
PRACTICAL METHODS AND TOOLS FOR SPECIFICATION

Contents

O. Introduction

1. Fundamentals

J . Ludewig
ETH Zurich, Institut fUr Informatik

CH 8092 Zurich

1.1 Life Cycle Model
1.2 Cost Distribution
1.3 Terminology
1.4 Why Semi-formal Specification ?

2. Principles of Specifications

2 .1 Qualities of Specifications
2.2 Useful Properties of Specifications
2.3 Specification Systems Requirements
2.4 General Structure of a Specification System

3. Specification Systems: Some Examples
(each of the following subheadings consists of three paragraphs :

.1 The Method; .2 The Language; .3 The Tools)

3.1
3.2
3.3
3.4
3.5

3.6

SADT
SA
PSLIPSA
SREM
EPOS

PRADOS

(Structured Analysis and Design Technique)
(Structured Analysis) and proMod (Projektmodell)
(Problem Statement Language I P. S. Anatyzer)
(Software Requirements Engineering Methodology)
(Entwicklungs- und Projektmanagement orientiertes

S pezifikatio nssystem)
(Projekt-Abwicktungs- und Dokumentations-System)

4. Management Aspects

5. Conclusions

6. Appendix: References. and Addresses of Supptiers

Note: Hans Matheis has used an earlier version of this paper for preparing a
paper on languages for real-time software specification . Some of his
extensions have been integrated here.

Our descriptions of specification systems are based on the malerial available
to us. This information may not be complete, or up to date. Therefore, we are
sorry in case some features are not reported correctly. Please refer to the
material available from the suppliers (see 6.2) .

175

O. Introduction

This Is a course on Specification. Since it is based on experiences in the field
of Software Engineering. It applies primarily to SoHware Specificalions .
Many observations and reports indicate. however. that. from specification
aspects. there is not much difference between Information processing
systems in general and software in particular. Therefore, most of this course
applies also to System Specification .

In the first chapter. some fundamentals are discussed. These include the life
cycle model and the distribution of costs over the various activities. some
definitions. and a rationale for semi-formal specification . The second chapter
provides a general outline of a specification system. whose desirable
properties are deduced from the qualities of good specifications. In the third
chapter. we present some typical specificalion systems. The primary goal is
to show some typical features of such systems rather than to describe them
in detail. The fourth chapter addresses management aspects. In chapter 5.
some generat conclusions are drawn. The appendix (chapter 6) contains a
bibliography on speCification. and a list of suppliers.

1. Fundamentals

1.1 Life Cycle Model

Only very small systems can be built in the same way as primitive peoples
build houses. As soon as the system is slightly complex. a systematic
approach is necessary. The sequence of steps to be taken from the first idea
to operation and further on until the system is discarded. is called the System
life Cycle. Though there are many different life cycle models. they are all
based on the distinction between certain activities or phases, namely

analysis and specification
design

implementation
integration

operation and maintenance.

Note that the life cycle may be used as a phase model. or a model of
activities, or a list of roJes. In the sequel, the second meaning is assumed.

Recently. the life cycle concept has been attacked by several authors. not only
because it does not reflect the experiences of many projects. but also because
alternative ways of building systems (for instance by prototyping) are
ignored. See the references in 6. t .6.

176

1,2 Cost Distribution

About two thirds of the total cost of software are caused by activities wh ich
take place when the software is already operational (Le. during maintenance)
(Boehm, 1976). Therefore, every attempt to reduce the high cost of software
has to focus on maintenance.
(Note that there is an important difference between maintenance of hardware
and of software: while hardware is actually maintained, i.e. the original stale
is conserved or restored , software is corrected, extended, or adapted to new
requirements, i. e. it is modified. A program is different from its original
state after maintenance.)

There are three ways of reducing the need for maintence:
reduce need for correction
reduce effort for modification
reduce total volume (by using standard components or old software)

A good specification contributes to each of these subgoals. Therefore, the
overall goal is not to reduce the effort for specification , but rather to invest
more in specification in order to save much more during maintenance (and also
during design and implementation).

