
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer SCience

J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog

Infinite streams and finite observations
in the semantics of uniform concurrency

Department of Computer Science Report CS-R8512 September

Bib!iotheek
:emrumvoor VPZ'.b.rid".l en !nror~2::" r

Am::terd;i,1~ •

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Infinite Streams and Finite Observations

in the Semantics of Uniform Concurrency

J.W. de Bakker
Centre for Mathematics and Computer Science &

Free University, Amsterdam

J.-J. Ch. Meyer
Free University, Amsterdam

E.-R. Olderog
Christian-Albrechts-Universitiit Kiel

Two ways of assigning meaning to a language with uniform concurrency are presented and compared. The
language has uninterpreted elementary actions from which statements are composed using sequential com­
position, nondeterministic choice, parallel composition with communication, and recursion. The first
semantics uses infinite streams in the sense which is a refinement of the linear time semantics of De Bakker
et al. The second semantics uses the finite observations of Hoare et al., situated "in between" the diver­
gence and readiness semantics of Olderog & Hoare. It is shown that the two models are isomorphic and
that this isomorphism induces an equivalence result between the two semantics. Furthermore, a definition
of the hiding operation which is inspired by the infinite streams approach is presented. Finally, the con­
tinuity of this operation is proved in the framework of finite observations.

1980 Mathematics Subject Classification: 68B10, 68C01 , .c• • F
1982 CR Categories: D.3.1, F.3.2, F.3.3. (,qi) I • ()Cj r·}. '2, b :1) ?
Key Words & Phrases: concurrency, denotationaT semantics, streams, uniform languages, observations,
Smyth ordering, parallel composition, topological closedness.

Note:

1. The research of J.W. de Bakker is partially supported by ESPRIT project 415: Parallel Architectures and
Languages

2. This report will be submitted for publication elsewhere. A preliminary version (Report CS-R 8508)
appeared in the Proceedings 121h International Colloquium on Automata, Languages and Programming (W.

Brauer, ed.), Lecture Notes in Computer Science 194, pp. 149-157, Springer, 1985.

Report CS-R8512
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

1. INTRODUCTION

Infinite streams of actions or states provide a natural and clear concept for describing the behaviour
of non-terminating concurrent processes [Br 1, Ni]. The supporting mathematics, however, tends to
get complicated even if some simplifying assumptions on the admissible sets of streams are possible
[Br 1, BBKM]. On the other hand, finite traces of actions or more generally finite observations like
ready or failure pairs typically require a rather simple mathematics to justify the semantic construc­
tions [BHR, FLP, OH2]. However, these constructions often seem more "ad hoe" and less clear con­
ceptually. Also, finite observations are in general less expressive than infinite streams, for example in
the presence of fairness [He2, OH2].

Our paper now presents an interesting case where infinite streams and finite observations are
equally expressive in the sense of an isomorphism. This isomorphism will have various benefits in the
mutual understanding of both approaches. More specifically, we establish our results for a core
language e of uniform or schematic concurrency [BMOZ] involving uninterpreted atomic actions,
sequential composition, nondeterministic choice (local nondeterminism), parallel composition (merge)
with communication and recursion. For ewe introduce two versions of (denotational) linear time
semantics [BBKM].

The first semantics 6Dstr is based on finite and infinite streams of actions. 6Dstr refines the linear time
semantics LT developed in [BBKM] in that it deals more satisfactorily with recursion. This is achieved
by using a Smyth-like ordering on sets of streams. When developing the semantics 6Dstr we shall care­
fully motivate the important conditions of flatness and topological closedness for our powerdomain of
streams. In particular, topological closedness will be crucial for proving the continuity of the semantic
operators for sequential and parallel composition. Unfortunately, these proofs are rather complicated
[Me, BBKM].

The second semantics 6Dobs fits into the specification-oriented approach to the semantics of con­
current processes [OH 1/2] - a generalization of the specific failure semantics in [BHR]. The starting
point for the approach is a simple correctness criterion for processes: a process P satisfies a
specification S, denoted by P sat S, if every observation we can make about P is allowed by S. An
observation is a finitely representable information about the computational behaviour of processes.
Important examples of observations include (finite) traces, traces with divergence information, ready
pairs and failure pairs leading to the (increasingly sophisticated) trace semantics, divergence seman­
tics, readiness semantics and failure semantics for concurrent processes [OH2].

Characteristic and uniform for specification-oriented semantics is a simple nondeterminism ordering
(reverse set-inclusion) on sets of observations [BHR], simple closure conditions on sets of observa­
tions, and a very simple way of constructing continuous semantic operators. Our specific observation
semantics 6D0bs for e follows these construction principles and can be seen as "in between" the diver­
gence and the readiness semantics of [OH2].

Our main result is that both approaches to the semantics of e are isomorphic. In fact, we can view
6D0 bs as a special representation of 6Dstr· This isomorphism has various benefits in the mutual under­
standing of both approaches:

the concepts in 6Dstr have a natural translation into 6Dobs: for example, topological closedness in
6Dstr gets translated into prefix closedness in 6DobS>

through this translation the constructions for 6Dobs become clear conceptually,
most important perhaps, proofs of continuity of the semantic operators in 6Dstr now become very
simple via the isomorphism to 6Dobs• involving only the notion of domain finite relations on the
side of observations [OH 112]. Thus through the idea of observation we can circumvent the
technically difficult continuity proofs of [BBKM, Me].

These results seem to indicate that the notion of finite observation is more successful here than that of
inifinite streams. This is not any more the case for more ambitious language constructs like hiding.
We show that for an extended language e* with hiding the idea of infinite streams very well motivates
a standard definition of hiding due to [BHR]. Furthermore, a proof of the continuity of hiding in the
framework of finite observations is provided, using techniques described in [OH2]. (The proof of the

3

continuity of hiding in stream semantics requires certain techniques not included in the present paper
and will appear elsewhere.)

Thus infinite streams and finite observations provide us with valuable, complementary information
about one and the same computational structure.

Our results on the individual semantics 6Dstr and 6Dobs are backed up by the reports [Me] and [OH2].
The linking isomorphism result is proved fully in sections 5 and 7.

2. THE LANGUAGE e
part

Let A be a finite set of actions, with a,b E A, * : A XA ~ A be a partial binary operation on A called
communication function, and Pvar be a set of process variables, with x,y EPvar. Then the set of
(concurrent)processes e, with P,QEE, is given by the following BNP-syntax:

2.1 DEFINITION (e)

P:: = a I P;Q I P or Q I P II Q I x I p.x[P]

2.2 REMARK. Every action a EA denotes a process, the one which finishes (successfully terminates)
after performing a. P; Q denotes sequential composition such that Q starts once P has finished.
P or Q denotes nondeterministic choice, also known as local nondeterminism [FHLR]. P II Q denotes
communication merge (cf. [BK]) where parallel composition is modelled by arbitrary interleaving plus
communication between those actions a of P and b of Q for which a*b is defined. For example, if
only h*c is defined, we will obtain the following equation in our semantics:

(a;b)llc = a;b;c or a;c;b orc;a;b ora;(b*c).

Communication merge is inspired by [Mi2, BK, Wi], though we do not assume any algebraic proper­
ties of * while defining its semantics. The use of a partial communication function * seems new; it
avoids to give any default value like 8 [BK] or 0 [Wi] to pairs a*b which should not communicate.

