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EVERY COMMUTATIVE
QUASIRATIONAL LANGUAGE
IS REGULAR (*)

by Juha KORTELAINEN (%)

Communicated by J. BERSTEL

Abstract. - A nonregular language L is minimal with respect to a language family & if, for
each nonregular language L, in &, L is in the trio generated by L,. We show that the language
D¥={xe{a,, a,}* | |xf,l #[x'nz} is minimal with respect to c(&), the family of languages
consisting of the commutative Closures of all regular languages. This then implies that each
commutative quasirational language is regular.

Résumé. — Un langage L non rationnel est minimal dans une famille & de langages si, pour
tout langage L, non rationnel dans £, L appartient au plus petit céne rationnel fidéle contenant
L,. Nous montrons que le langage D¥={xe{a,, a,}* | |x|, #|x|..} est minimal dans c(%R)
qui est I'ensemble des fermetures commutatives des langages ‘rationnéls. Ceci implique que tout
langage commutatif quasirationnel est rationnel.

1. INTRODUCTION

The minimality of languages is studied in several articles, for instance in
(11, [3), [9] and [10]. Let I (¥) (7 (&) denote the (full) trio generated
by the language family . In [1], [9] and [10] we can find the following
conjecture:

ConjecTURE 1: If L is a nonregular language in ¢ (%), then D*¥ is in 7 (L).

We show that D¥ is in 7 (L) for each nonregular language L in ¢ (&) thus
proving the conjecture. A result of Latteux and Leguy [11] then implies:

ConJeEcTURE 2: Every commutative quasirational language is regular.

Conjecture 2 was stated in [8] and [10]. It was partially proved in [5] and
[11]; in [5] it was shown that every commutative linear language is regular
and in [11] that every commutative quasirational language over a two-letter
alphabet is regular.

(*) Received in November 1984, revised in October 1985.
(') Department of Mathematics, University of Oulu, SF-90570 Oulu 57, Finland.
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320 J. KORTELAINEN

2. PRELIMINARIES

A subset S of N” is linear if:
S={ug+kyu;+...+ku | k;eN, j=1, ..., 1},

for some u;eN", i=0, I, ..., . We say that s is the rank of S if there are
exactly s linearly independent elements (over Q, the rationals) in uy, ..., 4,
The rank of S is denoted by rank (S). Naturally rank (§) < n. If rank (S)=r,
then S is a proper linear set. A subset T of N" is semilinear if it is a finite
union of linear sets. The rank of T, denoted by rank(T), is s if
T=S,U...US,, where each S; is a linear set and max rank (S;)=s. It can

be verified that the rank of each semilinear set is uniquely determined. The
convex closure conv (S) of the linear set S is defined by:

conv(S)={ug+o,u;+... +o,u, | a;€Q, ;2 0,j=1, ..., r} AN,
Denote
oL (S)={o,u;+... +o,u, | o;eQ for each j}.

Note that &7 (S) is a linear subspace of Q". All the linear spaces considered
are subspaces of Q" over Q, the rationals. Again, both conv(S) and .« (S)
are well-defined. By Lemma 1, conv (S) is a semilinear set.

A linear set S = N”" is fundamental if:
S={(ry ..., r)+k(s5,0, ...,0)0+...
+k, 0, ..., 0,5) | k;eN, j=1, ..., n},
for some r;, s;eN, r; <s;, j=1, ..., n. If § is fundamental, then obviously

rank (S)=n. A semilinear set is called fundamental if it is a finite union of
fundamental linear sets.

Let U = N™. The complement of U is the set U defined by:
U={veN"|v¢ U}.

Ginsburg proves in [6] that:
(i) the intersection of two semilinear sets is a semilinear set;
(ii) the complement of a semilinear set is a semilinear set; and
(ili) each semilinear set is a finite union of proper linear sets.
These facts are extensively used in our proofs.
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EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR 321
Let V, W = N". Then we define:
V+W={v+w]|veV, weW}.

Let ¢;eN" be the element in which the i-th coordinate is one and all the
others are equal to zero, i=1, ..., n. Let ¥, .. be the usual Parikh-

mapping from {a,, ..., a,}* onto N". When Wit nans 18 understood, it is
denoted by Y.

Let £, be an alphabet and xeX}. Then ]x | denotes the number of
occurrences of the symbol a in x for each a in X,. The empty word is denoted
by €. Let L < ¥ be a language. Then:

x 'L={yeX¥|xyel}

and
L—{e}=LNZ{.

