
Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1009

Advisory Board: W. Brauer D. Gries J. Stoer

Manfred Broy Stefan J~ihnichen (Eds.)

KORSO: Methods,
Languages, and Tools
for the Construction
of Correct Software

Final Report

Springer

Series Editors

Gerhard Goos.
Universit~it Karlsruhe
Vincenz-Priessnitz-StraBe 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853, USA

Jan van Leeuwen
Department of Computer Science,Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands

Volume Editors

Manfred Broy
Institut fiir Informatik, Technische Universit~it Mtinchen
Arcisstr. 21, D-80333 Miinchen, Germany

Stefan J~ihnichen
Fachbereich 13 - Informatik, Technische Universit~it Berlin
Franklinstr. 28-29, D-10587 Berlin, Germany

Cataloging-in-Publication data applied for

Die Deu t sche B ib l io thek - C I P - E i n h e i t s a u f n a h m e

K O R S O : me t hods , l anguages , and too l s fo r the c o n s t r u c t i o n of
correct s o f t w a r e : f ina l repor t / M a n f r e d Broy ; Stefan
J~hn ichen (ed.). - Ber l in ; He ide lberg ; New York ; Barce lona ;
Budapest ; H o n g Kong ; L o n d o n ; Mi l an ; Paris ; Tokyo :
Springer, 1995

(Lecture notes in computer science ; 1009)
ISBN 3-540-60589-4

NE: Broy, Manfred [Hrsg.]; GT

CR Subject Classification (1991): D.2, D.3,F.3

ISBN 3-540-60589-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplieation of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10487181 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

P r e f a c e

Correctness is a decisive quality at tr ibute of software systems. Although techni-
cally used for the consistency of a software system with its formalized require-
ments in a more pragmatic usage correctness comprises the adequacy of the
formalized requirements and the consistency of the software with them. Formal
methods provide a rigorous solution to the difficult problem of achieving and
demonstrating correctness. Since exhaustive consistency tests are not practica-
ble for large software systems, formal methods are often a prerequisite for the
use of risky applications.

The papers published in the present volume are a representative selection
of the results of work carried out in the project Koaso ("Korrekte Software").
This project was funded by the German Federal Ministry for Research and Tech-
nology. As early as 1990, the ministry recognized the need for a substantial im-
provement in the quality of software products and adopted this as a research
topic of clear national interest. Two integrated joint projects were subsequently
initiated, one, REMO, dealing with the evaluation of tools and methods for at-
taining high security standards for the use of computer systems, and a second,
Konso, concerned with the development of tools and methods for improving the
quality of software products.

This second project was quite consciously entrusted to partners with different
knowledge profiles and technical orientations, the idea being that the project
should produce as its result a status report on the relevant methods available,
and more importantly - a demonstration of their practical implementability.
This is the reason why the scientific partners in the project greatly outweighed
the industrial partners in terms of numbers. The project worked for a period
of three years as a coordinated group of individual partners with individual
objectives but also with close cooperation on specific research topics.

The primary aim of the Koaso project was to perfect and also to test the
theoretical foundations for improving software quality, and to implement already
known techniques for applications of practical relevance. Its goal was not to
develop marketable products for ensuring the quality of software - given the
state of the art at the time, that would have been a rather bold undertaking.
Koaso must therefore be seen as an evolutionary prototype-oriented project,
laying the ground for a systematic, quality-driven software engineering of the
future. The evolutionary nature of the project is based primarily on the insight
that new concepts can only be introduced if, at the same time, traditional, proven
methods are retained, and the new concepts integrated with these.

The work done in the KoRso project includes the conception of a general
methodological framework for software production; the definition of a generic
description and modelling language; support for deductive correctness-preserving
development steps using mathematically-based calculi and tools based on them;
and, of course, a constant criticM review of all the work in progress by means of
numerous accompanying case studies.

The present volume follows in its structure the division of the overall re-

vI

search effort into different research topics. It contains a part of papers dealing
with methodological approaches to the development of correct software (meth-
ods), and a part for the used formal specification and implementation languages.
The systems and logical frameworks part gives new concepts for development
systems, whereas the tool part evaluates some experimental tools used in the
project. The last part of the volume is devoted to case studies carried out in the
KoRso-project. The papers are by no means homogeneous, reflecting as they do
the different expectations of the partners; instead, they frequently describe the
specific results and perspectives of the various partners.

