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EVERY COMMUTATIVE
QUASIRATIOfMAL LANGUAGE

IS REGULAR (*)

by Juha KORTELAINEN (*)

Communicated by J. BERSTEL

Abstract. - A nonregular language L is minimal with respect to a language famiîy ££ if for
each nonregular language L1 in £?, L is in the trio generated by Lv We show that the language
D* — {xG{au a2}* | \x\a ^\x\a } is minimal with respect to c{0l\ the family of languages
consisting of the commutative closures of all regular languages. This then implies that each
commutative quasirational language is regular.

Résumé. - Un langage L non rationnel est minimal dans une famille ££ de langages si, pour
tout langage L t non rationnel dans $£^ L appartient au plus petit cône rationnel fidèle contenant
Lv Nous montrons que le langage D$ = {xe{a1, a2}* \ \x\a^ T^ |X|O } est minimal dans c{M)
qui est Vensemble des fermetures commutatives des langages Rationnels. Ceci implique que tout
langage commutatif quasirationnel est rationnel.

1. INTRODUCTION

The minimality of languages is studied in several articles, for instance in
[1], [3], [9] and [10]. Let ,T(JSf) (i"(JSf)) dénote the (full) trio generated
by the language family jSf. In [1], [9] and [10] we can find the following
conjecture:

CONJECTURE 1: If L is a nonregular language in c(ât)9 then Df is in #*(L).
We show that Df is in 2T(L) for each nonregular language L in c{M) thus
proving the conjecture. A resuit of Latteux and Leguy [11] then implies:

CONJECTURE 2: Every commutative quasirational language is regular.
Conjecture 2 was stated in [8] and [10]. It was partially proved in [5] and

[11]; in [5] it was shown that every commutative linear language is regular
and in [11] that every commutative quasirational language over a two-letter
alphabet is regular.

(*) Received in November 1984, revised in October 1985.
(*) Department of Mathematics, University of Oulu, SF-90570 Oulu 57, Finland.
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320 J. KORTELAINEN

2. PRELIMINARIES

A subset S of N" is linear if:

J=l9 ..., r},

for some u£eMB, f = 0, 1, . . . , r. We say that s is the rank of S if there are
exactly s linearly independent éléments (over Q, the rationals) in ul9 . . . , ur.
The rank of S is denoted by rank (S). Naturally rank(S) ^ n. If rank(S) = r,
then 5 is a proper linear set A subset T of N" is semilinear if it is a finite
union of linear sets. The rank of T, denoted by rank (7), is s if
T=SX U • • • U Sm where each St is a linear set and max rank (Sf) = s. It can

i

be verified that the rank of each semilinear set is uniquely determined. The
convex closure conv (S) of the linear set S is defined by:

u1 + . . . +<xrur | OLJSQ, OLJ^0J=19 ..

Dénote

{<x1u1 + ... +ariir | otjeQ for each j}.

Note that stf(S) is a linear subspace of Qn. All the linear spaces considered
are subspaces of Qn over g, the rationals. Again, both conv(S) and s/(S)
are well-defined. By Lemma 1, conv (5) is a semilinear set.

A linear set S ^ N" is fundamental if:

S = {(ru . . . , r j + fci(^,0, . . . , 0) + . . .

+ /cn(0, . . . , 0, 5n)| j }

for some rp s7-e M, r̂  < sy, 7=1, .. . , n. If S is fundamental, then obviously
rank(5) = n. A semilinear set is called fundamental if it is a finite union of
fundamental linear sets.

Let l / c r The complement of U is the set O defined by:

£7={i;eNn| v$U).

Ginsburg proves in [6] that:

(i) the intersection of two semilinear sets is a semilinear set;
(ii) the complement of a semilinear set is a semilinear set; and

(iii) each semilinear set is a finite union of proper linear sets.
These facts are extensively used in our proofs.
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EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR 321

Let V, W g N". Then we define:

V+ W={v + w\ veV, weW}.

Let e^N" be the element in which the ï-th coordinate is one and all the
others are equal to zero, î= 1, . . . , n. Let x¥<ai an> be the usual Parikh-
mapping from {al5 . . . , an}* onto Nn, When *P<flli.."fl|(> is understood, it is
denoted by ¥ .