Define ¢ (x)={ye X} | |x|,=|y| for each aeZ,}. The commutative closure of
the language L is the set

c(L)= U c(x).
xelL
The language L is commutative if L=c(L).

For a language L < {a,, ..., a,}*, let the complement of L with respect to
{a,, ..., a,} be the language L(a,, ..., a,) defined by:

L(ay, ..., a)={xe{ay, ..., a,}* | x¢ L}.

We denote L(ay, ..., a,) by L when {a, ..., a,} is understood.

A language L < {a,, ..., a,}* is a SLIP-language if ¥ (L) is a semilinear
set. If L is commutative and W (L) is a linear set, then the convex closure
conv (L) of L is the following language:

conv (L)=Y¥ ! (conv (¥ (L))).

A commutative language R < {a,, ..., a,}* is fundamental if W (R) is a
fundamental semilinear set. Note that if R is fundamental, it is a regular
commutative SLIP-language. ,

It should be clear that c(&) is ekactly the family of all commutative
SLIP-languages and that ¢ (<) is closed under union, intersection and comple-
mentation. Let D¥=c((a, a,)*). o
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322 J. KORTELAINEN

3. MAIN RESULTS

We now prove seven lemmas which imply the main results of this paper.

LemMA 1: For each linear set S < N", conv (S) is a semilinear set.
Proof: Assume:

S={uo+kyu +...+kyu, | k;eN, j=1, ..., m}.
where y,eN", i=0, 1, ..., m. Let:
Up={up+a,u +... +a,u,|0,eQ0, 0<a; < 1, j=1, ..., m}\N"
and
Uy={k,u +... +kyu, | k;eN, j=1, ..., m}.

Obviously U, is finite and thus U=U,+ U, is a semilinear set. We show
that conv (S)=U.

It should be clear that U < conv(S). Assume ueconv (S). Then:
u=uo+PBu;+... +Bu,eN"
for some nonnegative B;eQ, j=1, ..., m. Now:
u=ug+y,u,+...+y U, triu+...+r, u,

for some y;eQ, 0=v;<1, r;eN, where B;=v;+r, j=1, ..., m. Thus
U+ Y U+ ... +Yu,eUy and riu,+...+r u,elU;,, so uell. We can
deduce that conv (§) € U. The proof is now complete. [ '

LemMmA 2: For each proper linear set S = N", there exists a fundamental
semilinear set U = N" such that conv(S)U=S.

Proof: Assume:
S={uo+klul+...+kmum I kJEN,_]'=1, ey m‘},

where ;e N", i=0, 1, ..., m, and the elements u,, ..., u, are linearly indepen-
dentt Now m<n If m<n there are distinct numbers
i, oos ip—m€{l, ..., n} such that the elements u,, ..., u,, €, ..., e are
linearly independent. In this case denote u,,,;=e;, j=1, ..., n—m.

n—m

Let m;e N, be the smallest number such that:

(1) mie;=ryu +...+r,u,

Informatique théorique et Applications/Theoretical Informatics and Applications



EVERY COMMUTATIVE QUASIRATIONAL LANGUAGE IS REGULAR 323

for some r;;eZ, j=1,...,n, i=1, ..., n. Here Z is the set of all integers.
Denote:

Up={(ty, ..., t)eN" | t, <m, i=1, ..., n}
N{uo+o u;+...+o,u, | €2, i=1, ..., n}

and  U,={kmye,+...+k,mye,|keN,i=1, ... n}. The  set
U=U,+U, is a fundamental semilinear set. We show that conv(S)N\ U=S.

Assume ueS. Then u=ug+k u,+... +k,u, for some k;eN, j=1, ..., m.
We can write u in the form:

u=(t, ..., t)+lime +...+l,m,e,
for some t;, [,eN, 0 <t; <my j=1, ..., n. By (1)
(ty, i t)=ug+s,u +...+s,u,

for some s;eZ, j=1,...,n This means that (t;,...,t,)eU, and
ueU=Uy+ U,. Since ueconv(S), ueconv(S)NU. So S < conv(S)N U.
Assume now that ueconv(S) N U. Then, since ueconv (S);
U=Ug+ 0y Uy + ...+, Uy,
for some nonnegative o;€Q, j=1, ..., m. Since ue U, we have:
u=(t, ..., t)+k,mye +... +k,m,e,
for some (ty, ..., t,)eU,, k;eN, j=1, ..., n. By (1):
U+t +.. o U, =(ty, ..., L)
thyrou o Aru)b R Ut T, )
=ue+liu ... +lu,+k (ryu+...Fru)+. ..
. +kn(rn1 ul+"'+rnnun),
for some [;,eZ, j=1, ..., n. The equatiOhs above imply that:
(X.j=lj+klr1j+...+knr,,jez, j=1, ceey m.

