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Abs t rac t .  Fixation is defined as the ability of an active visual system 
to keep the projection of an environmental point stationary in the im- 
age. We show in this paper that fixation enables the decoupling of the 
3D-motion parameters by projecting appropriately the spherical motion 
field in two latitudinal directions with respect to two different poles of the 
image sphere. Both computational steps are based on one-dimensional 
searches along meridians of the image sphere. We do not use the effer- 
ence copy of the fixational rotation of the camera. Performance of the 
algorithm is tested on real world sequences with fixation accomplished 
either off-line or during the recording using an active camera. 

1 I n t r o d u c t i o n  

The ability to perceive the three-dimensional motion relative to the environment 
is crucial for every robot acting in a dynamically changing world. The estima- 
tion of 3D motion parameters has been addressed in the past as a reconstruction 
problem: Given a monocular image sequence the goal was to obtain the rela- 
tive 3D motion to every scene component as well as a relative depth map of 
the environment. Solutions given suffer under instability problems and require 
an immense computational effort which excludes a real time reactive behavior. 
In this study, we will show the computational advantages with respect to 3D 
motion estimation of the fixation on an environmental point. There is a large 
amount of work in biological and computer vision research on how fixation is 
achieved [1, 2]. The evident advantages of overcoming the field of view, foveal 
sensing, and reducing the motion blur have been considered sufficiently justify- 
ing the fixational movements so that only sporadic approaches delved into the 
computational advantages of fixation. 

We show in this paper that the ability to fixate on a stationary point com- 
bined with the appropriate representation of the motion field enables the de- 
coupling of the 3D-motion parameters. We use a spherical image surface which 
can be mapped 1:1 to the image plane. We do not use any information from 
the motor encoders or from the input in the fixation feedback loop (called the 
efference copy in biology). Fixation is formulated only as a constraint on the 
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motion field. This constraint reduces the number of unknowns from five to four. 
The translation direction remains unknown (two parameters)  but instead of the 
angular velocity (three unknowns) we obtain only the torsion - rotation about  
the target  direction- and the t ime to collision to the fixated scene point. The 
new representation for the fixated motion field is based on two projections. As- 
suming that  the fixated target point is the pole of the sphere we show that  
the latitudinal projection of the motion field has the property of being constant 
along a meridian. The constant value is equal to the torsion and the meridian 
contains the heading direction. Taking as a new pole the normal to this meridian 
we again project the flow field in the latitudinal direction and obtain a similar 
pattern:  A meridian with respect to the new pole where the new latitudinal 
projection is constant and equal to the t ime to impact  to the target.  This new 
meridian fully constrains the heading direction. We are, thus, able to compute 
the heading direction by applying only two onedimensional searches. In case of 
a heading direction outside the field of view we replace the second projection 
with the solution of an equation in the two remaining unknowns. 

2 P r o b l e m  S t a t e m e n t  

We assume that  the imaging surface is a sphere with unit radius. We denote 
by ib the points on this sphere resulting from the projection lb = P/tlPll. The 
mapping  of the planar imaging surface to a spherical surface is one to one. Let 

= p / ~ T p  be a point on the image plane Z = 1 with the optical axis parallel 
to the Z-axis with unit vector/~. If  ~ is the motion field on that  plane then it 
can be easily proved that  the spherical motion field reads 

1 
= tt- (p • • p ) )  (1) 

Most of the authors assume that  for a small field of view the two fields are 
approximately equal. However, for a large field of view the above equation should 
be used. Special care should be taken in the mapping of the planar discretization 
noise onto the sphere. We assume that  the observer is moving with instantaneous 
linear velocity v and angular velocity w relative to the environment so that  the 
velocity of a scene point P can be written as P = v + w x P .  In case of pure 
ego motion all equations are valid with the opposite sign for the velocities v and 
w. The spherical motion field reads 

1 
= ii-V (p • (v • p)) + • p (2) 

where we can observe the classical decomposition into a translational component  
depending on the environment (iiPi]) and the rotational te rm depending only on 
the image position. The spherical motion field vector lies on the tangential plane 
at point ~b so that  lbTib ---- 0. As we mentioned at the beginning we suppose that  

^ 

a control algorithm exists that  makes a target point t on the sphere be fixated 
which means ~ = 0. From (2) follows that  

v •  
- - -  + w is parallel to 

iITI] 
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where JJTlJ is the distance to the target scene point. Hence, the angular velocity 
in case of fixation reads 

v x t  
= 7i + IITI--- T (3) 

It is constrained to be a function of the linear velocity and possesses only one 
degree of freedom 7: the torsion around the target point t. Thus, after fixation 
the flow field contains three components (Fig. 1): A translational one due to v, a 
fixationM equal to the second term v x t/llTII of (3), and a torsional component 

T R A N S I , A T I t ) N A L  @ I [ X A T I O N A L  @ Tr )RSIf )NAL @ 
Fig. 1. The three components of a fixated motion field. 