Starting from actions a EA, the operators ; , or and II can only define concurrent processes P with
finite semantic behaviour; infinite behaviours require processes P involving recursion, expressed here
by the µ.-construct [dB].

By varying the communication function *, we can express more familiar notions of parallel compo­
sition:

2.3 ExAMPLE.
1. Shuffle I arbitrary merge. Take * as the totally undefined function.
2. CCS: binary communication. Let C kA be a designated set of communications, with c EC, let

-= c~c be a bijection on C providing matching communications c and c such that c = c holds, and
let T be a special symbol in A \ C denoting the so-called invisible action.
We define

C*C = T

for all c EC, and take * to be undefined otherwise. Thus e.g.

(-r;c)llc = -r;c ;c Or -r;c;c Or c;T;C Or T;T

will hold in our semantics. This is the parallel composition of CCS [Mi 1], except that we may have
more non-communicating actions in A \ C than just T.

4

3. THE STREAM SEMANTICS 6Dstr

Let J_tlA. Then we define the set of streams Str(A), with u,v,wEStr(A), as follows [Br l]:

3.1 DEFINITION. Str(A) = A*UA"'UA*·{J_}.

3.2 REMARK:S. Str(A) includes the set A 00 = A* U A"' of finite and infinite words over A [Ni], called
here finished and infinite streams, respectively, and additionally the set A*·{ J_} of unfinished streams.
The linear time semantics LT of [BBKM] - given for an e with arbitrary merge (cf. Example 2.3) - was
entirely based on A 00

• The reason for including unfinished streams u J_ as well is that they allow a
more satisfactory treatment of recursion (see Proposition 3.32).

Lett: denote the empty (finished) stream, .;;;;;; the prefix relation and < the proper prefix relation over
streams, and lul the length of a stream u, with lul = oo for infinite u's.

3.3 EXAMPLES. a.s;;;aJ_, aJ_of;a, aJ_of;ab.
For streams u, v we use the following approximation relation C

3.4 DEFINITION. u C v iff the following holds:

if u is finished or infinite then u = v,
if u is unfisnished, i.e. of the form u = u' J_, then u':s;;;;v.

3.5 EXAMPLES. a j a J_, a J_ C a, a J_ C ab.

Consider for a moment an arbitrary cpo(C, C c•J_c) and a subset S ~C.

3.6 DEFINITION. Sis called flat if x C cY implies x =y for all x,yES. If C\ {J_c} is flat, the
cpo(C, C c•J_c) itself is called flat.

3.7 PROPOSITION. (Str(A), C ,J_) is a non-flat cpo.

To provide meaning to concurrent processes PEe we need (certain) sets of streams. Let '!J'(Str(A))
denote the powerset of streams, with typical elements X, YE'!J'(Str(A)). Then we will use the following
Smyth relation [Sm]:

3.8 DEFINITION. X C s Y iff 'Vv E Y 3u EX : u C v.

3.9 ASIDE. This is "one half' of the Egli-Milner relation [PI l]:

X C EMY iff X C sY and 'Vu EX 3vEY: u C v.

3.10 DIAGRAM.

removal

Cs

expansion

FIGURE. 1

: y

5

Arbitrary streams uEX can be removed (this is not possible in the Egli-Milner relation); unfinished
streams u 1- EX can be expanded.

3.11 REMARK. x~ y implies x c s Y.

It is well-known that the Smyth relation C s is not antisymmetric and thus not a partial order on

non-flat domains like GJ(Str(A)) [Ba, Br l]. E.g. for X = {a1-,ab1-,abc} and Y = {a1-,abc} both
X C s Y and Y C sX hold. But the Smyth relation is a pre-order which generates an equivalence

relation =s on GJ(Str(A)):

X sY iff X C sY and Y C sX

What are the sets identified by -s?

3.12 DEFINITION. mins (X) = { v EX I 3u EX : u C v /\ u=fav} is the set of minimal streams in X.

Then X s Y if and only if min8 (X) = min8 (Y). Thus the sets mins(X) form a system of represen­
tatives of the equivalence classes under =s· Note that min8 (X) is flat.

3.13 DEFINITION. 6Jj(Str(A)) is the set of all flat subsets of Str(A).

3.14 PROPOSITION. ~Str(A)) / sis isomorphic to 6Jj(Str(A)).

3.15 PROPOSITION. (GJ:fStr(A)), L 8 ,{1-}) is a cpo.

PRooF. The proof can be read off from [Ba] (see [Me]). 0
In fact, Back [Ba] considers the more complicated case of the Egli-Milner relation which forces him

to require additional closure properties for sets X<;Str(A) when proving the cpo property. We also
have to introduce additional closure properties, but at a later stage when it comes to proving the con­
tinuity of various semantic operators.

To define these operators, we first need some auxiliary operators on streams.

Concatenation u·v: For u,vEA 00 = A*UA"' the concatenation u·v is well-known from the theory of
infinitary languages [Ni]. We extend this definition to arbitrary streams by imposing the equation
1- ·v = 1-. More specifically, for u 1- EA*·{ 1-} we set u 1- ·v = u 1-, and for u EA 00

, v 1- EA*·{ 1-} we
setu·(vl_) = (uv)-J_.

Comunication merge u llv: Here we consider only finite streams u, v EA* U A*·{ 1-}. Then u llv is a set of
(finite) streams defined by

ullv = ulLvUvlLuUulv

where recursively J_ll_v = {1-}, £1Lv = {v}, a·ullv = a-(ullv) and alb = {a*b},al(bv) = (a*b}v,
aulb = (a*b}u,aulbv = (a*b)·(ullv) provided a*b is defined; in in all other cases ulv = 0. This
finite recursive definition of II using IL and I is due to [BK].

To lift these definitions to flat sets of streams, we enforce flatness of the results by af plying the
operator mins of Definition 3.12, and use the following notion of n-th approximation uln , n ;;;.o, for
streams u : ulnl = u if lul<n and ulnl = u' 1- if lul;;;;;.n and u':i;;;;;u with lu'I = n. Thus ul01 = 1-
holds for all streams u. We extend this definition pointwise to subsets X<;Str(A) by putting

6

XCnJ = {u[n] I UEX}. Note that XCnJ C s.XCn+IJ holds.

Now let X, YEGJ}.Str(A)).

Sequential composition

X;Stry = mins({u-v I uEX and vEY})

Local nondeterminism

X or Stry = mins(XU Y)

Parallel composition
For X, Y CA* UA • ·{ J_} (involving only finite streams) we set

XllStry = mins({wEStr(A)l3uEX,vEY: wEullv})

and for arbitrary flat X, Y C Str(A) we work with semantic approximations:
00

xnsrry = Us (XCnJ11Strylnl).
n=O

3.16 THEOREM. The semantic operators

opstr : 6Yf.Str(A))X6Jf.Str(A))-76Jf.Str(A))

with opE{;, or ,II} are both well-defined and C s- monotonic.

PROOF. The proof is given in [Me]. Showing monotonicity is not trivial for ; and II due to the com­
plex definition of C s. 0

To provide meaning to recursive processes too, we will have to show that the semantic operators
opstr are also continuous.

3.17 THEOREM. or Str is continuous under C s·

Unfortunately, the operators ; Str and nsrr are not continuous on arbitrary flat sets of streams.

