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Abst rac t .  A segmentation and velocity estimation technique is pre- 
sented which treats each object (either moving or stationary) as a distinct 
intensity wave profile. The Fourier components of wave profiles - -  and 
equally of objects - -  which move with constant velocity exhibit a regu- 
lar frequency-dependent phase change. Using a Hough transform which 
embodies the relationship between velocity and phase change, moving 
objects are isolated by identifying the subset of the Fourier components 
of the total image intensity wave profile which exhibit this phase rela- 
tionship. Velocity is measured by locating local maxima in the Hough 
space and segmentation is effected by re-constituting the moving wave 
profile - -  the object - -  from the Fourier components which satisfy the 
velocity/phase-change relationship for the detected velocity. 

1 I n t r o d u c t i o n  

Traditional approaches to segmentation typically exploit one of two broad ap- 
proaches. These are (a) boundary detection, which depends on the detection of 
spatial intensity discontinuities (using first or second order gradient techniques) 
and their aggregation into contour-based object descriptions, and (b) region- 
growing, which depends on the identification of local regions which satisfy some 
regional similarity predicate (see [1] and [2] for an overview). 

Equally, the measurement of object velocity in images normally exploits one 
of two primary techniques. The first involves the computation of the spatio- 
temporal gradient, differentiating the (filtered or unfiltered) image sequence with 
respect to time and subsequently computing the optical flow field (e.g. [3]). 
The second involves the segmentation of the object or feature in question using 
either region-based gradient (first or second order) filtering and analysis followed 
either by the computation of the optical flow field or by identification object 
correspondence, typically by matching contour or region primitives (e.g. [4]). 
Comparisons of the many variations of these approaches and the relationship 
between them can be found in [5, 6, 7]. A third, lesser-used, approach exploits the 
regularity in spatiotemporal-frequency representations of the image, such as the 
spatiotemporal Fourier Transform Domain, resulting from certain types of image 
motion. Briefly, it can be shown that the spatiotemporal Fourier Transform of 
an image sequence in which the image content is moving with constant velocity 
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results in a spatiotemporal-frequency representation which is equal to the spatial 
Fourier Transform of the first image multiplied by a ~f-Dirac function in the 
temporal-frequency domain. This ~-Dirac function is dependent of the image 
velocity which can be computed if one knows the position of the ~-Dirac function 
and any spatial frequency [8]. Because this approach is based on image motion, 
rather than object motion, it normally assumes uniform (zero) background when 
evaluating object motion. Extensions of the technique have been developed to 
allow it to cater for situations involving noisy backgrounds [9], several objects 
[10, 11], and non-uniform cluttered backgrounds [12]. 

In this paper, we present a segmentation and velocity estimation technique 
which is based on an alternative formulation of the above spatio-temporal ap- 
proach. This alternative uses the normal spatial Fourier Transform together with 
a Hough Transform, rather than the spatiotemporal Fourier Transform. Here, 
object velocity is computed and segmentation effected by treating each object 
as a distinct intensity wave profile, with Fourier components, and by identi- 
fying the Fourier components which exhibit the magnitude and phase changes 
which are consistent with detected velocity. This velocity detection is accom- 
plished using an appropriate Hough transform[13] which operates on the phase 
component of the Fourier Transform of each image in the sequence. Segmenta- 
tion is effected by re-constituting the moving wave profile - -  the object - -  from 
its identified Fourier components. This approach lends itself to straightforward 
generalization to types of motion other than the uniform translation in a plane 
parallel to the image plane, as is normally required. Specifically, the velocity of 
objects is measured by treating each object (either moving or stationary) as a 
distinct intensity wave profile, each of which is an additive component of the 
total image intensity profile, and hence each of which is a solution to the wave 
equation. The Fourier components of wave profiles - -  and equally of objects - -  
which move with constant velocity exhibit a regular phase change. The velocity 
of a moving object is measured by identifying the Fourier components of the 
total image intensity wave profile which exhibit this phase relationship using an 
appropriately-designed Hough transform. This Hough transform embodies the 
relationship between velocity and phase change, and velocity is measured by 
locating local maxima in the Hough space. 

