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Abstract. This paper presents a general framework for the computation of pro- 
jective invariants of arbitrary degree of freedom (dof) trihedral polyhedra. We 
show that high dof. figures can be broken down into sets of connected four dof. 
polyhedra, for which known invariants exist. Although the more general shapes 
do not possess projective properties as a whole (when viewed by a single cam- 
era), each subpart does yield a projective description which is based on the but- 
terfly invariant. Furthermore, planar projective invariants can be measured which 
link together the subparts, and so we can develop a local-global description for 
general trihedral polyhedra. We demonstrate the recovery of polyhedral shape de- 
scriptions from images by exploiting the local-global nature of the invariants. 

1 Introduction 
In this article we introduce a general scheme for understanding the shape properties of 
trihedral polyhedra. Trihedral polyhedra are solid polyhedra made up of planes in arbi- 
trary positions, and as such, no special constraints exist between the planes. The nomen- 
clature trihedral derives from the fact that the vertices of the polyhedra are only ever 
defined by triples of planes: points in space need at least three planes to assert their lo- 
cations, but any more would provide excess constraint and hence would not be generic 
(and stably realisable). The results in this paper are a summary of those given in [9]. 

In all, we generalise the result in [8] which showed how a projectively invariant de- 
scription can be computed for four degree of freedom (dot') polyhedra from a single 
view. In turn, [8] was a extension of the work of Sugihara [11]. The latter dealt with 
sealed orthographic projection and the calibrated perspective cases, whereas the former 
demonstrated the projective equivalence of all members of the family of four dof. poly- 
hedra generating a set of scene measurements using an uncalibrated camera. We show 
in this paper that the approach of [8] can be extended to include all trihedral polyhedra. 

We also build on some recent work for computing the invariants of minimal point 
configurations in three-dimensiolaal space. Being able to compute measures for small 
local feature groups provides robustness to occlusion. More global descriptions can be 
built up using the local-global nature of many shape descriptions [3, 10]. We derive a 
part-whole decomposition by drawing the invariant description of [8], and the invari- 
ants based on the butterfly configuration of Mundy [13] together. The butterfly invariant 
is a geometric description of a special six-point configuration. 

Our interest in the butterfly invariant was promoted by the recent paper of Sugi- 
moto [12]. This paper discusses an invariant very similar to the original butterfly in- 
variant, but suggests an algebraic rather than a geometric formulation. However, Sugi- 
moto suggested that the invariants in [12] in some way replace the invariants described 
by [8]. In fact, these two types of invariant can be taken hand-in-hand and are exactly 
complementary. This we show partly in this paper, and in more detail in [9]. 

The contributions of this paper are three-fold: in Section 2 we discuss how the orig- 
inal invariant description of [8] can be decomposed into a set of three independent but- 
terfly invariants. Then we show in Section 3 how to reduce a five dof. figure into sets of 
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Fig. 1. (a) the butterfly consists of two sets of four coplanar points yielding a unique cross ratio. 
(b) the labelling of a cube used for the butterfly invariant computation. 
figures with four dof. For the simplest case of such an object (two cube-like strucatres 
stuck together using a common plane), we can recover three invariants for each half of 
the object, and a further eight joint-invariants based on planar measures between the two 
halves. We also describe how higher dof. polyhedra can be broken down into four dof. 
objects related through pairwise planar constraints. Finally, in Section 4 we report on 
algorithms for the extraction of the polyhedral descriptions and their image invariants. 

2 The butterfly invariant 
The butterfly is the simplest known invariant for a set of points in 3D space: The con- 
figuration is composed of six points in space broken up into two four point groups, 
{A, B, C, D} and {A, B, E,  F}.  Each four point group is coplanar, and two points are 
shared between the groups. This is shown in Fig. 1 a. The invariant for the butterfly is 
measured through the construction of a cross ratio. As can be seen in Fig. 1 a, it is pos- 
sible to form a set of four collinear points and hence the invariant cross ratio [2]. These 
are the points { A, B, P ,  Q } from which we define the cross ratio ~- = { A, B; P ,  Q }. In 
fact, we show in [9] that the same butterfly invariant actually takes the algebraic form: 

IMAcDI IMB FI 
= IMA FI'IMBc I' (1) 

which allows the direct computation of the invariant values from image data. Here Miik 
is the 3 x 3 malrix whose columns are the points i , j  and k and IMI is the deternfinant of 
M. ,Mthough this invariant is very shnilar to that derived by Sugimoto [12] the interested 
reader will note that it can be derived more simply (shown in [9]). It is also worth noting 
that the form above was derived by Carlsson [1] using a more difficult, but in fact more 
general (and so elegant) approach based on the double algebra. 