3.18 Counterexamples. Take X = {aw} where aw is the infinite stream of a's and

Xn = {uE{a}* I where I u I ;;;:.n}, n;;;:.O
00

Clearly <Xn>n;;.o is a ;;;)-chain, and hence a C s-chain by Remark 3.11. Note that Us Xn = 0,
n=O

00 00

whereas both Us (Xn;StrX) ::;60 and LJs (XnllStrX) ::;60. Thus
n =O n=O

00 00

LJ s (XnOPStr X) =F (U sXn)opStr X
n =O n =O

for both opE{;,11}.
To rescue the continuity of; and II, we will restrict ourselves to closed sets of streams.

3.19 DEFINITION [Ba]. XCStr(A) is closed if for every infinitely often increasing chain <un>n;;.o of
unfinished streams in Str(A) the property

7

00

implies that the stream limit LJ Un EX.
n=O

At first sight this closedness property looks a bit technical, but it is not. We can show that it coin-
cides with the clear concept of topological closedness with respect to the following metric topology on
Str(A).

3.20 DEFINITION. The distanced: Str(A)XStr(A)~[o, l] is given by

d(u,v) = 2-min{n I ul•l#'vl•I}

with the convention that 2- 00 = 0.

3.21 ExAMPLEs. d(abc,aba) = 2-3,d(an,a"') = 2-n-I.

3.22 PROPOSITION. (Str(A),d) is a metric space.
Thus we can talk of Cauchy sequences <un>n;;..o of streams, their topological limits and of topo­

logically closed sets X (;; Str(A), i.e. where every Cauchy sequence <un > n ;;.o with Un EX has its topo­
logical limit (which exists in Str(A)) inside X.

3.23 PROPOSITION. X = {anba"' I n;;a.O}U{a"'} is (topologically) closed, but Y = {anba"' I 'n;;a.O} is
not.

Note that Y typically arises through a fair merge of Y 1 = {a"'} and Y2 = {b}. Hence notions
like fairness or eventuality are not expressible using only (topologically) closed sets of streams [He2,
Me].

3.25 DEFINITION. ~ncfStr(A)) is the set of all non-empty, closed and fiat subsets of Str(A).
The following lemma is crucial for the further development:

3.26 LEMMA. lf <Xn>n;;.o is a C: s-chain of sets XnE~nq(.Str(A)), then ll Xn=:/=0.
- n=O

PROOF. The proof is rather involved and given in full detail in [Me]. D
Using the lemma, we can now establish the following results:

3.27 PROPOSITION. (~ncf Str(A)), L s• { J_}) is a cpo.

3.28 THEOREM. The operators; Strand nsir, when restricted to ~ncf..Str(A)), are continuous under C: s·

PROOF. This uses Lemma 3.26 and otherwise follows the proof of Theorems 2.9 and 2.10 in [BBKM];
in particular the case of II is involved. D

3.29 REMARK. Lemma 3.26 and Theorem 3.28 do not hold, in general, for infinite sets A of actions.
We can now define the denotational stream semantics 6Ds1r for e. We adopt the usual technique with

environments to deal with (free) process variables. This set of environments is given by .
r = Pvar~~ncfStr(A)), with yef. Let, as before, X, Y range over ~ncfStr(A)), and let y{X / x}
denote the environment which is like y, except for its value in x which is now X. Let
[~ncf..Str(A))~s ~ncfStr(A))] denote the collection of all C: 5 -continuous functions from

~ncf..Str(A)) to ~nq(.Str(A)), and let, for tlle[~nq(.Str(A))~~ncfStr(A))], p.tll denote its least fixed
point.

8

3.30 DEFINITION. The semantic mapping

6Ds1rU : ~(f ~ ~ncfStr(A)))

is given by:

6Ds1r[a](y) = {a}

6Ds1r[P;Q](y) = 6Ds1r[P](y);81r6Ds1r[Q](y)

6Ds1r[P or Q](y) = 6Ds1r[P](y) or Str6Ds1r[Q](y)

6Ds1r[PllQ](y) = 6Ds1r[P](y)ll81r6Ds1r[Q](y)

6Ds1r[x](y) = y(x)

6Ds1r[µ.x[P]](y) = µ«Pp,y

(i)

(ii)

(iii)

(iv)

(v)

(vi)

where «Pp,y = AX·6Ds1r[P](y{ X / x }). Let us evaluate the stream semantics 6Ds1r of recursive processes
more precisely. A process P Ef is called guarded in x whenever all occurrences of x in P are within
subprocesses of P of the form Q ; (· · · x · · ·). A process P is called guarded (cf [Mi 1] or [Ni],
where Greibach replaces guarded) whenever, for each recursive subprocess µy[Q] of P we have that Q
is guarded in y.

3.31 EXAMPLES. µ.x[a;x orb] and µ.x[a;(xllb)] are guarded; µ.x[x], µ.x[x;a orb] and µ.x[xllb] are not.

3.32 PROPOSITION. Consider a concurrent process P without free process variables. If P is not guarded,
6Ds1r[P](y) = { J_} holds.

Thus all unguarded processes are identified in our semantics. This simple solution seems more
attractive than the results computed by the linear time semantics LT in [BBKM]. In LT, for example,
one obtains LT[µ.x[x]](y) = A 00

, but surprisingly LT[µ.x[x ;b]](y) = A"' - without an intuitively
clear explanation of these differences. (We remark, however, that for guarded processes P the equation
6Ds1r[P](y) = LT[P](y) holds [Me, Ni].)

4. THE OBSERVATION SEMANTICS 6j)obs

4.1 Background. Motivated by some of the construction principles in the failure semantics [BHR], a
new approach to the semantics of concurrent processes has been developed in [OH 1/2]. It is called
"specification-oriented" because it starts from the following simple concept of process correctness: a
process P satisfies a specification S, abbreviated PsatS, if every observation we can make about P is
allowed by S. The idea is that by varying the structure of observations we can express various types
of process semantics and process correctness in a uniform way. In [OH2] the feasibility of this idea
has been demonstrated by treating the (increasingly sophisticated) examples of counter, trace, diver­
gence, readiness and failure semantics, which support the specification of both safety and (certain)
liveness properties.

The principles of specification-oriented semantics are:
an observation is a finitely representable information about the operational behaviour of
processes,
therefore the set of possible observations about a process enjoys some natural closure properties
with respect to certain predecessor and successor observations,
sets of observations are ordered by the nondeterminism ordering (reverse set-inclusion) [BHR],
this ordering leads to a simple mathematics, in particular a very simple continuity argument for
most language operators (except hiding: cf. Section 8).

We shall not explain these general principles any further, but rather start with an example of a
semantics-not treated in [OH2]- which fits into this framework. We use two distinct symbols y', j~A

9

to define the following set Obs(A) of observations, with h EObs(A):

4.2 DEFINITION. Obs(A) = A*UA*·{y,t}.

4.3 REMARKS. Here observations are finite traces or histories over A and the extra symbols v' and f,
representing successful termination [BHR] and divergence [OH2], respectively. Divergence t stands for
an infinite internal loop of a process generated by an unguarded recursion like µ.x[x] (or hiding an
infinite stream of actions: see Remark 8.6 later). Thus in spite of their finite representation, not all
observations can be made effectively; a similar concession is also present in the concept of testing due
to [dNH].

As for streams we let t: denote the empty history and :,.;;;; the prefix relation between histories. Apart
from :,.;;;; we do not introduce any further relation on Obs(A) which would correspond to C on

Str(A). Instead we jump now directly to sets of observations. Let ~(Obs(A)) denote the powerset of
Obs(A), with HE~(Obs(A)).

