Lower Boumds by
Kolmogoerov-Complexity

k%
Ming Li
TR 85-666
March 1985

Department of Computer Science
Cornell University
Ithaca, New York 14853

This paper will appear in the 12th ICALP conference, Greece, 1985.
** This work was supported in part by an NSF grant DCR-8301/66.

LOWER BOUNDS BY KOLMOGOROV-COMPLEXITY *

Ming Li**
Department of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

Using Kolmogorov-complexity, we obtain the following new lower bounds.

For on-line nondeterministic Turing machines,

(1) simulating 2 pushdown stores by 1 tape requires Q(n'®/logn) time; together
with a newly proved O(n!'®Vlogn) upper bound [L3], this basically settled the
open problem 1 in [DGPR] for 1 tape vs. 2 pushdown case (the case of 1 tape
vs 2 tapes was basically settled by [M]);

(2) simulating 1 queue by 1 tape requires Q(n"/ 3/logn) time; this brings us closer
to a newly proved O(n!*Vlogn) upper bound [L3];

(3) simulating 2 tapes by 1 tape requires (n2/lognloglogn) time; this is a minor
improvement of [M]'s Q(n?/lognloglogn) lower bound; it is also claimed (full
proof contained in [L3]) that the actual languages used in [M] (also here) and
[F] do not yield Q(n2) lower bound.

To cope with an open question of [GS] of whether a k-head 1-way DFA (k-DFA)
can do string matching, we develop a set of techniques and show that 3-DFA cannot
do string matching, settling the case k=3. Some other related lower bounds are

also presented.

:* This paper will appear in the 12th ICALP conference, Greece, 1985.
This work was supported in part by an NSF grant DCR-8301766.

1. Introduction

Obtaining good lower bounds has been one of the most important issues in
theoretical computer science. This paper represents a continuous effort in searching
for good lower bounds by means of Kolmogorov-complexity (K-complexity). Some
important open questions are answered (or partially answered) and new techniques

are developed along with the solution of each problem.

In the traditional lower bound proofs, complicated counting arguments are usu-
ally involved. The messy counting arguments blur the essence of the problem,
increase the level of difficulty, and therefore limit our ability to understand and
obtain better lower bounds. However, the beauty of simplicity and intuition is
brought back in the lower bound proofs by a recently discovered tool, the K-
complexity. The concept of K-complexity was independently introduced by Kolmo-
gorov [K] and Chaitin [Cha]. The use of K-complexity as a tool in lower bound
proofs was first introduced by Barzdin and Paul [P]. Since then, many interesting
results have been obtained (e.g. [P1], [P2], [PSS], [RS1]).

Definition 1.1: The K-complerity of a finite string X, written as K(X), is
the size of the smallest TM (may be nondeterministic) which, starting from empty
input tape, accepts (or prints) only X.

Definition 1.2: The K-complezity of X relative to string Y, written as
K(X|Y), is the length of the smallest TM (deterministic or nondeterministic), with
Y as its extra information, that accepts (or prints) only X.

Definition 1.3: String X is random if K(X)>|X|-1. String X is
random relative to string Y if K(X |Y)>|X |-log |Y |.

Fact 1: More than half of the finite binary strings are random.

Fact 2: If X=uvw, and X is random, then K(v |uw)> |v [-log |X |. That is,
random strings are locally almost random.

Fact 3: If F is any formal system, X is random and |X [>> |F |, then it is
not provable in F that ‘X s random’.

The paper is organized as follows: in Section 2 we prove new lower bounds (and

present new upper bounds) for on-line computations; in Section 3 we obtain lower

bounds on string matching. This paper will concentrate on lower bound proofs, the

-3-

proofs for all the upper bounds claimed will appear in a companion paper [L3].

2. Lower bounds for on-line computations

In this Section we consider on-line computations which are generally used for
investigating the dependency of the computational power on the number of tapes.
We call a TM M a k-tape on-line machine if M has a 1-way read only input tape
and k work tapes. Without explicit indication, all the machines in this section will
be on-line machines. An on-line machine M works in real time if each time M
reads an input symbol it makes only a constant number of moves. A k-pushdown
machine is like a usual pushdown automaton, but has k£ pushdown stores. Similarly,

a k-queue machine has k (first in first out) queues instead of k-pushdowns.

One classical question about TM’s is how much power an additional work tape
gives a machine. For real time deterministic computations, early in 1963, Rabin [R]
proved 2 tapes are better than 1. Eleven years later Aanderaa [A] generalized
Rabin’s result to k+ 1 versus k. In 1982, Duris and Galil [DG] proved, by the cross-
ing sequence technique, that two tapes are better than one in the nondeterministic
case. In 1982 Paul [P] proved, using Kolmogorov-complexity, that on-line simula-
tion of k+ 1 tapes by k tapes requires Q(n (logn)!/*+1) time. Duris, Galil, Paul, and
Reischuk [DGPR] later proved that for nondeterministic machines simulating 2
tapes by 1 tape requires {)(nlogn) time and simulating k¥ tapes by k pushdown
stores requires {)(nlog!/*+Un) time (for deterministic machines). The following
open questions (open problems 1 and 6) were listed in [DGPR]: Can the gaps
between the Hartmanis-Stearns [HS] O(n2) upper bound and the Q(nlogn) lower
bound in both deterministic case and nondeterministic case for 1 tape simulating k
tapes (pushdowns) can be narrowed? Notice that according to [HS1], 2 tapes can
deterministically simulate k tapes in time tlogt; and according to [BGW] 2 tapes
can nondeterministically simulate k¥ tapes without losing any time. For determinis-
tic on-line machines Maass [M], the author [L], and Vitanyi [V] independently
proved: it requires 2(n?) time to deterministically simulate 2 tapes (pushdown
stores) with 1 tape. (Note, a preliminary (n%¢) lower bound of Maass antidates
both of [L] and [V].) This settled the deterministic case (open question 6 in
[DGPR]). In addition, Vitanyi [V] also obtained an {}(n?) lower bound for 1 tape

simulating 1 queue. (Note, [P] and [V] uses the ‘on-line’ model that produces an

-4-

output each step.) In the nondeterministic case, the situation is quite different:
Maass obtained an (n?/log2nloglogn) lower bound for 1 tape vs 2 tapes via a
ingenious language and a nice combinatorial lemma, but it does not apply to 1 tape
vs 2 pushdown case.