2.1 Computing polyhedral invariants with the butterfly 
The projective invariants for polyhedral figures can be computed using the butterfly. 
Here we consider how to compute the invariants for a cube-like structure such as that 
shown in Fig. lb. In fact, we see later that understanding the invariants for this type of 
figure is as far as we need to go to comprehend the invariants for all tribedral polyhedra. 
For a cube-like polyhedron, there are three independent invariants, for instance: 

IM~c~l IMB~al IMADFI IMCB~I IMABGI IMDcFI (2) 

I That is for a configuration which satisfies no single geometric constraint. 
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It is simple to demonstrate that these three invariants am independent and form a basis 
for all of the other invariants. Thus a description based on the butterfly is equivalent to 
one which uses the invariants of [8]. Proofs of  these statements are given in [9]. 

3 Simplifying higher order polyhedra 
We now extend previous theories on trihedral polyhedra to the general case. This result 
is significant because it resolves a number of important but unanswered questions which 
were posed by [8]. There, it was shown that invariants can be computed for polyhedral 
figures which have four dof. These represent only a relatively simple class ofpolyhedra 
such as cubes, as well as shapes equivalent to cubes but with simple volumes cut-out of 
them. Note that the number of dof. of a polyhedra represent the dimensionality of the 
space of reconstructions which arise out of the image constraints. 

In the following paragraphs we demonstrate that figures with more than four dof. 
can be decomposed into sets of related polyhedra which have only four dof. The first 
example we consider is the decomposition of five dof. figures into sets of  four dof. fig- 
ures. More complicated figures can be decomposed similarly. The simplification process 
means that the invariants we have seen previously for four dof. polyhedra (such as the 
butterfly invariants) can be employed for each subpart of a more complicated structure, 
and so informs us that the basic invariants for general polyhedral structures are based on 
those for four dof. figures. However, no projective invariants of the complete structures 
exist as each four dof. subpart maintains a certain amount of (non-projective) indepen- 
dence from the other parts. We discuss this claim in Section 3.3. 

Additionally, we can compute joint-invariants between the pairs of  adjacent four 
dof. figures in the subpart hierarchy; these joint-invariants provide the glue which holds 
the subparts together. Therefore, although there are no general projective constraints 
between the subparts of a polyhedron, the subparts are not reconstructed in space with 
total liberty, but are placed in related frames. Usually, each related pair of  subparts in a 
figure share a common plane in which plane projective invariants enforce constraints. 

These two sets of invariants are all those which may be computed for an arbitrary 
trihedral polyhedron. We now proceed with proofs and explications of the statements 
given above. Due to limitations of space we are unable to repeat the theory given in [8], 
but only highlight the key points. However, we do make use of the same notation. 

3.1 Reconstructing polyhedral figures 
The assumptions we make about the polyhedra we treat are that they are made up of 
trihedral vertices and thus satisfy genericity conditions. Additionally, they are bounded 
solids which, due to self-occlusion under imaging, can be considered not to have interior 
volumes or surfaces. Thus, any complete set of adjacent planes forms a solid polyhe- 
dron. A complete polyhedron has three planes meeting at every vertex, and two planes 
at every edge. We can always render a set of adjacent planes complete using the trihedral 
constraint by defining additional planes passing through the edges and vertices. 