4.4 DEFINITION. H C Obs(A) is called saturated iff the following holds:
(i) H includes the minimal observation, i.e. t:EH,

(ii) H is prefix closed, i.e.

hEHandh'.,.;;,_h imply h'EH

(iii) H is extensible, i.e.

h EH\A *·{ y} implies 3aEA U { y,t} : haEH

(iv) H treats divergence as chaos, i.e.

hfEH and h'EObs(A) imply hh'EH.

4.5 REMARKS. These closure properties are (partly) motivated by looking at saturated H's as the sets
of possible observations about a concurrent process:
(i) As long as the process has not yet started, we only observe the empty history t:.
(ii) Whenever we have observed a history h, also all its prefixes h' are observable.
(iii) Only histories h v' indicate the successful termination of the observed process; for all other his­

tories h some extension a EA U { y, t} is certain to happen, but we do not know which one, by
looking at h.

(iv) Identifying divergence ht after a history h with the chaotic closure h·Obs(A) cannot be explained
operationally, rather it originates from the desire to ban diverging processes from satisfying any
reasonable specification (see the Aside 4.7). This idea is familiar from Dijkstra's weakest precon­
dition semantics where a diverging program will not achieve any postcondition [PI 2].

Properties (i), (ii) are typical conditions on traces to be found in [BHR, FLP, OH 112]. Property (iii)
is a new "linear version" of the extensibility condition in the readiness [OH2] or failure semantics
[BHR] where the local branching structure of a process is recorded by requiring more than one exten­
sion of a trace to be present in H. Property (iv) is typical for a simple, but proper treatment of diver­
gence [OH2]; without t unsatisfactory results occur [BHR] akin to those in the LT semantics [BBK.M]
(cf. end of Section 3).

4.6 DEFINITION. ~sa1(0bs(A)) is the set of all saturated subsets of Obs(A).

4.7 ASIDE. Following [OH2], a specification Sis an arbitrary subset S CObs(A) whereas the saturated
subsets H C Obs(A) are called process specifications; they serve as semantics for processes via 6Dobs.
The relation PsatS is then defined by H CS with H = 6Dobs[P]. A reasonable specification S will

10

only talk about traces and terminated traces: S ~A* UA * ·{ y'}. Then PsatS holds only if P never
diverges.

On '!Psai(Obs(A)) we introduce the following nondeterminism order LN [BHR]:

4.9 PROPOSITION. ('!Psa1(0bs(A)), ;:;;), Obs(A)) is a cpo.

PROOF. Clearly, ;:;;? is partial order on '!Ps01(0bs(A)) with Obs(A), which is saturated, as its least ele­
ment. The only property we have to check is that for every chain

Ho:?H1 ;;;? ... ;;;?Hn:?···
00

of saturated sets also n Hn is saturated. This is clear for property (i) and the universal properties (ii)
n=O

and (iv) of Definition 4.4. Only showing the existential property (iii) could be a problem. Fortunately
it is not because A is finite. D

We see that proving the cpo property for '!Ps01(0bs(A)) is much simpler than for '!Pncf.Str(A)):cf.
Lemma 3.26. But what is the relationship between '!Pnq(Str(A)) and '!Psa1(0bs(A)) anyway? This is the
topic of the next section.

5. THE ISOMORPHISM BETWEEN STREAMS AND OBSERVATIONS

We wish to relate the cpo's ('!Pncf.Str(A)), C: 5 ,{..L}) and ('!Ps01(0bs(A)),;;;?,Obs(A)). To this end, we
define a mapping '1', first as

i': Str(A)~'!P(Obs(A)).

For uEA* and vEA"' let

i'(u) = {hEA* I ho;;;;u}U{uv'}

i'(v) = {hEA* I ho;;;;v}

i'(u..L) = {hEA* I ho;;;;u}

U{uh I hEObs(A)}.

5.1 REMARKS. A finished stream u is translated into the set of all its prefixes plus u v' with v' signal­
ling successful termination of u, an infinite stream is translated into the set of all its finite prefixes,
and an unfinished stream u J_ is translated into the set of all prefixes of u plus the chaotic closure
u·Obs(A) of divergence uf.

We extend '1' pointwise to a mapping

'1': '!P(Str(A))~'!P(Obs(A))

by defining

i'(X) = LJ i' (w).
weX

5.2 EXAMPLES. i'({ab}) = {e,a,ab,aby'}, i'({a"'}) = {anln~O}, i'({..L}) = Obs(A).

5.3 THEOREM. '1' is an isomorphism from the cpo (Pncf.Str(A)), C: s,{..L}) onto the cpo

11

(P801 (Obs (A)),;;;), Obs (A)), i.e. i' is bijective, yields i'({ .l...}) = Obs (A) and strongly preserves the partial
orders:

x C s Y iff v(X):?i'(Y)

for all X, YE~ncf(Str(A)).

PROOF. (I) 'I' is well-defined:
Let XE~nq(Str(A)). We have to check that i'(X)E~sar(Obs(A)) holds.

(i) EEV(X): since X is non-empty and (ii) holds.
(ii) i'(X) is. prefix closed: by definition of 'I'.
(iii) i'(X) is extensible: by the definition of i', all histories h Ei'(X) not ending in V have some
extension ha with a EA U { "\/, t} in i'(X).
(iv) i'(X) treats divergence as chaos: a history hf Ei'(X) can originate only from a stream h .l... EX
which, by the definition of i', leads to h·Obs(A)<;;;,X as well.

(2) 'I'({ .l...}) = Obs(A) :
by definition of i', cf. the argument for (1), (iv) above.

(3) 'I' is surjective:
Take some HE~sar(Obs(A)). We have to present some YE~ncf(Str(A)) with i'(Y) =H. We define Y
via the following auxiliary set X<;;;,Obs(A):

X = {uEA* I u'\/EH}

U {vEA"' I 'rlh EA* : h :s;;;,, implies h EH}

U{uEA*·{.l...} I ufEH}.

To enforce flatness, we apply to X the operator mins of Definition 3.12 yielding:

Y = mins(X).

We first show YE~nq(Str(A)).

(i) Y is flat: by the definition of min8 •

(ii) Y is non-empty: It suffices to show that X =I= 0.
To this end, we start from EEH and apply the extensibility condition of (the saturated) H to E and
its successive extensions as long as possible.
Case 1. This is possible only finitely often. Then we end up in some history u V EH and have
uEX.
Case 2. This is possible infinitely often. If we eventually hit some history ufEH then u.l...EX. Oth­
erwise all finite prefixes h :s;;;,, of some infinite stream PEA"' are in H. Then vEX.
Thus indeed X=/=0.
(iii) Yis topologically closed: Take some vEA"' and suppose there is a Cauchy sequence <un>n;;..o
with UnEY and(*) 'rlm~03n~O: d(un,v):s;;;2-m. We have to show vEY. By(*), Un and v agree
on their first m symbols:

v

m

FIGURE 2

u
n

12

Since the original H is prefix closed, we obtain

Vh EA* : h ,,;;;;;;11 implies h EH.

Thus 11EX. But also PE Y. Otherwise there is some u EA* with u <11 and u J_ E Y. By (*), there is
some n;;;:. 0 with u <un. Contradiction to Un E Y, which is flat by (i).

Next we show V(Y) =H. It suffices to show V(X) = H since V(X) = V(Y) holds by the construc­
tion of X and Y.