To help readers in selecting the papers that are of interest for them, an
overview of the different papers is given below. In addition the first paper pro-
vides an introduction to the subject. It is concerned thematically with methods,
but describes an accepted approach to the development of correct software on
the basis of axiomatic specifications. The initial sections of the paper provide a
motivation for the use of formal methods. The paper does, however, also present
a brief overview of the current state of the art and specifies the research goals
in this area.

The first part is devoted to methods. While the introductory paper, Correc t
Software: Prom Expe r imen t s to Applicat ions, focuses on methodological
questions, here the individual approaches are looked at in detail and illustrated
by means of small examples. The first papers in this area present different process
models with different aims.

The first of these, A M e t h o d for t he Deve lopment of Correc t Soft-
ware, follows on directly from the introductory papers, describing a method
based on axiomatic specifications. The model of a development graph and its
handling and manipulation are described in technical terms. This method is
applied in the next paper Real iz ing Sets by Hash Tables which looks at
a special refinement problem, and demonstrates the solution with the Koaso
development graph.

A different approach is described in the paper Event A u t o m a t a as a
Gener ic Model of React ive Systems, which gives a mathematical frame-
work with various instantiations for concurrency semantics or object-oriented
methods. This is a solid mathematical base for object-oriented methods, as de-
scribed in On Objec t -Or ien ted Design and Verification, which also focuses
on the important point of verification.

Another view of method support is given in the paper Design of Modu la r
Software Sys tems wi th Reuse which looks specifically at the concept of
reuse, describing a process model in which existing and implemented modules
can be integrated as early as the specification phase. The last paper of this
part, AvL Trees Revis i ted: A Case S t u d y in SPECTRUM shows a pass
through a rigorous formal development method, using the specification language
SPECTRUM. It demonstrates deductive software development starting from an
axiomatic requirement specification and leading to an executable specification.

VII

All proof obligations involved in the development process are indicated.

The second part in this volume is concerned with the languages used - and fur-
ther developed - in the project. The first paper is this area, K o R s o R e f e r e n c e
Languages - Concep t s and App l i ca t ion Domains , gives an overview of
these languages and, at the same time, touches on nearly all the other topics,
most particularly the case studies.

The next paper, How to Cope wi th t he S p e c t r u m of SPECTRUM, shows
the syntactic and semantic connections of the specification language SPECTRUM
with two other existing languages, which can be seen as executable subsets of
SPECTRUM. This is followed by A F i n e - G r a i n Sor t Disc ip l ine and I ts Ap-
p l ica t ion to Formal P r o g r a m Cons t r uc t i on , which describes in highly tech-
nical terms the synthesis of functional programs in the framework of a formally
based development method. The aim here is to automate simple development
steps by using automatic theorem-proving techniques.

The last paper in this part, TROLL light - T h e Language and its Devel-
o p m e n t E n v i r o n m e n t , gives an informal outline of this specification language
with its object-oriented features and special development and animation envi-
ronment.

The papers that follow in the next part are more or less closely concerned with
development systems and logical frameworks. The first paper in this part, For-
ma l i za t ion of Algebra ic Speci f ica t ion in the D e v e l o p m e n t Language
DEVA defines the language DF.VA. It's purpose is to represent developments for-
mally. With this one can formally describe the actions of a system. For the lan-
guage SPECTRUM several refinement steps are formalized in the paper. There are
many cross-connections between this paper and the following one, Cons t ruc -
t ion and D e d u c t i o n M e t h o d s for t he Formal D e v e l o p m e n t of Sof tware ,
which gives the logicM framework QED for formMly describing specifications,
programs and developments on the basis of a type theory.

The specification language OascuaE and its environment are the subject of
the next paper, Expe r i ences wi th a Spec i f ica t ion E n v i r o n m e n t . The focus
here is on the prototypical executability of OBSCURE specifications.

In the area relating to tools, the emphasis is on deduction support. Different proof
systems are presented, which were used and investigated in the course of the
KoRso project. The first paper, Towards Cor r ec t , Efficient and Reusab l e
T r a n s f o r m a t i o n a l D e v e l o p m e n t s emphasizes the importance of development
using transformation and so-called meta calculi.

T h e Ver i f ica t ion S y s t e m T a t z e l w u r m is concerned with the verification
of sequential programs in a Pascal dialect, while in SEDUCT - - A P r o o f Corn-

Viii

piler for First Order Logic the characteristics and use of the so-called proof
compiler are looked at in relation to concrete program development.