The two major advantages of this technique are that, because the analysis 
takes place in the Fourier domain, the spatial organization and the visual ap- 
pearance of the moving object is not significant and, secondly, the formulation 
presented in this paper lends itself to direct extension for more complex motion. 
Consequently, objects which are visually or spatially complex and which would 
be difficult to analyse using either of the traditional spatiotemporal differentia- 
tion, feature-based, or region-based approaches can be effectively treated. The 
objective of this paper is to introduce the alternative formulation and to demon- 
strate its effectiveness. We will also discuss briefly on-going work in the direct 
extension of the technique to address situations exhibiting more complex object 
motion. 
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2 Overview of the  Approach 

Consider an image g(x, y,t): a 2-D spat io- temporal  representation of the re- 
flectance function of a scene. This image is normally regarded and viewed as 
a t ime-varying two-dimensional representation of intensity values. However, the 
image g(x, y, t) can also be regarded as a t ime-varying surface. Consider an ob- 
ject Oi to be moving in the image. If we view g(x, y, t) as a t ime-varying surface, 
the height of each point on the surface defining the reflectance value at that  
point, then this object may be viewed as a wave, with a characteristic shape, 
propagat ing through the image space with a velocity vi(t). The velocity function 
v can, in general, be a function of image coordinates and time: v(x, y, t), that  is, 
it can vary with position and time. For example, consider the motion of an object 
such as a motor-car  travelling toward you on a road. In this paper, however, we 
will be restricting our attention primarily to the situation where the velocity is 
constant and parallel to the image plane. This restriction means that  the shape 
of the wave profile does not vary with position and that  it propagates with con- 
stant  velocity: vi(t) = v, a constant. The task then becomes one of isolating the 
wave (and computing this velocity). 

Let us use the general form of the 2-D differential wave equation to model 
the object Oi or, equivalently, its waveform in image-time space. 

Thus: 

02r 02r 1 02~i(x ,y , t )  
+ 

Ox 2 Oy 2 vi Ot 2 

The solution of this wave equation r y,t) is, in effect, a description of 
the object as a grey-level wave profile propagating with constant velocity vi, 
i.e. r  y,t) = f i (x  - v ~ i t  , y -  vuit), where i f (x ,  y) is a solution to the wave 
equation at t ime t = 0 and this solution describes the shape of the wave at 
t ime t = O. Our task is to solve this equation for all distinct vi using only our 
knowledge of the total optical field ~b = g(x, y, t). 

Let us assume that  the total optical field comprises m objects which we 
characterize as waves: 

r = g(x,y , t )  = ~ .~r  (1) 
i----1 

By the principle of linear superposition, the total optical field can also be be 
decomposed into constituent components: 

n 

r  y, t) = c r (x, y, t) 
j = l  

Equally, the wave corresponding to a given object, 
r  y, t) = f i ( x -  v~,t, y -  vy,t), can be so decomposed: 
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li 
X-" c i .~,i ~z t) r  /_., kwk~ ,Y, 
k=l  

where c~ E {cj},r E {r and where r  ) is also a solution to the 
wave equation. 

Recalling that  r (x, y, t) f i  (X i i = - v~zt, y - vy~t), we have 

li 
~ f ~ ( ~  i i = - v~kt ,  y - ~ / )  (2)  

k = l  

such that v~ k = constant, vy k = constant, Vk: that is, the components of r all 
have a constant propagation velocity. Substituting (2) into (1), we have: 

r = g(~, ~, t) 

= ckf 'k (x  i t i Vx~ , y - - V y k t  ) 

i=1  k = l  

That  is, the image r = g(x, y, t) is the sum of all the individual wave profiles 
r each wave profile r comprising components with constant velocity (v~k, i ~Yk )" 

Similarly, 

r  y, t) = g(~, ~, t) 
rt 

j-----1 

j = l  

The task, then, is to decompose the image into constituent components 
cjSj ( x -  v ~ t ,  y -  Vujt), each of which satisfies the differential wave equation, 
and to group them into m sets i i i i ckf~(x  - v~kt , y -  vykt), 1 < i < m such that 
(v~k, v~k ) is constant. 

We will use the discrete Fourier transform to accomplish the decomposition 
and the Hough transform to accomplish the grouping. 

3 T h e  2 - D  F o u r i e r  T r a n s f o r m  

The Fourier transform ~" ( f ( x ,  y)) = F(k~, ky) of a 2-D function f ( x ,  y) is given 
by: 

T f f ( x ,  y)) = F(k~, ky) 

FF = f ( x ,  y)ei(k~+k~Y)dxdy 
oo co 



2 9 7  

where k~ and ky are the spatial frequencies in the x and y directions. Note that  
F(k~, kv) is defined on a complex domain with F(kx, kv) = A(k~, kv) + iB(kx, kv) 
where 

A(k., kv) = f(x',  y') cos(k.x' + kvy')dx'dy' 
oo oo 

s = sln(k~,x + kyyr)dxtdy r B(k~, ky) f(x',  y') " ' 
O0 O0 

F(k=, kv) may also be expressed in terms of its magnitude and phase: 

F(k., kv) = lF(k., k~)l ~*(~*'~) 

where: 