(i) i'(X)<;;H: by the definition of V and X, and the prefix and chaotic closure of H.
(ii) H <;;'J.T(X): Let h EH. By applying the extensibility condition of H to h and its extensions as
long as possible, we realize - similarly to the non-emptiness proof of Y above - that there exist some
uEA* or PEA"' with

uEX and h.;;;;;;u-J, or

vEX and h.;;;;;;11, or

uj_EX and h.;;;;;;uj.

By the definition of '¥, we get h E'Y(X).

(4) X C:: s Y implies V(X)-;;JV(Y)for all X, YE~ncj(Str(A)):

By definition, X C:: s Y iff V11E Y 3u EX : u C:: 11. Take some h EV(Y).

Case 1. 3u<h : uj_EX. Then hEu·Obs(A)<;;V(X).

Case2. Vu<h: uj_~X.
Then also V11<h : .,; J_ ~ Y because, by the definition of X C:: s Y, 11 J_ E Y with v<h could be generated

only by some unfinished stream uj_ with u.;;;;;;11<h in X, which contradicts Case 2.
Consequently Vh'<h : h'j~V(Y), and in particular h ~A *·{j}.

Subcase2.I. hEA*·{v}
Then h is of the form h = w y. By the assumption of Case 2, we obtain w E Y and w EX. But then
also h = wyE V(X).

Subcase 2.2. h ~A*·{ y}
Then 3wEY: h.;;;;;;w. By the definition of XL sY, 311EX:.,, L w. Due to Case 2 also h.;;;;;;v. Thus
hEV(X).

In all cases we have h E'Y(X).

(5) V(X)-;;J'Y(Y) implies X C:: s Y for all X, YE~ncfStr(A)):

Take PE Y. By the definition of X C:: s Y, we have to present some u EX with u C:: v.
Case I. 3u<11: uj_EX.
Then uj_ C:: 11.

Case 2. Vu<11: uj_ftX.
Then 11ftA*·{J_} and Vh<11: hjft'Y(X).

Subcase 2.1. PEA*
Then PVEi'(Y) and thus PVEi'(X).
By Case 2, we get PEX. Of course, PC P.

Subcase 2.2. PEA"'
ThenH = {hEA* I h~P}ki'(Y)ki'(X).
By Case 2, we find for each hEH of length m;;;;.O some Um EX with h~um.
In other words:

Vm;;;;.03umEX: d(um,P)~2-m.

13

Thus <um>m;;;;.O is a Cauchy sequence in X converging against P. By the topological closure of X, we
get PEX and of course P C P.

In all cases we found some uEXwith u C P.

(6) it is injective:
Suppose i'(X) = i'(Y) holds for X, Y E~ncfStr(A)).
By (5), we obtain X C sY and Y C sX, i.e. X sY. Since X and Y are flat, X= Y follows (cf. Propo­
sition 3.14). 0

5.4 COROLLARY. The isomorphism if; is (of course) continuous, i.e. for every Cs-chain <Xn>n;;.o we
have

PROOF. Consider a Cs-chain <Xn>n;;.o· Since if; is bijective, its inverse tf;- 1 exists, and since if;
strongly preserves th-e-partial orders, both if; and t[;- 1 are monotonic. Thus <o/(Xn)>n;;.o is a ~­
chain, and both

(1)

and

(2)

Applying if; - I to (1) yields

(3)

Connecting and simplifying (2) and (4) yields

Hence

(4)

Applying if; to (4) yields after simplification

14

the desired continuity property of if!. D

5.5 REMARKS. ~ncj(Str(A)) has been constructed through a chain of clear domain-theoretical notions:
streams, sets of streams, Smyth relation, flatness, continuity, topological closure, non-emptiness. The
introduction of ~sa1(0bs(A)) with its saturation property may seem more ad hoe. But the theorem
now tells us that ~sa1(0bs(A)) can in fact be viewed as special representation of the general construc­
tion ~ncj(Str(A)). This provides us with a new mutual understanding of the closure properties in both
domains: topological closedness on streams corresponds to taking all finite prefixes as observations,
flatness of sets of streams corresponds to the chaotic closedness on observations, non-emptiness of sets
of streams does not simply correspond to the fact that saturated sets of observations include t:, but
that in addition they are extensible.

Whereas the non-emptiness of (lubs of) sets of streams is a global property, the extensibility of
observations is a local property where every observation h ~A*·{ y} can be locally extended by
another a EA U { y, j}. This issue of "global" vs. "local" hints at why it is more difficult to prove the
cpo property for ~ncf.Str(A)) than for ~sa1(0bs(A)).

Some parts of the isomorphism i' look familiar from the well-known (trivial) isomorphism for the
case of discrete cpo's of the form A 1- = AU { J_} (with x C: y iff x = J_ or x =y for x,y EA 1-),

used to justify Dijkstra's weakest precondition semantics for nondeterministic state transformers [Pl2].
There the Smyth ordering C: s on sets X, Y kA 1-, defined by

XL 8 Y iff'1'yEY3xEX: x Ly

as in Definition 3.8, can easily be shown isomorphic to the superset ordering d if J_ is replaced by
its chaotic closure A 1- [Pl2]. But this technique is of course too simple for the set Str (A) of finite and
infinite streams.

6. OBSERVATION SEMANTICS 6Dobs: CONTINUED

Let us now continue with the development of the observation semantics 6Dobs· To define the semantic
operators for 6Dobs we could well provide indirect definitions by using the previous isomorphism. But it
will be illuminating to discuss direct definitions first. This is so because the ordering d on sets of
observations allows a very simple, uniform proof of (monotonicity and) continuity for the operators ;,
u and II in e.

In fact, this uniform argument can be explained independently of the specific structure of observa­
tions. Consider two sets X, Y and a relation R k X X Y.
Then R induces an operator

opR : ~(X)~~(Y)

on the subsets of X by taking for every X k X the pointwise image of X under R, i.e.

opR(X) = {yEY I 3xEX: xRy}.

6.1 LEMMA [OH2]. The operator opR is d-monotonic. Moreover, if R is domain finite, i.e. if for every
y E Y there exist only finitely many x EX with

xRy,

opR is also d -continuous.

6.2 REMARK. If R is not domain finite, opR is not continuous in general (see Section 8).
Let us demonstrate the use of the lemma in the case of sequential composition. First we define the

corresponding semantic operator

as follows:

;Ohs : '3'sat(Obs (A)) X '3'sa1(Obs (A))_,,'3'sa1(Obs (A))

Hi;ObsH2 = {h1 I hi eHi and hi does not containy}

U {hih2 I hi yeHi and hz eH2}

U{hih I h1jEHi andheObs(A)}

15

Well-definedness of ;0 hs does not follow from a simple, general principle; this has to be checked
separately:

6.3 PROPOSITION. The operator ;Obs is well-defined, i.e. preserves the saturation property of its argu­

ments.
But monotonicty and continuity of ;0 hs follow from Lemma 6.1. To see this we take

X = Obs(A) X Obs(A) and Y = Obs(A). Next we look for a domain finite relation R ~X X Y
such that

(*) ; Obs = opRt'3'sa1(0bs(A)) X '3'sa1(0bs(A)).

R can be read off from ;0 bs as follows: (hi.h2) R h iff
(i) hi does not contain y, h 2 = t: and h =hi. or
(ii) hi ends in y and h =(h 1 \ vl)·h2, or
(iii) hi ends in j, h 2 =t: and h e(h 1 \ j)-Obs(h)
Here h 1 \ y and hi\ j result from hi by removing from h 1 the symbols y or j, respectively.

Clearly, this R is domain finite. Thus Lemma 6.1 - together with the fact that for sets
X;, Y;E'3'sa1(0bs(A))

x I x y i d x 2 x y 2 if! x I d x 2 and y I d y 2

holds - imply:

6.4 PROPOSITION. The operator ;Obs is monotonic and continuous under ;d.

6.5 CAUTION. Note that there are many relations R ~X X Y satisfying(*) above. But not every such
relation is domain finite. For example, by omitting the condition h2 = t: in clause (i) of R, we lose the
domain finiteness of R so that Lemma 6.1 does not apply.

The discussion of the remaining semantic operators will be more brief. Local nondeterminism is
modelled by set-theoretic union

Hi or Obs Hz =Hi UH2

which is well-defined and (by a straightforward application of Lemma 6.1) monotonic and continuous
under ;d. Parallel composition is defined by

Hi llohs Hz = {h I 3h1 EHi.h2EH2 : hehtllh2}

where hi llh2 is a set of observations given, similarly to the stream definition in Section 3, by

hillh2 = htllh2 Uh21Lh1 Uhi I hz

with t:ILt: = {t:}, ah 1 IL h2 = a·(htllh 2), ylLh = {h}, i 1L t: = Obs(A) and with
ah 1 I bh2 = (a*b)·(htllh2) provided a*b is defined; in all other cases h 11Lh2 = 0 and hilh2 = 0.

6.6 PROPOSITION. The operator llobs is well-defined, monotonic and continuous under ;d.

16

PROOF. Again, well-definedness has to be checked separately. But monotonicity and continuity follow

from lemma 6.1 by taking as domain finite relation that R with (h 1,h 2) R h iff heh 1 llh 2• D

6.7 REMARKS. In the observation semantics the continuity proof for the operators ;Obs, or Obs, 11°bs

could be reduced to a simple test on domain finiteness. In the stream semantics the operators ;sir and

11s1r will fail such a test. For example, the infinite stream a"' can originate from infinitely many pairs

of streams u,v in the sense of both u·v = a"' and ullv = a"'. Thus finite observations are crucial here.

Another advantage of finite observations is that we can define the operators, in particular 11°bs'

without reference to any semantic approximation of its arguments - unlike the stream operator 11sir

where we put
00

x11s1ry = LJ. (.XCnl 11s1r yin])
n=o

in the general case.
We can now define the denotational observation semantics 6Dobs for e. Again we use environments

yef, but now with respect to f = Pvar-'i>'!Psai(Obs(A)).

6.8 DEFINITION. The semantic mapping

6DobsM : ~(f-'!>'!Psa1(0bs(A)))

is given by ·

6Dobs[a](y) = {£,a,ay}

6Dobs[P;Q](y) = 6Dobs[P](y);Obs6j)Obs[Q](y)

6Dobs[P or Q](y) = 6Dobs[P](y) or Obs6D0bs[Q](y)

6Dobs[P llQ](y) = 6Dobs[P](y)ll0 bs6Dobs[Q](y)

6Dobs[x](y) = y(x)

6Dobs[µ.x[P]](y) = µ,<Pp,y

where <PP,y = AH·6Dobs[P](y{H / x}).

7. THE ISOMORPHISM BETWEEN STREAMS AND OBSERVATIONS: CONTINUED

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Here we wish to link the stream semantics 6Ds1r with the observation semantics 6Dobs· Recall that '¥ is

the cpo isomorphism from '!PncfStr(A)) onto '!P801(0bs(A)).

7.1 THEOREM. For every language operator ope{;, or ,II} off and all X, YE'!PncfStr(A))

'Y(X ops'rY) = 'Y(X)opObsv(Y)

holds.

PROOF. Every X e'!Pnq(.Str(A)) can be approximated by
00

X = lJs .XCnJ
n=O

where the .XCnl, n;;;a..O, are defined as in Section 3. By Theorems 3.17, 3.28, 5.3 and Propositions 6.4,

6.6, the operators ops1r, '¥, op 0 bs with ope{;,or,11} are all continuous. Thus it suffices to prove

'Y(XopStrY) = 'Y(X)opobsv(Y) (1)

only for sets X, Y E~ncfStr(A)) without infinite streams u EA"'. Noticing that

+(mins(Z)) = 'l'(Z)

holds for all Z kStr(A), we can simplify the proof of (I) further.

Case I. op = or

'1'(Xor5'1rY) = 'l'(mins(XU Y)) = +(XU Y) =
i'(X)Ui'(Y) = +(X)or°bsv(Y).

Case 2. op=;
By the definition of ;81r and fact (2) it suffices to show that

i'(u·v) = +(u);Obsv(v)

holds "pointwise" for all u,vEA * UA * ·{ J_ }.

Subcase 2.1. uEA •

17

(2)

(3)

We show the inclusion "k" of (3). Let hE'l'(u·v). If h.s;;;,u then hE'l'(u) and h does not contain y.

hence hEV(u);0bs+(v). If u<h, e.g. h = u·h', then uyE'l'(u) and h'EV(v). Hence also
h Ei'(u);0bsv(v).

The proof of inclusion " ;;;:;? " requires a similar case analysis.

Subcase 2.2. u = u' J_ EA*·{ J_}
'l'(u·v) = 'l'(u) = {h I h.s;;;,u'}U{u'h I hEObs(A)}
= v(u);0 bsv(v) (since u'tE'l'(u)].

Case 3. op = II
Again, it suffices to show the "pointwise" equation

V(ullv) = V(u)llobsv(v). (4)

But this case is more involved because of the recursive definitions of II and its auxiliary operators lL
and I· For sets Hi.H2 kObs(A) and opE{lL, I } let

H 1opObsH2 = {h I 3h1 EHi,h2EH2: hEh1oph2}

analogously to the definition of H 111°bs H 2 in Section 6. Furtheron, for op E {II, ll, I } and n ;;;;i.o let

OPn

abbreviate the following assertion:

'Vu,vEA*UA*·{J_}: lul+lvl =n~

V(u op v) = +(u)op 0bsv(v).

For example, lln asserts that equation (4) holds for all streams u,v of length I u I + I v I = n.
To prove (4), we will show by induction on n that

lln/\lln/\ In (5)

holds for all n ;;;;i.o. To this end, we show

llo/\ I o

vn;;;;i.o: llnA In ~ lln

'Vn;;;;i.O: lln ~ lln+I/\ I n+I·

(6)

(7)

(8)

18

Ad (6). Clearly, I u I + Iv I = 0 implies u=v=t.
By the definitions, we have

and

i'(tlLE:) = i'({t}) = {E:, v'l =
{t,y}IL_Obs{E:,y} = i'(t)IL_Obsi'(t)

i'(E: I E:) = 0 = i'(t) I Obsi'(E:).

Ad (7). Assume ILn and In· To show lln we take u,v with I u I + Iv I = n:

i'(ullv) = i'(ulLvUvll_uUu I v)[def·ullv]

= i'(ulLv)Ui'(vlLu)Ui'(u Iv) [def.i']

= (i'(u)IL Obsv(v)) U (i'(v)IL obsi'(u))

U(i'(u) I Obsi'(v))[assumption]

= i'(u)llobsi'(v)[def llObs].

Ad (8). Assume lln· We show ILn+I· Take u,v with I u I + Iv I = n.

Subcase 3.1. u = £

i'(tllv) = i'({v}) = { y}IL_Obsv({v})

= i'(t)IL Obsi'(v).

Subcase 3.2. u = a·u'

i'(au'ILv) = i'(a·(u'llv))

= i'(a);0 bsi'(u'llv)[def.i' and ;Obs]

= v(a);0 bs(i'(u')ll0 bsi'(v))[assumption]

= i'(au')IL obsv(v)[def.IL Obs].

The proof of I n + 1 is similar. 0

Theorem 3.1, Corollary 5.4 and Theorem 7.1 yield:

7.2 COROLLARY. For every concurrent process Pee and environment yePvar~'!PncfStr(A))

i'(6Ds1r[P)(y)) = 6Dobs[PJ (i'0 y)

holds.

PROOF. By induction on the structure of P. In particular, dealing with the case P = µ.x[Q] uses continuity
of 6Dstr• 6Dobs as well as strictness of V, that is i'({ 1.}) = Obs(A). 0

Together with Theorem 5.3 the corollary says that the denotational semantics 6Ds1r and 6Dobs are iso­
morphic.

19

* 8. THE LANGUAGE e WITH HIDING

In this section we continue with the observation semantics. We wish to extend the previous language

e to a language e*, again with P, Q Ee*, which includes a hiding operator P \ b for every b EA [BHR]:

8.1 DEFINITION (e*)

P::= a I P;Q IP or QI PllQ I P\b Ix I µ.x[P]

8.2 REMARKS. Hiding an action b in a concurrent process P means that b is removed from the visible
semantic behaviour of P. For example, the equation

(a;b;c)\b = a ;c (1)

will hold in our semantics. Operationally, we imagine that the hidden action b occurs autonomously
or invisibly after action a has finished. Once the hidden b has finished, action c can be performed.
Thus a hidden action corresponds to the idea of an £-move in automata theory (cf. e.g. [HU]).

With this operational idea of hiding in mind, equation (1) indicates that we abstract away from any
notion of real time [Br2] in our semantics. Under a real time assumption, (a;b;c)\b would differ
from a ;c in that it takes one time unit more to e~ecute.

How to capture this informal idea of hiding within the observation semantics 6Dobs? We first try to
define a corresponding semantic operator

·\bobs : qpsat(Obs(A))~qfsat(Obs(A))

by putting for HEqfsat(Obs(A))

H\bObs = {h\b I hEH} (2)

where h \ b results from h by removing every occurrence of b in h.

8.3 ExAMPLEs. (abc)\b = ac, (abbb)\b =a.
Definition (2) seems natural, but unfortunately it is wrong for two reasons. First, it is not well­

defined.

8.4 CoUNTEREXAMPLE. Take

Hb = {bn I n;;a.O} E qpsat(Obs(A)).

Then

Hb \bobs = {f.} f/. qpsat(Obs(A))

as {f.} violates the extension property (iii) of saturated sets of observations. D
Secondly, definition (2) is not ;;;;/-continuous.

Note that the obvious hiding relation Rb c;;;;,Obs(A) X Obs(A) with

hRbh'iffh' = h\b

is not domain finite, so Lemma 6.1 is not applicable to definition (2). In fact, we have the

8.5 COUNTEREXAMPLE. Taking

Hn = {f., y,b, ... ,bn} U {bn·h I hEObs(A)},

n ;;a.o, yields a chain

Ho ;;;;/ H 1 ;;;;/ ••• ;;;;/ Hn ;;;;/ ...

20

in '!Psat(Obs(A)), but

n=O

00

=F(A\{b})*U (A\{b})*·{y,t} = n (Hn\b 0 bs). 0
n=O

Inside the observation semantics 6Dobs it is not obvious how to correct definition (2) such that these
problems are solved. At this moment it is very helpful to recall the isomorphism '1' between streams
and observations. Through '1' we will get an insight how to modify (2).

To settle the first counterexample, take

xb = {b"'}
00

in '!Pncf(Str(A)). Then ir(Xb) = Hb. Note that xb can be approximated as xb = Us .xtnJ with
n=O

xgz1 = {bn ..L}.

Now, if we apply the su~ested definition (2) of hiding - denoted here by · \ bstr instead of ·\bobs -
to each approximation xwi individually, we obtain

.XWJ \bStr = {..L}.

00

Finally, setting Xb \ b8'r = n 'J/XW I \ b8'r) yields

Xb \bStr = {..L}.

Going back to the observation semantics, we thus expect

Hb \bStr = ir(Xb \b8'r) = Obs(A),

the least element in '!Psat(Obs(A)).

8.6 REMARKS. Through a purely mathematical argument in the stream semantics we realize that hid­
ing an infinite stream of b's, e.g. (µ.x[b;x])\b, should be semantically identical to unguarded recur­
sions, e.g. µ.x[x]. This identification has a very clear intuitive interpretation as well: both (µ.x[b ;x] \ b
and µ.x[x] can be seen as instances of divergence where operationally an infinite internal loop is pur­
sued (cf. Remark 4.3).

Note that in general the infinite stream of hidden b's need not start at the very beginning, but may
occur only after some "ordinary" actions have been finished, e.g. in P = a ;a; (µ.x[b ;x]) \b. Then,
using an analogous detour via streams as above, we see that P will be identified with a ;a ;µ.x[x] and
not with µ.x[x] as divergence happens only after the a's.

We shall not state the full definition of hiding in the stream semantics here, but rather take our
stream analysis of hiding as a motivation for the following correction of definition (2) in the observa­
tion semantics:

H\bobs = {h\b I heH}

U{(h\b)h' I Vn;;.:O: hbneH andh'eObs(A)}.

This is the typical form of the hiding definition known from [BHR].

8.7 PROPOSITION. The operator· \bobs is well-defined and -;]-monotonic.
But what about -;]-continuity of · \ b Ohs? Lemma 6.1 is not applicable as · \ b Ohs is not the point­

wise image of the hiding relation Rb, which is not domain finite anyway. Instead of giving a direct
proof for continuity, we apply here a general theorem of [OH 112] analyzing the typical structure of

21

hiding operators.
A domain finite wellfounded structure (W, ~) consists of a set W and a domain finite relation

~ C W such that there exists no infinite chain

of elements x; E W. By a grounded chain of length n ;;;;.o for x E W we mean a chain

x0 ~ ••• ~Xn = x

such that x 0 is minimal with respect to ~ in W. To every element xeW we assign a level llxll
defined by

llxll = ~{n;;a.O I 3grounded chain of length n for x}.

A subset X CW is called generable with respect to ~ if for every element x EX there exists a grounded
chain

inside X, i.e. with {x0, ••• ,xn} C X. By <3'g(W) we denote the set of all subsets X C W which are
generable with respect to~.

8.8 ExAMPLE. (Obs(A),~) with ~cobs(A) x Obs(A) defined by

h~h'iff3aeAU{y',t}: h·a = h'

is a domain finite well-founded structure. Note that ~. the reflexive, transitive closure of '"°'• is the
prefix relation ..;;;: on Obs (A) and llh II is the length of h. Here a set X ~ Obs (A) is generable with
respect to ~ iff it is prefix closed - one of the conditions for saturated sets of observations in
Definition 4.4.

Let now (X;,~i), i = 1,2, be domain finite well-founded structures and R some relation
R CX1 X X2. We consider now operators

op: <?Pg(Xi) ~ <3'(X2).

Besides the known pointwise image operator opR : <?Pg(X 1) ~ <3'(X2) of Section 6 (here restricted to
~g(X 1)) we consider an additional operator

op'f : <?Pg(X 1) ~ <3'(X2)

defined by
00

op'f(X) = {Y'EX2 3yEX23xEX: (xRy andy~i.Y')}
00

where 3 means "there exist infinitely many" and where ~i denotes the reflexive, transitive closure of
~2 . We will study the combined operator

opR U op'f : <3'g(X i) ~ <3'(X2).

To this end, we need the following concepts.

8.9 DEFINITION. R CX 1 X X2 is level finite if for every y eX2 and /;;;a.O there exist only finitely
many XEX1 with

xRy and llxll1 = I.

R is called downward consistent if

22

holds, with 0 denoting the relational product.

8.10 THEOREM [OH2]. The operator opR Uop'f : <fllg(X 1) ~ <fll(X2) is -;J-monotonic. Moreover, if R is
level finite and downward consistent, op'f is also -;J-continuous.

To apply the theorem to the particular hiding operator · \ b Obs, we take
(Xi,~i) = (Obs(A),~), i=l,2 and R =Rb c;;;;,Obs(A) X Obs(A) as the hiding relation with

hRbh' iff h' = h \b.
Then Rb is indeed level finite and downward consistent. Since

·\bobs= (opR. U OPR:)t<fllsai(Obs(A))

holds, we obtain:

8.11 COROLLARY. The operator·\ bobs is -;J-continuous.

8.12 REMARK. One of us (J.J.Ch.M.) has obtained a proof of the continuity of hiding in the stream
semantics framework. The proof requires various additional results and will be published separately.

These preparations allow us to extend the observation semantics 6Dobs to e* by adding the following
clause to Definition 6.8:

8.13 DEFINITION.

6Dobs[P \ b] (y) = 6Dobs[P](y) \bobs.

We see that the level finite hiding operator P \ b is more difficult to deal with than the domain
finite operators P;Q, P or Q and PllQ, but the stream domain helped us to understand its definition.

9. CONCLUDING REMARKS

We have not included any notion of global nondeterminism like + [Mil] or 0 [BHR] nor any notion
of deadlock like stop [BHR] or B [BK] in e or e*. This restriction allows us to work with a linear time
approach in the form of streams or linear histories. It is a topic for further research to investigate
whether our results can be extended to non-linear approaches like failure [BHR] or branching time
semantics [BZ].

REFERENCES
[Ba]

[dB]

[BBKM]

[BZ]

[BMOZ]

[BK]

[Br]

R.J.R. BACK, A continuous semantics for unbounded nondeterminism, Theoret. Comp.
Sci. 23 (1983) 187-210.
J.W. DE BAKKER, Mathematical Theory of Program Correctness (Prentice Hall Interna­
tional, London, 1980).
J.W. DE BAKKER, J.A. BERGSTRA, J.W. KLOP, J.-J.CH. MEYER, Linear time and branch­
ing time semantics for recursion with merge, Theoretical Computer Science 34 (1984),
pp. 134-156.
J.W. DE BAKKER, J.L ZUCKER, Processes and the denotational semantics of concurrency,
Inform. and Control 54 (1982) 70-120.
J.W. DE BAKKER, J.-J.CH. MEYER, E.-R. OLDEROG, JJ. ZUCKER, Transition systems,
infinitary languages and the semantics of uniform concurrency, in Proc. l 7th ACM
STOC, Providence, RJ., 1985.
J.A. BERGSTRA, J.W. KLoP, Process algebra for synchronous communication, Informa­
tion and Control, 60 (1984), pp. 109-137.
S.D. BROOKES, On the relationship of CCS and CSP, in: J.Diaz (Ed.), Proc. lOth

[BHR]

[Brl]

[Br2]

[FHLR]

[FLP]

[Hel]

[He2]

[HU]

[Me]

[Mil]
[Mi2]

[dNH]

[Ni]

[OHi]

[OH2]

[Pll]
[Pl2]

[Sm]
[Wi]

23

ICALP, LNCS 154 (Springer, Berlin, 1983) 83-96.
S.D. BROOKES, C.A.R. HOARE, A.W. ROSCOE, A theory of communicating sequential
processes, J. ACM 31 (1984) 560-599.
M. BROY, Fixed point theory for communication and concurrency, in: D. Bj0mer (Ed.),
Formal Description of Programming Concepts II (North Holland, Amsterdam, 1983)
125-146.
M. BROY, Applicative real time programming, in. R.E.A. Mason (Ed.), IFIP Informa­
tion Processing 83 (North Holland, Amsterdam, 1983) 259-264.
N. FRANCEZ, C.A.R. HOARE, D.J. LEHMANN, W.P. DE ROEVER, Semantics of nondeter­
minism, concurrency and communication, JCSS 19 (1979) 290-308.
N. FRANCEZ, D.J. LEHMANN, A. PNuEu, A linear history semantics for languages for
distributed programming, Theoret. Comp. Sci. 32 (1984) 25-46.
M.C.B. HENNESSY, Synchronous and asynchronous experiments on processes, Report
CSR-125-82, Dept. of Comp. Sci., Univ. of Edinburgh, 1982.
M.C.B. HENNESSY, An algebraic theory of fair asynchronous communicating processes,
Manuscript, Dept. of Comp. Sci., Univ. of Edinburgh, 1984.
J.E. HOPCROFT, J.D. ULLMAN, Formal Languages and their Relation to Automata
(Addison-Wesley, Reading, Mass., (1969).
J.-J.CH. MEYER, Fixed points and the arbitrary and fair merge of a fairly simple class of
processes, Tech. Reports IR-89/IR-92, Free University, Amsterdam, 1984.
R. MILNER, A calculus of comunicating systems, LNCS 92 (Springer, Berlin, 1980).
R. MILNER, Calculi for synchrony and asynchrony, Theoret. Comp. Sci. 25 (1983) 267-
310.
R. DE NICOLA, M.C.B. HENNESSY, Testing equivalences for processes, Theoretical Com­
puter Science 34 (1984), 83-134.
M. NIVAT, Infinite words, infinite trees, infinite computations, Foundations of Com­
puter Science Ill 2, Mathematical Centre Tracts 109 (1979) 3-52.
E.-R. OLDEROG, C.A.R. HOARE, Specification-oriented semantics for comunicating
processes, in: J. Diaz (Ed.), Proc. lOth ICALP, LNCS 154 (Springer, Berlin, 1983) 561-
572.
E.-R. OLDEROG, C.A.R. HOARE, Specification-oriented semantics for comunicating
processes, Tech. Monograph PRG-37, Progr. Research Group, Oxford Univ., 1984 (to
appear in Acta Informatica).
G.D. PLOTKIN, A powerdomain construction, SIAM J. Comput. 5 (1976) 452-487.
G.D. PLoTKIN, DIJKSTRA'S predicate transformers and Smyth's power domains, in: D.
Bj0mer (Ed.), Abstract Software Specification, LNCS 86 (Springer, Berlin, 1980) 527-
553.
M.B. SMYTH, Power domains, JCSS 16 (1978) 23-26.
G. WINSKEL, Synchronisation trees, Theoretical Computer Science 34 (1984), 33-82.