In this section we try to complete our knowledge on nondeterministic case of
above open question. An)(n!®/logn) optimal lower bound, which is obtained in
parallel to above deterministic results, is presented for the 1 tape vs 2 pushdown
store question. This greatly improves the (nlogn) bound of [DGPR]. It is optimal
because of a recently discovered new simulation by the author that shows unexpect-
edly: 1 nondeterministic tape can simulate 2 pushdown stores or 1 queue in time
O(n'5Vlogn') [L3]. We will also obtain an (n*/3/logn) lower bound for 1 tape
nondeterministically simulating 1 queue, which is the first lower bound in this case.
For the case of 1 tape versus 2 tapes, we improve the Maass’ lower bound to
Q(n?/lognloglogn). Unlike above results, this result is based on on Maass’ proof.
Surprisingly, we claim that that the actual language used by [M] (and a similar

language, in a different context but for the same purpose, used by Freivalds [F]

. n2loglogn , ..
seven years ago) can be accepted by a one tape machine in O(—\/_—;—) time.
ogn

Therefore the ((n2) lower bound, whose existence we doubt, needs a new language.

Throughout this paper, variables X, Y, z;, y; ... denote strings in ©* for
¥={0,1}. Consider a 1-tape on-line machine M. We call M’s input tape head h,,
and its work tape head h,.

Definition 2.1: Let z; be a block of input, and R be a region on the work
tape. We say that M maps z; into R if while A is reading z; h, never goes out of
region R; We say M maps z; onto R if in addition h, travels the entsre region R
while A, reads z;.

A crossing sequence (c.s.) for a point on the work tape of M is a sequence of
ID’s, where each ID is of form (state of M, h,’s position). We write |c.s. | to mean
the space needed to represent the c.s.

Remark 2.1: Since h; only moves to the right, we can represent the sth ID

(ID;) in a c.s. as follows:

-5-

ID; =(state of M, current h,’s position — h,’s position of ID;_,),

where IDy=(-,0). Thus if a c.s. has d ID’s and the input length is n, then
d

lc.s. |<d |M |+ logk+ ...+ logky, with .Elk,-=n. This is less than
d |M |+ dlog(n/d) by a standard calculation (i.e. maximize the function).

Remark 2.2: Let z,,...,z; be blocks of equal length C on the input tape.
Suppose d of these blocks are deleted, and that we want to represent the remaining
blocks in the smallest space possible but still remember their relative distances. We

can use following representation,

mZ Ty T (p1,d1)(p2,da)....
where m is the number of (non-empty) Z;’s; Z; is z; if it is not deleted, and is
empty string otherwise; (p;,d;) indicates that the next p; consecutive z;'s (of
length C) are one group (adjacent to each other), and followed by a gap of d;C
long. m, the p;’s, and the d;’s are self-delimited. (A string z is self-delimited if
each bit of x is doubled and with ‘01’ at both ends. For instance, 01001100111101 is

the self-delimited version of 01011.) By a standard calculation (similar to Remark
k
2.1), the space needed is '21 |Z; |+ dlog(n/d).

We now prove an intuitively straightforward lemma which coincides with our
intuition that a small region with short c.s.’s around it cannot hold a lot of informa-
tion. Stated formally:

Jamming Lemma: Suppose on input beginning z;z, - - - 2 # ..., where the
z;'s have equal length, M maps each of z;, - - - ,z; into region R by the time A,
reaches # sign. Then the contents of the work tape of M at that time can be recon-
structed by using only {z,, - - -, % }- {,...,7;,}, the contents of R, and the two

c.s.’s on the left and right boundaries of R.

l
Remark 2.3: Roughly speaking, if ¥ |z; |>2(|R |+ 2|c.s. |[+ |M|), then the
j=1"
Jamming Lemma implies the either X=z,...z; is not random or some information
about X has been lost.

Proof of Jamming Lemma: Name the two positions at the left boundary

and the right boundary of R to be I and r, respectively. We now simulate M. Put

-6-

{zy,...,5 }—{%; ,...,%;} at their correct positions on the input tape (as indicated by
the c.s.’s). Run M with h, staying to the left of R: whenever h, reaches point I,
the left boundary of R, we interrupt M (in the nondeterministic case we also match
the current state and h, position) and consider the next ID in the c.s. at point /,
using this we relocate h,, adjust state of M and then go on running M. After we
finish at the left of R, we do the same thing at the right of R. Finally we put the
contents of R into region R. Notice that although there are many empty regions on
the input tape corresponding to those unknown z;’s, h, never reads those regions

because h, never goes into R. 0 (Jamming Lemma)

Remark 2.4: If M is nondeterministic, then we need to rephrase ‘contents of
work tape’ as ‘legal contents of work tape’ which simply means some computation

path on the same input would create this work tape contents.

Define L ={z,8z,32,8z¢ - - - $2,8z¢#2,25 - - - 7, |2;€{0,1}* for 1=0,..,¢}.

Theorem 2.1: It requires (n'?/logn) time to nondeterministically simulate
2 pushdown stores by 1 tape.

The theorem will follow from Lemma 2.1. We shall concentrate on explaining
the ideas of the proof.

Lemma 2.1: It requires)(n!%/logn) time to accept L by any l-tape non-
deterministic on-line machine.

Proof of Lemma 2.1: Suppose a nondeterministic 1-tape M accepts L in time
o(n/logn). We fix a large n and a large constant C such that all the subsequent
formulas are meaningful.

Fix a random string X of length n. Equally partition X into zgz,- - - 7,
where k=n'/2/Clogn. Consider input Y=z,3782,87, - - $2, 872,25 - " 2;
to M. Observe that |Y |<3n. M should accept this input Y. Let us fix a shortest
accepting computation P of M on input Y. We shall show that P is long.

Consider the k pairs z;$z,$ in Y. If half of them are mapped onfo some
regions of sizes larger than n/C3 then M uses time O(n'%/logn), a contradiction.
Thus in the following we will assume that for more than half of the above such

pairs, M maps each into some region of size < n/C3. Let S be the set of such

pairs. When k, gets to # sign, we consider two cases:

-7-

Case 1: (jammed) Assume there do not exist two pairs in S that are mapped
into 2 regions n/ C? apart. In this case, it is clear that all the pairs in S are mapped
into a region R of size 3n/ C?, since every pair in S is mapped into a region of size
< n/C3. Consider the two regions R; and R, of length |R |, left and right neigh-
boring to R respectively. Find a point { in R; and a point r in R, with shortest c.s.
in B, and R,, respectively. If either of the two c.s.’s is of length more than
n%5/Ctlogn then M uses O(n'®/logn) time. If they are both shorter than
n%5/C4logn, then the Jamming Lemma can be applied. We can reconstruct the
contents of the work tape at the time when A, gets to # sign by a short program.
By Jamming Lemma, the construction only requires the following information:

(1) {zg, 2y, - - -, 2 }-{2; |7;2¢o€S}, which, by Remark 2.2, requiring less than

2]X |/ 3 space;

(2) two c.s.’s that require lees than |X |'/2 space; and
(3) the tape contents of regions R, R;, and R, which requires no more than
9|X |/ C? (note C >>9) space.