Let Zi be an alphabet and xeZ?. Then |x|a dénotes the number of
occurrences of the symbol a in x for each a in Z^ The empty word is denoted
by e. Let L g Ef be a language. Then:

and

Define c(x)~{y eSJ | |x|a = |7Ja for each a e Xi}. The commutative closure of
the language L is the set

c(L)= U c(x).

The language L is commutative if L = c(L).
For a language L g {al9 ..., an}*s let the complement of L with respect to

{al5 . . . , an} be the language L(aX) . , . , an) defined by:

L( f l l, ...,ûB) = {xe{a1, ...,att}*\xtL).

We dénote L ^ ^ . . . , art) by L when {au . . . , a„} is understood.
A language L g {al9 . . . , an}* is a SLIP-language if ^F(L) is a semilinear

set. If L is commutative and ^(L) is a linear set, then the convex closure
conv (L) of L is the following language:

conv (L) = x¥~1 (conv (*F (L))).

A commutative language i? g {a1? . . . , a„}* is fundamental if *¥(R) is a
fundamental semilinear set. Note that if R is fundamental, it is a regular
commutative SLIP-language.

It should be clear that c(^) is exactly the family of all commutative
SLIP-languages and that c(&) is closed under union, intersection and complé-
mentation. Let D f = c ((al a2)*).

vol. 20, n° 3, 1986



322 J. KORTELAINEN

3. MAIN RESULTS

We now prove seven lemmas which imply the main results of this paper.

LEMMA 1: For each linear set S g Nn, conv(S) is a semilinear set.

Proof: Assume:

S = {uo + fc1u1 + . . .+fcmum | kjeNJ=\, . . . , m).

where t^ef^T, i = 0, 1, . . . , m. Let:

tfo = {uo + a 1 u 1 + . . . + a m u m | a i e Q , 0 ^ o^ < l , j = l, . . . , m } n N "

and

Obviously Uo is finite and thus U=U0 + Ul is a semilinear set. We show
that conv(S)=L/.

It should be clear that 17 ü conv(S). Assume ueconv(S). Then:

for some nonnegative $jeQ,j — l, . . . , m. Now:

for some y^-eo» 0 ^ ŷ  < 1, r^e^l, where Pj = Yj-l-ri5 j = l , . . . , m . Thus
uo-l-Y1u1 + . . . +Y m u m eL / o and r l W l + . . . + r m u m e t / 1 ) so u e l / . We can
deduce that conv(S) ^ U. The proof is now complete. G

LEMMA 2; For each proper linear set S E ^n> dœre existe a fondamental
semilinear set U ^ Nn such that conv(S)H U = S,

Proof: Assume:

where ut e Nn, i = 0, 1, . . . , m, and the éléments ul9 . . . , um are linearly indepen-

dent. Now m^n. If m < n, there are distinct numbers

*i» • • •> *«-j»e{l, . . . , n} such that the éléments M15 . . . , um, e£l, . . . , ein_m are

linearly independent. In this case dénote um+j = eij, j~l, . . . , n — m.

Let m£ e N + be the smallest number such that:

(1) »*1.*i = r a ! i 1 + ...+r i l lw I I

Informatique théorique et Applications/Theoretical Informaties and Applications



EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR 323

for some r l 7eZ, 7—I, . . . , n, î—1, . . . , n. Hère Z is the set of all integers.
Dénote:

I/o = {(*!, . . . , O e N " | t i<»i i , Ï = 1 , . . . , n}

and C/1 = {fc1m1e1+ . . . +fe„mnen|feief^) î= l , . . ., n}. The set
l/= UQ + Ul is a fundamental semilinear set. We show that conv(S) n E/=S.

Assume aeS. Then tt = iio + fe1«1 + . . . + fcm«m for some £,6 1̂ 1,7 = 1, . . . , m.
We can write u in the form:

for some .̂, lj€ N, 0 ^ tj < »ij»7=1, *.., n. By (1):

(tl9 . . : , f(l) =

for some s ;eZ, 7= 1, . . . , n. This means that (tu ..., tn)eU0 and
« e t /= £/0 + t/i. Since u e conv (5), u e conv (S) H £/. So 5 E conv (S) H £/.

Assume now that u e conv (S) H U. Then, since u e conv (S);

for some nonnegative a,e g, 7 = 1, . . . , m, Since ueU, we have:

« = (*!, . . . , O + klm1e1 + ...+knmne„

for some (ti, . . . , tn)EÜ0, kjGNJ=l9 . . . , n. By(l):

for some /,-eZ, 7 = 1, . . . , n. The équations above imply that:

ay=/y + k 1 r w + . . . +knrnjeZ, 7=1, . . . , m.