After inserting the fixation angular velocity (3) into (2) the spherical motion 
field of a point p different from the target reads 

/ ? = p x  (v x ( p i ) ) + 7 ( { ~ x p ) .  (4) 
) ) / ' l )  I lTl)  

After eliminating the structure information IIP[I by taking the scalar product 
with v x i) we obtain the "epipolar" equation for the fixated motion field 

t -T 
(,, •  ~ p  , , - - 7 (  t Xi,))  = 0 (5) 

which corresponds to the instantaneous version of epipolar equation for general 
motion 

(v • i , )T ( i  , - ~o x p )  = 0. (6 )  

We see that the depth-free equation (5) contains three unknowns for the scaled 
linear velocity v/iiTII plus one unknown for the torsion 7 around the target. 
Furthermore, the equation (5) is quadratic in the components of v and bilinear 
in (v, 7). 

The first and most important  result obtained by Bandopadhay and Ballard 
[3] and by Aloimonos et al. [4] was that fixation reduces the number of unknowns 
from five to four. Their fixation constraint was that a0 = ( v y , - v , ,  7) which is 
direct implication of (3) if we set. the target parallel to the optical axis: t = z. 
In the work of Fermiiller and Aloimonos [5] fixation is exploited to compute the 
line on the image which passes through the FOE. Using only normM flow the 
location of the FOE on this line is found by matching patterns to the repeatedly 
detranslated flow. Then the FOE is localized using the rotational control signMs 
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of the camera movements in two subsequent time points and making the assump- 
tion that translation direction is almost constant despite fixation. The equation 
of fixational motion field (4) is used by Taalebinezhaad [6]. The flow field in the 
Brightness Change Constraint Equation (BCCE) is substituted by the fixational 
motion field. As the BCCE at every pixel introduces a new unknown (depth) 
an additional assumption of minimal variation of depth near the fixation point 
is added. To convert the resulting minimization into an eigenvalue problem it 
is further assumed that the torsion 7 is already computed in a preceding step. 
This step is solved assuming local frontoparallel patches. However, this assump- 
tion enables a local and linear computation of rotation and translation without 
fixation. Raviv and Herman [7] study the surfaces in the world that produce 
constant flow in the image. They show that the level sets of equal latitudinal 
flow are cylinders and that the longitudinal flow is zero along two planes. The 
intersection of these planes with the cylinder corresponds to the points in the 
world that produce zero flow. The first part in [8] is identical to the work by Ra- 
viv and Herman [7]. They derive the equal flow cylinders and planes. However, 
Thomas et. al. [8] apply their findings of zero longitudinal flow to determine the 
angle between the target and the velocity v. This plane always appears in the 
image as a line, provided that the FOV is 180 degrees. These results are tested 
using a novel 180 degrees field of view camera. In [9] fixation is combined with 
the log-polar transformation. Using the second order spatial derivatives of the 
fixated log-polar field it is shown that the time to collision can be computed 
using only the radial component of the velocity. Advantages of the polar trans- 
formation in case of fixation are also shown in [10] where the heading direction 
is computed using two specific lines through the center of the image. The work 
of Barth and Tsuji [11] addresses the issue of how to fixate in the direction of 
the translation. Their technique is based on the following heuristic. They group 
the flow vectors near the point of fixation into two groups: positive and negative 
flows. The difference in the average of the flow values at these groups indicates 
the direction of translation with respect to the current fixation direction. Based 
on this value the robot is controlled to turn towards the direction of transla- 
tion. The same issue is addressed in [12] using an affine model for the optical 
flow field. Servoing towards the heading direction is achieved by minimizing the 
lateral translational components by means of a task function. 

3 P r o j e c t i o n s  o f  t h e  f i x a t e d  m o t i o n  f i e ld  

We proceed by projecting the fixated spherical motion field (4) into two different 
orthogonal basis systems of the tangential plane at an arbitrary point on the 
sphere. The first projection assumes that the target direction ~ is the pole of the 
sphere defining thus a latitudinal and a longitudinal unit vector 

• and el= l• 
x pll 

respectively, lying in the tangential plane of point/~. 
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The  second project ion assumes as a pole the unit  vector in the direction of  
v • t yielding a lat i tudinal  and a, longitudinal  unit  vector 

r ( . x t )  x p  and 0 2 = $ ~ •  
II(~ x i )  • pll 

respectively. Th rough  the course of exposit ion the reader may  consult  Figure 2 
where the project ions are illustrated. 