We then find X as follows: for each Y such that |Y |=|X |, equally divide
Y=yoy; - * ¥ as dividing X. Check if yy==,. Attach y, - - - y, after # sign and
continue to simulate M with the work tape constructed as above; M accepts iff
Y=X. This program is short, showing K(X)< |X |. One might worry about the
nondeterminism here, but notice that the nondeterminism is also defined in the K-
complexity, and we can simply simulate M nondeterministically in the above, mak-

ing sure that the c.s.’s are matched.

Case 2: (not jammed) Assume there are two pairs, say z;$z, and z;3z,,
that are mapped n/C? apart, that is, the distance between the two regions onto
which these two pairs mapped is >n/C?. Let R, be the region between above two
regions. Hence |Ry|>n/C2 As before we search for a shortest c.s in Ry. If the
shortest c.s. is longer than n'/2/ C3logn, then M runs for O(n'?/logn) time. Oth-
erwise we record this short c.s. and try to reconstruct z, in below. But notice that
a simple minded approach such as finding a shortest c.s. in the middle is not enough

here, because some other z,’s can be mapped on both side of the c.s.

To overcome above difficulty, observe that since the size of shortest c.s. is

nl/z/ C3logn there can only be this many bits in z, that are mapped to both sides

-8-

of the c.s. From this observation, we reconstruct z, as below.
(1) In each ID of the shortest c.s., we add a bit which specifies the current bit read

by h,. Fortunately, this does not cause the increase of c.s. size: for the c.s. of

length n‘/z/ C3logn, less than 211'/2/ C3 space is needed by Remark 2.1.

(2) For each Y such that Y=X, we equally divide Y=ygy, - - - ;. Check if
y;=z; for all i>0. If not, then Y3X; otherwise, arrange y;’s in their
corresponding positions on the input tape.

(3) Simulate M only at the left of the shortest c.s. Every time h, meets the c.s.,
M check if the current ID matches the current state of M (including the bit
added in (1)), and then take the next ID continuing the simulation. Y=X iff
the simulation ends with everything coincides.

The above program uses the information of z;, - - -, 7, and the c.s. which
needs less than |z4|/2 space to represent. This contradicts the relative randomness
of z,. O (Lemma 2.1)

Proof of Theorem 2.1: The language L can be easily accepted by a two tape
machine. For two pushdown stores, we modify L: reverse z,z,...r; following #
sign. The modified L can be accepted by M with two pushdown stores in linear
time as follows: put z, in stackl, put next z, in stackl and in stack2, put z, in
stack2, put next r, in stackl and stack2, and z3 in stackl, ..., and so on. When the
input head reads to #, M starts to match in an obvious way. To make this process
real time we further modify L by simply putting a 12120l padding after every other
reversed z;. Since all these changes do not hurt our lower bound proof in Lemma
2.1, the proof is complete. [J (Theorem 2.1)

Combined with Theorem A below recently proved in [L3], we essentially close
the gap for 1 tape vs 2 pushdown stores, answering the open question 1 of [DGPR).

Theorem A: 2 pushdown stores or 1 queue can be simulated by 1 nondeter-
ministic tape in O(n!®Vlogn) time (for both on-line and off-line machines). (The
proof is contained in [L3].)

Theorem 2.2: It requires {}(n*/3/logn) time to nondeterministically simulate 1

queue by 1 tape.

-9-

Idea of the Proof : At first glance, one might think the language L in above
can be used (and therefore an ((n'®/logn) optimal lower bound). Unfortunately,
with a second thought, a 1 queue machine probably has no way to accept L in
linear time. But if you persist, the following observation can be made. If |z, |=n1/ 3
and |z; > |=n?/3, then 1 queue machine can accept in linear time on the condition
that it could count fast (to make sure that the sizes of z;’s are correct). How does

a queue count fast? Probably no way. But this leads us to the following language

Lpsa={21Z0%220 " * " T To#2; " - n#1* l2ly,

We claim that a 1 queue machine can accept L,,4 in linear time, but a 1 tape
machine would need Q(n*3/logn) in the worst case. The algorithm for accepting
L,4q4 by 1 queue is as follows.

(1) Put z;zq - - - 7, 7o into the queue
(2) Match z,, - - -, z; by the input head the the reading head of the queue, while

copying the z4's back to the queue and deleting all other z;54’s

(3) Match all zy's bit by bit in the obvious way in k |z, |2 time, while the input
head scanning the padding

The lower bound can be proved in the same way as in Theorem 2.1. The

((n*/3/logn) lower bound comes from the padding and size of each z

(|2o|=n"3, |2;50|=1%>3, k=n'/3%). O (Theorem 2.2)

Theorem 2.2 brings us closer to the O(n”x/lo?) upper bound of Theorem A,
although a gap is still to be closed. This is also the first lower bound for 1 tape vs 1
queue in the nondeterministic case. For deterministic case with output each step, a
Q(n?) lower bound was proved in [V].

For the nondeterministic case of 1 tape vs 2 tapes, Maass [M] obtained an

n2

) lower bound. Recently, the author found a theorem claimed 7

(logn)*loglogn
years ago by Freivalds [F] (Theorem 2 in [F], without proof) which, if true, would
immediately imply the tight Q(n2) lower bound. Both [F] and [M] independently

constructed two similar ingenious languages (although the language by [F] was less

complete).

- 10 -

In [M], although a very general language L; was introduced, only a simple sub-
set, L, of it was used. The language L can be defined as follows (w.Lg. let k be
odd).

L={bolb - - - b1
bo2bob 2b52b %bs% - - b Zb3bgiy (® - b b (ky)2 b’
bo'b (ks 1220 1*02*b (k4 3)72°03" Baj(modk+ 1)*0; b2it 1(modk 4 1)t T be_r*b; %0,
| b;'=b;2=b;3=b;* for i=0, - - - ,k}

The length of each b;7 (a binary string) may be different. We can also define a
delimited version L * of L where every b; iin L is replaced by *b,-j * of an uniform
length.

The language, B, constructed in [F] is similar (but less complete) if we let
c¢(¢f)=a(#)b(+) and replace each single a(#) or b(s) by ¢(r) in the following. Here is
the construction of [F]. Let B ' consist of all strings
a(1)b(1)a(2)b(2) - - - a(2n)b(2n)2a(2n)b(2n)b(2n-1)a(2n-1)b(2n-2)b(2n-3) - - -

~a(n+1)5(2)b(1)
where all a(f) and b(7) are from {0,1}. B is defined to be the set of all strings 0z
or 1y, where z€B ' and y€B '. [F] claimed that it requires (n?) time for a 1 tape
nondeterministic on-line TM to accept B.

n2loglogn

Jlogn) time by a

Theorem B [L3]: L (L’ and B) can be accepted in O(

1-tape nondeterministic on-line machine.