We use a 3D coordinate system (X,Y, Z) and so planes satisfy: a#Xi + b#Yi + 
cjZi + 1 = O, j E {1, ..., n} where n is the number of planes on the object. Each of 
the (X i, Y/, Zi) represent the polyhedral vertices. Under the pinhole projection model, 
projection onto the plane Z = 1 maps the point (Xi, Y~, Zi) to (xl, yl) where: xi = 
Xi /Z i  and yl = Y~/Zi. Substituting these into the plane constraint equation, dividing 
through by Zi and setting tl = 1/Zi yields: 

ajxl -t- bjyi T c# T tl = O. (3) 
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Here we have assumed a camera calibration; as stated in [8], this need not be the ease. 
The trihedral assumption means that each point lies on three planes, say j E {oq t ,  7}- 
Eliminating the ti between pairs of constraints yields two linear equations per point: 

- a )xp + (be - b )yp + - ca )  = 0, 
(a,~ - a,~)xp + (b,y - b~)yp + (c7 - ca) = O. (4) 

Now, from the m image vertices observed in eachimage, we form h(x, y)  w = 0 which 
is a matrix equation of 2m constraints in 3n unknowns. Here x = (xl , .  �9 �9 xm) T, y = 
(Yl,--- ,  Ym) T, h(x, y)  is a 2m x 3n matrix, and w = (al,  bx, cl, a 2 , . . . ,  cn) T. We 
now state the following theorem: 

Theorem 3.1 The kernel of  the matrix A represents all of  the possible solutions to the 
reconstrtlction of a trihedral polyhedron imaged by a single pinhole camera. 

Proof  See [8] and more completely [7]. o 

d The kernel of  A can be represented as w = ~ i = l  Aib~. We can orient the basis for 
w so that b~ = (51,52, 5 3 , . . . ,  51,52,53)7- for 1 < i < 3 and where 5~ = 1, and 
5mod3(i+~) = 5mod~(i+2) = 0. We may also fix the other basis vectors so that: 

r T #r ~T~T b~ = (0 ,0 ,0 , (  0 2 , . . . , ~  O,, ,  , 

for 4 < i < d. This means that the solution for w with )q = 0 for i > 3, represents a 
simple planar configuration (strictly at least one of Ai should satisfy ~i ~ 0 for i _< 3). 
The initial three elements o fb i  being zero means that the first plane of the reconstructed 
polyhedron has coordinates ( ~ 1, A2, A3, 1) 7-. 

3.2 F o u r  dof.  p o l y h e d r o n  

It was shown in [7] that for d = 4 the solutions represented by w are all projectively 
equivalent to each other. In this case we thus need consider only one solution from w 
for the computation of the three-dimensional projective invafiants on the shape. 

3.3 Five  dof.  p o l y h e d r o n  

Consider the case for d = 5. To simplify the discussion we represent b4 and b5 by: 

b ,  = a n d  : 

Separating out the first four dof. figure 
We return to the form of the constraints given in eqn (4). Consider the first plane, and 
another plane i which shares an edge with it; the endpoints of  the edge are the points p 
and q. First we construct a set of planes S1 which initially contains the first and the ith 
planes. Consider writing c~ = (A1,)~2, A3 ) T. Then, making use of the fact that both rx 
ands1 are null vectors means that (al, bl, cl)-r = a and (ai, hi, c~) -r = c~+)~4ri+Ass~. 
Subsequently, eqn (4) reduces to the following vectorial constraints: 

(xp yp 1) T. (~4ri + ,~ssi) ---- 0, and (Xq yq 1) T. (~4ri + ~5si) = O. (5) 

These define ()~4ri + )~ssi) uniquely up to a scale as xp and xq are distinct points. This 
solution exists for all )~4 and )~5, and so either ri  is parallel to si, or one of rl  and si is 
null (but not both). Now, within the bounds of the geometric constraints used so far, we 
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are free to orient b4 and b5 as we desire. In order to simplify the overall description, 
we make a further change of basis. Assuming that ri and s~ are parallel, a change of 
basis is effected so that si becomes a null vector, and ri is non-zero. Should either of 
the two vectors have already been null we can make a change of basis (perhaps trivially) 
to ensure that rl  is non-zero and s / is  null. Once done, neither the first plane, nor plane i, 
will depend on As. By reapplying the reasoning, we may extend the process and provide 
independence to A5 for all of the other planes which have r j  parallel to sj  (or are null 
vectors). All planes of this type are included in the set $1. 