IF(k=, k~)l = V/A~(k=, k~) + re(k=, ~)  
B2(k~, kv) 

r  ky) = arctan 

[F(k~, k~) I is the real-valued amplitude spectrum and r kv) is the real-valued 
phase spectrum. The inverse Fourier transform is given by: 

f(x, y) --~ .~c-1 (F(kx, ky)) 

I F / _  ~~ -- (27r) 2 oo oo F(k~, kv)e-i(k=x+k~V)dk~dky 

LL _ 1 ~ IF(k~,ky)leir 
(2~) 2 co oo 

In the discrete case, the Fourier transform becomes: 

7 (f(x,  Y)) = F(k., k~) 

= :(., y)e'(""+".Y> 
x y 

and the inverse discrete Fourier transform is: 

f ( . ,  y) = .~--1 (F(k., ky) ) 
1 

- (2~)' ~ ~ IF(k" k~)l e'*(k"k~)e-'(k''+k~) 
k= k v 

In effect, f(x, y) can be constructed from a linear combination of elementary 
functions having the form e -i(k~x+k~y), each appropriately weighted in ampli- 
tude and phase by a complex factor F(k=, ky). However, this construction is valid 
only for a given time t = to, say, and, since we are dealing with a wave func- 
tion r y, t) rather than a 2-D spatial image r y), we need to develop this 
formulation of the Fourier and inverse Fourier transforms. 
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Consider a waveform f ( x ,  y) and an identical waveform shifted to coordinates 
(x~, y~), i.e., f ( x  - x~, y -  y~). If the waveform is travelling with constant velocity, 
then f ( x  - x~, y - y~) -- f ( x  - v=bt, y - vy~t). The Fourier transform of f ( x  - 
x~, y - y$), equivalently f ( x  - v=bt, y - vybt), is given by: 

= F(k , 

/ _ ~  / _ ~  f ( x  - v~bt, y -  vybt)ei(k=(~-'=~t)+k~(Y-vy~t))dxdy 
( :~  o o  

s  = f ( x  - vxSt, y -  vyrii)ei(k=x+k~Y)-i(a=v=~t+k~v~St)dxdy 

/?s = f(x -- V x ~  , y -  v y (~ )e i ( k=x+k~Y)e - i ( k=v~ t+kuvub t )dxdy  
o o  o D  

/?/? = e - i ( ~ v = ~ + ~ )  f ( x  - v ~ t ,  y - v~t )e i (k~=+~Y)dxdy 
o o  o o  

: e - i ( k~v*b t+k*v~ t )  f(kx, ky)  

---- [F(k~:, ky)[ eir -i(k*v=~t+k*v*~t) 

Thus, a spatial shift of (xe, y~) = (v~bt, vybt) of a waveform in the spatial domain, 
i.e. f ( x ,  y) shifted to f (x~ ,  y~) = f ( v ~ t ,  vy~t), only produces a change in the 
phase of the Fourier components in the frequency domain. This phase change is 
given by: 

e-i(kxv=btTk~vy~t)  

Thus, in order to segment the image into its component waveforms, each of which 
corresponds to an object moving with constant velocity in the image, we simply 
need to identify the set of frequency components k= and ky which have all been 
modified by the same phase shift, i.e. e -~(k*'*~t+k*'*~t). To accomplish this, we 
note that the phase spectrum for the shifted wave at time t + 6t is equal to 
the phase spectrum of the wave at time t multiplied by the phase change given 
above: 

: ei(r 

Hence: 

That is, the phase at time t § J~ is equal to the inital phase at time t minus 
(k,v=~t -F kyvy~t). Since we require vz and Vy, we rearrange as follows: 

1 

~yo~ 
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This equation becomes degenerate if ky --- 0 in which case we use an alternative 
re-arrangement as follows: 

(Calks, ky) - r  ky)) 
v~ = k~St 

If we have several images taken at t ime t = to, t l , t2, t3,  ..., we can compute 
eto, in particular, and eto+~at, in general. Treating the equation above an a 
Hough transform, with a 2-D Hough transform space defined on v~,Vy, then 
we can compute Vy for all possible values of v, ,  and for all (known) values 
of n, k,~, ky, eto+,~at(k,, ky). Local maxima in this v,:, vy Hough transform space 
signify Fourier components which comprise waveforms - objects - in the spatial 
domain which are moving with constant velocity v~, Vy. 

4 R e s u l t s  

Figures 1 through 12 demonstrate the results of applying the technique. Figures 
1 and 2 show the first and last images in an eight image sequence featuring a 
moving dog; figure 3 shows the velocity Hough Transform derived from the phase 
values of the Fourier Transform of each image in the sequence. The velocity com- 
putations are summarized in Table 1. Figures 4 to 6 depict the re-constructed, 
segmented, image where only frequency components whose phase satisfies the 
velocity/phase-change relationship embodied in the Hough Transform for the 
detected velocity are used in the reconstruction; figures 4, 5, and 6 show the 
results when a minimum phase change threshold of 0.4, 0.3, and 0.2 radians, 
respectively, is imposed. 