The proof of Theorem B is based on Lemma B (details contained in [L3]).

Lemma B [L3]: Let S={0,1, - - - ,k-1} where k=2' for for some integer I.
Let R be a binary (neighboring) relation defined on S such that, for s; and s, in S,
8 Rsy if

(1) 8,=2#34(modk) or s,=2+s,+ 1(modk), or

(2) s;==s9+1, 0r

(3) soRs,.

Then there exists a partition of S into two sets S; and S, such that,

- 11 -

(a) 151 |=1S2|-

(b) S1NS2=9,

(¢) |N |=0(k/Vlogk), where N={38,ES,| 8,Rs, for some 8,E€S, }. (N is the
set of elements in S, that are ‘neighbors’ of some elements in S5.) (Proof contained
in [L3].)

Remark: This gives an upper bound on Theorem 3.1 of [M] and Lemma 2.3
below.

Remark: Assertion (c) in Lemma B is true for any partition as long as for all
8,ES| and 8,E€S,, #bin(s|)<#bin(sy) where #bin(z)=+ of I's in binary z. It is
this property which is used in the proof of Theorem B.

Corollary B [L3]: Language L* and B can be accepted by a 1 tape determinis-
tic on-line machine in O(n2loglogn /Vlogn) time. B can be accepted by a 1 tape
nondeterministic on-line machine in time O(n!®Vlogn) O (Proof contained in [L3])

Remark: Other upper bounds have also been obtained. For example, 1 non-
deterministic tape can probabilistically simulate 2 tapes in less than square time
with any fixed small error € (i.e. reject with Pr(ezist accepting path)<e accept if
there is a path P, Pr(P accepts)>1-¢. Also W. Ruzzo showed that a multitape X
ATM running in time T can be simulated by a 1 tape ¥ ATM in time O(TlogT)
where k' =k+ 1 if k is odd, k'=k otherwise [R2], the k=1 case has been proved
by N. Pippenger [R2].

In the rest of this section, trying to meet above upper bound, we improve the

2

[M]’s lower bound to Q(—n——) Unlike Thecrem 2.1 (which was obtained in
lognloglogn

parallel to those of [M] and [V]), the next theorem is based on [M]’s approach. We
assume the reader is familiar with [M].

Theorem 2.3: It requires Q(n?/lognloglogn) time to nondeterministically
simulate 2 tapes by 1 tape.

We will show that the language L* (and L) requires Q(n?2/lognloglogn) time
for 1 tape machines. We will only give ideas to show where and how the improve-
ment is made. We refer the readers to [M] for details. In [M], Maass proved an

important combinatorial lemma (Theorem 3.1 in [M]) which is generalized below,

-12 -

Lemma 2.3: Let S be a sequence of numbers from {0,..,k-1}, where k=2' for
some /. Assume that every number b € {0,..,k-1} is somewhere in S adjacent to the
number 2b(mod k) and 2b(mod k)+ 1. Then for every partition of {0,..,k-1} into
two sets G and R such that |G|, |R |>k/4 there are at least k/clogk (for some

fixed ¢) elements of G that occur somewhere in S adjacent to a number from R.
The proof of this lemma is a simple reworking of [M]’s proof. An n/ Viogn
upper bound of this lemma is contained in Lemma B.
Notice that any sequence S in L * satisfies the requirements in Lemma 2.3. Let
n be the length of a random string that is divided into k=n/loglogn blocks. A
sequence S in L* is constructed from these k blocks. A new idea is to find many
(instead of 1 as in [M]) ‘deserts’ on the work tape.

Lemma 2.4: (‘Many Desert Lemma’) For some constant C, and for large n,

there are I=logn / C regions D,;, Do, ---, D; on the work tape such that,

(1) for all i £ 5, D; nD;=0;

(2) for each ¢, |D; |=n/c'%logn, where ¢ >2 is the constant in Lemma 2.2;

(3) for each ¢, at least k /4=(n /4loglogn) blocks are mapped to each side of D;.
Proof of Lemma 2.4: Again we only give the ideas behind the proof. Divide

the whole work tape into regions of length n /¢ Blogn. By the Jamming Lemma, no
region can hold more than n/c!!ogn blocks. By a standard counting argument, we
can find regions Dy, Dy ...,Dj,g, /¢ for some constant C' in the ‘middle’ of work tape

such that (1), (2), and (3) above are satisfied. O (Lemma 2.4)

To prove Theorem 2.3, we apply the proof of [M] for each desert D; in Lemma
2.4. Instead of using Theorem 3.1 of [M] we use Lemma 2.3 above. Notice that
since each D; is ‘short’, the total number of blocks mapped outside D; is more than
k—(k /c®logk). Therefore Lemma 2.2 can be applied. Now for each region D;, M
has to spend O(n2/(logn)*loglogn) time. We sum up the time M spent at all
O (logn) regions, getting the ((n2/lognloglogn) lower bound. O (Theorem 2.3)

-13 -

3. Lower bounds on string-matching

The string-matching problem is defined [GS] as follows: given a character string
z, called the pattern and a character string y, called the tezt, find all occurrences of

z as a subword of y. The string-matching problem is very important in practice.

Since the publication of linear time algorithms by [BM], [C2], and [KMP], there
has been a constant effort to search for better algorithms which run in real time and
save space. Finally, Galil and Seiferas [GS] showed that string-matching can be per-
formed by a six-head two-way deterministic finite automaton in linear time. They
ask whether a k-head one-way deterministic finite automaton (from now on k-DFA)
can perform string-matching. In [LY], we answered this question for case k=2 by
showing that 2-DFA cannot do string-matching. Efforts have been made for the
cases where k>2, but even the case k=3 has not been solved. It is believed that a
solution to the case of k=3 would give some important insights into the general
case.

Towards answering the Galil-Seiferas conjecture, we develop a set of techniques
which enable us to settle the case of k=3 negatively. (Note, a weaker version of this
result has been reported in [L1].) We hope that the methods used here combined
with that of [LY] would help in providing useful techniques for the general problem.

In addition, we obtain lower bound on string-matching by 2-way k-head DFA
with k-1 heads blind, and on probabilistic matching and moving strings on one
Turing machine tape.

Because of the space limitation, we assume the familiarity of automata theory
[HU] and we have to omit many proofs. The details can be found in [L1, L2]. We
assume that the standard input to M is #pattern$tezt ¢, where pattern text €L’ for
the alphabet ¥={0,1}. M starts with all heads at # sign.