Since ^ . ^ 0, we have a^eN for each 7. Thus M e S. Since u is arbitrary,
conv (S)C\U£ S. Thus S = conv (S) H K O

Note: A straightforward reasoning shows that (i) the intersection of two
fundamental semilinear sets is either empty or a fundamental semilinear set;
and (n) the complement of a fundamental semilinear set is either empty or a
fundamental semilinear set.

Let S ^ f̂n be a semilinear set. Then S is homogenous if there exist proper
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324 J. KORTELAINEN

linear sets Su . . . , Sm g N" and a fundamental semilinear set 1 / iN" such
that:

t = l

(i) S= U Si and

(ü)

Call a language L g {aly . . . , an}* homogenous if L is a commutative
SLIP-language such that *F (L) is a homogenous semilinear set.

LEMMA 3: Let L g {al5 . . . , a„}* be a nonregular commutative SLIP-
language. Then there exists a nonregular homogenous language
L ' s{ f l i , . . . , « . } • in

Proof: Let L1? . . . , L m ec (^ ) be languages such that ^(Lj) is a proper
m

linear set for each i, and L = IJ L..." By Lemma 2, there exists a fundamental

language i^ g {at, . . . , an}* such that conv(L i )n^ I = ̂ , i = l , - . . , m. Let
s 'eN be the greatest number for which there exist iu . . . , ise{l, . . . , m}
such that LnR^n-'-n Ris, is nonregular. Since LC\RXC\... C\Rm = 0>
s' < m.

Without loss of generality we may assume that i — m — s'+j, j = l, . . . , s'.
Dénote 5 = m— s'. If s < m, we have L n ^ + i O • •- P l^ m nonregular and
the language ^ n ^ s + i O . . . n ^ m n ^ / regular for each j e { l , . . . , s}. If

= m, then LC\Rj is regular for each j e { l , . . . , m } . If s < m, dénote
otherwise R = {au . . . , an}*. Now;

is nonregular and Lpi 'Recf^) . For each ie{l , . . . , s} there are Aa, . . . ,
Air. e c (^) such that ¥ (i4£J) is a proper linear set, J = 1, . . . , rh and

( H H= U i40.. We prove that for each ie {1, . . . , .s};

rt

U (conv (Ay) H H h Rd = U i4y: '

Obviously /4l7 g Lf g Rf and X£j. g £, so the right side of the above équation
is a subset of the left side of it. On the other hand, since ^(L ; ) is a linear
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EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR 325

set and Atj g Lt for each je{l , . . . , r j , it can be verified that
ii) g conv(L(). Thus conv(A^ Ç\ Rk g convCL,) C\ Ri = Lt> so:

R n «i s ^ n « = u

and we can deduce that the équation is right for each îe{l, . . . , s}. Since

L H ^ n Rt is regular for each ie{1, .. . , s}, the language L O R C\ ( U ^i )

is regular. Since Lf^Ris nonregular, the language:

in c{M) is nonregular. Dénote Ro = /*! H . . . Pi Rs O R&+1 Pi. •. O ^m* By t h e

previous note, Ro is fundamental. For each ie{l, . . . , s}, ye{l, . . . , r,}, let
Aijp e c (̂ ?), p = 1, . . . , f̂l7, be such that

«w

and ^(^l0>) is a proper linear set. We prove that for each ie{U - -, s}:

(*) ri lij ri «Ü

U U (conv{Aijp)r\R0)= U U Aiir

Obviously the right side of (%) is a subset of the left side of (*). On the
other hand:

conv(Aijp) O ^ o S U {conv(Aijp) HRo)

r» «y

U U Ai
jp.

Thus (*) is right. Now:

s ri tij

= U U U Aijp^{al9 . . . , a n } *
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326 J. KORTELAINEN

is a nonregular homogenous language in 9~ (L). Q

LEMMA 4: Let Sl9 . . . , 5m g M" èe proper linear sets such that

rank (conv (Sj) O ... O conv(SJ) = n.

TTïen t/iere exfcts a proper linear set T g ftT sucfr

conv (7) g conv (5 x) O . . . H conv (5 J an<f rank (7) = n.