Since a; 20, we have a;eN for each j. Thus ueS. Since u is arbitrary,
conv(S)NU < S. Thus S=conv(S)NU. O

Note: A straightforward reasoning shows that (i) the intersection of two
~ fundamental semilinear sets is either empty or a fundamental semilinear set;

‘and (ii) the complement of a fundamental semilinear set is either empty or a
fundamental semilinear set.

Let S < N" be a semilinear set. Then S is homogenous if there exist proper
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324 J. KORTELAINEN

‘linear sets S,, ..., S,, < N" and a fundamental semilinear set U < N" such
that:

(i) S=U S; and

i=1

(i) ( U conv(Si)) NU=S.
i=1

Call a language L < {a,, ..., a,}* homogenous if L is a commutative
SLIP-language such that ¥ (L) is a homogenous semilinear set.

LemMmA 3: Let L<{ay, ..., a,}* be a nonregular commutative SLIP-

language. Then there - exists a nonregular homogenous language
L' c{ay, ..., a}*in I (L).

Proof: Let L,, ..., L,ec(%#) be languages such that W(L,) is a proper

linear set for each i, and L= \U L, By Lemma 2, there exists a fundamental
i=1

language R; S {a,, ..., a,}* such that conv(L)N\R;=L, i=1, ..., m. Let

s’e N be the greatest number for which there exist i;, ..., i €{l, ..., m}

such that LN R; N ...N R, is nonregular. Since LNR, N... \R,=@,

s’ < m.

Without loss of generality we may assume that i;=m—s"+j, j=1, ..., s
Denote s=m—s". If s <m, we have LN R,,; N ... N R,, nonregular and
the language LN\ R,,; N ... NR,NR; regular for each je{l, ..., s}. If
s=m, then LNR; is regular for each je{l, ..., m}. If s<m, denote
R=R,,, N ... NR,, otherwise R={ay, ..., a,}*. Now: '

LﬂR=<UL,.)mR.
i=1

is nonregular and L "Rec(%&). For each ie{l, ..., s} there are 4, ..

A, €c(#) such that W(A4;) is a proper linear set, j=1,...,r, and
L;NR= U A4, We prove that for each ie.{'l,‘ cees SH
ji=1

i r;

U (conv (4)NR NR)=U AU;

ji=1 j=1

Obviously 4;; € L; € R; and 4;; € R, so the right side of the ‘above equation

is a subset of the left side of it. On the other hand, since W (L)) is a linear
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set and A;SL; for each je{l,...,r}, it can be verified that
conv(4,;;) € conv(L;). Thus conv(4;;) N\ R; € conv(L) N\ R;=L;, so:

conv(4;) NRAOR, c L;R=U 4;;,
j=1
and we can deduce that the equation is right for each ie{l, ..., s}. Since
LN RNR, is regular for each ie{l, ..., s}, the language L N\ R (\( ] R,-)
i=1

is regular. Since L (M R is nonregular, the language:

LmRn(u Ei)=me(n E.)
i=1 i=1
=LNAR,N...NR,NR,.;N...NR,),

in ¢ (&) is nonregular. Denote Ry=R; N ... NR,NR,,; N ... N\ R,,. By the
previous note, R, is fundamental. For each ie{l, ..., s}, je{l, ..., r;}, let
Aijpec(R), p=1, ..., q be such that
aij
AN Re= U 4,

p=1

and ¥ (4,;,) is a proper linear set. We prove that for each ie {1, ..., s}

(*) 4 oW
U U (conv(4;;,) NRy)=U U 4,
j=1p=1 j=1p=1

Obviously the right side of (%) is a subset of the left side of (*). On the
other hand:

ri

conv(4;;,) "Ry € U (conv(4;;,) N Ry)
j=1
g ri i
=U (AiijO):’ U U 4,

j=1 j=1p=1
Thus (%) is right. Now:
s r %
L,=LnR0=U U U Aijpg{al, “eey an}*

i=1 j=1 p=1
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326 J. KORTELAINEN

is a nonregular homogenous language in 7 (L). [
LEMMA 4: Let S, ..., S,, < N" be propef linear sets such that
rank (conv(S;)N ... Nconv(S,))=n.
Then there exists a proper linear set T = N”" such that:
conv(T)gMﬁ... ﬂm and rank (T)=n.