1,3 Terminology

1.3.1 SpeCification

To date, we have not achieved a slable and well recognized terminology in
Software Engineering. fn the sequel, we use a Simple, pragmatiC definition of
"specit ication" (from Kramer et aI., 1982):

A description of an object stating its properties of Interest. It usually
implies that the description should try to be precise, testable, and formal.
It is recommended that "specification" be used with some attribute, e.g.
requirement specification.
Specification is frequently used to mean functional specification which
contains both requirements and design aspects. This (orm of use is imprecise.

Many more relevant terms are defined by the fEEE (1983) .

Specifications are written and read by many people, like analysts , customers,
managers, and programmers . Since these people differ greatly in th eir
background, education, and interest, they have usually not the same idea of
what a specification should look like. Tools , which can change the
representation of a given information automatically, can help to meet the
requirements of more than just one single group.

177

1.3.2 The System Triangle

When we talk about programming systems, or specification systems, we
distinguish three components, or sets of components, namely methods,
languages, and tools.

Methods indicate how to proceed, like rocipes in a cookbook. Language s
restrict the set of possible statements to a particular universe of discourse,
and to a certain syntactical representation. Tools check, store, and transform
such statements.

All three are strongly Interrelated by the abstract concepts of the
(specification-) system. Note that the term "methodology" means "science of
methods", though it is often misused for "method" . Figure 1 exemplifies the
system triangle:

Concepts

Tools

Fiaure 1: System triangle

1.3.3 Levels of Formality

There are languages of various formality. For our purposes, we distingu ish
four levels of formality, or styles :

Style Syntax Semantics Examples

informal not (prec.) defined not (prec.) defined natur. languages

formatted restricted not (prec.) defined forms

semi-formal defined partially defined pseudo-code

formal defined defined progr. languages

178

For coding programs, we use a formal language. (Though the semantics of most
programming languages are not precisely defined, if at all , there is always a
translator which provides a de· facto·definition .) All other documents are
written in informal language, sometimes on forms. Forms impose certain
restrictions to the way natural language is used, and require the user to
answer all relevant questions. Semi·formal languages are comparatively new;
their first application was in program design languages (pseudo code).

1.4 Why semi-formal Specifjcation ?

This paper does not treat formal specification. This does not mean that formal
techniques are not important. However, they are not yet in a stale that users
in industry could really apply them. Semi·formal specification , i.e. an
approach which is based on semi· formal specification languages, has (at least
for the time being) several advantages:

The languages can be learned and understood with limited effort by people
who did not have extensive training in formal methods

Documents resemble those written in natural language

Incomplete and vague information fits better in such a system

On the other hand , semi-formal specification systems are superior to
traditional informal specifications because

many deficiencies which would be buried in plain text become visible

it can be stored in, and retrieved form, a data base

automatic tools can be used for checking and for changing the
representation .

Oegree 01 Formalization Development with System for

100 % _ •• _. ___ • ___________ • _. _ _ / ~~mi'~o~~~~ ~~~c:r:c~tlon

supported by Spec. System

...... ~=-:-...",..

Idea Specific. Design Coding

Traditional
Development

Test ...

Phase

Figure 2: Degree of Formalization during the Software Life Cycle

179

Figure 2 shows schematically how the software development process is
Influenced by a system for semi-formal specification. In the traditional
approach, there Is practically no formalized information until the software is
coded. Then, full formalization must be achieved in a single step. This method
Is, as we all know, error prone, because there are many misunderstandings,
inconsistencies, simple errors and other shortages in the specs which are not
discovered, because the document produced next, i.e. the code, can onty be
understood at the level of single instructions. tn the modern approach, there
are much better chances for detecting deficiencies of the specs, and
Improving them.

To summarize the message of this paragraph: Specification systems do not
shorten the specification phase, but improve the quality of the resulting
document.