Proof: Dénote T = conv (Sx) O . -. fï conv (SJ. Since rank (7*) = n, there
exists a linear set T j C f such that:

T1 = {t>0 + fc1i>1+.. +*,», 1^6 1^,7=1, . . . . n)

where i?te N", i — 0, 1, . . , n, and the éléments vl9 . . . , y„ are linearly indepen-

dent. Let:

where M,eN", i = 0, 1, . . . , s , and the éléments uls . . . , us are linearly indepen-
dent. Let:

We have two subcases: (i) s = n; and (ii) s <n.

(i) Assume there is ueU such that U = OL1V1 + ... +aHva for some positive
- Then, for sufficiently large and well chosenp, qeN + :

PU + Q («i + - - • +"„)= Pi

for some Pt-e N+ ) Ï— 1, . . . , n. If now re f̂  is large enough:

for some positive jj}eQ, jf = 1, . . . , n, contradicting the fact that T1 g T. The
f acts above show that, for sufficiently large roe f̂ J+:

for each nonnegative p ,̂ ^eQ, j = l , . . . , « . Let wo = vo + ro(vi + . . . +vn).
Then T2 = w0 + F is a proper linear set such that conv (T2) C\ conv (S J = k.

(ii) By the construction of Lemma 1, rank (conv (7\) Oconv(S1)) ^s <n.

Informatique théorique et Applications/Theoretical Informaties and Applications
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p

Let Wl9 . . . , Wp g f̂n be linear sets such that conv (7\) O conv (S J = U Wt
i=l

and

where vyeN", 7 = 0, 1, . . . , r£, î = l , i = l , ...,ƒ>. Since each i?y is obviously a
linear combination of the éléments ul9 . . . , us, there are at most s linearly
independent éléments in t>lx, . . . , u l r i , . . . , vpU . . . , t>pi>. Let wl5 . . . , wq be a
maximal number of linearly independent éléments in the above séquence,
q ^ s. Thus q<n. Let w9+1, . . . , wn be éléments in v19 . . . , i ? n such that
wu . . . , wn are linearly independent. Let r0 be such that
vo ~^io + ro (wi + . . . + w j is a linear combination of wl9 ..., wn with positive
rational coefficients for each i= 1, . . . , / ? :

and

We show that conv (T2) H conv (Sx) = 0 . Assume the contrary. Since
conv(T2) g conv(T1), we have conv (T2) H (conv ( T J n conv (Sx)) ^ 0
which means:

(1) ^o + ro(wi + . . . +wM) + a1vv1 + . . .+otnwn = i;i0 + p1 t ; a + . . . +Pr.ülV.,

for some ie{ l , . . , / ? } , a , e ô , ay ^ 0, p,eM, j = l , . . . , n , / = l , . . . , r i .
Obviously:

Pi t?a + . . . + Pri ̂  = ^1 Wi + . . . +Xfl w,

for some ^ e Q , y = 1, . . . , q. Then (1) implies that ^ wx H-... +^ n vv„ = Ö for
some §j€Q, j — ls • . . , w, where ^ 9 + 1 7e 0, . . . , ^„ ^ 0. Since vvx, . . . , wn are
linearly independent, we have a contradiction. Thus T2^Nn is a proper
linear set such that T2 g T and conv(T2) nconv(5 1 ) = 0 .

Continuing like this for each Sp y = 2, . . . , m, we can find a proper linear
set Tm + 1 such that Tm + i g 7* and

conv(rm + 1 )n (conv^O U . . . Uconv(Sm)) =

thus:

conv(Tm+1)g r=conv(S1)n... nconv(SJ. •
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328 J. KORTELAINEN

LEMMA 5: Let L g {au . . . , a„}* be a homogenous language containing e.
Assume Su . . . , Sm g N" are proper linear sets and U g N" is a fundamental
semilinear set such that:

= U S,

If r ank(¥(L) ) = rank(conv(SOH . . . p|Conv(Sm)) = n, twen the language DJ
is i

Proof: There must be Si9 say Sl9 such that:

S 1 - { « 0 + /c1u1 + . . .+/c„un | kjeMJ=l, . . . , n}s

where UJGN", 7 = 0, 1, . . . , n, with ul9 . . . , «„ linearly independent. Dénote
T=conv(S 1 ) P\ ... H conv(Sm). By the previous lemma, there exists:

T1 = {t;0 + /c1t;1 + ...+fcnt>n | hjGNJ=h . . . , n},

where ^ e N " , i = 0, 1, . . . , n, with vl9 •••,vn linearly independent such that
conv(Tt) g r . Naturally conv(S1) n c o n v ( T 1 ) = 0 . Now there must be
U1^U such that:

t / i = K + ^ 5 1 e 1 + .. .+fe r isnen | kj€NJ=l9 . . . , n},

for some w 0 e M", Sj-e M + , j= 1, . . . , n. Dénote:

Obviously the set C/2 = {w0 + /c1 w1+/c2vv2 | ku k2eN} is a subset of U1 g 17.
Now w2 = ax «! 4 - . . . + oc„un for some a , e 6 , i = 1, . . . , n. Since
c o n v ^ J n c o n v ( T 1 ) = 0 , there is at least one je{ l , . . . , n} such that a7 < 0.
Let:

a = max{|aJ.| | OLJ<0J=19 . . . , n}.

Let rnjeN be the smallest integer such that Wo + mjw^convCSi). Such a
number mt clearly exists. Consider the statemant:

(1) w0-\-kiwl-\-k2yv2econ\(S1), /cls k2eN.

Then (1) is equivalent with:

(2) wo-\~m1 wt +(k1 — m1)w1+k2w2econv(S1\ kl9 k2eM.

Informatique théorique et Applications/Theoretical Informaties and Applications



EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR 329

If (s/a)(k1—mx) > k2y then (1) is true. Now (sjoi)(k1—m1) > k2 is equivalent
with k1 > (a/s) k2 + mv It is obvious that there are arbitrarily large kl9 k2 e M
such that kx > (a/s) k2 + mi and k1/k2 is arbitrarily near to a/s.

The element wx can be written in the form Wi~$iV1 +... +$nvn for some
p. e g, f=l, ...,n. Since convoi) H conv(T1) —0, there is at least one
je{1, . . . , n} such that P, < 0. Define:

p = max{|PJ.|| P^< 0,7=1, . . . , n } .

Let m2e^J be the smallest integer such that wo + m2 vv2 e conv(T1). Consider
the statement:

(3) w0 + k1wl+k2w2econv(Tl)i ku k2eN.

Now (3) is equivalent with:

(4) wo + m2w2+klwl + (k2 — m2)w2sconv(7\), fcl5 /c2eN,

which is true if kt < (s/P) k2 — (s/P) m2.
Let x ^ e l ^ , . . . , a„}* be words such that xF(xt) = w/ï Ï = 0, 1, 2. It should

be clear that the language x^ 1 L^{au . . . , an}* is a commutative SLIP-
language in 2T(L). Let h: {au a2}* -• {a^ . . . , <2n}* be a morphism defined
by h{a^ = xb i=\,2. Then L1=h~i (XQ X L) g {aly a 2}* is a commutative
SLIP-language by the results in [7]. Obviously L1e^'(L). By the results of
[4] and [9] it suffices to show that L^is nonregular.

Assume that xeLv Then xec{a{aq
2) g h'1 (xo i L) for some p, qeN.

Then h (a{ a2) G XQ l L which implies that xö h (a{ aq
2) = x0 x{ x\ e L. Now:

Since (conv (S J U ... Uconv(SJ) H T = 0 , we must have

On the other hand we can find arbitrarily large p\ q'eN such that p'/q' is
arbitrarily near to a/s and

Since w3eC7, w3e¥(L). Obviously c(xÇ'xJ') g xôxL and thus:

Now, if Li were regular, then we could find (by the pumping properties of
regular languages), r,.e M, j= 1, 2, 3, 4, r2, r3 ^ 0, such that
a\l {a\2)* (ar£)* ar

2* c ^ . This contradicts the fact that p = (s/p)g-(s/p)m2

for each a\a\^L^ •

vol. 20, n° 3, 1986



3 3 0 J. KORTELAINEN

A semilinear set SüN" is unlimited if for each meN there exists
(ml9 . . . , mn)eS such that mj>m,j=\, . . . , n.

LEMMA 6; Assume L ^ {al5 ..., a„}* is a commutative SLIP-language
containing e such that the rank of S = X¥(L) is s, s < n, and S is unlimited,
Then Df e 3~ (L).