It is certain that a number of planes will be included in S1. Geometrically we see 
that providing independence to A~ for other planes is based on the trihedral assumption 
underlying our manipulations. Consider any third plane which shares an edge with both 
the first and ith planes; the third plane is precisely defined by the positions of the other 
two. The first plane is independent of both A4 and A~, and the i th one depends only on 
A4. Thus the new plane depends only on A4 (and so its s must be null). This process can 
be continued for all other planes which have two edges in common with a pair of planes 
from $1. One will thus build up a set of planes constituting $1 which depend only on 
A4, and which consequently represent a four dof. figure. 

The second four dof. figure 
Once the first four dof. subpart has been extracted we can be sure that no planes remain 
outside $1 which are in contact with more than one plane in $1. This is because if a plane 
not in $1 were attached to two planes in $1, then it would have to be fixed in space. We 
label the complementary set to $1 by S. We may now make the following statements: 
1. The planes in S1 use up four of the five dof. for the polyhedron. This is because the 

planes in $1 are defined by the )~i, i < 4. 
2. $1 does not represent the entire polyhedra (S is not empty). If it did, then b~ would 

be null and we would have only a four dof. figure. 
3. There must be at least one plane in S which is adjacent to a plane in $1. If  this were 

not the case, then the planes in S would make up a figure with at least three more 
dof. These extra three dof. would lead to the entire figure having too many dof. 

We exploit the third of these statements to base the rest of the reconstruction around the 
plane in Sa which is adjacent to S. To do this, we again change basis so that this plane 
is accounted for by the first three parameters of w. For simplicity of argument we also 
reorder the rest of planes so that those dependent on only .~4 appear first in the basis 
vectors. The m TM plane (which is the first plane that does not belong to $1) is chosen so 
that is shares an edge with the first plane. Thus we have: 

b4 (0, 0 ,0 , r  T T 7- 7- 1- = 2 ~ . . . ~ r m - l ~ r m ~ ' ' ' ~ r n )  
T T T bs = (0,0,0, .  . . . . . . .  0,0,0,  s , ~ , . . . , s n )  . 

We now repeat the process used previously for the elimination of the components of si 
from b5 for i < m, though this time we eliminate the rl. Given that the first plane is rep- 
resented by the zero vector, and that the mth plane shares an edge with it, we know that 
rm and s,,~ are parallel (cf. eqn (5)). We may now eliminate either of rm or Sm to yield 
dependence only on one of ,~4 or As. Clearly this plane cannot depend on )~4 otherwise 
it would already have been included within $1. Therefore, we are able to eliminate rm. 
In the same way that we added planes to S1 we continue to build up planes dependent 
only on )~5. We place all of these planes in the set $2. Once all possible rl have been set 
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to zero, we are left with basis vectors of the form: 

b 4  (0 ,  0 ,  0 ,  r : ,  . . . T r T ~ T  = , r m - l , 0 ,  0, 0," " " ,0,0,  0, r~ ,  . . . .  nJ , 
bs (0, 0,0, . . ,0 ,0 ,  T . . , S [ _ l ,  S ;  ' T T . . . . . .  O, sm,.  . . . . . .  , sn )  �9 (6) 

Such a basis represents a decomposition of the polyhedron into two four dof. complete 
solid polyhedra built around the first plane (the first polyhedron of plane s 1 to (m - 1), 
and the second of plane 1, and planes m to ( k - 1)). The first plane is called the common 
plane. In addition to these sub-figures, there may be a set of planes k to n which we 
represent by the set ,53. ,53 is empty for simple polybedra, and so k = n + 1. However, 
this is not the general case and $3 can well contain further polyhedral subparts. Note 
that the planes in this subsidiary set are still constrained completely by A4 and As. 