Figures 7 through 12 demonstrate the results in a more complex scenario 
where there is a moving foreground image of a cat superimposed on the back- 
ground scene depicted in figures 1 and 2. Such a situation arises when, for ex- 
ample, an observer (the cat) views a scene through a window and sees both the 
external scene and its own reflection. 

Image Actual Velocity Computed Velocity 
Sequence (pixels/frame) (pixels/frame) 
. V x V y  V x Y y  

1 0 3.07 0 3.2 
2 0 3.07 0.4 2.8 

T a b l e  1. Summary of Measured Velocities 
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Fig. 1. Image 1 of sequence 1 Fig. 2. Image 8 of sequence 1 

Fig. 3. Hough transform (v,, Vy) 
space derived from images 1-8 

Fig. 4. Re-constructed image 
(min. phase change of 0.4 radians) 

Fig. 5. Re-constructed image 
(rain. phase change of 0.3 radians) 

Fig. 6. Re-constructed image 
(rain. phase change of 0.2 radians) 
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Fig, 7. Image 1 of sequence 2 Fig. 8. Image 8 of sequence 2 

Fig, 9, Hough transform (v., vy) 
space derived from images 1-8 

Fig. 10. Re-constructed image 
(min. phase change of 0.4 radians) 

Fig. 11. Re-constructed image 
(min. phase change of 0.3 radians) 

Fig. 12. Re-constructed image 
(min. phase change of 0.2 radians) 
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5 D i s c u s s i o n  

5.1 Impl ica t ions  of  using the  Wave Model  

The velocity of objects moving parallel to the image plane is measured by treat- 
ing each object as a distinct intensity wave profile. It is assumed that each wave 
profile is an additive component of the total image intensity profile and, hence, 
that each is a solution to the wave equation. 

Strictly speaking, this is not a valid assumption since the intensity profile of 
an object does not add to the intensity profile of the background visual envi- 
ronment; rather, it occludes it. As a result, the occluded part of the background 
changes as the object moves and this distorts the phase components of the 
background profile. As it happens, this problem may in fact be useful in cir- 
cumstances where one is attempting to estimate the motion of transparent or 
translucent objects where the object and background intensity profile are, to an 
approximation, additive (such as the situation shown in figures 7 and 8). 

5.2 Impl ica t ions  of  using the  Hough  Transform 

As noted in the introduction, spatiotemporal-frequency and phase-based ap- 
proaches to the estimation of object velocity, while not as popular as other ap- 
proaches, have been successfully used for situations where the objects are trans- 
lating on a plane parallel to the image plane. The advantage of using the Hough 
Transform to group the Fourier components rather than a temporal Fourier 
Transform is that the grouping criterion can be arbitrarily complex (although 
with consequent increase in computational cost). In this paper we have restricted 
ourselves to the normal translational motion but the technique can be extended 
in a very straightforward manner to deal with more complex circumstances as 
follows. 

Object  Scaling If the object translates either toward or away from the camera 
then the perspective lens distortion will result in a scaled image of the object. 
Such a scaling results in an inverse scaling of the spatial frequencies and this 
is easily incorporated into the equation defining the Hough Transform. This 
results in a 3-D Hough Transform defined in terms of v=, vy,  s: the x and y 
velocity components and the scaling factor, respectively. 

Curvi l inear  Mot ion  Objects which do not describe translation in a straight 
line, i.e. v= = v=(x,  y) and Vy = v y ( x ,  y),  can also be estimated if their ve- 
locity profiles are continuous. In this case, the object will generate a velocity 
curve (or crest) in the Hough Transform space rather than a single peak. 

Non-Uni fo rm Velocity It is often the case that objects do not move with 
constant velocity and the velocity is time dependent, i.e. v~ = v~(t)  and 
vu = vy( t ) .  In this case, the Hough Transform can be extended by two 
additional dimensions v~ (t) and vy (t) to cater for expected velocity profiles. 
For example, let vx = at and vy = bt in which case we have a 4-D transform 
space defined on vx, vy, a, and b. 
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R o t a t i o n  a b o u t  a n  A x i s  The situation where an object rotates about a ver- 
tical or horizontal axis parallel to the image plane as it translates can be 
catered for by allowing independent scaling of the object in the horizontal 
and vertical directions, respectively. 

6 C o n c l u s i o n s  

A flexible and extendable technique for segmenting and estimating the velocity of 
objects moving in image sequences has been presented and its efficacy has been 
demonstrated. It now remains to validate and evaluate the proposed extensions 
in situations of varying complexity. 
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