The verification system, TItAVERDI - Transformation and Verification
o f Distributed Systems, combines several interactive and automated proof
techniques to a general tool for developing correct, distributed systems. It em-
phasizes the use of transformations for this task.

The last paper in this part, T h e K I v Approach to Software Verification
describes the KIv (Karlsruhe Interactive Verifier) system, focusing specifically
on the module system and the aspect of reuse. With this system several case
studies were carried out.

The final part, case studies, reports on practical experience with the use of
methods, languages and tools. The first paper of this part, T h r e e Selected
Case Studies in Verification, gives a description and motivation of the usage
of the Kxv system. By reference to three small examples for theorem proving a
detailed productivity analysis for the KIv system is given.

Most of the research was carried out on the case study "Production Cell".
Nearly all the partners were involved in this study, so that a separate report
is devoted to it. The authors of the Case Study "Production Cel l " : A
Comparative Study in Formal Specification and Verification therefore
confine themselves to giving an overview of this work, while at tempting to put
the results into perspective.

Even the last paper in this volume, T h e K o R s o Case Study for Software
Engineering with Formal Methods: A Medical Information System, is
a survey on work done in the biggest case study of the KoRso project. It focuses
on requirements analysis supported by formal specification techniques. And we
are proud of the main result of this case study: Formal methods scale up in a
pleasant way.

To conclude, we would like to express our thanks to all those involved in the
Koaso project, not only for their excellent work, but also for their exceptional
cooperativeness and personal sense of identification with Koaso.

M. Broy,

TU M/inchen,

S. J i ihnichen

T U B e r l i n

Table of Contents

Correct Software: From Experiments to Applications
M. Broy, M. Wirsing . 1

P a r t I: M e t h o d s for Cor rec tnes s . 25

A Method for the Development of Correct Software
P. Pepper, M. Wirsing . 27

Realizing Sets by Hash Tables
P. Pepper, R. Betschko, S. Dick, K. Didrich . 58

Event Automata as a Generic Model of Reactive Systems
M. Pinna, A. Poignd . 74

On Object-Oriented Design and Verification
C. Lewerentz, T. Lindner, A. Riiping, E. Sekerinski . 92

Design of Modular Software Systems with Reuse
S. Gastinger, R. Hennicker, R. Stabl . 112

AVL Trees Revisited: A Case Study in SPECTRUM
R. Heftier, D. Nazareth, F. Regensburger, O. Slotosch . 128

Part II: L a n g u a g e s . 148

KoRso Reference Languages - - Concepts and Application Domains
H.-D. Ehrich . 150

How to Cope with the Spectrum of SPECTRUM
U. Wolter, K. Didrich, F. Cornelius, M. Klar, R. WesMily, H. Ehrig 173

A Fine-Grain Sort Discipline
and Its Application to Formal Program Construction
J. Burghardt . 190

TRObL light - - The Language and its Development Environment
M. Gogolla, S. Conrad, G. Denker, R. Herzig,
N. Vlachantonis, H.-D. Ehrich . 205

P a r t III: D e v e l o p m e n t S y s t e m s and Logical F rameworks 221

Formalization of Algebraic Specification
in the Development Language DEVA
T. Santen, F. Kammiiller, S. Jiihnichen, M. Beyer . 223

x

Construction and Deduction Methods
for the Formal Development of Software
F. yon Henke, A. Dold, H. Ruefl, D. Schwier, M. Strecker 239

Experiences with a Specification Environment
J. Loeckz, Y. Zeyer . 255

P a r t IV: Tools . 268

Towards Correct, Efficient and Reusable Transformational Developments
B. Krieg-Brilckner, J. Liu, H. Shi, B. Wolf f . 270

The Verification System Tatzelwurm
P. Deussen, A. Hansmann, T. K~ufl, S. Klingenbeck . 285

SEDUCT - - A Proof Compiler for First Order Logic
K. Stroetmann . 299

TRAVERDI - - Transformation and Verification of Distributed Systems
J. Bohn, H. Hungar . 317

The KIv-Approach to Software Verification
W. Re i f . 339

P a r t V: Case S tud ies . 369

Three Selected Case Studies in Verification
T. Fuchfl, W. Reif, G. Schellhorn, K. Stenzel . 371

Case Study "Production Cell":
A Comparative Study in Formal Specification and Verification
C. Lewerentz, T. L indner . 388

The Koaso Case Study for Software Engineering with Formal Methods:
A Medical Information System
F. Cornelius, H. Hu~mann, M. LSwe . 417

Authors' Addresses . 446

