {pL}. The labeling scheme depicted in Fig. 1 is assumed here 
for naming processes in {pL}. 

Given a 2-counter machine M with two counters C1 and C2, the process structure 
designed to simulate M is shown in Fig. 7, which, for ease of explanation, is par- 
titioned into five regions, namely, A, B, GA, GB, and D. For the sake of simplicity, 
messages used in regions B and GB are omitted. Here, it is important to point out that 
messages used in A and GA differ from that in B and G~. Before presenting the detailed 
simulation, we first give the intuition. As before, region D is used for simulating the 
finite-state control of M. (In particular, transitions involving "p  - p'",  "r - r/' ' , and 
" r -  r " "  are examples of "adding one to Cl", "subtracting one from C1", and "testing 
Cl for zero", respectively.) Regions A and B are designed to simulate the two counters. 
Region GA and GB serve as two "gateways" through which unwanted messages can 
be "filtered out" for performing counter operations correctly. More will be said about 
this as our discussion progresses. A process is said to be "dormant" if it is in state q0 
(i.e., the initial state of the process). 

To simulate M, consider the following computation: 
1. By exchanging messages "g~" and "Ob" with its two neighbors, process 0 enters 

region D and starts simulating M's  computations. Depending on the order in which P0 
communicates with P-1 and P~, we have the following two cases: 

(i) P- l  and P1 enter regions GA and GB, respectively, or 
(ii) P-1 and Pl enter regions GB and GA, respectively. 

In case (i), process P,-, i~< - 2 (respectively, i>~2), takes part in the simulation of 

counter C1 (respectively, C2). 
Case (ii) is symmetric. Without loss of generality, we assume case (i) throughout 

the rest of the proof. 
2. At any time, the number of processes P~, i <~ - 2 ,  whose current states reside in 

region A represents the value of counter C1. Furthermore, if the state of P~, for some 
i ~< - 2 ,  is in region A, so are P-2 . . . . .  P/. (In other words, if j ,  j ~< - 2 ,  is the smallest 
index such that Pfs current state is not in A, then counter C1 equals IJl - 2.) 

3. At any time, the number of processes P/, i>~2, whose current states reside in 
region B represents the value of counter C2. Furthermore, if the state of P/, for some 
i ~> 2, is in region B, so are P2,... ,  P/. (In other words, if j ,  j >/2, is the smallest index 
such that Pfs current state is not in B, then counter C2 equals j - 2.) 
We are in a position to describe the detailed simulation. 

Increment C1: The simulation begins with P0 sending message 'T '  (using p - i  2) 

to its left neighbor (i.e., P - l )  and ends with receiving message "'aek" (using 2 +ock p,)  
from P-1. Recall that P-1 is in region GA at this moment. Upon receiving i from P0 
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Fig. 7. The structure of the process used in proving the undecidability result for {pL). 
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p~ p ~., P i.2 P~ P-2 P., Po 

Fig. 8. Increment of C1. 

(using q3 +it 13), P-1 propagates message i using transition 13 --i> 14 to /°-2. The 
propagation continues until a dormant process, say Pj, j ~< - 2 ,  is reached. Pj then 

executes qo +i -ack , 5 > ql, constituting an increment in C1. While doing so, message 
"ack"  is sent to the right which eventually reaches P0. See Fig. 8 for a pictorial 
description of some of the above moves (with irrelevant information omitted). It is 
worth pointing out that process P-1 serves as a "gateway" to filter out messages not 
belonging to those recognizable by P-2, P-3 . . . .  (Recall that P-2,P-3 . . . .  simulate the 
content of counter C1.) Without this gateway, however, it is possible for P- l ,  P0, P1 
to enter regions A, D, A, respectively, violating properties 2 and 3 mentioned earlier. 

- d  
Decrement CI: The simulation begins with P0 sending message "d"  (using r , 3 )  

to P- l ,  and ends with receiving "ack" (using 3 +~ck r ' )  from P-1. After passing through 

the gateway (i.e., P- l ) ,  message "d"  is propagated to the left (using transitions q~ +d 
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p, p,., pj.~ e, P.~ e, Po 

Fig. 9. Decrement of CI. 

9 ~ 11) until a dormant process, say Pj (j~< - 2 ) ,  is reached. Py and Pj+I exchange 
message "b"; Pj-1 propagates message " a c k "  to the right and then becomes dormant, 
constituting a decrement in C1. The remaining details are left to the reader; see also 
Fig. 9. Notice that if C1 is empty, then P-1 and P0 will get stuck in states 16 and 3, 
respectively. 

T e s t  C1 f o r  zero:  It is reasonably easy to observe that the test for zero transition 
--b +ack Ftt r ~ 4 can be executed iff/°-2 is dormant; see Fig. 7. 
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Pj Pj+I Pi-I Pi P-2 P-1 PO 

I I I I 
I I 

activated by Pj activated by Po 

Fig. 10. Two processes entering region D. 

What we have discussed so far is based on the assumption that exactly one process 

(i.e,, Po) enters region D. Furthermore, M halts iff there exists a computation leading 

Po to state h. To complete the proof, it remains to show that even in the presence 
o f  two or more processes entering region D, state h can only be reached through 

"valid" computation. In other words, if, for some reason, the operations of  those pro- 

cesses activated by Po (in order to keep track of  the contents o f  C1 and C2) are 
obstructed by other processes, then state h cannot be reached as a result of  such an "in- 

valid" computation. Take Fig. 10 for example. Processes P-1 . . . . .  P/ and P/-1 . . . . .  Pj+I 

are activated by Po and Pj, respectively, and both are simulating counter C1. Now 
suppose P0 issues an "add one to C1" command. An i message will be sent from 

Po toward P/; this message will pass through P,-I  . . . . .  Pj+t before reaching Pj, which is 
in region D. In our design, however, no " + i "  can be paired with the arrival of  this i 

message. As a consequence, the computation originated from P0 gets stuck thereafter, 

which is perfectly okay for no further computation can mistakenly enter the halt state. 
The remaining cases in which normal computations are obstructed are left to the reader. 

From the above discussion, it is easy to observe that M halts iff there exists a 
computation behaving in the above way, and eventually reaching the halt state h. 

Hence, systems in {pL} are powerful enough to simulate 2-counter machines; the two 

problems are undecidable. [] 
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