Proof: Denote T'=conv(S,)N ... Nconv(S,). Since rank(T)=n, there
exists a linear set T, £ T such that:

T1={vo+klvl+ .. +k,,v,, | ijN,j=1, ey n}

where v;e N", i=0, 1, .., n, and the elements v,, ..., v, are linearly indepen-
dent. Let:

Sy={uo+kyu + .. +ku, | k;eN,j=1, ..., s},

where 4;eN", i=0, 1, ..., s, and the elements u,, ..., u, are linearly indepen-
dent. Let:

V={kyv,+...+k,v, | k;eN, j=1, ..., n},
U={ku +... +ku | k;eN, j=1, ..., s}.

We have two subcases: (i) s=n; and (ii) s < n.

(i) Assume there is ue U such that u=a, v, +... +a,v, for some positive
o, € Q. Then, for sufficiently large and well chosen p, geN:

pu+qu+... +u)=B,v,+... +B,v,
for some B;eN,, i=1, ..., n. If now reN is large enough:

Vo+r(Byvi+... +B,v)=ugty U+ ...+, U,

for some positive y;€Q, j=1, ..., n, contradicting the fact that T, < T". The
facts above show that, for sufficiently large roe N,
Votro@i+...+0)+pv +... +p,0, FUg+E u+... +&,u,

for each nonnegative p; §;€Q, j=1,...,n Let wo=vo+ro(vy+... +0v,).
Then T,=w,+ V is a proper linear set such that conv(T,) N conv(S;)=k.

(ii) By the construction of Lemma 1, rank(conv(T;) Nconv(S,)) Es<n.

Informatique théorique et Applications/Theoretical Informatics and Applications
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P
Let Wy, ..., W, < N" be linear sets such that conv(T,) Nconv(S,) = W,
i=1
and

W,={vo+ky vy +... +k, v, | k;eN, j=1, ..., r},

where v;;eN", j=0, 1, ..., r, i=1,i=1, ..., p. Since each v;; is obviously a
linear combination of the elements u,, ..., u, there are at most s linearly
independent elements in v,,, ..., Vtpys =3 Dpts «oos Upppe Let wy, ..., w, be a
maximal number of linearly independent elements in the above sequence,
g<s Thus g<n. Let wy.,,...,w, be elements in vy, ..., v, such that
Wy, ..., w, are linearly independent. Let r, be such that
Vo—Vio+ 7o (W;+...+w,) is a linear combination of w,, ..., w, with positive
rational coefficients for each i=1, ..., p:

Wo=vo+ro(Wi+...+w,),

and
To={wo+k,w,+...+k,w, | k;eN, j=1, ..., n}.

We show that conv(T,)Nconv(S,)=¢F. Assume the contrary. Since
conv(T,) € conv(T,), we have conv(T,) N(conv(T,)Nconv(S,)) # &
which means:

() vo+rowy+...+w)+o,wi+...+a,w,=0,0+B, 05 +... +B,,0;,
for some ie{l,...,p}, 0;€Q, ;20, BeN, j=1,...,n I=1,..,r
Obviously:

ﬂlvi1+...+B,ivi,i=xlwl+...+)\.qwq
for some A;eQ, j=1, ..., g. Then (1) implies that £, w, +... +&,w,=0 for
some §;€Q, j=1, ..., n, where §,,, #0, ..., §, #0. Since w,, ..., w, are

linearly independent, we have a contradiction. Thus T, £ N" is a proper
linear set such that T, & T" and conv(T,) N conv(S,)=.

Continuing like this for each §;, j=2, ..., m, we can find a proper linear
set T, ., such that T,,,, & T" and

conv(T,,,;)N(conv(S,)U... Uconv(S,)=,

thus:

conv(T,,,) € T'=conv(S,)MN ... Nconv(S,). O
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328 J. KORTELAINEN

LemMa 5: Let L < {ay, ..., a,}* be a homogenous language containing €.
Assume S,, ..., S,, < N" are proper linear sets and U = N" is a fundamental
semilinear set such that:

Y (L)= C) S; and ( kmj conv(Si)>('\ U=Y(L).

i=1 i=1

If rank (¥ (L)) =rank (conv(S,) N ... Nconv(S,))=n, then the language D%
is in 7 (L).

