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Abst rac t .  A novel geometric approach for 3D object segmentation and 
representation is presented. The scheme is based on geometric deformable 
surfaces moving towards the objects to be detected. We show that this 
model is equivalent to the computation of surfaces of minimal area, better 
known as 'minimal surfaces,' in a Riemannian space. This space is de- 
fined by a metric induced from the 3D image (volumetric data) in which 
the objects are to be detected. The model shows the relation between 
classical deformable surfaces obtained via energy minimization, and ge- 
ometric ones derived from curvature based flows. The new approach is 
stable, robust, and automatically handles changes in the surface topol- 
ogy during the deformation. Based on an efficient numerical algorithm 
for surface evolution, we present examples of object detection in real and 
synthetic images. 

1 Introduction 

One of the basic problems in image analysis is object detection. This can be 
associated with the problem of boundary detection, when boundary is roughly 
defined as a curve or surface separating homogeneous regions. "Snakes," or active 
contours, were proposed by Kass el al. in [17] to solve this problem, and were 
later extended to 3D surfaces. The classical snakes and 3D deformable surfaces 
approach are based on deforming an initial contour or surface towards the bound- 
ary of the object to be detected. The deformation is obtained by minimizing a 
functional designed such that its (local) minima is obtained at the boundary of 
the object [3, 36]. The energy usually involves two terms, one controlling the 
smoothness of the surface and another one attracting it to the boundary. These 
energy models are not capable of changing its topology when direct implemen- 
tations are performed. The topology of the final surface will in general be as 
that of the initial one, unless special procedures are used for detecting possible 
splitting and merging [24, 34]. This approach is also non intrinsic, i.e., the en- 
ergy functional depends on the parameterization. See for example [23, 39] for 
comments on advantages and disadvantages of energy approaches for deforming 
surfaces. 

Recently, geometric models of deformable contours/surfaces were simultane- 
ously proposed by Caselles e* al. [4] and by Malladi et M. [23]. In these models, 
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the curve/surface is propagating by an implicit velocity that  also contains two 
terms, one related to the regularity of the deforming shape and the other attract- 
ing it to the boundary. The model is given by a geometric flow (PDE), based on 
mean curvature motion, and is not a result of minimizing an energy functional. 
This model automatically handles changes in topology when implemented using 
the level-sets numerical algorithm [26]. Thereby, several objects can be detected 
simultaneously, without previous knowledge of their exact number in the scene, 
and without special tracking procedures. 

In [5], we have shown the formal mathematical relation between these two 
approaches for 2D object detection. We also extended them proposing what we 
named "geodesic active contours." The geodesic active contours model has the 
following main properties: 1- It connects energy and curve evolution approaches 
of active contours. 2- Presents the snake problem as a geodesic computation 
one. 3- Improves existing models as a result of the geodesic formulation. 4- A1- 
lows simultaneous detection of interior and exterior boundaries of several objects 
without special contour tracking procedures. 5- Holds formal existence, unique- 
ness, and stability results. 6- Stops automatically. 

In this paper we extend the results in [5] to 3D object detection. The obtained 
geometric flow is based on geometric deformable surfaces. We show that  the 
desired boundary is given by a minimal surface in a Riemannian space defined 
by the image. In other words, segmentation is achieved via the computation of 
surfaces of minimal area, where the area is defined in a non-Euclidean space. The 
obtained flow has the same advantages over other 3D deformable models, similar 
to the advantages of the geodesic active contours over previous 2D approaches. 

We note that  the deformable surfaces model is related to a number of previ- 
ously or simultaneously developed results. It is of course closely related to the 
works of Terzopoulos and colleagues on energy based deformable surfaces, and 
the works by Caselles el al. and Malladi el al. [4, 23]. It is an extension of the 
2D model derived in [5]. The basic equations in this paper, as well as the corre- 
sponding 2D ones in [5], were simultaneously developed in [18, 33]. Similar 3D 
models are studied in [37, 38] as well. Extensions to [4, 23] are presented also 
in [35]. The similitude and differences with those approaches will be presented 
after describing the basic principles of the model. 

2 E n e r g y  a n d  G e o m e t r y  based  a p p r o a c h e s  o f  d e f o r m a b l e  surfaces  

The 3D extension of the 2D snakes, known as the deformable surface model, was 
introduced by Terzopoulos el al. [36]. It was extended for 3D segmentation by 
many others (e.g. [9, 10, 11]). In the 3 0  case, a parameterized surface v(r, s) =- 
(x(r,  s), y(r, s), z(r, s)) (r, s) E [0, 1] • [0, 1], is considered, and the energy 
functional is given by 

E ( v ) =  lo -~r +~oi -~s +~11 OrOs +~2o Or21 +~o2 0s 2 + P drds, 

where P :-- - II xYI I] 2, or any related decreasing function of the gradient, where 
I is the image. The first terms are related to the smoothness of the surface, while 
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the last  one is responsible of  a t t r ac t ing  it to the object .  The  a lgor i thm s tar ts  
wi th  an initial  surface So, general ly near  the desired 3D bounda ry  O, and tries 
to move  So towards  a local m i n i m u m  of E.  