Meridian with constant  p ~ .  Meridian with constant  {{ {{ 

on for t ranslat ion v 

Fig.  2. The meridians with respect to tile target pole t are drawn on the left sphere. 
The spherical flow /'7 is projected on the latitudinal direction. The first step of the 
algorithm is a 1D search for the meridian with constant /~T~/l[t • ~51[. In the second 
step (see the right sphere} the pole is 'hi perpendicular to the meridian found in the 
first step. The flow without torsion/~' = / ' ~ - 7 ( t  • 1)) is projected on the new latitudinal 
directions. A 1D search among the meridians with respect to pole fO for the meridian 
with constant ]b'~2/]lt x i~111 yields a second big circle. The intersection of the big 
circles found in the two steps gives the solution for the desired translation direction v. 

The  lat i tudinal  projection using the target  direction t as a pole reads 

1 ~,T(t x i')( 1 / , r i  
PT~)I  -- [I ~ X J)ll IIVll ]ITll ) + ~l[~ x ~ll. 

Because the angle between the target  t and the considered point  is known we 
divide by its sine which is equal to 115 x p[[: 

1 IbTt 
/~ r ~ , ~ ( t  • ). (7) 

1/5 • - ~ - II~ • pll 2 P)(IIPII IITll 

We see tha t  the lat i tudinal  component  minus the torsion vanishes if the consid- 
ered point  lies on the plane spanned by the target  and the t ransla t ion direction. 
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Thus, we are able to constrain the translation direction if we find the meridian 

with longitude 7/where the term ~ is constant independent of the lati tude 
II'txpll 

II~ x #1. Unfortunately this is not the only case where this term becomes con- 
stant.  Suppose that  a part  of the environment is planar. Let the equation of 

the plane be f i I T x  = d and assume that  the target is on the optical axis. If  
the plane normal reads N = (cos a sin fl, sin a sin fl, cos fl) then it can be easily 
proved that  

1 vT(txp)( 1 pT~ 1 T ~ 
I1~ • r ip IIPII IITII ) = ~ .  r  .),  (8) 

which is independent of the latitude I1~ x/~11. Hence, all meridians that  are pro- 
jections of lines on planes in the scene will have a constant latitudinal projection 
independent of the colatitude angle. Furthermore, the right hand side of (7) will 
vanish on the meridians that  are projections of infinite depths (1/IIPII = 0) and 
on the entire field of view if the translation is parallel to the target direction: 
v x t = 0 .  

To summarize the defeating configurations: 

1. There may exist meridians with constant latitudinal projection if these merid- 
ians are projections of planar parts of the environment or of scene points at 
infinity. 

2. The latitudinal projection is everywhere constant if we fixate on the trans- 
lation direction or if translation does not exist at all. 

Suppose now that  the unit v e c t o r / t l  in the direction v x t is given and let 
it be the new pole. The new pole introduces new meridians and latitudes. Since 
torsion can be computed in the first projection above we consider the lati tudinal 
projection of the torsion-free flow 

^ 

( i ' - " r ( t  x/ ' ) ) r4 '~ = IlPll II(v x ~) x/'11 ( / ' x (v  x / ' ) ) r ( ( " x ;~ )x / ' )+  II/ 'x6~ll, 

v x t  known from the first projection. Hence, we where /tl is the unit vector 

can divide the left hand side and rewrite the right hand side as following: 

(p  - ")'(;e x p ) ) T r  = 1 / , l l / ,T(v x (,, x ;~)) + I1"11 I1') x ;'11 
II/' x f~lll IIPII I1(" x ~) x IITII 

Considering now meridians through the pole v x t: we obtain following cases 
where the torsion-free latitudinal component will be constant. 

1. On the meridian with normal v x (v x t). 
2. On the meridians containing points with infinite depth. 

The detection of the meridian with normal 

i ~2 -  v x (6 x t) 
I1~ x ~11 
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allows the full computation of the translation direction 

i, = r •162 

Having obtained the heading direction we know the sine of the angle between the 
heading direction and the target []~ • E H. The remaining constant after vanishing 
of the first term in (3) yields A = Ilvl]/[]TII which is the fourth and last unknown 
of the motion problem in case of fixation. The inverse of it can be interpreted 
as the time to collision to an object at the same distance as the target in the 
motion direction. 

To find meridians of constant value in the first and the second latitudinal 
projections we compute for every meridian the mean and the variance over the 
latitude. Then, we search for the meridians on which this variance is minimized. 
The means on these meridians yield the torsion and the inverse of the time to 
collision, in the first and second projection respectively. 

