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AMBIGUITY AND TRANSCENDENCE
Philippe FLAJOLET

Abstract: We establish that several classical context free languages are
inherently ambiguous by proving that their counting generating functions,
when considered as analytic functions, exhibit some characteristic form of
. transcendental behaviour.

Résumeé: On établit le caractére inhéremment ambigu de plusieurs langages
algébriques (contezt-free) classiques en montrant que leurs séries
génératrices de dénombrements, lorsqu’elles sont considérées en tant que
fonctions analytiques, ont des comportements qui sont caractéristiques de
fonctions transcendantes. .
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To appear in Proceedings of ICALP'86 Conference, Nafplion (Greece), July 1985;
Springer Verlag Lecture Notes in Computer Science.
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ABSTRACT -

We establish that several classical context free languages are
inherently ambiguous by proving that their counting generating
Junctions, when considered as analytic functions, exhidit some
characteristic form of transcendental dehaviour.

. 1. INTRODUCTION

We propose here an analytic method for approaching the problem of
determining whether a contezt-free language is inherently ambdiguous. This
method (which cannot be universal since the problem is highly undecidable)
is applied to several context-free languages that had resisted previous

attacks by purely combinatorial arguments. In particular, we solve here a
conjecture of Autebert, Beauquier, Boasson, Nivat [1] by establishing that the -

"Goldstine language” is inherently ambiguous. Our technique is also applied
to a number of context-free languages of rather diverse structural types.

There are relatively few types of languages that have been proved to be
mherent.ly ambiguous. This situation owes mostly to the fact that classical
proofs of inherent ambiguity have to be based on a combinatorial argument
of some sort considering all possible grammars for the language. Such proofs
are therefore scarce and relatively lengthy.

At an abstract level, our methodology is related to a more general princi-
pie, namely the construction of analytical models for combinatorial prob-
lems. Informally, the idea is as follows:

To determine if a problem P belongs to a class C, associate to elements w

" of C adequately chosen analytic objects ¥(w) so that a (possibly partial)

characterization of Y(C) can be obtained. [f 9(P)eV¥(C), then P does not
belong to C.

At such a level of generality, this prmc1ple is of course of little use. However it

has been successfully applied in the past in the derivation of non trivial lower
- . bounds in complexity theory:

1. Shamos and Yuval [18] have obtained interesting lower bounds for the
complexity of computing the mean distance of points in a Euclidian
space by considering the Riemann surface associated to the complez
multivalued function (especially its branch points) that continues the
functlon defined by the original problem. They obtain in this way an
(n?) lower bound on the complexity of the problem The fact that the
proof of this particular result was subsequently "algebracized” by Plp"
penger [13] does not limit the interest of their approach.
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2. More recently Ben-Or [3] has obtained a number of lower bounds for
membership problems, including for instance the distinctness problem,
set equality and inclusion ... His method consists in considering the
topological structure of the real algedbraic variety (the number of con-
nected components) associated to a particular problem and relate it to
the inherent complexity of that problem.

Our approach here is to examine properties of generating functions of
context-free languages especially when these functions are considered as
analytic functions instead of plain formal power series. The situation in this
case is greatly helped by the fact that, from an old theorem of Chomsky and
Schutzenberger, the ordinary generating function of an unambiguous
context-free language is algebraic as a series, and thus also as an analytic
function. Therefore, we can simply prove that a context-free language is
inherently ambiguous provided we establish that its generating function is a
transcendental function. ' :

Proofs of transcendence for analytic functions appear to be fortunately
appreciably simpler than for real numbers. A method of choice consists in
establishing the transcendence of a function by investigating its singulart-
ties, in particular showing that it has a non-algebraic singularity (the way
‘algebraic functions may become singular is well characterized), or infinitely
many singularities or even a natural boundary. :

In the sequel, we shall state some useful transcendence criteria for
establishing inherent ambiguity of context-free languages, and present a
number of applications to specific languages.

A note about our presentation: it should be clear in what follows that we
have made no attempt at deriving the simplest or most elementary proofs of
inherent ambiguities of languages. We have instead tried to demonstrate the
variety of techniques that may be employed here as they should also prove
useful in future applications. It should also be clear that a very large number
of languages are amenable to these techniques and some random sampling
has been exercised to keep this paper within reasonable size limits.

¢

2. SOME INHERENTLY AMBIGUOUS LANGUAGES

A context free grammar G is ambiguous iff there exists a least one word
in the language generated by G that can be parsed according to G in two
different ways. A context-free language L is inherently ambiguous iff any
grammar that generates L is ambiguous. .