An ID of M on input I is the k+ 2 tuple: (I,q, f,f9, - -, §;) where q is a
state and i; for 1<; <k is the position of the j-th head. An ID, of M on input [is
the ID of M without I at time ¢.

Let I, and I, be ID’s. We write I}}—1, if M, started in ID I}, reaches ID I, in
one step. We write I,|—, I, either if I,=1I, or if M, started in ID I,, reaches ID I,

in a finite number of steps.

- 14 -

Superscripts are used to denote different occurrences of the same string. Sub-
scripts are used to denote different binary strings. Everything in the following con-
cerns a fixed 3-DFA M, and a long random string Y=kXk'. M and Y will be
chosen in Theorem 3.1

We name the three heads of M as h,, hy, h,. We will also use hy, hy, and hy
to mean the leading head, the second head, and the last head respectively at a
specific time. So, h,, h;, and h, are fixed names, whereas k), hy, and hj are only
transient names.

We use p(h) to denote the phrase ‘the position of the head A’. Let z be a
string (a segment of M’s input) of length greater than 0. At a particular step in the
simulation of M, we make the following definitions: p(k;)=z denotes that the posi-
tion of h; is at the last bit of z; p(h;)>2z means that h; has passed the last bit of
z; p(h;)<z means that h; has not reached the first bit of z.

ao always stands for the pattern which is going to be of form 1*X1*" where
Y=kXk'. In the following, we always consider input of form # 1*¥ X1* '$tezt/. X
is always equally partitioned into six parts X=zz,...z¢. In general, given strings s

or r without explicit definition, we always implicitly assume that they are

uv...w)
equally partitioned into six parts, and written as 8,8, --8g oOr
Tuo. w1%us.. w2 Tus...we Tespectively. When the ranges of the indices are not expli-

citly stated, they are always assumed to be from 1 to 6.
If X=zyz, then X-y=2z2.If y is not a substring of X, then X-y=X.
Definition 3.1 The text in the input # l"Xl"'$te:rt¢ is regular if it is con-

catenated, no more than 1000 times, from the following blocks:

(1) 1'01'0---1'0, where 1! is repeated less than log |X| times and
K(1)<log |X [+2|M |;

(2) X;

(3) X', where X' is obtained from X by replacing a substring z (only one) by z'
that has an equal length and satisfies K(z ' |X)<100log |X |;

-15 -

(4) Prefixes of X

(5) X, where X is obtained from X by replacing a substring z (only one) by 7
that has an equal length and satisfies K(Z | X-z)< |k |+ |k' |+ 100log | X |;

(6) 1* and 1*'.
The tezt is easy if only blocks from (1)-(4) are allowed in above. [(Definition 3.1)

Proposition 3.1: If the tezt is easy then: (1) the fext can be constructed
from |X | and O(log |X |) information; (2) there is a constant Cy (<<k,k') not
depending on k or k' such that each head position in the fext at a specific time
can be described by |k |+ C, information, and further, if a head A is in an
occurrence of X, X', or some prefix of one of them, then p(h) can be specified by

Colog | X | information. O (Proposition 3.1)

Definition 3.2: Let z be a string segment of an easy text. z is independent
(with respect to text) if for every string X', or its prefix in Definition 3.1 that
appears in the text, K(X'-z |X-z)<50log |X |. O (Definition 3.2)

Definition 3.3: Let z be independent. We say z ts compared with y if (1)
|z |=y |, and (2) there is a time when one head, say k;, is at z and simultaneously
another head, say h;, is at y (excluding the first bit and last bit of z and y). If y
is just another occurrence of z, then we say this occurrence of z s matched, or
matched by (h;,h;). We also say (h;,h;) did the matching. Let z! and z? be dif-
ferent occurrences of string z in text of above input. We say z! is matched to z2 if
there is a sequence of occurrences of z's starting from z! and ending with z2, each

being compared with the next. An occurrence of z is well-matched if this

occurrence of z is matched to the z of a,. O (Definition 3.3)

The idea behind the proof of next theorem comes from the following observa-
tion: Let kXk ' be a random string. Suppose that there is a time that all three heads
have left the pattern 1¥*X1*' and no head is reading the ¢ sign, the tezt is easy
with no occurrences of pattern, and two heads are reading some occurrences of X.
Then we would lose the information of either £ or k'. At this time we attach
1'X1'" to the end of tezt, if the machine does string-matching correctly, we would
be able to recover k and k' by finding the minimum ! and /' such that the

machine finds a matching. Therefore, we show that kXk' is not random. So our

- 16 -

goals are to (1) make fezt easy and (2) drive the heads out of pattern (or 1% of pat-
tern). To make text easy we construct text to be (essentially) a sequence of ¢;’s
and block of 1's, where ¢;=1™ X1™ for some non-random m greater than k and
k'. To drive the heads out of the pattern, we have to do an exhaustive adversary
proof. The goal is to ‘construct an tezt easier than the pattern’

Theorem 3.1: No 3-DFA accepts L={#ay$tezt £|a, is a substring of tezt}.
Proof of Theorem 3.1 (sketch): Suppose a 3-DFA M accepts L. Fix a long

enough random string Y, as mentioned before. We will show that Y is not random
for a contradiction. Divide Y=kXk', where |k|=|k'|, |X|Y4>>|k],
|X |>>V]X], and |k |>>log |X |. Let m=min{2/ |2/ >k,k'}. X is divided into
7,74237,257g of equal length. Consider only inputs of form # 1* X 1% '$test ¢ to M.
That is, a0=1"X 1. We will always assume that we are in the process of simulat-
ing M.
The following strategy P is needed to play our adversary proof. The purpose of
P is to obtain an invariant value such that after A, has passed a block of 1’s, many
more 1's can be added without changing the status of M. Further this block of 1’s
can be used to recover k if it is followed by X'1™. To understand it better, one may
want to read P later when P is called.
Strategy P(z): Given #ag3tezt¢ on tape, p(h,)=tezt with corresponding
state of M and ho,h 3 positions. The parameter z is a substring of X.
1:=1,
repeal
append b;=1™ 1210 to the input (before ¢);
continue to simulate M until p(h;)=b,0;
t:=1+1
until S, V Sy V Si=lrue;
The three predicates S;, S5, and S; are defined as below:

S;: A matching of one occurrence of z (parameter of P) to another occurrence of z

by (h4,h3) happened in the last loop;

-17 -

So: Neither hy nor kg moved more than [@ ||X | steps in the last loop;
Ss: hy and h, are separated by only 1-blocks.
If S, is true, then there exist constants Cy,Co<|Q@ ||X |+ 1 such that for
all I, should we let b,~_1=10’+['C“ in the input, M would be in a fixed state
with same hohs positions when p(h;)=>b; ;. Replace the last appended

b;_j=1™ 1210 by a; =19+ 1*Cax1m where =1 at this moment.
If S, or Sy is true, do nothing.

end_P.