Although in the first projection all meridians - or sectors of them - were 
contained in the field of view this is not the case in the second projection where 
the meridians are with respect to the new pole h i .  It is very easy to imagine 
this case if for example n 1 = (0 ,  1, 0 ) .  We will see in the experiments that in 
such a case the variance of the second latitudinal projection gets its minimum 
at the border of the field of view. A corrective saccade can then shift the focus 
of expansion inside the field of view and the process can be continued with a 
refixation on a new point. If we want to avoid a corrective saccade we must 
replace the second search with a procedure as follows. The first step constrains 
the translational velocity to the plane with normal/~1. Thus, we can write 

i, = cos ~t + sin X(~l x ~), (9) 

where X is tile remaining degree of freedom of the translation direction or, in 
the terms of the formulation above, the longitude of the searched meridian in 
the second step. Let rewrite (5) as 

(v • _ .xt b r v )  = 0, (10)  

where 16' = /6 - 7(t • i)) is known fi'om the second step and a = II~II/IITII is 
the inverse of the time to collision. If we insert i, from (9) in (10) in the above 
equation we obtain 

cos X(t x/~)T/6'+sin X((nl X ~.) X/6)T/6 ' = ,~ sin xpT~,I (cos x/6Tt+sin X(/tl x t)T/~). 
(11) 

This is a nonlinear equation in the two unknowns X and )~ which can be solved 
numerically with nonlinear minimization. 

To summarize, we present the algorithmic steps of our method: 

1. Choose a sampling step for the longitude angle 7] with respect to pole t - 
in reality being always the optical a.xis if we fixate on the center. Divide 
the optical flow field in groups with the same longitude 7/corresponding to 
meridians. Compute for every group the mean and the variance of 

pTr 

lie • 
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Carry out an 1D-search for the minimum ~,~i. of the variance. The new pole 
/tl  reads (sin q , , i , , , -  cos ~min, 0) if t is the optical axis. 

2. Compute  for all points the longitude angle X with respect to the new pole 
h i  and group the vectors with the same X. Compute  for every group the 
mean and the variance of 

II/ ' x 

and search for the minimum X,~i,~ of the variance. Divide the mean by 116 x 
in order to obtain the inverse of the t ime to collision Ilvll/llTII. If Xm*n is 
near the border of the field of view then either carry out a saccade towards 
Xmi,~ or apply the nonlinear minimization described above. 

4 E x p e r i m e n t a l  R e s u l t s  

We tested the proposed algorithms with synthetic as well as real data. Real 
data  experiments were carried out using sequences recorded by passive as well 
as active cameras. In the non-fixated sequence we emulated the fixation by ap- 
propriately rotating the optical flow field. In all the experiments, the 1D-search 
of the first step runs over 45 samples of the 180 degrees ~/-range. The sampling 
interval for X in the 1D search of the second step is one degree. If  the focus 
of expansion lies outside the field of view we replace the second step with the 
alternative nonlinear minimization method applying the Levenberg-Marquardt 
method.  

We produce synthetic motion fields assuming a scene looking like a corridor. 
In the first experiment we assume a wide field of view of 90 degrees and we 
apply translations v = (sin Xgt, O, cos xgt) where Xgt is the ground truth angle 
between translation and target direction. The latter is assumed to coincide with 
the optical axis. In this as well as all subsequent simulations it turns out that  the 
error in the azimuthal angle ~ of the translation direction was under 2 deg and 
the relative error in the torsion 7 under 3%. Therefore we will plot only the error 
in the x-angle and the inverse of the t ime to collision A. In Fig. 3 we show the 
error in the angle X for translation directions deviating from 5 to 40 degrees from 
the target  direction. The motion field is corrupted by gaussian noise with relative 
s tandard deviation of 10% and 20%. We tested for two torsion values 0 and 0.005, 
shown in the left and right of Fig. 3 respectively. We observe that  the error 
increases with the deviation of the translation from the target  direction and its 
behavior is not smooth in presence of torsion. The second synthetic experiment 
concerns a smaller field of view (45 deg) in presence of torsion and relative optical 
flow error of 10%. Since the second step can be applied only for X < 20 deg we 
applied in all steps the nonlinear minimization with respect to X and ~. The 
results (Fig. 4) are significantly better  than the 1D-search for even a larger field 
of view (see above) but with the additional cost of an iterative method.  The 
same initial values were used in the nonlinear minimization for all translation 
directions. In the following image sequences we computed the optical flow with 
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Fig .  a. The error in the x-angle as a function of the translation direction for a field 
of view of 90 degrees and two values of torsion: 0 (left) and 0.005 (right). The motion 
field is corrupted by gaussian relative error with standard deviation of 10% and 20%. 
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Fig.  4. The error in the x-angle (left) and the inverse of the time to collision 
= Ilvll/llTll as computed by the alternative to the second step. The field of view 

is 45 deg and the relative error in the optical flow is 10%. 