Proof: Assume Su . . . , Sm E ^" are proper linear sets such that S= U S,-

and:

tt^eN", 7 = 0, 1, . . . , rt-, with the vectors uiU . . . , uir. linearly independent,
rt S s, i—l, . . . , m. Since 5 is unlimited, there exists ge{l, . . . , m} such that
uql + ...+Mqr G N + . Choose q in such a way that J#(Sq) is not a proper
subset of <s/(Sj) for any j e{ l , . . . , m}. Let K be the set of all ks{1, .. . , m]
such that either:

(i) <stf(Sk) is not a subset of s/(Sq); or
(ii) ^ ( 5 f c ) g ^ ( ^ ) a n d u k 0 ^ u , 0 + ^(S^).
Now there must be w0eS9 such that wo^ufcO + j^(5fc) for any keK. For

Sfc satisfying (ii) this is certainly true since (uq0 + s/(Sq)) H (uk0 + st (Sk)) = 0 .
Let K ' c X be the set of all k such that Sk satisfies (i). Assume for each
woeSq, woeufcO + ^ (S k ) for some keK. Then £?(Sq)^ U s#(Sk) and

j#(Sq)= U (<rf(Sk) n<rf(Sq)). The elementary results of linear algebra then
keK'

imply that there exists k' eK' such that:

st (sq)=* (sk,) n J / (s,)

Then sé (Sq) $ J / (Sk>) contradicting the choice of q.

Let keK and rGN + be fixed. Consider the équation:

(1) w

where aIS p7e M, j= ls . . . , n, j = 1, . . . , rk. The équation (1) is equivalent with:

(2)

Since vv0 $uk0 + stf (Sk\ the éléments uk0 — w0? M !̂, . . . , ukn are linearly indepen-
dent. Dénote r = rk and:

PO=(PO1> •••> Pon) = " k O - W O > P j = (Pjl» • - •

Informatique théorique et Applications/Theoretical Informaties and Applications



EVERY COMMUTATIVE QUAS1RATIONAL LANGUAGE IS REGULAR 331

Then (2) is equivalent with:

(3) P0 + P1P1 + . . . + P r P r = (<M> . . . , ant)

which is equivalent with:

P01 + Pi Pu + • • • + Pr Pri =<M,

(4)

Pon+PlPl„ + ••

a(> PjG N, i= 1, . . . , n, 7 = 1, . . . , r. Since the éléments p0 , . . . , pr are linearly
independent, there are exactly r + 1 linearly independent éléments in
(Poi> • • -, Pri)> • • •> (Po«» • • •> PJ - Without loss of generality we may assume
that the éléments:

£ l = ( P o i > • • • » P r l ) » • • • » Ç r + l = ( P o , r + l » • • • » P r , r + l )

are such for which do = |det(Çf, . . . , ^/Vi)| > 0 is the greatest ( x r meaning
the vector transpose of x). Then (4) implies a new system of équations:

(5)
POI + Pi Pli + • • • + Pr Prl ^<M,

Now (5) implies that:

<M Pu

«r+1* Pl.r+1

Prl

Pr,r+1
•i

P01 P l i Prl

Po,r+1 Pr,r

«r+1

Pu Prl

Pr,r+1

If we choose t > d0, we see that (1) is not true for any <xh Pj-e N3 i— 1, . . . , n,
7 = 1, . . . , rk. Thus there exists toeM such that if t = t0, then for any fceK,
the inequality:
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Remember that rq^ s < n and uql + . . . -f uqr e Nn+. Since rq < n, there must
be de{l, . . . , n} such that ed$^(Sq). Let x]e{au . . . , a„}*, i = 0, 1, 2, be
such that ¥(x o) = wo, V(x1) = t0(u4l + . . . +uqr -ed) and ¥(x2) = toed. Of
course x2 = ad°. Let /i: {al9 a2}* -> {fli. • • •> a

n } * ° e the morphism defined by
h(a1) = xl and h(a2) = x2. Obviously x ^ L is a commutative language in
F (L). We finish the proof by showing that Df^h" 1 (XQ * L).

Assume xeDf, Then xecta'ia'j) for some ieN. Since fc~1(xö1L) is com-
mutative, it suffices to show that a\ a2^h~v (XQ X L). NOW X\ X2 ex^1 L since:

xl
2) = it0 (uql + . . . + t v , - ed) + it0 ed = fc0 «,! + . . . + ït0 M^ e ̂  (xo x L).

On the other hand, the word a\ a2eh~l (xiX2).