T h e  geometr ic  models  proposed in [4, 23] can ee~sily be  extended to 3D object  
detection.  Let Q =:  [0, a] x [0, b] x [0, c] and I :  Q - ~ / ~ +  be a given 3D da t a  
image.  Let g(I) = 1/(1 + IVIIP), where I a regularized version of I ,  and p = l or 
2. g(I) acts as an edge detector  so t ha t  the object  we are looking for is ideally 
given by the equat ion g = 0. Our  initial  active surface So will be embedded  as 
a level set of  a funct ion u0 : Q -~ / /~+ ,  say S0 = {x : uo(x) = 0} with  u0 being 
posi t ive in the exterior  and negat ive in the interior of  S0. The  evolving active 
surface is defined by St = { x :  u(t, x) = 0} where u(t, x) is the solut ion of 

Ou g(I)lVuldiv( V~@u[ ) 07 = + -g(I)lVul = g(I)(u + H)lVul, (1) 

with  initial  condit ion u(0, x) = uo(x) and N e u m a n n  b o u n d a r y  conditions.  Here 

( v u )  is the sum of the two principal  curvatures  of  the level sets S H = div W-~ 

(twice its mean  curvature , )  and u is a posit ive real constant .  The  2D version of 
/ 

this model  was heurist ically justif ied in [4, 23]. It  contains: 1. A smoo th ing  term:  
Twice the mean  curvature  in the case of (1). More efficient smoo th ing  velocities 
as those proposed in [2, 7, 25] can be used instead of H .  4. 2. A constant  bal loon-  
type  force (u lVul) .  3. A s topping factor  (g(I)). The  sign conventions here are 
adap ted  to inwards p ropaga t ing  active contours.  For active contours  evolving 
f rom the inside outwards,  we take u < 0. This  is a drawback of this modeh  the 
act ive contours  cannot  go in bo th  directions (see also [35]). Moreover,  we always 
need to select u r 0 even if the surface is close to the objec t ' s  boundary .  

Our  goal will be to define a 3D geometr ic  model  (with level set fo rmula t ion)  
corresponding the min imiza t ion  of a meaningful  and intrinsic energy funct ional .  
It  is mo t iva t ed  by the extension of 2D geometr ic  model  to the geodesic active 

contours  as done in [5]. 

3 T h r e e  d i m e n s i o n a l  d e f o r m a b l e  m o d e l s  as  m i n i m a l  s u r f a c e s  

In [5], a model  for 2D object  detect ion based on the c o m p u t a t i o n  of geodesics 
in a given R iemann ian  space was presented.  This  means  tha t  we are compu t ing  
pa ths  or curves of min ima l  (weighted) length. This  idea m a y  be extended to 3D 
surfaces by comput ing  surfaces of min ima l  area, where the area  is defined in a 
given R iemann ian  space. In the case of surfaces, arc length is replaced by surface 
area  A := f f da, and weighted arc length by "weighted" area  

AR := f ./ g(I)da, (2) 

4 Although curvature flows smooth 2D curves [15, 16, 30, 31], a 3D geometric flow 
that  smoothes all possible surfaces was not found [25]. Frequently used are mean 
curvature or the positive part of the Gaussian curvature flows [2, 7]. 
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where da is the (Euclidean) element of area. Surfaces minimizing A are denoted 
as minimal surfaces [27]. In the same manner, we will denote by minimal surfaces 
those surfaces that minimize (2). The area element da is given by the classical 
area element in Euclidean space, while the area element dar is given by g(I)da. 
Observe that  dar corresponds to the area element induced on a surface of j~3 by 
the metric of/~3 given by gij dxidxj with gij = g(I)25ij. This is the 3D analogue 
of the metric used in [5] to construct the geodesic active contour model. The 
energy An can be formally derived from the original energy formulation using 
basic principles of dynamical systems [5], further justifying this model. The basic 
element of our deformable model will be given by minimizing (2) by means of an 
evolution equation obtained from its Euler-Lagrange. Let us point out the basic 
characteristics of this flow. 