Proof: There must be S;, say S, such that:
Sy={ug+kyu +... +k,u, | k;eN, j=1, ..., n},

where u;eN", j=0, 1, ..., n, with u,, ..., u, linearly independent. Denote
T=conv(S;)MN ... MNconv(S,). By the previous lemma, there exists:

Ty={vo+k,v,+... +k,v, | k;eN,j=1, ..., n},

where v;eN", i=0, 1, ..., n, with v,, ..., v, linearly independent such that
conv(T,) € T. Naturally conv(S,) Nconv(T,;)=¢J. Now there must be
U, € U such that:

Uy={wo+kys e, +...+k,s,e, | k;eN, j=1, ..., n},
for some woeN", s;,eN, j=1, ..., n. Denote:
S=S81...5, u=u;+... tu, v=v,+... 40,
w, =su, w, =sv.

Obviously the set U, ={wo+k, w, +k, w, | k;, k,€N} is a subset of U, < U.
Now w,=o,u;+...4+0o,u, for some o,eQ, i=1,...,n Since
conv(S,) Nconv(T,)=, there is at least one je{l, ..., n} such that a; < 0.
Let:

o=max{|o;||o; <0, j=1, ..., n}.

Let m,; eN be the smallest integer such that wy+m, w, econv(S,). Such a
number m, clearly exists. Consider the statemant:

(1) wo+k,w,+k,w,econv(S,), ki, k,eN.
Then (1) is equivalent with:

) wo+mywy+(k,—m)w, +k,w,econv(S,), ki, k,eN.
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If (s/o) (kg —m,) > k,, then (1) is true. Now (s/o) (k, —m,) > k, is equivalent
with k; > (a/s) k, +m,. It is obvious that there are arbitrarily large k,, k, N
such that k, > (a/s) k,+m, and k, [k, is arbitrarily near to o/s.

The element w, can be written in the form w, =B, v, +... +B,v, for some
B;€Q, i=1, ..., n. Since conv(S;) Nconv(T,)=(F, there is at least one
je{1, ..., n} such that B; < 0. Define:

B=max {|B;| | B, <0, j=1, ..., n}.

Let m,eN be the smallest integer such that w,+m,w, econv (T,). Consider
the statement:

3) wo+kyw,+k,w,econv(T,), k,, k,eN.

Now (3) is equivalent with:

4 wo+m,w,+k, w, +(k,—m,)w, econv(T,), ki, k,eN,
which is true if k, < (s/B) k, —(s/B) m,.

Let x;e{ay, ..., a,}* be words such that ¥(x,)=w,, i=0, 1, 2. It should
be clear that the language xo'L < {a,, ..., a,}* is a commutative SLIP-
language in 7 (L). Let h: {a,, a,}* - {a,, ..., a,}* be a morphism defined
by h(a)=x, i=1,2. Then L,=h""(x;*' L) < {a,, a,}* is a commutative
SLIP-language by the results in [7]. Obviously L, eZ (L). By the results of
[4] and [9] it suffices to show that L, is nonregular.

Assume that xeL,. Then xec(a?al)<h !(xg'L) for some p, geN.
Then h(a a%)e xq ! L which implies that x, k(a4 a%)=x, x5 x4 € L. Now:
W (xq X8 x§)=wo+pw; +qw, eV (L).

Since (conv(S)U... Uconv(S)NT=0, we must have
p 2 (s/B) g—(s/B) m,.

On the other hand we can find arbitrarily large p’, "€ N such that p’/q’ is
arbitrarily near to /s and

Wy=wo+p w, +q w,econv(S)).
Since w3 e U, wye ¥ (L). Obviously ¢ (x? x4) € x5 L and thus:
c@a¥)s Li=h"'(x;'L).

Now, if L, were regular, then we could find (by the pumping properties of
regular  languages), rieN, j=1,23,4, r,, ry#0, such that
ap (ap)* (@@)*a < L,. This contradicts the fact that P Z(s/Byg—(s/B)ym,
for each afaleL,. [J
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330 J. KORTELAINEN

A semilinear set SSN" is unlimited if for each meN there exists
(my, ..., m)eS such that m;>m, j=1, ..., n.

Lemma 6: Assume L < {a,, ..., a,}* is a commutative SLIP-language
containing € such that the rank of S=W (L) is s, s <n, and S is unlimited.
Then D¥e J (L).