Let xeh~l{x^lL). Then xec(a\ a{) g h'1 (xölL) for some 1,7e M. Since
DJ is commutative, it suf f ices to show that i=j. Now a^a^eh'1 (XQ X L)
which implies that h (a\ aj

2) e x$ l L and x0 h (é a{) = x0 x^ x{ e L. Thus:

uql + ... +uqrq-ed)+jtoed = wo + to<x1e1 + ...

for some a^e M, j — 1, . . . , n. By the choice of t0, ^ ( X Q X ' X ^ ) cannot be in Sk

for any keK For each / e{ l , . . . , m} such that
\ This impiies that:

for some P7 e Q, ƒ = 1, . . . , rq. Since w0 e uq0 + «af (S,), we have:

Then f=j since otherwise edej/(Sq), which is a contradiction. The proof is
now complete. •

LEMMA 7: Let L g {ax, . . . , a„}* be a homogenous language containing e.
4sst/rae Tl5 . . . , T p g N " are proper linear sets and U <= Nn is a fondamental

semilinear set such that X¥(L)= \J Tt and I U conv(Tf) O C/ = ¥(L). ƒƒ the
t = 1 \ i = 1 /

/ p \

= 1 n con\(Tt)) \nU isran/c o/the set S =1 O conv(Ti)) I O ^ is smaller than n, and S is unlimited,
\

then Df is in 2T (L).

/* Assume rank (S) = s, s < n. The beginning of the proof is an exact
copy of the proof for Lemma 6. Assume S ls ..., Sm c |\T are proper linear
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m

sets such that S= U St and for each ie{l, . . . , m}:

where u^e Nn, j = 0, 1, . . . , ri9 and the éléments uiU . . . , uir; are linearly inde-
pendent. Let qe{l, . . . , m}, K c { l , . . . , m} and woeSq be as in the proof
of Lemma 6. By an analogous reasoning as in the proof of Lemma 6 we
can find t0 with the following property. If t ^ t0, then for each k e K, the
inequality:

(1) Wo + aj te1 + . . . +anten # wk0 + Pi «u + * • • + Kukn

holds for ail a{, $j€N9 i=\, . . . , n, y = l s . . . , rft. Since 1/ is fundamental,
there exists U1 g U such that w0 is in Ui and:

l/i = {»o + *i( '»i , 0, . . . , Ó

for some t;oef^n, w i j . eM+,^1 , . . . , n. Let t/ =

Now rq^s<n and wgl + . . . +M^eNn
+. Since rfl < n, there must be

rfe{l, . . . , n} such that ed^^(Sq). Let x^ef^, .. . , an}*, î = 0, 1, 2, be such
that T(xo) = wo, ¥(x1) = t'(t!€l + . . . + 1 1 ^ - 0 and T ^ ^ t ' ^ . Obviously
x2 = aj,'. Let ft: {als a2}* -> {aly . . . , an}* be the morphism defined by
ft(a1) = x1 and ft(a2) = x2. Clearly xô1L^{al9 ..., an}* is a commutative
language in ^ (L) . We show that D* = h~x (xôJ L).

Assume a'1aI2eh"1(xô1L) for some ieN. Then ft (ai a'2) e xô * I* which
implies that x0 h (ai a2) = x0 x\ xl

2 s L. This means that:

^ (x0 x\ xl
2) = w0 + fr' (w9l + . . . + u ^ - ed) + if ed =

is in *¥ (L\ a contradiction, since the above element is clearly in Sq g *F (L).
Since ft"1 (xô1 L) is commutative, we may deduce that h~l (XQ1 L) £ DJ.

Let xe/)J. Then xec(aia^) for sóme i, jeN, i^j. To prove that
xeh~1(xQ1 L)9 it suffices to show that a\ a^e/i"1 (xô1^). Consider the
element:

% = w0 + ff (u€l + .. . + uqFq-ed).+jf ed.

Let w2 = w0 + it' (uql + . . . + uqr ). Now wx 0 w0 + j ^ (59), since otherwise
Wj— w2 = (i— j)edejtf(Sq) and (since î ^j)ed€<stf(Sq), a contradiction. By the
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choice of t\ wt $ Sk for any k e K This means that:

O Gonv(Td)nU.

Since wleU1^ U, wt must be in ( U conv(Ti) J o £/=xF(L). Now

*F (x0 Xi x{) = wv Since L is commutative, the word x0 x^ xJ
2 e L, so

x i x ^ e x o 1 ^ . Obviously al
1o^efc"1(xö1L). We deduce that D% is a subset

of h-1(xölL). D
We are now able to give a proof to Conjecture 1.

THEOREM 1: Let Lee(M) be nonregular. Then Df is in

Proof: Without loss of generality we may assume that L g {al9 . . . , a*}*,
k e M. We first note that fc ̂  2 since each SLIP-language over one symbol is
regular. The proof is by induction on k.

Using the results of Eerstel and Boasson ([2], [4]) Latteux proves in [9] that
the theorem is true when k = 2.

Assume that the theorem is true for each fe = 2, 3, . . . , n— 1, n > 2.
Consider the case k = n. By Lemma 3 we may assume that L is homogenous.

Since ,f(L) = f (LU{£}) , we may also assume that L contains E. Let
Si9 . . . , Sm be linear sets and t/ a fundamental semilinear set such that:

= U S, and ( U conv(St)

Let T= O convfS;). If ïf rank(^(L))-rank(7) = n, then Dfe^CL) by

Liemma 5.
Assume first that Tank (*F (L)) = s, s < n. If ^F(L) is unlimited, then, by

Lemma 6, D1[eâ~(L) which implies that Dfe^iL). So assume that ^(L) is
not unlimited. Then for each ie{l, . . . , m) there exists jj€{l, . . . , n} such
that:

for some w£e Nn. Let xx e ^ " 1 (wÉ) and L — T " 1 (S£). Then:

m

L= U L,- and Lt g cCx^a?... a ? ^ a|.+ 1 . . . a*).
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Dénote R£ = c ( x f a î . . . a | r l a | + 1 . . .a*), i = l , . . . , m. Obviously, for each i,
m

Rt is regular. Since L g <j #. and L is nonregular, there must be
i = i

<gre{1, . . . , m} such that LC\Rqi$ nonregular. Now:

The language Lp\Rq above is obviously commutative. Then L' =
x^iLHRq) is a nonregular commutative SLIP-language in J~(L). On the
other hand L's{au ..., aJq-l9 aJq+u ..., aH}*. By induction, Df is in

Let now rank(7)=s', 5' < n. Let Lt be as above and R^
Obviously Rec{M) is regular. Since:

/m

= ( Uand L îs commutative, we have L = ( U conv(Lf) j C\ R. Since L is nonregu-

( \
lar, the language I H conv(Lt) J H R is nonregular. Now:

conv(Sd\ H t /= TH C/.

Since m i / g r , rank (T H t/) ^ s'. If Tpl 1/ is unlimited, the theorem is
true by Lemma 7. Assume TO U is not unlimited. Let 7\, . . . , Tr g N" be

proper linear sets such that TC\U=\J Tt. Then for each ie{l, . . . , r} there
i=ï

existS7j6{l, ..., n} such that:

for some v{eN\ Let ^ e ^ F " 1 ^ ) . Then:

V"1(T l)Sc(y laf. .

Dénote R't = c (yt a*... a% _ t af. + ! . . . a*).Now:
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/ rn x

Since I f\ conv (L() \ O\ R is nonregular, there must be f e { l , . . . , r} such

/ ™ \
that I O conv(Lf) i n ^ O K , is nonregular. This implies that the language

\i = l /

L n ^f = ( U conv(Li) j O R Pi Rt is nonregular (and commutative). Then:

It is easy to see that the language L"=y~l{Lf\ Rt) is a nonregular commuta-
tive SLIP-language in ^ ( L ) and L" g {al9 ..., ajt_u ajt+1, . . . , a„}*. By
induction, Dfe&iL") g ^"(L). •

COROLLARY: Let L e c ( f ) be nonregular. Then DJ 15 m «^"(L).

Froc»/- By the results of Latteux [9], 5"(L) = «T(LU {E}). If eeL, then
the corollary is clearly true. Assume L does not contain e. The fact that
<r(L'U {£}) = {*/', L"U{e} I L^e^CL')} for each e-free language L' then
implies that D^s^iL). D

Note: Using the techniques of the previous corollary it is easy to see that
the assumption that L contains e in Lemma 5 and Lemma 7 can be removed.

The family QR of quasirational languages is the substitution closure of
linear languages. The family QR is also called "dérivation bounded
languages" and "standard matching choice languages". Let LeQR be com-
mutative. Since L is a context-free language, Lec{&). Latteux and Leguy
prove in [11] that Df is not in QR. By the previous theorem, L must be
regular. We can thus state:

THEOREM 2: Every commutative quasirational language is regular,
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