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Abst rac t .  This paper considers a model-based approach to identifying 
and locating known 3D objects from 2D images. The method is based 
on geometric feature matching of the model and image data, where both 
axe represented in terms of local geometric features. This paper extends 
and refines previous work on feature matching using transformation con- 
attaint methods by detailing the case of full 3D objects represented as 
point features and developing geometric algorithms based on conserva- 
tive approximations to the previously presented general algorithm which 
are much more computationally feasible. 
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1 Introduction 

This paper considers the task of identifying and locating known 3D objects in 
2D images of a scene containing them by matching geometric representations of 
a model of the object to geometric representations of the image d a t a - - a  task 
often called model.based object recognition. We take a model-based approach to 
interpreting subsets of sensory data  corresponding to instances of objects in the 
scene in terms of models of the objects known a priori. Both the model and the 
image data are represented in terms of sets of local geometric features 1 consisting 
of geometric elements like points, line segments, and curve normals. An approach 
based on geometric feature matching is used to interpret the image by finding both 
the model to data  feature correspondences and a 3D pose of the model which 
could produce the observed instance. 

Geometric feature matching is difficult because the correspondences between 
the model features and the corresponding subset of data features are unknown, 
there is clutter from data  features with no model correspondence, there are model 
features which have no corresponding data feature due to occlusion and other 
processes, and there is geometric uncertainty in the measurement of the data 
features arising from the imaging process, the feature representation process, 
and scene events such as occlusion. 

1 Throughout this paper we will follow the convention that terms being effectively 
defined will appear in sans-serif bold, while items being emphasized for clarity will 
appear in italics. 
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This paper considers the case of 3D objects and 3D transformations, greatly 
extending and refining previously reported techniques for geometric matching 
based on discrete constraints and methods from computat ional  geometry first 
presented for the case of 2D objects and planar transformations and 2D and 3D 
objects and 3D transformations[5, 6, 8]. 

We present a technique for feature matching based on analyzing constraints 
on feasible feature matchings in transformation space. It applies to affine fea- 
ture matching of 2D and 3D point sets and 2D and 3D affine motion. The main 
contribution is a method for carefully projecting the constraints in the high- 
dimensional transformation space, an 8-dimensional space for 3D aft[he motion, 
down to a two dimensional transformation space. This approximation is conser- 
vative in that it will never exclude feasible matches. This approximate projec- 
tion then allows the use of planar geometric algorithms (which is very important  
due to the great difficulty of geometric computations in higher dimensions) for 
analyzing these transformation constraints to find feasible matchings. Efficient 
algorithms for this planar geometric analysis are presented, and experimental 
results of their application to matching are presented. 

1.1 T h e  Case  o f  3D M o d e l s  a n d  2D D a t a  

This section will first give a brief outline of some of the notation used and the 
key ideas of this geometric feature matching method; a more detailed explana- 
tion can be found in other papers[6, 7, 9]. The local geometric features used 
here consist of points. Denote a model feature m by a vector representing the 
feature's position and denote the position of a data  feature by d.  Denote the 
bounded uncertainty[3,13[ region U i for the data  feature position measurement, 
for feature di. We let dl denote the measured value of a model feature and di 
denote the value without error. The true position of di falls in the set U i, which 
contains di. 

A single transformed model feature is aligned with a data  feature when 
T[mi] E U/, so the set of transformations T geometrically feasible for a par- 
ticular model and data feature match ( m i , d j )  is the set of transformations 
Uij = {T E ~]T[mi] E uJ}. Define a match as a pairing of a model feature and 
a data feature, and a match set, denoted ~ I ,  as an arbitrary set of matches- -  
some subset of all possible matches. A match set is called geometrically consistent 
if and only i f ~  i j  Uij r 0 for ( i , j )  such that  ( m i , d j )  ~ 2vt. ( , )  

With each transformation T we associate the function 
~(T) ----- {(mi, clj)lT[mi ] e U j} defined to be the set of feature matches aligned 
by the transformation T. We call the match set ~(T)  a maximal geometrically- 
consistent match set. A match set A~ is a maximal geometrically-consistent match 
set (or, a maximal match set) if it is the largest geometrically consistent match 
set at some transformation T. Maximal match sets are the only sets of feature 
correspondences we need to consider, and in the cases of interest here there are 
only a polynomial number of them. 

Finally, we define the notion of a geometric consistency measure, ~i(T), char- 
acterizing the number of matches feasible for a given transformation T. The 
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simplest measure is a count of the number of matches feasible at a transfor- 
mation OH(T) = [~(T)[; we use a more sophisticated measure which is the 
minimum of the number of distinct model features and distinct data features 
appearing in the feasible match set[17] given by 

CT(T) = rain ( { m i ; ( m i ,  cl~)E~(T))l,]{dj;(ml, aj) E ~o(T)}}) (1) 

which approximates the size of a one-to-one feature correspondence between the 
model and a data subset. 

This paper will focus on using linear bounds on geometric uncertainty. This 
formulation has been applied to 2D models and transformations and 2D data[3, 
4, 7] and 2D models and data and 3D transformations[6, 14]. Here we consider 
3D models and transformations and 2D data. The 3D rigid transformation and 
scaled orthographic projection mapping a model point m~ E ~3 onto a data 
point d~ E ~2 can be expressed by the transformation Sm~ -k t = d~ where 

S = ~ P R =  [s i t  s12 s13] w i t h 0 < a E ~ a p o s i t i v e s c a l e f a c t o r ,  P a 2 x 3  
ts21 s22 s23J 

projection matrix simply eliminating the third row of R, where R E S03, and 
t, d~ E ~2. From S = crPR and the fact the R is an orthonormal matrix we 
have the quadratic constraint that 

. (2 )  

For convenience we will refer to S as the linear component of the transformation, 
and t the translation component. 

In essence the approach is to define a model for geometric uncertainty in 
the data features which in turn imposes constraints on the geometrically feasible 
transformations aligning model and data feature sets. This frames geometric fea- 
ture matching as a problem in computational geometry, specifically constructing 
and exploring arrangements of constraints on geometrically feasible (i.e. struc- 
turally consistent) matchings of model features to data features. 

For each data feature formulate a convex polygonal uncertainty region bound- 
ing the measurement uncertainty consisting of the set of points x/characterized 
by a set of linear inequalities[3] (x' - d))tfil >_ - e  ~. For feature match (m~, d)) 
this imposes constraints on feasible transformations of the form: 

- s  t ^ _ E l  (Sm~ -k t -- dj) nl (3 )  

for l = 1, ..., k where fil is the unit normal vector and et the scalar distance de- 
scribing each linear constraint for I = 1, ..., k. This describes a polytope of feasible 
transformation parameters, 3 rij, mapping m~ to within the uncertainty bounds 
of d~. Each possible feature match (m~,d~) yields such a constraint. Feature 
matching can be accomplished by searching an arrangement of the boundaries 
of the polytopes :T ij for all i and j to find sets of transformation parameters 
with a high geometric consistency measure, i.e. satisfying many of the match 
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constraints. Conceptually the constraints forming the boundaries of the poly- 
topes ~'iJ partition the parameter space into cells. Exploring the arrangement 
then involves finding the cells with high geometric consistency. 

In the case of 3D affine transformation and orthographic projection (where 
we relax the quadratic constraints) there are 8 transformation parameters. If 
there are M model features and N data  features then the arrangement of the 
bounding constraints for each feasible polytopes ~'~J has size O(MSNS)[1 1]; con- 
structing and exploring it seems a formidable task. Nonetheless, an important 
point is that finding all geometrically feasible matchings of model and data fea- 
tures within the uncertainty bounds is a polynomial-time problem, in contrast to 
worst-case exponential-time approaches such as popular feature correspondence- 
space searches. 

2 A p p r o x i m a t i n g  t h e  C o n s t r a i n t  A r r a n g e m e n t  

2.1 The Image of  3D Points Under Scaled-Orthography 

Unfortunately constructing and exploring arrangements of hyperplanes in high 
dimensional spaces is extremely difficult, and computationally infeasible in this 
case. There is, however, considerable structure to the feature matching prob- 
lem which we can exploit to make the computations more feasible and to allow 
the introduction of careful approximations to greatly reduce the computation 
required to find large geometrically consistent match sets. One approach to this 
is to work directly with the constraints in the s-parameter space spanned by the 
coordinates sij. This approach was outlined for the 3D case previously[6]. This 
section introduces an elegant formulation which through convenient choice of 
representations and careful approximation reduces this from a constraint prob- 
lem in an 8D parameter space to a constraint problem in a 2D parameters space 
which is much more computationally feasible. 

1-- t i M - 1  Let tllaili= 0 be a set of 3D model points, and t~iJi=01"u be the set of points 
forming their image without error from an arbitrary viewpoint under scaled- 
orthography such that Sm~ + t = d~. Distinguish three model points m/~0, m~l~, 
and m ~ and their corresponding image points d~0, d~l , and d ~ which we will 
call primary model features and primary data features, respectively. Define m~ r 
m~o', m'~, m'~ and d~ • d" o , d'~l, d'~ secondary model features and secondary 
data features, respectively. Finally, define mi : (m~ - m~0 ) and d i :  (d~ - d~0) 
for all i which defines new coordinate frames for the model and the image data 
with m '  and d ~ as origins, respectively. The new primary features are thus 71"0 ~0 

m~l,  m ~ ,  d~l, and d~ 2 and we now have Sm~ = d i  for all i. 
ltnlr 1 X l ~ t ~  

Next, express the model point mi using m~ 1, m ~ ,  and fi = im.lxm.~ I as 

basis vectors[2]. Assuming m.~ and m ~  are linearly independent there exist 
three constants ai, bi, and ci such that  [a,] mi = aim,~ + bim,~ + cifi = [mT~ m,~ ] bi -t-- eifi. When the three primary 

model and data features are exactly aligned by some linear transformation we 
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have S [mr,  m~ 2 ] = [d~ 1 d ~  ]. In this case it can be shown[9] that the image 
of any secondary model feature mi under the imaging transformation S which 
aligns the primary features (see also Jacobs[18]) can be expressed: 

where ~1 and (~ are parameters completely determining the viewpoint of the 
model. The image of mi under the matrix S thus has two components. The com- 
ponent due to the planar component of mi, given by [d,~l d,~ 2 ] [ai bi ]t, and 
the component due to the nomplanar component of ml, given by ci [(1 (2 ]t. 

Let's call equation (4) the repmjection equation for a secondary model fea- 
ture mi with respect to the primary feature alignments. Note that by choosing 

~ and d~0 as origins we have eliminated the translation component of the m ~  o 

transformation, for now. 
When the transformation given by S and t corresponds to 3D affine transfor- 

mation and orthographic projection, the vector [~1 ~. it can take on any value 
corresponding to different viewpoints and affine transformations. When the cor- 
respondence between the primary features is used to compute a rigid alignment 
transformation then the components [~1 ~2 ]t must satisfy two quadratic con- 
straints, having at most two solutions[16, 2] yielding rigid 3D motion and scaled 
orthographic projection. This follows directly[10] from equations (2) and (4) and 
is closely related to similar quadratic constraints in other formulations[16, 2]. 

2.2 Incorporating the Effects Of Uncertainty 

Central to the reprojection equation and the computation of the rigid three-point 
alignment transformation are the three primary model and data feature matches. 
The effect of geometric uncertainty in these primary features is significant and 
must be handled carefully, in addition to uncertainty in the secondary model 
features. We will follow an approach representing the measured data feature 
and the error as explicit terms[12]. When there is geometric uncertainty in the 
measured position of the data features the transformation mapping model feature 

' to the measured data feature a~ must satisfy Sm~ + t -- d~ = d~ + e~, where m i 

again d~ represents the (unknown and unmeasurable) true position of the data 

' the measurement error, and d~ + e~ -- a;  represents the observed feature, ej 
and d~0 as corresponding location of the data feature. As before we match m,ro 

origins in the model and data coordinate frames, respectively, and define mi = 
(rn~ - m~o ) for all i and dJ = (d; - d~0) for all j .  We then have Smi -- clj = 
dj + e i where we define ej = e~ - C 71" 0 " 

When the reprojection or alignment transformation iscomputed from the 
measured geometry of the primary data features d~l and d~ 2 the reprojection 

[] a i  of a secondary model feature is given by Smi = ei + [d,rl d,~2 ] bi 

where in the case of rigid alignment ~I and ~2 are computed from the noisy 
primary data features d~ 1 and d~ 2. In the agfine case (t  = (1 and ~ = (2 
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can be anything. The planar component of the reprojection has a simple linear 

form[12] given by [a~ 1 a~ 2] bi bi + j e l l  e ~ ]  bi 

non-planar component of the reprojection has a complicated non-linear depen- 
dence on the uncertainty in the primary data features[10] which is a problem 
when computing 41 and 42 for a rigid transformation. We will only be concerned 
with 3D affine transformation, and will constrain 41 and 42 without explicitly 
computing them. 

3 G e o m e t r i c  F e a t u r e  M a t c h i n g  

We now consider a sequence of formulations which make successively more ap- 
proximations to reduce the dimensionality of the geometric constraints. We em- 
phasize that these approximations are conservative in that they will never ex- 
clude a feasible transformation. They are also careful approximations in that  
they do not include too many infeasible transformations. These formulations 
illustrate that the geometric feature matching problem has both a purely combi- 
natorial component as well as a geometric component and the different balance 
between these components. 

An  8D C o n s t r a i n t  P r o b l e m :  Starting with the equation for an aligned 
feature match incorporating error Sm~ + t - d~. = -e~,  from the definition of 
the uncertainty bounds we have fi~e~ < e I, for I = 1, ..., k and for all p, which 
directly leads to the inequalities (3). These inequalities describe an 8D constraint 
arrangement of size O(MSN s) which can be explored in O(MSN s) t ime[i l l .  

A 6D C o n s t r a i n t  P r o b l e m :  Next hypothesize the correspondence between 
~1 and let these points be the ' and one data feature dpo one model feature mr0 

origin for the model and image coordinate frames, respectively. We subscript the 
primary data feature dp0 differently than the model feature mr0 to emphasize 
that their correspondence to one another is hypothesized, not known. As before 

m I we define m, = ( m ~ -  ~o) and ~li = (~l~ - '  - d p o )  for all i, and the transformation 

aligning mi and dj must satisfy Smi - dj - 0 or equivalently Smi - dj = - e j  
~t  t <~ el ,  

- e I Using again the uncertainty bound n~ep w h e r e  we  d e f i n e  e j  : e j  p0" 

for I = 1, ..., k and for all p we then have constraints for a single match on the 6 
s-parameters which comprise the linear component of the transformation[6]: 
(Smi - (]j)tfii > - 2 e  I for I = 1, ..., k. This constraint arrangement is of size 
O(M6N6), and we see that we have shifted around where the computat ion must 
be done. For each choice of ~r0 and P0 we analyze the arrangement of s-parameter 
constraints, of size O(M 6 N6), but must perform a combinatorial search through 
the MN possible different primary matches (mr0, dp0) for r0 = 1, ..., M -  1, 
P0 = 1, ..., N -  1, and for each match do the s-parameter constraint analysis 
described above. This is also an approximation because each uncertainty region 
shares the error vector ep0 which can only take on one globM value. Thus we are 
computing approximate geometric consistency, but conservatively in the sense 
that the bounds are conservative thus we will never underestimate true global 
consistency in the arrangement. 
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A 2D Cons t ra in t  P rob l em:  Next assume the correspondence between 
three primary model and data features, (m~o , ~  dpo),- (m~l , ~  dpl), and (m~,~ dp2),- 
and represent the model features in terms of the natural affine coordinate frame 
as discussed in section 2.1. In order for a feature match (mi, dj) to be feasible we 

[~:] [a , ]  = d j  for some value ofthe viewpoint must have that c~ + [ d~l d~2 ] bi 

parameters ~1 and ~2. Using the actual observed data features and accounting for 

uncer ta in tywemusthavec i [~ : ]+[d~ ,  d ~ 2 ] [ b : ] - d j - - [ e ~  e ~ 2 ] [ b : ] - e j  

andexpandingtheindividualerror terms[12]wegetc , [~:]+[d~,  d ' 2 ] [ a i ]  - b ,  

' ' e' [ a ' ] - [ e ~ 0  e~ 0 ' ] [  ] . A b o u n d o n t h e u n c e r - a i  d j - - - e j + e ~ o - } - [  ~, e~2'] bi bi 
tainty region for the sum of the errors on the right hand side of this equation 

I is given by the Minkowsky sum of the individual uncertainty regions for ep0, 
ep~, ep2~, and e~, which leads to constraints for each match on the two viewpoint 
parameters, ~1 and ~2. 2 

The inequality (5) represent conservative constraints on the parameters (1 and 
(2 feasible for feature match (mi, ~tj) when the primary model and data features 
are approximately aligned; these constraints are based directly on bounds on 
measurement error for d~o, d ~ ~ i p,, dp~, and dj. 

After this change to affine bases we simply analyze a 2D constraint arrange- 
ment for the two components ~1 and ~2 which is now an arrangement of convex 
constraint polygons, one for each secondary feature match. Each polygon's shape 
is a scaled copy of the basic data uncertainty region and its size is roughly pro- 
portional to (lail + Ib~[ + 1)/ci. This arrangement of MY such polygons is now 
only of size O(M2N2), however we increased the combinatorial component to 
time O(M3N 3) because we must search over the possible triples of primary 
model and data features which form the affine bases. These primary matches 
must be correctly matched to find geometrically consistent secondary matches. 
This formulation for deriving constraints on ~1 and ~2 for each match is closely 
related to an approach working directly in the 6D space of s-parameters sij using 
the constraints of section 3 and making a careful projection of the constraints 
onto a lower dimensional space[8]. 

In the special case where the model features are coplanar we have that ci = 0 
for all i, and 3D rigid motion corresponds to a 2D affine transformation. If we 
use the vector mzl and its perpendicular m~, as a basis to represent the co- 
planar model features, the image of the model over all viewpoints is described by 

2 The bound on the feasible viewpoint parameters ~1 and ~2 is essentially the same 
as the bounds on the reprojection of a secondary model feature by an alignment 
transformation computed from three primary matches in the case of co-planar model 
features[12]. 
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Sm~ = [dp~ T/] [a~ b~] t where'the two parameters W -- [Th ~/2] t completely 
characterized the viewpoint. This leads to constraints on the feasible parameters 
�9 / for a given secondary match (m~, dj): 

r "1 

~ai] _ aj) tf i ,  _> - e ' ( l a i -  11 + lail + 1). We then have O(M~N 2) com- ( [a . ,n]  b~ 
U . I  

binatorial component, and a planar constraint analysis in the 7/1-7/2 plane as 
before. See Cass[9] for more detail, and Cass[6, S] and Hopcroft[14] for related 
approaches. Similar constraints can be developed for the case of scaled planar 
motion[7]. 

4 An Algor i thm for Square Uncertainty Bounds  

We can now pull together the ideas from the previous sections to develop an 
algorithm for geometric matching of 3D models to 2D data. A basic algorithm 
for geometric feature matching consists of performing a combinatorial search 
through triples of feature matches each defining affine bases for the model and 
data points. For each such primary match triple, compute for each secondary 
feature match the constraint polygon for the set of feasible transformation pa- 
rameters ~1 and ~2 and analyze the 2D constraint arrangement to find match 
sets with a high conservative estimate of geometric consistency. 

Consider the constraint formulation using axial square uncertainty bounds 
for the position of the data features characterized by ]:~te~] < 6 and I~rte;I ~ 
for all j .  Assume we have selected a triple of primary feature matches yielding 
(m~l, dp,) and ( m ~ ,  tip2 ) as primary matches. In this case equation (5) yields 

[41] +[~t01 ~lo2][ai]-clj)t~l<e(lai+b~-l]+lail+,bi]+l)asconstaints ](ci ~2 b~ 

on the unknown vector [41 42] t feasible with respect to the secondary feature 
match (ml, ~lj). The set of feasible viewpoint parameters [41 42] t for the fea- 
ture match (mi, clj) is bounded by a square of side 2~ ~(la~+b~-ll+la, l+lb, l+l) 
centered at the point 1 - ~ ( d j  - [ d p ,  ~lp~][ai bi] t) in the  41-42 plane. 

For every secondary match (m~, ~!1) we have such a square constraint on 
the feasible non-linear component [~1 42 ]t. There are ( M -  3 ) ( N -  3) of them 
forming an arrangement with O(M2N 2) cells in the ~1-42 plane. Each cell of 
this arrangement corresponds to a set of values for the parameters [~1 42 ]t for 
which a set of feature matches are consistent with respect to these approximate 
bounds. Finding cells consistent for many feature matches yield match sets and 
transformations which are very good candidates for large, fully geometrically 
consistent match sets. An important point, however, is that although there are 
O(M2N 2) cells, finding the cells of maximal coverage in this arrangment, e.g. 
computing 4 ~ ( T )  = I (T) l defined in section 1.1 can be done in O(MN lg MN) 
time as discussed in section 4.1. It is more difficult to compute the measure 
r  with T = [ ~  ~2]t, described in equation (1). We do not know of an 
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O(MN lg MN) time algorithm for this, although we use a heuristic algorithm 
with very good performance. 

4.1 Analyzing the Planar Constraint Arrangement 

Define the set ~-~J to be the set of parameters (~1, ~2) satisfying equation (5) 

for feature match (m,, clj); ~ J  is an axial square in the ~1-~2 plane. Also define 

~(~1,  ~2) = {(m,, aj)[(~l, ~2) E y-~d}. Then analogous to equation (1) we have 

4~(~1, ~2) and similarly 4 ~  = I~r163 ~) l .  Computing the match count 4~ a is 
straightforward. Compute the MN axial squares for the matches as described in 
section 4. We seek a point in the ~1-~2 plane of maximal coverage by the squares. 
This can be computed, for MN axial rectangles in time O(MN lg MN) using a 
segment tree[19]. To compute r ~2) we use a heuristic extention to the same 
O(MN lg MN) time algorithm. It is heuristic in that  it can only be guaranteed 
to produce a lower bound to the maximal value of 4~(~1, ~9.), but performs very 
well empirically. 

4.2 A Tradeoff :  Geometric Consistency vs. Algorithmic C o m p l e x i t y  

There is an important tradeoff we made in the previous section between find- 
ing fully geometrically consistent match sets, and the nature of the algorithm 
required to do so. In effect we moved part of the computation away from the 
complex computational geometric problem of analyzing constraint arrangements 
in higher dimensional spaces, to a simple combinatorial search through triples of 
primary matches, leaving the much smaller and simpler computational geomet- 
ric problem of analyzing planar arrangements. Analyzing arrangements is hard 
algorithmically, combinatorial searches are easy; so this is a good trade. This also 
allows us to incorporate other methods for reducing the computation required 
like grouping of primary data triples. For this reduction we traded somewhat 
relaxed geometric consistency constraints. It is, however, a careful approxima- 
tion and a conservative eslimate of full geometric consistency; we will always 
overestimate the consistency. 

5 Testing the M e t h o d  

The method was tested on both synthetic data and real image data, both for 
the cases of 2D object undergoing 3D motion using the 7/-plane variation, and 
3D objects undergoing 3D motion using the ~-plane variation. Here we present 
a representative sample of tests for 3D objects in 3D. The size of the secondary 
feature match constraint squares in the ~-plane was computed using a Gaussian 
approximation method 3 instead of the absolute bound as discussed in section 4 
because the performance was better. 

3 Instead of the uniform distribution of e~,o, e~l, and e~ assume they are indentically 
distributed Gaussian random variables with variance a~ -- e2/4. Our bounded regions 
enclose approximately distances within 2tr. The vector ~ is then a linear function of 
these random variables and is thus also a Gaussian random variable. The variance 
of ~ is then cr~i 4~ 2 r, 2 A- b~ -4- 1)]. = --~t/ai + bi - 1) 2 + ai 
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Fig.  1. Results from synthetic tests. In the left graph, the curve with solid dots shows 
the number correctly matched features aligned in the image within 2e, the curve with 
open dots shows the number correctly matched features aligned in the image within e. 
The value plotted is the maximum, over three different correctly chosen primary match 
groups. In the right graph, the open dots show correct matches aligned within 2e, the 
filled dots show the consistency measure for matches aligned within 2e (the two curves 
are almost coincident) in both cases for correct primary matches. The curve labelled 
with squares (at the bottom) shows the number of correct matches aligned within 2e, 
and the plain curve shows the consistency measure for matches aligned within 2e, in 
both these latter graphs for the case of incorrect primary matches. Here M = 30, e -- 5, 
the image size was 10242, and N --- l, 800. 

The synthetic model objects consisted of points generated uniformly in in 
a sphere in the 3D in 3D case, of about  the size of the image dimensions. The 
models were imaged synthetically by applying a random transformation and 
projection to the image plane, then adding independent error to each point 
uniformly distributed over a square of side 2e. Spurious da ta  features were then 
generated uniformly in a circle the size of the image. The experimental  results 
show that  the method works well for finding t ransformations with high geometric 
consistency, as shown in figure 1. 

Tests of the method have also been performed on data  derived from real 
images of both  2D and 3D objects. For a 3D object,  two black metal  bookends 
where fastened together to construct an interesting non-planar object. To speed 
up the experiments, a rough grouping was done by hand so as to avoid the 
long combinatorial search through pr imary  matches,  though no specific pr imary  
matches were specified. See figure 2. 
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Fig. 2. Experments with real images. On the left are the image features, connected by 
line segments. On the right is the best model transformation, shown by overlaying the 
model. Note that no verification has been performed--shown are the raw hypotheses 
computed assuming 3D affine transformations. 

6 C o n c l u s i o n  

We briefly note some related work. The most similar geometric matching method 
to ours is the alignment method[16] in it's more careful form accounting for the 
effects of data feature error [1]. Our approach does not enforce the quadratic 
constraints on ~ while alignment does; however our approach requires all sec- 
ondary matches to use the same ~, while the alignment method does not. For 
3D objects, the ~-plane method, for M < N, takes O(M4N41gN) time, while 
the alignment method takes O(M4N 3 lg N). For 2D objects the rbplane method 
takes time O(M3N 3 lg N) and alignment again takes O(M4N 3 lg N), yet by ran- 
domly choosing primary matches, they both take O(N3M lg N) expected time. 

We note there are other approaches based on ideas from computational ge- 
ometry and grounded in real recognition systems focused on 2D objects and 
affine transformations[15, 14, 20]. 

The author thanks Tao Alter, David Jacobs, Dan ttuttenlocher, and William 
l~ucklidge for helpful comments and discussions. 
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