The Euler-Lagrange of A is given by the mean curvature H, resulting a 
curvature (steepest descent) flow os = HAl', where S is the 3D surface and Af its -57- 
inner unit normal. With the sign conventions explained above, the corresponding 

[26] formulation is ut = IVuldiv ( ~ )  = IVulH. Therefore, the mean level set 

curvature motion provides a flow that  computes (local) minimal surfaces [8]. 
Computing the Euler-Lagrange of An, we get 

St = (gH - Vg.  Af)Af. (3) 

This is the basic weighted minimal surface flow. Taking a level set represen- 
tation, the steepest descent method to minimize (2), yields 

0u0-7 = tVuldiv (g(I) V~@u~) = g(I)lVuldiv ( V]~u]) + Vg(I) . Vu. (4) 

We note that  comparing with previous geometric surface evolution approaches 
for 3D object detection, the minimal surfaces model includes a new term, ~Tg.~Ju. 
This term is fundamental for detecting boundaries with fluctuations in their 
gradient; see [5] for details. 

As in the 2D case, we can add a constant force to the minimization problem 
(minimizing volume), obtaining the general minimal surfaces model for object 
detection: 

O u -  ]Vu,div ( g ( / ) V _ ~ )  0-7 - + . g ( x ) ] v . ] .  (5) 

This is the flow we will further analyze and use for 3D object detection. It has 
the same properties and geometric characteristics as the geodesic active con- 
tours, leading to accurate numerical implementations and topology free object 
segmentation. The following results can be proved for this flow 

T h e o r e m  l ([6]). Assume that g > 0 is sufficiently smooth. Then, for any 
Lipschitz initial condition uo, there exists a unique viscosity solution u(t, x) of 
(5) with u(0, x ) =  u0(x)- 
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In practice, we choose an initial condition u0 with {x : uo(x) <_ 0} containing 
the desired object and we let it evolve according to (5). The active surface $(t)  
is the boundary  of the set {z :  u(t, x) <_ 0}. One can show [6] the independence 
of the evolution from the particular function u0 used to define the initial active 
surface. FinMly, the model (5) enables us to show the correctness of the geometric 
formulation in some special yet important  cases. We have 

T h e o r e m 2  ([61). Assume that S = {x : g(x) = 0} is a compact connected 
smooth surface embedded in 1R 3 which is unknotted. Then, if the constant u is 
sufficiently large, then S(t)  --~ $ in the Hausdorff distance as t ~ oo. The same 
result can be proved for all compact smooth surfaces which can be unknotted by 
adding them a finite number of handles. And also for finite unions of surfaces 
in that class. 

This covers a large class of surfaces which can be found in practice. Several 
questions arise concerning this theorem: 1- how large should the constant u be? 
It can be seen from the proof in [6] that  u should be larger than the mean 
curvature of the evolving surfaces. A reasonable assmnption is that  u should be 
larger than the curvature of the desired surface. On the other hand, for initial 
condition of a surface close to the desired object, one can choose L, = 0. In 
practice, convergence can also be obtained for u -- 0 if obstacles do not stop the 
active surface, yet the process is slower. 2- The presence of noise may disturb 
the convergence. This can be avoided by preprocessing the original image I .  In 
practice, if the noise is not dominant and is not structured along a surface, it 
will not stop the active surface. 3- The above theorem assumes that  the desired 
surface is given by g(x) = 0. We do not give a proof for the general case in which 
g(x) > 0 along the desired surface. In that  case the equilibrium position should 
be along the local min imum and a balance of the forces yields the result. 

In [13] it was shown that  the curvature along the 2D geodesics minimizing the 

weighted arclength may be bounded by I~1 _< supve[0,a]x[0,b ] { IvgU(p))lg(Iip)) } .This 

result is obtained directly form the Euler-Lagrange equation of the weighted 
arclength integral. It is easy to see that  there is no need for the geodesic itself 
for limiting the curvature values. In [13], motivated by [21, 22], this bound helped 
in the construction of different potential functions. 

A straightforward generalization of this result to our three dimensional model 
yields the bound over the mean curvature H.  From the equations above, it is 
clear that  for a steady state (i.e. St = 0) the mean curvature along the surface 
$ is given by H = ~ - u. We readily obtain the following upper bound for 

g 

the mean curvature magnitude along the final surface ]H I < sup "{ ~ }  + lul, 

where the sup operation is taken over all the 3D domain. The above bound gives 
an estimation of the allowed gaps in the edges of the object to be detected as a 
function of u. A pure gap is defined as a part  of the object boundary at which, 
for some reason, g =cons tan t r  0 in a large enough neighborhood. At these 
locations IHI = lul. Therefore, pure gaps of radius larger than 1/u will cause the 
propagat ing surface to penetrate into the segmented object. It is also clear that  
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u = 0 allows the detection of gaps of any given size, and the boundary at such 
places will be detected as the minimal surface 'gluing' the gaps boundaries. 