Proof: Assume S, ..., S,, S N" are proper linear sets such that S= U S;
i=1

and:
Si={ui0+kl u,-1+...+k,‘.u,-,'. | kjE N,j=1, ey r,-},

u;; €N, j=0,1, ..., r, with the vectors u;, ..., u;, linearly independent,
r; <s,i=1, ..., m. Since S is unlimited, there exists ge {1, ..., m} such that
uql+...+uq,qu';. Choose g in such a way that &/ (S,) is not a proper
subset of o (S;) for any je{l, ..., m}. Let K be the set of all ke {1, ..., m}
such that either:

(i) </ (S,) is not a subset of =/ (S,); or

(i) «(S)) s #(S,) and uodu,+H(S).

Now there must be wyeS, such that wyéu,,+ . (S;) for any ke K. For
S, satisfying (ii) this is certainly true since (u,o+ 2 (S,)) N (uo + (S))) = .
Let K’ < K be the set of all k such that S, satisfies (i). Assume for each
Wo€S, WoEtho+.#(S,) for some keK. Then Z(S)c U (5, and

H(S)= U (Z(S) N L (S,). The elementary results of lin;: algebra then
imply th:';te fhere exists k’ € K’ such that:
A S)=A S )N (S) s A (Sy)
Then &/ (S,) ¢ «/ (S,) contradicting the choice of g.
Let ke K and te N, be fixed. Consider the equation:
(1) wota te, + ... o, te, =t +PByyy +. ..+ B, Uy,

where o, B;eN, i=1, ..., n,j=1, ..., r,. The equation (1) is equivalent with:
(2) Uo—Wo+ By thy + ... + B, =(ay L, ..., 1)

n

Since wo ¢ U0+ (S,), the elements to— Wo, tyy, - . ., U, are linearly indepen-
dent. Denote r=r, and:

Po=(Po1> -+ Pon) =Uxo— Wo» pjz(Pjv ces P =g j=1, LT
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Then (2) is equivalent with:
(3) p0+ﬁlpl+"‘+Brpr=(alt’"" (Z"t)
which is equivalent with:

Por+BiP1rt... +B, P =04 t,
(4) s

Pon+ B; Pint - +B,Pp=0,t,
o, B;eN, i=1, ..., n, j=1, ..., r. Since the elements p,, ..., p, are linearly
independent, there are exactly r+1 linearly independent elements in

(Po1s -+ s Pri)s --+s (Pom - --» Prn)- Without loss of generality we may assume
that the elements:

§1=(pol’ ceey prl)’ ceey E.ar+l=(p0.r+l’ ceey pr,r+l)

are such for which do=|det(t], ..., £, ;)| > 0 is the greatest (x” meaning
the vector transpose of x). Then'(4) implies a new system of equations:

Poi+Bi P11+ +BpP=01t,
®)] .
Po,re1tB1P1 b1t o B P 1 =0 L.

Now (5) implies that:

oyt P11 Pr1
Oyt Pi,r+1 Pr,r+1
1=
Po1 P11 Pry
Po,r+1 P1,r+1 Pr,r+1
oy P11 Pr1
O+ 1 P1,r+1 Prr+1
=t

det(€l, ..., T D)

If we choose t > d,, we see that (1) is not true for any a;, B;eN, i=1, ..., n,
j=1, ..., r,. Thus there exists t,€ N such that if ¢t = ¢,, then for any keK,
the inequality:

wotoyte +... o, te, # o+ Pyt + ... + B, Uy,
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Remember thatr, < s <nand u, +... +u, € N’. Since r, < n, there must
be de{l, ..., n} such that ¢,¢./(S,). Let x;e{a,, ..., q,}* i=0,1, 2, be
such that W(xg)=wy, ¥ (x,)=to(,+... +u, —e,) and ¥(x;)=tye, Of
course x, =ap. Let h: {a,, a,}* — {a,, ..., a,}* be the morphism defined by
h(a,)=x, and h(a,)=x,. Obviously x;'L is a commutative language in
J (L). We finish the proof by showing that D¥=h"1! (x5 ' L).

Assume xe D¥}. Then xec(a) ab) for some ieN. Since h™* (x5! L) is com-
mutative, it suffices to show that a) abeh™ ' (xg ! L). Now x} x, e x, ! L since:

W (x) x)=ito gy + . .. +uy, —e) +itgeg=itouy + ... +itg Uy, €¥ (xg ' L).
On the other hand, the word a) abeh™! (x} xb).