Claim P: (1) Only one of the S;’s can be true; (2) The number of times that
the repeat loop is executed is less than twice the number of X-blocks and 1-blocks
in the input. O (Claim P)

Nine technical lemmas are needed in the process of simulating M. Note that
the a;¢'s used in each of the following lemmas are all ‘local’, that is, they have no
relation with any @;¢’s used in the proofs of other lemmas or main theorem.

Lemma 1 (The Matching Lemma): Let the tezt be regular (Def. 3.1) and
with exactly one occurrence, a,, of @q in it. Let z be a segment of X such that (1)
z is independent (Def. 3.2), and (2) |z |>V|X]. Then the occurrence of z in a,,
must be well-matched.

Proof of Lemma 1: Suppose Lemma 1 is not true. Let z!, for
=12, - - - 1,<1000, be all the occurrences of z, including the one in a,, that are
not well-matched in the text. Now for each z!, we record 3 pairs of information for
the 3 heads,

h, pair: (positions of h, and h, and state of M when h, enters this
occurrence of z!, positions of h, and h, and state of M when h, leaves this
zt);

h, pair: exchange k, and h, in above;

h, pair: exchange h, and A, in h,’s pair.

We now show that Y is not random by giving a short program which accepts

only Y. For input Y/,

- 18 -

(1) Compare Y' with Y except the z part which we do not need.
(2) Construct the pattern and the text with z' of Y' (the corresponding part of

z) replacing all z’s. Then for each of the above three pairs, starting from the first
component, we simulate M until some ID of M coincides with the second com-

ponent of the pair. If there is no such coincidence, we reject this Y '.

If Y' passes tests (1) and (2), then Y'=Y (otherwise M does not accept L).
Notice that we used only the following information: (i) X-z and 5(|k |+ |k’])
amount of information for constructing the regular text (excluding the z part), and
(i) h,,hy,h, pairs for each z'. The total amount of information that we used in the
above program is less than |Y | because of the assumption |X |/4>> |k | and the
fact |z |[>V[X|. 0O (Lemma 1)

Corollary: (1) Lemma 1 is true for a k-NFA, for any k; (2) 2-DFA cannot do
string matching (see [LY]).

Remark: Combined with the ideas from [YR], the proof of a theorem by Yao
and Rivest [YR], which states that a k-DFA is better than a (k-1)-DFA, can be
simplified.

Lemma 2 (The 2-head Lemma): Let s, |s |>V]X |, be an independent
(Def. 3.2) segment of X. For input I=# 1*X1*'$Z0a,0a,...0;, J0¢, where
a;=1™ X 1™, let Z be regular (Def. 3.1) with no occurrence of a; and no more than
[occurrences of 8 in it. If there is a time when p(h{)=(s of a;,,), p(hs)<(s of
ay), and 8 in @y<;<;42’s are not matched, then X is not random.

Remark on Lemma 2: We have presented a simplified form of Lemma 2.
When it is actually applied, the a;’s and contents of Z can be intermingled. Since
the proofs are the same, we preferred to present a simplified version.

The next lemma suggests the basic idea of the proof of our main result.

Lemma 3 (The Easiness Lemma): Let the tezt be easy and contain no
occurrence of ay. If at some step ¢, two heads of M are out of ay and their posi-
tions can be described by 10log | X | long information, and if no head is in 1% of ag

or at the ¢ sign, then Y is not random.

Lemma 4 (The Replacement Lemma): Assume the ezt is easy. At time

t in the simulation of M, if a segment s of X is not matched, then there exists s’

-19 -

such that, (1) |s|=]|s']|, (2) 85#s’', (3) 8’ can be constructed from X and
O(log |X |) information, and (4) if h; passed s at time ¢, then replacing s by s’
will not change the status of M when p(h;)=s' (or s).

Lemmas 4-1, 4-2, 4-3 are variants of the Replacement Lemma that are needed
in the application.

Lemma 4-1: In Lemma 4, if the condition that s is not matched is removed,
then we can conclude that all not well-matched occurrences of s can be replaced by
some 8 ' so that (1)-(4) in Lemma 4 are still true. O (Lemma 4-1)

Lemma 4-2: Let text be easy and contain C full occurrences of a, say
by, -+ ,bo. Assume that at some time ¢ in the simulation of M, for each b; there
is a substring s; of X not well-matched. For 1=1,..,C, let |s; |>|X |/1000 (s;’s
may be all different). Let s, be independent and s, appears in text less than D
times. Here C and D are small constants less than, say, 20. Then text can be
changed by substituting s;’s so that:

(1) text is easy and does not contain any occurrence of a;

(2) There is a time ¢ ' such that, ID,. on the changed input is same to ID, on
the old input.

(3) There is a substring e of s, which remains unchanged in s, after replace-
ment. |e |[>]3,]/2C and e is independent.

Lemma 4-3: Lemma 4-2 can be modified so that b, is not changed. That is,
the resulting text contains exactly one occurrence b, of a,.

Lemma 5: Let fezt in input #a 3tezt¢ be easy and contain no occurrence of
ao. Let s be a substring of X where s is independent with respect to fezt and
|s |>V]X|. If there is a time ¢ of M such that p(hg)>(1* of ao), and p(h;)<¢,
then Y is not random.

Lemma 8: Let the tezt in input #ay3tezt¢ be easy. Let there be exactly one
occurrence of aq in 4,5 in tezt, call it a;. Let s be a substring of X in a@; such
that (1) ¢ is independent, (2) s <p(h,),p(hy) < ¢, (3) 8 of a; is not well-matched
(to ag), (4) 8 is not matched to other occurrences of s that h, can still see, and (5)

|s |>]X|/1000. Then Y is not random.

-920-

Now we continue to prove Theorem 3.1. We construct an easy tezt. Let the
partial input be

(A) #ag$a 0 - -,
where a;=1™X1™. Consider the time ¢ when p(h,)=(X of a,). Note, at ¢,
p(h3)<(X of ag), since otherwise we can remove second 1™ from a; and apply
Lemma 3.