The basic equations for 3D segmentation here described, and those for 2D 
in [5], were recently independently proposed by Kichenassamy et al. [18, 19] 
based on a slightly different initial approach. Shah [33] also recently presented 
a 2D active contours formulation as the one in [5], which is the 2D analogue 
of the model here described. Although the works in [18, 33] also present the 
problem of 2D active contours as geodesic computations, they do not show the 
connections between energy models and curve evolution ones. Actually, to the 
best of our knowledge, non of the previous works on curve/surface evolution 
for object segmentation show the mathematical relation between those models 
and classical energy approaches, as done in [5] for the 2D case and extended in 
this paper and in [6] for the 3D one. Actually, in general the two approaches are 
considered independent. In [5, 6] and here we show that  they are mathematically 
connected, and one can enjoy the advantages of both of them in the same model. 
Although the extension from the 2D model to the 3D one is easy, no 3D examples 
are presented in [18, 33]. Also, not all the theoretical results here quoted [6] can 
be found in [18, 19, 33] (in [19] the authors do show a number of very important  
theoretical results as those in [6] and quoted here). Three dimensional examples 
are given in [37], where similar equations as the presented are proposed. The 
equations there are obtained by extending the flows in [4, 23], again without 
showing that  they can be obtained in a natural fashion from a re-interpretation 
of energy based snakes via minimal surfaces. In [35], motivated by work reported 
in [20], the authors based their work on the models in [4, 23]. One of the key 
ideas there, motivated by the shape theory of shocks developed by Kimia et al., 
is to perform multiple initializations. A normalized version of A was derived in 
[14] from a different point of view, giving as well different flows for 2D active 
contours. Extension of that model to 3D was presented in [12]. 

4 E x p e r i m e n t a l  r e s u l t s  

We now present some examples of our minimal surfaces deformable model (5). 
The numerical implementation is based on the algorithm for surface evolution 
via level sets [26]. It allows the evolving surface to change topology without 
monitoring the deformation. Using new results in [1], the algorithm can be made 
to converge very fast. In the numerical implementation of Eq. (5) we have chosen 
central difference approximation in space and forward difference approximation 
in time. This simple selection is possible due to the stable nature of the equation, 
however, when the coefficient u is taken to be of high value or when the gradient 
term is dominant, more sophisticated approximations are required [26]. 

In our examples, the initialization is in general given by a surface surrounding 
all the possible objects in the scene. In the case of outward flows [5], a surface 
is initialized inside each object. The first example of the minimal surfaces de- 
formable model is presented in Figure 1. A 'knotted surface' composed of two 
tori forming a 'chain' is detected. The initial surface is an ellipsoid surrounding 
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the two tori (top left). Note how the model manages to change its topology and 
detect the final surface (bot tom right). 

Fig.  1. Detection of two linked tori. 

Figure 2 presents the 3D detection of a tumor in an MRI image. ' fhe  initial 
surface is presented in the first row on the left. followed by 3 evolution steps. 
The final surface, the 'weighted minimal surface', is presented at the lower right 
frame. Figure 3 shows slices of the 3 0  detection painted on the corresponding 
MRI data. 

Fig.  2. Detection of a tumor in MRI. 

Fig.  3. Slices of the 3D detection in Figure 2. 
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Figure 4 presents the segmentation of the interior and exterior of a 3D MRI 
data  of a bone. The two slices show the process of locating the outer and inner 
parts.  Two views of the final segmentation of the inner and outer parts  are 
presented in upper and lower rows. This figure also demonstrate  the power of 
the the proposed technique in accurate analysis of medical images. 

Fig.  4. Two slices and two orthographic views of 3D detection of the inner and 
outer parts of a bone in an MRI image. 

5 C o n c l u d i n g  r e m a r k s  

In this paper  we presented a novel formulation of deformable surfaces for 3D 
object detection, extending our previous 2D work [5]. We proposed a solution to 
deformable surfaces approach for boundary detection. It  is given as a minimal 
surface in a Riemannian space defined by a metric derived from the given image. 
This means that  detecting the object is equivalent to finding a surface of mini- 
mal  weighted area. This approach allowed to relate classical energy based models 
with new surface evolution ones. The minimal  surfaces formulation introduced 
a new term that  at tracts  the deforming surface to the boundary, improving the 
detection of boundaries with large differences in their gradient. This new term 
also frees the model from the need to estimate critical parameters.  Therefore, the 
minimal surfaces formulation not only connects previous models, but also im- 
proves them. Results regarding existence, uniqueness, stability, and correctness 
of the solution obtained by our model were summarized and will be reported 
elsewhere. 

Experiments for different kind of images were presented. These experiments 
demonstrate  the ability to detect several objects, as well as the power to simulta- 
neously detect interior and exterior boundaries. The sub-pixel accuracy intrinsic 
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to the  a lgo r i t hm allows to  pe r fo rm accura te  measu remen t s  after  the  ob jec t  is 
de tec ted  [28]. 
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