Sa at first has the appearance of being a more complex figure than the four dof. sub- 
parts which we have already extracted, though this is not really the case. ,53 will always 
be composed of other four dof. polyhedra. The simplest way to understand this is to re- 
order the planes so that one of the planes in S1 adjacent to $3 is set to the first plane of 
w (such a plane must exis0. We then repeat the above elimination process. Doing this 
would mean that a subset of planes in $3 would be dependent only on the new A5 ($1 
is still parametrized by A4) and so would have only four dof. By progressive choices of 
common planes between the extracted subparts of $3 and their complement in $3, we 
can gradually demonstrate that $3 is composed only of four dof. figures. The trick is 
to see that any two polyhedra sharing a common plane can always be demonstrated to 
have four dof. We thus extend our current understanding of trihedral polyhedra via: 

Theorem 3.2 Five dof. trihedral polyhedra are made up of simple building blocks con- 
sisting only of constrained four dof polyhedra. As each subpart has only four dof, their 
own local equivalence classes are projective. 

Proof As discussed above, and more completely in [9]. 

Projective inequivalence of five dof. figures 
Unlike the four dof. figures discussed previously in [8], two different reconstructions 
of a five dof. figure need not necessarily be projectively equivalent. Formally: 

Theorem 3.3 The different reconstructions of afire dof. non-trivial polyhedron imaged 
by an uncalibrated pinhole camera are not in the same projective equivalence class. 

Proof Given in [9]. [] 

3.4 Invariants for five dof. f igures 

There are two sets of invariants which can be measured for five dof. polyhedral figures. 
The first are based on the invariants of each of the subparts, and so are the same as the 
four dof. invariants given in [8]. As stated in Section 2.1, these can be measured using 
the butterfly invariants. We can also measure a number of invariants in the common 
plane from the coplanar edges of each adjacent snb-polyhedra. Generically the number 
ofinvariants of this form depends on the structure of the polyhedra: if there are mi edges 
in each of the j common planes between the subparts, i E { 1 , . . . ,  j }, then there are 

~ = 1 ( 2 m i  - 8) computable planar invariants. It can be shown that the butterfly and 
planar invariants represent all of the invariants which can be computed for such a figure. 
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3 .5  H i g h e r  degree  of  f r e e d o m  f i g u r e s  

We can use the results of Section 3.3 to complete the description paradigm for polyhedra 
of six or more dof. We proceed with higher dof. figures in a similar way to five dof. 
polyhedra. First, extract a four dof. subpart and define the planes which it has in common 
with the rest of the polyhedron. Then, continue to examine the rest of the polyhedron 
by ignoring the planes in the first subpart, extracting further four dof. polyhedra. In this 
manner the whole polyhedron can be decomposed into a set of four dof. subparts. The 
computation of the invariants for the entire object is then straightforward: 
- Compute projective invariants for the planes within each subpart. 
- Compute planar invariants between the edges in all the common planes. 
It follows obviously from the result for five dof. polyhedra that the families of recon- 
structions for higher dof. figures are not projectively equivalent. 

4 Finding polyhedra in images 
In this section we report on a pair of approaches which show how polyhedral descrip- 
tions can be extracted from real images. As always, we are plagued by the difficulty of 
extracting accurate segmentations from real images. We discuss two different methods 
and provide demonstrations of them working on relatively simple images containing 
well-defined polyhedral objects. The solutions are: 
- Use an edgel detector to initialize a polyhedral snake on sets of image features. Then 

compute invariants for the snake. 
- Search for pairs of adjacent closed regions in the image suitable for estimating butter- 

fly invariants. These invariants are used to index into a model base and subsequently 
to provide hypotheses suggesting which object might be present in the scene. Hy- 
potheses are combined post-indexing to derive richer object descriptions. 

Both of these approaches require edgel and line extraction. The edgel detector we use is 
described in [6] and ensures good connectivity around image junctions. Straight lines 
are fitted to edgel-chains using orthogonal regression and a topological (connectivity) 
structure composed of connected straight lines and edgel-chain segments is produced. 
The actual data structures we use are built around a vertex-edge-face topology hierar- 
chy [5]. Vertices are typically used to represent junctions and the interfaces between 
pairs of lines or edgel-chains. Edges link vertices and are instantiated geometrically by 
lines and edgel-chains. Faces represent closed cycles of edges (we also have 1-chains 
which represent non-cyclic edge chains). This topology hierarchy allows the straight- 
forward extraction of closed regions from the image as each face is a closed region. 