A prototype of an inherently ambiguous language is
L=§{a™b"c?P | n=m orn=p | (1)

and the proof of its inherent ambiguity proceeds by showing, by means of
some iteration theorem, that any grammar for L needs to generate words of
the form a®b™c¢™ at least twice for large enough n. (See e.g. Harrison’s book
[10] for similar classical procfs). :

In this paper, we propose to prove the inherent ambiguity of a number of
languages of various types that are structurally more complex than the above
example:

Theorem 1: [Languages with constraints on the number of occurrences of
letters] The languagés O3, O, are inherently ambiguous, where:

Os=twelabec}’ | |wlg=lwly or jwls=lwic ]



g3
O, ={welzzygl" | lwl,=lwlgor|w|,=lwlg].

Theorem 2: [Crestin’'s language formed with products of -palindromes] The
- language C is inherently ambdiguous, where:

C={ww, | wiwyelab]” w=wlw,=w}|
with wt denoting the mirror image of w. _ .

Theorem 3: [A simple linear language] The language S is inherently ambigu-
- ous, where: '

S=f{aw,e™v, | v,vscfab}’]

Theorem 4: [Languages with a comb-like structure] The languages P,, P, are
inherently ambiguous, where: ”

Py=fninam - -ng | [forall jngi=ns_;]or(forall jngi=ngj.nz=n4]}
P,={nn, - -nk | [n;=1forallj n2j=2néj,1] or [for all j ny;=Rny;, ]}
w:.:re for integer n, i denotes the unary representation of n in the form of

a™b.
Theorem 5: [Languages deriving from the Goldstine language] The languages
G, G¢. Gy, H, are inherently ambiguous, where:
Gua={nnz -ny | forsomejnj‘#j }
Ge=1 ‘_’ljzl_z - ng | for'somejn;<j |
Gy={nn,- T Dy | for some jn;>j )
Hy={nmny - n, | forsomejn;#p |
Theorem 6: [Languages obeying local constraints] The languages K,, K, are
inherently ambiguous, where:
Ky={nny - -n, | forsomejn;, #n; |
Ko={nn, --n. | for somej n,-“#Zn,- }
Theorem 7: [A lahguage based on binary representations of integers] 7he.
language B is inherently ambiguous, where:

B=§?lﬁz...§k | n,1#1 or for somejn;, #n;+1} |
in which n denotes the binary representation of integer n followed by a

marker.

Many of these results are actually known but have been included here
for the sake of illustrating the power of the methods we employ: the case of
languages like O, Oj is easily reduced to the ambiguity of languages like L
defined in (1). The language C has been studied combinatorially by Crestin {7]
who proved that it is of inherent unbounded ambiguity. We establish here the
transcendence of its generating function, which proves a conjecture of Kemp.
The result concerning language S is a weaker form of a result due to Shamir
[17] by which

fucvutv, | wv, vefa,b]®}
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is infinitely ambiguous. The language P, has been studied by Kemp [12] who
proved that the asymptotic density of a closely related language is transcen-
dental, thereby establishing its ambiguity. :

The other cases seem to be new. In particular, the case of the language
G .. which is exactly the Goldstine language, solves the conjecture of Autebert
et al.. Although it seems quite plausible at first sight that such languages
must be inherently ambiguous, the difficulty owes to the fact that when
attempting to apply iteration theorems, (like Ogden’s lemma), some of them
(most notably the Goldstine language) behave almost like regular languages.

3. AN OVERVIEW OF TRANSCENDENCE CRITERIA USED FOR ESTABLISHING
INHERENT AMBIGUITY

To any language LcA® (A a finite alphabet) we associate its enumeration
sequence deﬁned by:

L, =ca.rdiw€L | lw|=n]}.

This sequence is characterized by its generating function, called the generat-
ing function of language L:

l(z)= 3 lz™.
. na0
This function is an analytic function in a neighbourhood of the origin, and its
radius of convergence p satisfies:

1
card A

Consideration of analytical properties of function l(z) or, in an often
equivalent manner, of asymptotic properties of the sequence {l,} permits in a
number of cases to establish inherent ambiguity of the context-free language
L by means of the following classical theorem of Chomsky and Schutzen-
berger [5]:

<p<1

Theorem: Let L(z) be the generating function of a context-free language L. If
L is unambiguous, then L(2z) is an algebraic series (function) in one variable.

This classical theorem is established in a constructive manner by transform-
ing an unambiguous definition of the language into a set of polynomial equa- -
tions. It will be used in the sequel under the trivially equivalent form:

Corrollary:' If the generating function l(z) of a context-free language L is
transcendental, then L is inherently ambiguous.

The above corollary (see [14] for general information on languages and for-
mal power series) therefore permits to conclude as to the inherent ambiguity
of a language provided the following two conditions are met:

(i) [The counting condition]: One has at one's disposal a combinatorial
decomposition of the language, in a way that gives access to the
sequence l, and permits to "express” l(z).

(ii) [Transcendence condition]: A transcendence criterion is available to
establish the non-algebraic character of L(2).

We now proceed with the statement of a few simple transcendence cri-
teria of which applications will be given in the following sections. The first -

- —_—



one is obvious: v

Theorem A: Let l(z) be an atg}ebraic series of Q[[2]], v an algebraic number.
Then l(w) is algebraic.

Criterion A: [Transcendence of values at an algebraic point] If L(2) is a series
of Q[[z]]. and if l(w) is transcendental for some algebraic w, then L(z) is
transcendental

Theorem B: An algebrm.c Junction l(z) deﬁned by an equation
P(z.l(z)) =

has a finite number of singularities that are algebraw numbers satisfying the
equation:

Resultant, [P(z,y),m] =0

This last result is of course a very classical one (see for instance Seidenberg’s
book [16] ) and comes from the implicit function theorem for analytic func-
tions.

Criterion B: A function having infinitely many singularities (for instance a
natural boundary) is transcendental.

In the sequel, this result is used to establish the ambiguity of Crestin's
language C taking advantage of Kemp's determination of its generating func-
tion which appears to have infinitely many singularities. Other applications
stem from the existence of natural boundaries for lacunary series (as an
application of theorems of Hadamard, Borel and Fabry).

A more refined way of establishing the transcendence of a series consists
in observing the appearance of transcendental elements in local expansions
~around a singularity. Indeed, for an algebraic function, one has

Theorem C: If l(z) is algebraic it admits in the wvicinity of a smgulanty a
Jractional power series expansion of the type

l(z)= Y a,,(l——)"' , meNreQ*,
k2—-m
where the a; are algebraic.
The above expansion is nothing but the familiar Puiseux expansion of an alge-
braic function.

Criterion C: [f 1{(z) has in the vicinity of a singularity an asymptotic
equivalent that is not of the form:

o(1-Zy
with w and a algebraic and r rational, then L (2) is transcendental.

" It is also well known that the local behaviour of a function in the vicinity
of its singularities is closely reflected by the asymptotic behaviour of its Tay-
lor coeflicients. Corresponding "transfer” lemmas rely on contour integration
techniques, like the Darboux method. '

Theorem D: [f L(z) is an algebraic f‘unction thet is analytic at the origin, then
its n Taylor coefficient l, has an asymptotic equivalent of the form:
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ﬂ

l, = C;ol + O(a™nt), (a
"7 T(s +1) EE, * A)
where s€Q/{—1,-2,-3, - - - |, t<s, a is an algebraic number and the C;, w; are

algebraic with |w;|=1.

Criterion D: Let l(z) be a function analytic at the origin,; if its Taylor
coefficients l, do not satisfy an asymptotic ezxpansion of type (A), then l(z)1s
transcendental

In passing, Criterion D generalizes a result of Berstel [4] who observed that if
there exists an integer a such that the limit

A= lim-2
a'n.
exists and is a transcendental number, then l(z) is a transcendental func-
tion, so that L cannot be an unmabiguous context-free language. Theorem D
does provide a generalized density characterization for unambiguous
‘context-free languages that extends Berstel’s results.

A particularly useful set of applications of Theorem D is for coeﬂ‘lments
with asymptotic equivalents of the form:
l, ~7ya™®n’ .
If either r is irrational, a transcendental or yI'(r +1) is transcendental, then
l(z) is a transcendental function. Therefore the following asymptotic
behaviours are characteristic of transcendental functions:
1 3

n ‘ n
O(e™nT); 0(a™nY?); 0(%—): 0(%5) i n24™n 2
n n .

1

(Notice however for the last example that m 24™n 2 does occur in the expan-
sion of algebraic functions.)

The last batch of methods is based on a theorem by Comtet [6] that any
algebraic function satisfies a linear differential equation with polynomial
coefficients, a fact which is reflected on its Taylor coeflicients by:

Theorem E: If L(z) is calgebraic, then there exist a set of polynomials
po(z), - - - .Pm(2) such that: :

™ dil(z |
2 P; (Z)—‘—%‘l =0.
j=0 dz

Thus, there erxist a set of polynomials go(u). - .gm{(u) such that for all
neno.'

m
Z Qj(n)ln—j =0
j=0

Criterion E: Let L(z) be an analytic functian.. If there does not exist a finile
sequence of polynomials q4.9,. ' - - .q,, Such that for n large enough.:

m .
EQj(n)ln—j =0,
=0

then L(2) is transcendental.



.

This criterion comes as a useful complement (or as an alternative) to tran-
scendence proofs based on lacunary series mentioned in relation to Criterion
B since it applies obviously to any series

L anz™

na0

such that sup(cp 4+1=Cp) = +oo .

4. TRANSCENDENCE OF VALUES OF GENERATING FUNCTIONS

This method is in principle the most direct. However, in practice, it turns

out to be rather hard to apply because of the relative scarcity of transcen-
dence results for real numbers. It is applied here to the following languages:

1.

The language 0O, is by definition the union of two context-free languages
whose intersection has a generating function that is an elliptic integral.
Using a classical result in transcendence theory concerning values of
such integrals at algebraic points [15,]],Sect. 4], we establish the tran-
scendence of the generating function of 0,.

Language P;: it has a generating function whose expression involves the
Fredholm series: :

F(z)= Y 2%

nx0
and the approximation theorem of Thue-Siegel-Roth [15,],Sect. 6, Th. 8]
shows the value of the series to be transcendental at any point z=-}1- for -
integral q.

This last example is inspired by the construction due to Kemp [12] of a
context-free language with a transcendental density.

5. FUNCTIONS WITH INFINITELY MANY SINGULARITIES

Criterion B expresses that any function with infinitely many singularities

is transcendental. Such a ‘property may either be apparent on the very
expression of the function or it may result from theorems on lacunary series.

1.

The language S: a decomposition reveals that its generating function
involves rationally the quantity:

s(z)=2}, 2

koo 1-2z+zk+1 '

2k

a series which not too surprisingly is related to statistics on ‘‘runs"
(repetitive sequences) [8], and accordingly occurs in an analysis by
Knuth of carry propagation. It is easy to check that s(z) has infinitely

many poles around % satisfying:
2 = ?13—+2““'“’+o (27F)

and it is therefore transcendent.



-8-

2. The language C has been introduced by Crestin [7] and Kemp [11] has
- shown that its generating function is:

L) = 142 3 pim) S LEN1L2 )

where ¥(m)=]](1-p). the product being extended to all prime divisors of
m. From that expressions easily follows that !(z) has for |z |<1 isolated
singularities at points:

A dn
Zm 3= Zame m
3. The Goldstme language &, has a generating function related to the theta
Junctions: . :
1-2 :
l(z) = - ziG+1)

which is clearly non algebraic as can be checked since, for instance, .
from the theory of lacunary series the sum has the circle [z|=1 as a
natural boundary. The same treatment applies to H,.

This last case is the one that initially motivated our study. The reader may
consult [2] for some related enumeration issues.

6. LOCAL BEHAVIOUR AROUND SINGULARITIES

This is certainly the most comfortable method to apply. The mere.
-appearance of logarithmic terms in the local expansion of a function around
a singularity is sufficient to establish its transcendence. Such local analyses
may often be treated by Mellin transform techniques, a fact not too surpris-
ing considering the arithmetical character of many of the languages we
study.

1. The language K, has a generating function whose expression involves the
Lambert series associated to the arithmetical divisor function:

D(z)=%

) . - 1—-z™
The Mellin transform of D(e™*) is

SD(e*)ts-1dt = ¢3(s)I(s) ,
0
from which we obtain through a residue calculation:
D(z) ~ (z-1)log(1~2) ,

as 2z tends to 1, a typically transcendent behaviour.
2. The proofs for K. P, follow by similar arguments.

7. GENERALIZED ASYMPTOTIC DENSITIES

These are based on the existence of generahzed densities corresponding
to expansion (A) of Theorem D.
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1. The language G, has a bivariate generating function (recording the
nurnber of a's and b's in words) that involves the function:

b(zy) = E{y’kflll =z )

Jj=1

The function cl(z v )=b(z,y(1-z)) has the same transcendence status as
b(z,y). The transcendence of ¢ is in turn easily related to that of the
function: ‘
T E@ =102
i=1
which occurs in the theory of integer partitions. Finally, the transcen-
dence of E(z) we may itself establish if we wish by considering the
asymptotic form of its Taylor coeflicients that is given by a celebrated
theorem of Hardy and Ramanujan [9]:

N
e

B TmE

8. POLYNOMIAL RECURRENCES

This last part corresponds to Comtet's theorem:
1. The language B has a generating function where there intervenes the
series
Az)= Y 2zMm) A(n)=2n+ Y [logyp]
na1 psn

a series which because of large gaps cannot have coefficients that satisfy
any fixed order polynomial recurrence.

2. Other cases involving theta series, like the Goldstine language can be
also treated in this way.

9. OPEN PROBLENS

The following problems naturally suggest themselves: (1) Are there
sufficient conditions on generating functions to ensure that a language is
infinitely inherently ambiguous? (2) In which class of transcendental func-
tions do generating functions of (a‘mbiguous) context-free languages lie? For
instance, in our work we came nowhere close to expressions involving the
exponential function. (3) Accordingly are there results on generalized densi-
ties of (ambiguous) context-free languages? For instance, can the number of
words of size n in a context-free language grow like exp(vVn )?

Acknowledgment: This work was started after stimulating discussions with
Lois Thimonier and J. Beauquier. '
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