(1) All z;’s of a; are matched (by hy,h,), then there is a time of M such that
p(h))=(z5 of a;), and p(hg)>(z, of a;). Change a; to a,'=1"z;7, Add
a,=1"X1™0 to get the partial input

(B) #ag$a,;'0a0 - - -
Simulate M on the new input and consider time p(k;)=(X of aj) for the new input
(B). There must exist an z, in @, not yet matched (assuming p(h3)<(1* of ay)). We
go on constructing the input by the following process.
(C) For t=3 to 8 repeat the following. Add ¢;=1"X1™ to the input and and
run M on the new changed input. Consider time p(h;)=(X of a,). If all z;'’s
of a, are matched, then let ¢, =1z z,23.

Now at time p(h;)=(X of ag). We consider following cases.

(1.1) If, for j=1,..,6, all z,; of ay are matched to some a;54’s, we find the
smallest ¢ such that z,4 of a, is matched to z,, of a;. Change tezt to

(D) ...090030...a;_101™ z,,...7, ,0f.
Simulate M on the new input (D) until p(h,)=tezt. We then apply P(z,) which
results exactly one of S;, Sp, or S true. If S, is true, then p(h3)>(1% of ay), we
apply Lemma 4-2, then Lemma 5. If S; is true, then z,5 of @, cannot be well-
matched, to satisfy the conditions of Lemma 1 we apply Lemma 4-3; If S, is true,
then P adds q; —=10F 102 m 6 the input, and we simulate M on the new input
and stop M as soon as one of the following cases happens.

(1.1.1) p(hs)=(1* of ag). Then z,6 of ay is not well-matched. Other un-
matched z;’s in ¢; 5, remain un-matched. We delete second 1™ from a; and we are

done by Lemma 4-2 and Lemma 5.

-91-

(1.1.2) p(hg)>(z,5 of ay). If (hy,hs) did not match z,5 of a; to that of ay,
then z,; of a; has not been matched yet. Delete second 1™ of a;, then apply
Lemma 4-3 followed by Lemma 6. If (z,5 of @) is matched to (z,5 of a;), then case
(1.1.3) applies.

(1.1.3) p(hy)>(z4 of a;). Then z,,7,,7,3 of a; is not matched, because when
p(h)=(z4 of ¢;) we have p(hy)>(z3 of az). And z,; of ay is not well-matched.
Also for every ¢; in between a, and ¢; there is a long not well-matched part. Now
continue to run M and stop M as soon as one of the following cases happens.

(1.1.3.1) hj reaches a;. Apply Lemma 4-3 so that only a, still contains a
and s, which is a long substring of z,,, is independent. If s is not a substring of
the changed a; then the Matching Lemma can be applied; suppose it is, since 8 in
a; is not matched, there must be a substring s ! of 8 in a,, satisfying |8’ |>|s|/¢
where ¢ is defined in (D), that cannot be well-matched, again we can apply the
Matching Lemma.

(1.1.3.2) (ho,hs3) do some matching of X. If h; is not at ¢, we are done by
Lemma 4-2 and Lemma 5. And if p(h;)=¢ we apply Lemma 4-3 so that only a;
contains a, and text is easy, then we can vary [to find k by the method of Lemma

3. This shows Y is not random.
(1.2) There exists j such that z,; is not matched to any ¢;,.

(1.2.1) p(hy)>a, Apply Lemma 4-3 so that only ag contains aq, then use
Lemma 6;
(1.2.2) p(hy)<a,. Since many a,’s are left in form of 1™ X1™, with some

common part un-matched, in (C), the 2-head Lemma can be applied.

(2) Some z, in a; is not matched. We construct new input by process (C), and
exactly the same argument as in (1.1)&(1.2) applies. (Change a, to a,.) O

(Theorem 3.1)

Remark: (1) We hope the idea of easier text and harder pattern suggests some
possible approaches to the general k>3 case. (2) Though almost all the lemmas we
proved can be generalized, to keep them readable we chosed not to. However, we do
hope the techniques and the lemmas developed here find themselves applications

elsewhere, like the Matching Lemma in the proof of Yao and Rivest Theorem.

-922-

A 2-way k-DFA is just like a k-DFA but each head can go both directions. A
head is blind if it can see only end-markers. In [DG] it is proved that 2-way 2-DFA
with one head blind cannot do string-matching. Obviously 2-way 3-DFA with 2
heads blind can do string-matching. Here in contrast to the impossibility result of
Theorem 3.1, we prove a lower bound on the time to do string-matching required by
a 2-way k-DFA with k-1 blind heads. We hope this can shed some light on the
other important open problem concerning the lower bound of doing string-matching
by a 2-way 2-DFA.

Theorem 3.2: String-matching requires (n2/logn) time for a k-head two
way DFA with k-1 heads blind, where n is the length of the input.

Theorem 3.3: L ={#28yz ¢} (used in above proof) can be accepted by a 2-
way 3-DFA with 2 heads blind in time O(n2/logn).

Remark: It is proved in [LY] that L defined above cannot be accepted by a 1-
way 2-DFA. By a similar proof the language L '={#a¢8a,*as*. . *q;¢ | ap=gq; for
some ¢}, defined and shown to be not acceptable by a 2-way 2-DFA with one head
blind in [DG], is acceptable in time n2/logn by a 2-way 4-DFA with three blind
heads.

It has been an interesting philosophical question [W]: is (probabilistic) checking
easier than (probabilistic) generating? For example, given matrix A, B, and C,
Freivalds showed (see [W]) that we can probabilistically check AB=C in n? time,
but no one knows how to calculate AB in O(n?) time even probabilistically (open
problem 2.6 in [W]). Also similarly it is known [W] that given polynomials
p(z),po(z),p3(z), the probabilistic checking of p,(z)ps(z)=p3(z) can also be done
faster than the known generating (ps(z)) algorithms. Here we shall provide an

example which does show that checking is easier than generating.

A PTM [G] is a TM equipped with a random number generator. It decides the
next move by a random choice from two possible branches. A PTM P performs a
task with error probability € if it outputs the correct answer with probability 1-e.
Language L is accepted by a PTM P in time £(n) if there exist an e<1/2 such that
if z€L then P accepts z in with probability greater than 1-¢ in time ¢(n), other-
wise P accepts z with probability less than € in time ¢(n). In this section, we solely

consider the 1-tape probabilistic machines (1-tape PTM’s) without an extra input

-923-

tape, i.e., the input is presented on this single work tape at the beginning of the
computation.

Freivalds [F] proved a very interesting result that a 1-tape PTM can match two
strings on 1-tape in time O(nlogn) with any fixed error probability ¢>0. In con-

trast we show the following.

Theorem 3.4: Consider a 1-tape PTM M, with input z# |z lg12 | presented on
its only work tape. To move z to the 0’s positions with a fixed error probability
€<1/2, (i.e., to output z# 21z where z# 17| stays at original position) M requires
Q(n?) time.