4.1 P o l y h e d r a l  snakes  
The primary goal of the snake extraction approach is to recover structures which have 
the same topological forms as the projections of the polyhedra which we wish to recog- 
nize. Once these have been extracted, they can be matched to snake models, and then 
the snakes develop in the image by interaction with the image intensity surface. After 
a number of iterations we can measure the invariants of the snake (which are similar to 
projected polyhedral and thus hypothesize the identity of the object in the scene. 

The first phase of processing involves the extraction of edges, as demonstrated in 
Fig. 2. Notice that we have been able to recover a fairly good description of the polyhe- 
dron's topology with the edge detector. Principally the edge description consists of three 
closed regions each of which match projected polyhedral faces. Being able to find these 
image regions means that we can reject scene clutter (non-polyhedral regions) rapidly 
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Fig. 2. First we show a polyhedron and then the output of  the edgel detector superimposed. Note 
that the basic topological structure of  the edges is correct. Next are the lines fitted by orthogonal 
regression and finally the polyhedral snake. 

C C~ C~ C, C~ C~ C~ 

Fig. 3. The topological descriptions stored for the projections of  a six-plane polyhedron. 
during subsequent processing. We then fit lines and throughout ensure the maintenance 
of the topological description. After fitting, we extract faces from the image. For Fig. 2 
there are three basic regions which are suitable, plus a number of others which include 
combinations of these regions. Subsequent analysis is focused on the faces and on the 
lines which they contain. However, over-segmentatiun can arise due to the edge detec- 
tor recovering small noisy features. A number of these are shown in Fig. 2. These fea- 
tures disrupt the line fitting process and cause breaks to be inserted between pairs of line 
segments. We therefore traverse the boundary of each face and test whether a pair of 
adjacent lines would be better represented by a single straight line segment. If so, a sin- 
gie line segment is substituted. Once the line merging process is complete, we count the 
number of lines in each face to see whether it remains of interest. Polyhedral faces must 
contain at least three line segments, and so any with less can be discarded. For this appli- 
cation we desire at least four lines. Consecutive line segment endpoints should also be 
reasonably close as polyhedral faces are generally polygonal. Given this, we can discard 
the edgel-chains between lines and reduce the face representations to ideal polygons. 

The penultimate stage of processing involves the matching of the adjacency graph of 
the faces to topological models which we have for the polyhedra in the model base. The 
topological descriptions of the lines and the snake are consistent in Fig. 2. The complete 
set of descriptions from which we form snakes is given in Fig. 3. Given a match, such as 
that shown, we initialise a snake which is allowed to relax onto the contrast boundaries 
in the original image. The snakes are a crude implementation of those described in [4]. 
The final position of the snake yields sufficient structure for invariant computation. In 
Fig. 2, all of the butterfly invariants are unity because the polyhedron is projectively 
equivalent to a cube (which is composed of three of sets of parallel planes). Table 1 
shows how the three invariants for the shape change over the iterations of the snake. 

A similar example of polyhedron extraction using snakes is in Fig. 4. In Fig. 5 we 
have a harder case. The edgel detector failed to recover the polyhedron's vertical inter- 
nal boundary, and so we must use a simplified model with which to initialize the snake. 
In this case we have a description equivalent to Ce (in Fig. 3) and so we are able to 
hypothesize the location of the missing edge by joining up a pair of vertices. We re- 
turn to the complete snake description (Ca) once the missing edge has been inserted. In 
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iteration invariant 1 invariant 2 invariant 3 
0 -0.920797 -0.897423 -1.34495 
4 -0.956112 - 1.02075 -1.04808 
8 -0.964451 - 1.01821 - 1.02506 

Table 1. The three invariants for the polyhedral snake of Fig. 2for the first eight iterations. The 
invariant values should be all converge to unity. 

Fig. 4. The polyhedron, superimposed edgels, fitted lines, and polyhedral snake. 
some cases we have to estimate missing vertex positions by exploiting approximate par- 
allelism; the action of the snake removes the effects of the approximation and usually 
yields suitable fits if the correct model hypothesis has been made. In practice we have 
found that either two quadrilateral faces or a single hexagon are required to initialize the 
snake model. One finding a lone quadrilateral, such as C1, we terminate processing. 

4.2 F ind ing  p o l y h e d r a  us ing  local  bu t t e r f ly  i n v a r i a n t s  

The above approach is global; we now describe a local method which uses the butterfly 
invariant. The initial processing is the same in that we extract edgels and lines, and then 
recover faces  from the image which represent closed regions. These faces are processed 
to merge lines and are then represented as polygons if suitable. All polygons which are 
not quadrilateral are rejected as they are not appropriate for use with the butterfly in- 
variant. Faces which approximately (or exactly) share edges are paired to produce but- 
terflies. Vertices of the common edge are adjusted so that they lie suitably between the 
two faces (by averaging the image coordinates). From this merged configuration we can 
immediately compute a butterfly invariant. The combined face-pair feature is accepted 
depending on whether the invariant value belongs to a model in the model base (po- 
tentially this is evaluated through indexing). Each accepted invariant value can be used 
to form a local hypothesis. Larger hypotheses can be formed by combining the local 
hypotheses using the hypothesis extension process described in [10]. Briefly, two hy- 
potheses are consistent if they represent different parts of the same model, and if the 
feature correspondences between the image and the model are also consistent. The fi- 
nal results images. In 

Fig. 5. First the polyhedron and the edgels. The complete topological structure of  the polyhedron 
has not been recovered. Next are the lines and finally the polyhedral snake. 



184 

Fig. 6. After segmentation and closed region detection we extract three butterflies with invariants 
approximately equal to unity. These butterflies can be merged into a single polyhedral description. 

Fig. 7. We recover three butterflies for this imaged polyhedron. 
principal we can re-apply the hypothesis extension process between the four dof. figures 
by using the planar projective invariants in the common planes as tests of consistency. 

Extraction of the butterflies is shown in Fig. 6. We show the three different extracted 
butterflies for the image section in the figure. The butterflies are composed of three im- 
age faces each containing four principal line segments, and have invariant values of 
1.007, t.022, and 1.000 respectively. All of these match butterfly invariants for objects 
which have projective equivalence to a cube. They can thus be merged into the single 
polyhedral description shown on the fight which is a single four dof. polyhedron. 

Another example is in Fig. 7. There the three butterflies have invariants equal to 
1.000, 1.000, and 1.029. However, in Fig. 8 we show an example in which only a single 
butterfly can be recovered (with an invariant of 1.000) due to the failure of the edgel 
detector to recover more than two of the polyhedral faces as closed regions. In this case 
we have only weak support for a polyhedral hypothesis as one matching invariant carries 
less weight than three. Nevertheless, the precision of the single invariant suggests that 
the features probably do correspond to a polyhedron with similarity to a cube. 

5 Conclusions 
We have made a number of different contributions in this paper. The first two are at a 
theoretical level, and the third expresses a pair of practical approaches for the extrac- 

Fig. 8. For this polyhedron we recover only two polyhedral faces as closed regions in the edgel 
description. Thus we can find only a single butterfly configuration. However, the invariant vahte 
for the butterfly matches precisely that which we would expect to find for such a polyhedron. 
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simple algebraic formulation for the butterfly invariant and showed how it is related to 
the polyhedral invariants of  [8]. 

The second theoretical contribution is a completion of  the projective invariant de- 
scription of [8] to trihedral polyhedra of  arbitrary degrees of  freedom. We demonstrated 
that all higher order polyhedra can be broken down into sets of  four dof. polyhedra as- 
sociated using plane projective invariants. This yields a complete description paradigm 
for arbitrary trihedral polyhedra. 

Finally, we developed two different implementations of  algorithms intended for the 
detection of  polyhedra in images. The first is founded on topological reasoning which is 
used as a basis for a polyhedral snake process. The second makes use of  closed region 
detection for the creation of local hypotheses, and then the use of  hypothesis extension 
for the generation of  more complete polyhedral descriptions. 

A more complete version of  this paper [9] is available as a technical report f rom the 
URL: <URL ftp://ftp.inria.fr/INRIA/publication/publi-ps-gz/RR/RR-2661.ps.gz>. 
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