Let xeh™!(xy ! L). Then xec(a) ai) < h™! (x5 L) for some i, je N. Since
D* is commutative, it suffices to show that i=j. Now a\aieh™!(x5'L)
which implies that h(a} a})e x5! L and x, h(a’a})=x, x} x} e L. Thus:

W (x0 x5 X5) =wo+ite (ug + . . - + Uy, —€) titoea=Wotto e +... +pa,e,

for some a;eN, j=1, ..., n. By the choice of t,, ¥ (x,x'x}) cannot be in S,
for any keK For each Ie{l,...,m} such that I[¢K
o+ (S)Suy+H(S,). This implies that:

Wo+it0(uq1+ oo +uq,q)+jtoed=uq0+Bl uql + ae +B u

rq qrq
for some B;€Q, j'=1, ..., r,. Since wyeu,,+ 7 (S,), we have:
ito (uql + ... +uq'q) _jto eded (Sq).

Then i=j since otherwise e,€ 2/ (S,), which is a contradiction. The proof is
now complete. []

Lemma 7: Let L € {a,, ..., a,}* be a homogenous language containing .
Assume Ty, ..., T, = N" are proper linear sets and U = N" is a fundamental

p p
semilinear set such that ¥ (LYy=\U T; and < U conv(T,.)> NU=Y(L). If the
i=1 i=1
14

rank of the set S =( N conv(T,-))) N U is smaller than n, and S is unlimited,
i=1
then D* is in 7 (L).

Proof: Assume rank(S)=s, s < n. The beginning of the proof is an exact
copy of the proof for Lemma 6. Assume S, ..., S,, & N” are proper linear
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sets such that S= U §; and for each ie{1, ..., m}:

i=1

si={u,‘o+k1u,‘1+... +k,iu,~,l. | kJEN,j= 1, ceey ri},

where u;;€N", j=0, 1, ..., r;, and the elements u;;, ..., u;, are linearly inde-
pendent. Let ge{l, ..., m}, K< {1, ..., m} and w,eS, be as in the proof
of Lemma 6. By an analogous reasoning as in the proof of Lemma 6 we
can find t, with the following property. If t = ¢t,, then for each ke K, the
inequality:

1) Wot o te; +... +a,te, # o+ By +... + By, U,
holds for all &, B,eN, i=1,...,n, j=1, ..., r. Since U is fundamental,
there exists U, < U such that w, is in U, and: '

Uy={vo+k,(my, 0, ..., 0)+... +k,(0, ..., 0, m,) | k;eN, j=1, ..., n},

for some voeN"”, m;eN, j=1, ..., n. Let t'=tom,...m,

Now r,<s<n and Ugy +... +u, €N%. Since r, <n, there must be
de{l, ..., n} such that e,¢.(S,). Let x,e{a,, ..., a,}* i=0, 1, 2, be such
that W (xo)=wy, ¥ (x,)=t (g + ... +u, —e,) and ¥ (x,)=1t"e, Obviously
x,=dy. Let h:{a,, a,}*—>{a,, ..., a,}* be the morphism defined by
h(a;)=x, and h(a,)=x,. Clearly x;'L < {a,, ..., a,}* is a commutative
language in 4 (L). We show that D¥=h"*(x; ' L).

Assume a)abeh !(xg'L) for some ieN. Then h(a)a)exy 'L which
implies that x, k (@} ab)=x, x, x5 € L. This means that:

W (x0 Xy X5)=wo +it' (Ugy + ...+, —eg) +it eg=wo+it" (U + ... +g)

is in ¥ (L), a contradiction, since the above element is clearly in S, < ¥ (L).
Since h™* (xq ! L) is commutative, we may deduce that h™' (xo ' L) < D%.

Let xeD* Then xec(a)a}) for some i, jeN, i#j To prove that
xeh™1(xg'L), it suffices to show that @’ ajeh™(xy'L). Consider the
element: h

Wy=wo+it (U, + ... +u, —ey))+jt e,
q qrq

Let wy=wo+it" (ug; +... + ug). Now w;¢w,+(S,), since otherwise
wy—w,=(i—j)e,€ 4 (S,) and (since i # j) e;€ o (S,), a contradiction. By the
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choice of ¢/, w, ¢S, for any k € K. This means that:

w1¢S=< (",\ conv (Ti)> NU.

i=1

P
Since w,eU, U, w, must be in (U conv(T,-))ﬂ U=¥(L). Now
i=1
W (xo,x\ x3)=w,. Since L is commutative, the word x,xjxjeL, so
x} xj,exy ! L. Obviously a}abeh™*(xg*L). We deduce that D} is a subset
of "' (xg'L). O
We are now able to give a proof to Conjecture 1.

THEOREM 1: Let Lec(R) be nonregular. Then D¥ is in 7 (L).

Proof: Without loss of generality we may assume that L < {ay, ..., a,}*,
k e N. We first note that k = 2 since each SLIP-language over one symbol is
regular. The proof is by induction on k.

Using the results of Berstel and Boasson ([2], [4]) Latteux proves in [9] that
the theorem is true when k=2.

Assume that the theorem is true for each k=2, 3, ..., n—1,n> 2.

Consider the case k =n. By Lemma 3 we may assume that L is homogenous.
Since J (L)=9 (L\U{e}), we may also assume that L containse. Let
S,, ..., S,, be linear sets and U a fundamental semilinear set such that:

Y(L)y= Lmj S; and ( G conv(S,-)) NU=¥Y(L).

i=1 i=1

Let T= M conv(S)). If If rank(¥W(L))=rank(T)=n, then D*eJ (L) by
i=1 .
Lemma 5.

Assume first that rank (¥ (L))=s, s <n. If ¥ (L) is unlimited, then, by
Lemma 6, D*eJ (L) which implies that D¥eJ (L). So assume that ¥ (L) is
not unlimited. Then for each ie{l, ..., m} there exists j;e{l, ..., n} such
that: .

S;cw,+ NI~ x {0} x N" i
for some w;eN". Let x, e ¥~ *(w,) and L,=¥ ! (S,). Then:

* * * *
. and Licc(x;af...af_,af,q...az).
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Denote R;=c(x;a¥...a%_,a%*,.,...a%), i=1, ..., m. Obviously, for each i,
i i“1 Ji—1%+1 n
m

R, is regular. Since L< \UR; and L is nonregular, there must be
i=1

ge{l, ..., m} such that L N\ R, is nonregular. Now:

LNR sc(xgaf...af_yafy...a7).
The language LR, above is obviously commutative. Then L'=
X, l(L(\Rq) is a nonregular commutative SLIP-language in J (L). On the
other hand L'<{a,, ..., aj,_y, 8,41, .-+, a,}* By induction, DY is in
T(L)c I (L)

Let now rank(T)=s’, s’ <n. Let L, be as above and R=¥"!(U).
Obviously Rec(4) is regular. Since:

‘P(L)=< CJ conv(Si)>(‘\ U

i=1
and L is commutative, we have L=( U conv (L,.)> N R. Since L is nonregu-
i=1
lar, the language ( N conv(L,-)) N R is nonregular. Now:
i=1
‘I‘(( N. conv(Li)) N R>=( M conv (S,-)) NU=TNU.

i=1 i=1

Since TNU < T, rank(TNU) £5. If TN U is unlimited, the theorem is
true by Lemma 7. Assume TN U is not unlimited. Let T, ..., T, < N" be

proper linear sets such that TN\ U= \'J T.. Then for each ie{l, ..., r} there
exists j;e {1, ..., n} such that: -
T, < v+ NF71x {0} x N7,
for some v;e N™. Let y,e ¥ ~* (v,). Then:
' Y UT) Sc(iat...at_ at,,...a¥).
Denote R;=c(y;af...a}_,a},,...ay).Now:

M conv (Li)> NR < {UR;

=1 i=1
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Since (ﬂ conv (L,~)> MR is nonregular, there must be te{l, ..., r} such
i=1

that (ﬂ conv (Li)> M RN R, is nonregular. This implies that the language
i=1

LNR, =< U conv(L,.)> M RN R, is nonregular (and commutative). Then:

i=1
* * * .
LNR,cckat...af_1a}sy...a0). -

It is easy to see that the language L” =y~ ! (L N R,) is a nonregular commuta-
tive SLIP-language in J (L) and L”" S {ay, ..., @;,_y, @j,41, .-, G}* By
induction, D¥*e I (L") I (L). O

COROLLARY: Let Lec () be nonregular. Then D* is in  (L).

Proof: By the results of Latteux [9], J (L)=9 (LU {e}). If €L, then
the corollary is clearly true. Assume L does not contain e The fact that
T U{e)={L", L"U{e} | L"eT (L)} for each e-free language L’ then
implies that D¥e J (L). O

Note: Using the techniques of the previous corollary it is easy to see that
the assumption that L contains € in Lemma 5 and Lemma 7 can be removed.

The family QR of quasirational languages is the substitution closure of
linear languages. The family QR is also called “derivation bounded
languages” and ‘“‘standard matching choice languages”. Let Le QR be com-
mutative. Since L is a context-free language, Lec(4). Latteux and Leguy
prove in [11] that D% is not in QR. By the previous theorem, L must be
regular. We can thus state:

THEOREM 2: Every commutative quasirational language is regular.
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