Remark: Comparing to the nlogn probabilistic algorithm for accepting
z#t 171z (with any fixed small error €) by a 1-tape PTM [F], this lower bound leads
us to an interesting conclusion: checking is indeed easier than generating. Notice
that this is not true for 1-tape deterministic or nondeterministic machines since an
(n?) lower bound for accepting the palindromes were proved long time ago by

Hennie [H2].

4. Open problems

There are several open questions: (1) Close the gap for 1 tape vs. 1 queue; (2)
Prove that k-DFA cannot do string matching, and give a simple proof of Theorem
3.1; (3) Can 1 tape nondeterministically simulate 2 tapes in less than square time?
(This question will be discussed in [L3].) Most open problems listed in [DGPR] are
still open except 1 (not completely solved) and 6 (completely solved). Similar ques-

tions for off-line machines also need to be answered.

6. Acknowledgements

I am greatly indebted to Juris Hartmanis, my thesis advisor, for his guidance,
criticism and encouragement. I also wish to thank Chanderjit Bajaj, Zvi Galil, John
Gilbert, Luc Longpre, Joel Seiferas, Yaacov Yesha, and Zhen Zhang for very helpful

discussions on various topics contained in this paper.

- 94 -

6. References

[A] S.O. Aanderaa, On k-tape versus (k-1)-tape real time computation, in Complex-
ity of Computation. R. Karp Ed. (1974) pp. 75-96.

[BGW] R.V. Book, S.A. Greibach, and B. Wegbreit, Time- and tape-bound Turing
acceptors and AFL’s, JCSS 4,6 (Dec. 1970) pp. 606-621.

[BM] R.S. Boyer and J.S. Moore, A fast string searching algorithm, CACM 20, 10
(Oct. 1977) pp. 762-772.

[Cha] G. Chaitan, Algorithmic Information Theory, IBM J. Res. Dev. 21 (1977) pp.
350-359.

[C2] S.A. Cook, Linear time simulation of deterministic two-way pushdown auto-

mata, Proc. IFIP Congress 71, TA-2. North-Holland, Amsterdam (1971) pp. 172-179.

[DGPR] P. Duris, Z. Galil, W.J. Paul, and R. Reischuk, Two nonlinear lower
bounds, Proc. 15th ACM STOC (1983) pp. 127-132. (Revised June 1983)

[DG] P. Duris and Z. Galil, Two tapes are better than one for nondeterministic
machines, Proc. 14th ACM STOC (1982) pp. 1-7.

[DG1] P. Duris and Z. Galil, Fooling a two-way automaton or one pushdown store
is better than one counter for two way machines, Proc. 13th ACM STOC (1981) pp.
177-188.

[F] R. Freivalds, Probabilistic machines can use less running time, Info. Processing,
77 (1977) pp. 839-842.

[F1] M. Furer, The tight deterministic time hierarchy, Proc. 14th ACM STOC
(1982) pp. 8-16.

[GS] Z. Galil and J.I. Seiferas, Time-space optimal string-matching, Proc. 13th ACM
STOC (1981) pp. 106-113.

[G] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J.
Comp. 6 (1977) pp. 675-695.

[HS] J. Hartmanis and R.E. Stearns, On the computational complexity of algo-
rithms, Trans. Amer. math. Soc. 117 (1965) pp. 285-306.

[H2] F.C. Hennie, One-tape off-line Turing machine computations, Inf. and Control

8 (1965) pp. 533-578.

-95-

[HS1] F.C. Hennie and R.E. Stearns, Two tape simulation of multitape Turing
machines, J.ACM, 4 (1966) pp. 533-546.

[HU] J.E. Hoperoft and J.D. Ullman, Introduction to automata theory, languages,
and computation, Addison-Wesley (1979).

[K] A. Kolmogorov, Three approaches to the quantitative definition of information,
Problems of Information Transmission, 1-1, 1-7, Jan-Mar (1965).

[KMP] D.E. Knuth, JH. Morris, Jr., and V.R. Pratt, Fast pattern matching in
strings, SIAM J. Comp. 6, 2 (Jun. 1977) pp. 323-350.

[L] M. Li, On 1 tape versus 2 stacks, TR-84-591, Dept. of Comp. Sci., Cornell
University (Jan. 1984).

[L1] M. Li, Lower bounds on string-matching, TR-84-636, Dept of Comp. Sci., Cor-
nell University (July 1984).

[L2] M. Li, Lower bounds in computational complexity, Ph.D. Thesis, Cornell
University (Jan. 1985).

[L3] M. Li, Simulating two pushdowns by one nondeterministic tape in
O(n'3Vlogn) time, abstract (Jan. 1985).

[LY] M. Li and Y. Yesha, String-matching cannot be done by a two-head one-way
deterministic finite automaton, TR 83-579, Department of Computer Science, Cor-
nell University (Oct. 1983).

[M] W. Maass, Quadratic lower bounds for deterministic and nondeterministic one-
tape Turing machines, Proc. 16th ACM STOC {(May 1984) pp. 401-408. (Revised
summer 1984).

[P] W.J. Paul, Kolmogorov complexity and lower bounds, 2nd International Confer-
ence on Fundamentals of Computation Theory (1978).

[P1] W.J. Paul, On heads versus tapes, Proc. 22nd IEEE FOCS (1981) pp. 68-73.
[P2] W.J. Paul, On-line simulation of k4 1 tapes by k tapes requires nonlinear time,
Proc. 23rd IEEE FOCS (1982) pp. 53-56.

[P3] W.J. Paul, On time hierarchies, Proc. 9th ACM STOC (1977) pp. 218-222.

[PSS] W.J. Paul, J.I. Seiferas, and J. Simon, An information-theoretic approach to
time bounds for on-line computations, Proc. 12th ACM STOC (1980) pp. 357-367.

- 96 -

[R] M.O. Rabin, Real time computation, Israel J. of Math, 1,4 (1963) pp. 203-211.
[R1] A. Rosenberg, On multihead finite automata, IBM J., (1966).

[R2] W. Ruzzo, Private communication. (1984)

[RS1] S. Reisch and G. Schnitger, Three applications of Kolmogorov-complexity,
Proc. 23rd IEEE FOCS (1982) pp. 45-52.

[V] P.M.B. Vitanyi, One queue or two pushdown stores take square time on a one-

head tape unit, Report CS-R8406, Center for Mathematics Computer Science,
Amsterdam (Mar. 1984).

[W] D.J.A. Welsh, Randomized Algorithms, Discrete Applied Math. 5 (1983) pp.
133-145.

[YR] A.C. Yao and R. Rivest, k+ 1 heads are better than k, J. ACM, 25 (1978) pp.
337-340.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif

