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A b s t r a c t .  We describe a novel approach for image matching based on 
deformable intensity surfaces. In this approach, the intensity surface of 
the image is modeled as a deformable 3D mesh in the (x,y,I(x,y)) 
space. Each surface point has 3 degrees of freedom, thus capturing fine 
surface changes. A set of representative deformations within a class of 
objects (e.g. faces) are statistically learned through a Principal Compo- 
nents Analysis, thus providing a priori knowledge about object-specific 
deformations. We demonstrate the power of the approach by examples 
such as image matching and interpolation of missing data. Moreover this 
approach dramaticMly reduces the computationM cost of solving the gov- 
erning equation for the physically based system by approximately three 
orders of magnitude. 

1 I n t r o d u c t i o n  

In recent years, computer vision research has witnessed a growing interest in 
eigenvector analysis and subspace decomposition methods [15]. This general 
analysis framework lends itself to several closely related formulations in object 
modeling and recognition which employ the principal modes or characteristic 
degrees-of-freedom for description. The identification and parametric represen- 
tation of a system in terms of these principal modes is at the core of recent 
advances in physically-based modeling [20, 17] and parametric descriptions of 
shape [6, 2, 10]. On the other hand, view-based eigentechniques have recently 
provided some of the best results in object recognition [21, 19]. 

In this paper, we propose a new method which combines both the physically- 
based modes of vibration and the statistically-based modes of variation. In view 
of some recent critiques of physical modeling (e.g. [4]) our motivation here is to 
ground physically-based models in actual real-world statistics in order to obtain 
a more realistic and data-driven model for the underlying phenomenon [13, 5]. 

FLlrthermore, we seek to unify the shape and texture components of an im- 
age in a single compact mathematical framework. Current work in the area of 
image-based object modeling deals with the shape (2D) and texture (grayscale) 
components of an image in an independant manner [3, 11]. Our novel repre- 
sentation combines both the spatial (XY) and grayscale (I) components of the 
image into a 3D surface (or manifold) and then efficiently solves for a dense cor- 
respondance map in the X Y I  space. This "manifold matching" technique can 
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be viewed as a more general formulation for image correspondance which, unlike 
optical flow, does not require a constant brightness assumption. 

In principal, any two image manifolds can be matched in this way (though 
sometimes erroneously), therefore we must further constrain the space of allow- 
able manifold deformations to specific object classes (eg., frontal views of faces). 
These characteristic deformations (or "principal warps") are learned through a 
statistical Principal Components Analysis (PCA) [9] which identifies the princi- 
pal subspace in which the final correspondance field must lie. Since the Karhunen- 
Loeve Transform (KLT) [12] in PCA corresponds to a unitary linear change of 
basis, which can be appended to the modal transform used in solving the physical 
system, we can ultimately derive a compact reduced-order form of the govern- 
ing equation which combines both the dynamics of the physical system and the 
"learned" deformations which were observed in actual training data. 

2 D e f o r m a b l e  i n t e n s i t y  s u r f a c e s  f o r  i m a g e  m a t c h i n g  

Our idea of using intensity surfaces for matching and recognition comes from the 
observation that the transformation of shape to intensity is quasi-linear under 
controlled lighting conditions ; in other terms, the intensity of the 2D image 
reflects the actual 3D shape. Our system focuses on matching and recognition in 
the 3D space defined by (x, y, I(x, y)), that we will call the X Y I  space (see [lS] 
for details). 

In our formulation, deforming the intensity surface of imagel into the one of 
image2 in X Y I  takes place in 5 steps : 

1. Reduce, if necessary, the number of graylevels in imagel and image2 down 
to the same number g of graylevels (typically g = 32). 

2. Initialize the deformable surface S as a subsampling of the intensity surface 
of imagel. 

3. Convert image2 to its 3D binary representation, image3. 
4. Compute Euclidean distance maps at each voxel of image3 [7, 22]. 
5. Let S deform dynamically in image3 with the external force derived from 

the distance maps created at step 2. 

Note that steps I to 4 axe pre-processing steps. Steps 1 and 2 provide respectively 
intensity and spatial smoothing of the image. The dynamic process of step 5 is 
described in [17] ; to sum up, the intensity surface S is modeled as a deformable 
mesh of size N = n x n' nodes, ruled by Lagrangian dynamics : 

MO + + gv = F(t) (I) 

where U - [ .... Axi, Ayl, Azl,...]T is a vector storing nodal displacements, M, 
C and K are respectively the mass, damping and stiffness matrices of the system, 
and F is the external (or "image") force. The above equation is of order 3N. 

At each node Mi of the mesh, the image force points to the closest point 
Pi in the 3D binary image image3 [17]. Figure 1 shows a representation of 
the deformation process. Note that the external forces (dashed arrows) do not 
necessarily correspond to the final displacement field of the surface since the 
closest point Pi is updated at each time iteration. The elasticity of the surface 
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provides an intrinsic smoothness constraint for computing the final displacement 
field. Note that  our formulation provides an interesting alternative to optical flow 

I(x) 

S ~ 

P x 

Fig. 1. Intensity surface S being pulled towards S' by image forces 

methods, without the classical brightness constraint [8]. Indeed, the brightness 
constraint corresponds to a particular case of our formulation 3 where the closest 

) 

point P~ has to have the same intensity as Mi (MiP~ is parallel to the X Y  plane). 
We do not make that  assumption here. 

The vibration modes r of the previous deformable surface are the vector 
solutions of the eigenproblem [1] : 

K r  = a~2Mr (2) 

where ~(i) is the i-th eigenfrequency of the system. Solving the governing equa- 
tions in the modal basis leads to scalar equations where the unknown ~(i) is the 
amplitude of mode i : 

~(i) + ~ ( i )  + ~(i)2~(i) = L( t )  i = 1 , . . . ,  3N. (3) 

The closed-form expression of the displacement field is now : 

P 

u (4) 
i = 1  

with P << 3N, which means that only P scalar equations of the type of (3) need 
to be solved. The modal superposition equation (4) can be seen as a Fourier 
expansion with high-frequencies neglected [16]. 

We make use of the analytic expressions of the modes which are known sine 
and cosine functions for specific surface topologies. For quadrilateral surface 
meshes that  have plane topology (which is the case of the intensity surfaces), 
the eigenfrequencies of the system are [16] : 

w2(p,p ') = 4K/M (sin 2 p~r p'lr) ~n + sin2 2n' (5) 

3 In fact, by simply disabling the I component of our deformations we can obtain a 
standard 2D deformable mesh which yields correspondances similar to an optical 
flow technique with thin-plate regularizers. 
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K is the stiffness of each spring, M the mass of each node, p and p' are the mode 
parameters. The modes of vibration are : 

p~(2i  - 1) p '~ (2 j  - 1) . .]T (6) 
r  2n cos 2n' ' "  

where i = 1 , . . . ,  n and j = 1 , . . . ,  n'. These analytic expressions avoid the call to 
costly eigenvector-extraction routines ; moreover, they allow the total number 
of modes to be easily adjusted. 
3 S t a t i s t i c a l  M o d e l i n g  
In theory, our deformable intensity surface can undergo any possible deformation. 
Thus, it seems interesting to learn the deformations of a specific class of objects 
and add them as constraints into our system. This is an important  step for 
guiding the deformations of our mesh when performed within a specific object 
class and also allows us to deal with occlusions and missing data, as we shall see 
later. 

Our approach to learning the space of allowable manifold deformations par- 
ticular to a specific object class I2 (eg., frontal faces) is that  of unsupervised 
learning. Particularly, we perform a PCA on a selected training set of deforma- 
tions in order to recover the principal components of the warps. This approach 
is actually part of a more complete statistical formulation for estimating the 
probability density function of these warps in the high-dimensional vector space 
U e T~ P (see [14]). The estimated class-conditional density P(IJI~2 ) can be ul- 
t imately used in a Bayesian framework for a variety of tasks such as regression, 
interpolation, inference and classification. However, in this paper, we have con- 
centrated mainly on the dimensionality-reduction aspect of PCA in order to 
obtain a lower-dimensional subspace in which to solve for the manifold corre- 
spondance field. 

Given a training set of suitable warp vectors {lJ t } for t -- 1.. .NT, the prin- 
cipal warps are obtained by solving the eigenvalue problem 

A = E T • E  (7) 

where E is the covariance matr ix  of the training set, E is the eigenvector matrix 
of Z and A is the corresponding diagonal matrix of eigenvalues. The unitary 
matrix E defines a coordinate transform (rotation) which deeorrelates the data 
and makes explicit the invariant subspaces of the matrix operator ~U. In PCA, 
a partial KLT is performed to identify the largest-eigenvalue eigenvectors and 
obtain a principal component feature vector U -- E T (lJ - lJ0) , where lJ0 the 
mean warp vector and EM is a submatrix of E containing the principal eigenvec- 
tors. This KLT can be seen as a linear transformation U -- T( I J )  : T~ P --+ ,~L 

which extracts a lower-dimensional subspace of the KL basis corresponding to 
the maximal eigenvalues. These principal components preserve the major linear 
correlations in the data and discard the minor ones. 4 

4 In practice the number of training images AfT is far less than the dimensionality of 
the data, P, consequently the covariance matrix ,~ is singular. However, the first 
L < NT eigenvectors can always be computed (estimated) from NT samples using, 
for example, a Singular Value Decomposition. 
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By ranking the eigenvectors of the KL expansion with respect to their eigen- 
values and selecting the first L principal components we form an orthogonal 
decomposition of the vector space ~ P  into two mutually exclusive and comple- 
mentary subspaces: the principal subspace (or feature space) {El}L=1 containing 
the principal components and its orthogonal complement F E P = { i } i=L+, .  In 
this paper, we simply discard the orthogonal subspace and work entirely within 

E L the principal subspace { i}i=l, hereafter referred to simply by the matrix E. 

4 C o m b i n i n g  p h y s i c s  a n d  s t a t i s t i c s  
Instead of solving the unconstrained governing equation (1), we compute the 
projection of the unknown U (dimension : 3N = 3nn'), first into a modal sub- 
basis (dimension P), then into a KL subspace (dimension L) : 

v 0 E-- O (s) 

The first transform is the projection into the modal subspace : 

U = r  (9) 

The second transform is the projection of the modal amplitudes into the PCA 
subspace : 

0 = E U  + Oo (10) 
Equations (9) and (10) yield the global transform : 

U = ,PI:I + Uo (11) 

where the global transformation matrix g' is simply : kh = 45E and Uo = ~I~10. 
Note that 'P is a rectangular orthogonal matrix. 

By premultiplying equation (1) by k~ T and changing unknowns (equation 
(11)), we obtain : 

OTMIp-~-t-oTco~s = g ' r F ( t )  - ~pTKU0 (12) 

Let : 

~ I  ----~pTM~ (13) 

(b = r  (14) 
I~  = ~ T K ~  = E T . Q 2 E  ( 1 5 )  

F(t) = 'PTF(t) -- ~TKUo = ~TF(t )  -- ET~2200 (16) 

Note that the new mass, damping and stiffness matrices, as well as the new 
external force, do not involve heavy computations because : (i) we make the 
common assumption that  M and C are scalar matrices (M = MI,  C = CI  
where M and C are mass and damping scalars) , and (ii) ~2 is a diagonal 
matrix. We now end up with the standard Lagrangian equation of unknown ~r. 

^ Y ^ ~. 
M U  + C U  + I<U -- IS(t) (17) 

Solving this equation for l:l and then changing basis back to the canonical basis 
(equation (11)) provides the estimated displacement U. By using this method, 
the resulting displacement U is constrained to lie along those learned deforma- 
tion modes that  are characteristic of the object class. 
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5 E x p e r i m e n t a l  R e s u l t s  

We conduct our experiments with facial imagery. The manifold matching tech- 
nique described in this paper requires rough alignment of the two input images 
in order to function properly. In our experiments, this alignment was obtained 
using an automatic face-processing system which extracts faces from the input 
image and normalizes for translation, scale and slight rotations (both in-plane 
and out-of-plane). This system is described in detail in [14]. 

For the learning phase of our technique, we choose a set of 50 faces to be 
warped into a reference face. Each of these faces has a N --- 128 x 128 resolution, 
and the manifolds are matched in a modal subspace whose dimension is suitably 
chosen P = 3 x 1282/42 = 3072 [18]. We then perform a Principal Components 
Analysis on the spectra of these warps. 

Figure 2 shows the modes of variation along individual KL-eigenvectors ex- 

tracted from the learning set. For example, we can see that E1 represents change 

in global headshape (as well as the size of the eyes). Eigenvectors E2 and E3 
represent a change in the chin size and forehead, respectively. Higher-order eigen- 

) 

vectors, for example El0 represent subtler variations in facial appearance (e.g. 
eye shape). By looking at the KL-eigenvalues, it is easy to draw the percentage 
of the data variance that is captured versus the number of eigenvalues. Fig- 
ure 3 shows that 90% of the data is adequately captured by L = 25 principal 
eigenvectors. 
5.1 Subspace Warps 
Figure 4 shows an example of matching a test image to that of the reference using 
both the unconstrained and constrained warps. This basic example illustrates 
how a dense correspondence field can be obtained between two images from dif- 
ferent objects. Figure 5 displays the modal spectrum and its reconstruction in 
the KL space. The total reconstruction error is on the order of 4%, demonstrat- 
ing that by solving the reduced-order physical system (equation (12)), we have 
not significantly sacrificed accuracy. In addition, solving this equation requires 
considerably less computation. The degrees of freedom in the original mesh were 
3N = 3 x 128 x 128 ~ 50,000. In the modal subspace, the degrees of freedom 
were reduced to P = 3 x 32 x 32 ~ 3,000, and finally in the KL subspace, the 
degrees of freedom were further reduced to L = 25, thus achieving a compression 
factor of approximately 5000 : 1. 
5.2 In te rpo la t ion  of Missing da ta  
One of the advantages of learned warps is that, during the matching process, 
the deformations are constrained for a specific object. Consequently, invalid de- 
formations arising out of missing data (e.g. object occlusion) are automatically 
disallowed. 

The first example illustrates an experiment where regions of the face were 
occluded with a black bar (to simulate occlusion or incomplete data), as shown in 
figure 6 (top row). If we attempt an unconstrained warp in the modal space, an 
invalid reconstruction will be obtained (figure 6 bottom left and center). On the 
other hand, if the deformation is constrained by the learned modes, we obtain 
a better reconstruction of the missing data as shown in figure 6 (bottom right). 
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F i g .  3. Left : Eigenvalue spec t rum of the  P C A  transform. Right  : Cumula t ive  eigen- 
value spec t rum of the P C A  transform 

F i g .  4. From left to right : rest image ; reference image ; unconstra ined warp in moda l  
space ; constrained warp in KL-space 
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Fig. 5. Left : the original spectrum of the deformation. Right : reconstruction of the 
spectrum in the KL-subspace. 

This example illustrates how our principal warp formulation effectively functions 
as a model-based image interpolant for a given class of objects. 

The second example is similar in spirit to the first, except where the missing 
data  is replaced by an arbitrary image region (in this case a texture),  for example 
when one object partially occludes another. Here once again we see how the 
learned principal warps can yield a much bet ter  reconstruction and interpolation 
of non-matching image regions (figures 7). 

Fig. 6. Top : we wish to warp the left image into the right image B o t t o m  : image 
warps ; left : in the real space, center : in the unconstrained modal subspace, right : in 
the constrained principal subspace 

6 C o n c l u s i o n s  

We have described a novel approach for image matching based on deformable 
intensity surfaces. In this approach, the intensity surface of the image is modeled 
as a deformable surface embedded in X Y I  space. Our approach is thus a genera/- 
ization of optical flow and deformable shape matching methods (which consider 
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Fig. 7. See caption of figure 6 

only changes in X Y ) ,  of statistical texture models such as "eigenfaces" (which 
consider only changes in I an assume an already existing X Y  correspondance), 
and of hybrid methods with treat  shape and texture separately and sequentially. 

We have further shown how to tailor the space of allowable X Y I  deformations 
to fit the actual variation found in individual target classes. This was accom- 
plished by a statistical analysis of observed image-to-image deformations using a 
Principal Components Analysis. The result is that the image deformation is re- 
stricted to the subspace of physically-plausible deformations. In the process, the 
dimensionality of the matching and the numerical complexity of the governing 
equation are drastically reduced. 

By considering only the low-dimensional subspace of plausible deformations, 
we make the image matching process more robust and more efficient. We in 
effect "build in" statistical a priori knowledge about how the object can vary in 
order to obtain the best image-to-image match possible. To illustrate the power 
of this method we have shown that  we can interpolate missing data despite 
occlusions and noise, and that  we can use this method to obtain very compact 
image descriptions. 
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