a s tandard  differential method  which assumes a constant  flow field in the local 
ne ighborhood of every pixel. The spat io tempora l  derivatives are computed  with 
binomial  kernels which are approximat ions  of the first derivative of  a Gaussian.  
The  computed  flow field is first mapped  to the plane Z = 1 using the intrinsic 
parameters  and then t ransformed to a spherical flow field using (1). The  first 
sequence is the well known synthetic Yosemite sequence (Courtesy of Lynn Q u a m  
at SRI) which contains both  t ranslat ion with ground t ru th  (7/ =90  deg, X =-  
9.84 deg) and rota t ion with ground t ru th  w = (0.00023,0.00162,0.00028). The  
original and the fixated flow fields (Fig. 5 left) are computed  only for the par t  of 
the image tha t  contains ego mot ion (the clouds area is excluded). The  m i n i m u m  
of the variance of the first lat i tudinal projection (Fig. 5, top right) gives an q 
es t imate  of 97.37 deg and a torsion est imate of -0.00063 (the opposite sign is 
due to our formulat ion of scene motion) .  Since the min imum of the variance 
of  the second lat i tudinal  projection (Fig. 5, b o t t o m  right) is at the limit of  the 
field of view we again apply the nonlinear minimizat ion  for the second step and 
obta in  X = -5.96 and ~ = 0.00145. The  second sequence is already fixated during 
its recording with an active camera (Fig. 6). Up to the fixational movement  
the mot ion  of the observer is pure translat ionM with ground t ru th  measured  
manua l ly  (rlgt = 0 deg and Xgt = 9.2 deg). Because the focus of expansion is 
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inside the field of  view solutions are obtained by applying both  steps of  our 
a lgor i thm yielding the est imates ~/= -2 deg and X~t = 5 deg (Fig. 7). As already 
observed in the simulations the main  error is in the deviation of  the t ransla t ion 
f rom the target  direction in the second step. The  observed robustness of the first 
step is consistent with the theoretical results by Maybank  and Jepson [13, 14] in 
case of  general mot ion  who proved tha t  if the observed surface is irregular the 
line th rough  the center and the focus of expansion can be robust ly  est imated.  
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Fig.  5. The 1st and the 14th image of the Yosemite sequence (above), the original flow 
field (bottom left), and the fixated flow field (bottom right). The variance (top left) and 
the mean (top right) of the first latitudinal projection for the Yosemite sequence. The 
minimum of the variance gives the angle ,/ and the mean for this y gives the torsion. 
The variance of the second latitudinal projection has its minimum at the right bound 
of X indicating a focus of expansion outside the field of view. 
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Fig.  6. The 1st (left) and the 10th (middle) of the real fixated sequence and the com- 
puted optical flow field (right) 
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Fig.  7. The variance (top left) and the mean (top right) of the first latitudinal projec- 
tion for the real fixated sequence. The minimum of the variance gives the angle r/ and 
the mean for this rl gives the torsion. The variance (bottom left) and the mean (top 
right) of the second latitudinal projection for the real fixated sequence giving the angle 
X at the minimum of the variance and the inverse of the time to collision, respectively�9 

5 C o n c l u s i o n  

It  was proven in the past  tha t  fixation reduces the number  of unknowns in the 
s t ructure  f rom mot ion  problem from five to four. We showed in this paper  tha t  
f ixation can further  simplify the colnputa t ion  of  3D-mot ion  parameters  f rom a 
monocu la r  sequence. Appropr ia te  projections of  the spherical flow field enable 
the decoupling of  the mot ion  parameters  in two groups: The  first contains the 
az imutha l  angle of  the translat ion and the torsion. The  second pa ramete r  group 
contains the polar angle of the t ranslat ion direction and the t ime to collision 
to the fixated target.  Two 1D searches in each of  the two projections yield all 
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four unknowns. In contrast to other algorithms, we do not make any use of the 
measurements of camera movements necessary for fixation. We assume for the 
second search that the focus of expansion is inside the field of view. If this is not 
the case we can apply a two-unknowns nonlinear minimization or even better 
carry out a correcting saccade that  will bring the focus of expansion inside the 
field of view. The algorithm was tested in three real world sequences fixated off- 
line or actively. Without applying any special method for accurate computation 
of the flow we obtained very promising results. 
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