2. Principles of Specification

2,1 Qualities of Specifications

A specification should be

correct (I.e. it should reflect the actual requirements)

complete (i.e. it should comprise all the relevant requirements)

consistent

unambiguous

protected against loss of information and unintended changes

easily write able and modifyable

readable and concise (in order to ease the communication between user and
analyst)

implementable (i.e. it should ease design and implementation)

verifyable (i.e. there should exist a procedure to check whether or not the
product complies with its specs) . This quality is also called "testable".

validateable (i.e . there should be a mechanism to ensure that the
specification really reflects the user's specification)

traceable (i.e . when the specification is changed, it should be easy to
identify all statements in other documents affected by that change).

Note that these goals are highly inconsistent. For instance. a formal (e.g .
algebraic) specification is verifyable, but not readable for most people, in
particular not for the customer. Therefore, it is not validateable.

180

The first four of the qualities listed above (correctness, completeness,
consistency, and unambiguity) do not have the same meaning to all people :
vendors of tools for specification, for instance, often claim that their system
can guarantee correctness. This does, of course, not imply that the content
of the specs is correct with respect to the intentions of the customer, but
only that certain formal requirements are met. The reason for this is that
there is no reference (except the user's brain) to prove specifications correct
or complete, in contrast to programs being provably correct with respect to
the underlying specification.

2.2 Useful properties of Specifications

In order to achieve the qualities listed above, certain properties are obviously
useful :

The specifications must be recorded on some permanent medium (e .g.
paper, magnetic tape).

They should be as formal as pOSSible, and as informal as necessary. Also,
they should support the processing of information which is vague,
incomplete, or not yet well defined (i .e. provid ing a fill - in that indicates
the lack of information) .

Specs should exist only in one single copy ("single source concept").

There should be tools for automatic checks and transformations between
different representations.

Specs must be available in representations appropriate for those who have
to use them (e.g. graphical representations which naturally mirror human's
way of thinking) .

2,3 Specification Systems Requirements

From the useful properties stated above, we can derive the requirements of
specification systems; such a system should provide

a data base system as the central information repository,

a semi-formal specification language and several representations,
including a graphical one,

tools for all clerical tasks (storing, retrieval, checking, transformation) .

181

Since software systems are developed by several people, and usually exist in
several versions and variants at the same time, the specification system
should also provide

multi user operation of tools,

automatic management of versions and variants.

2.4 General Structure of a Specifjcation System

As mentioned above, an ideal specification system consists of a method, a
language, and a set of tools, which are all based on a common set of concepts.
The list following below summarizes the most desirable features.

Abstract concepts
Life cycle model
Stepwise completion
Permanent validation

Methods supported by the system
Enter every information immediately
Allow for informal texts
Check early for correctness, completeness, consistency, unambiguity
Concentrate on information necessary for specification.

Languages

Topls

Semi-formal specification language
Several syntactical representations of a specification
(e.g. graphics, tables etc.).

Multi-user data base system
Tools for checking, retrieval and selection.

In reality, however, most systems are incomplete. They are usually based on
either of the components, and do never cover the full scope. Some activities
started from a particular method (e .g. Structured Analysis, see 3.2), or from a
certain representation (e .g. SADT, see 3.1), or from a set of tools (e.g.
PRADOS, see 3.6) . In the next chapter, some specification systems are
presented. Our goal is to give an idea of their dominant feature; we certainly
do not attempt to provide complete information . Please refer to the
references (6.1), or contact the vendors listed in 6.2.

'62

3. Specification Systems: Some Examples

In this chapter. we present some examples of specifications in various
languages. Additionally. we brielly describe their underlying methods. The
purpose is to show some typical styles rather than to describe syslems in
detail. These are the examples chosen for this paper:

SAD T is probably the best known graphical language for expressing
specifications ;

Structured Analysis (SA) is similar to SADT. but has a wider range
(towards design) . We present it together with proMod. a tool which
supports SA.

PSL/PSA is the classical tool·based specification system.
SREM is a very powerful system for describing . and simulating . real time

software.
EPOS. another tool dedicated to the development of real time systems. is

fairly successful in Germany and central Europe.
PRADOS was chosen as an example of those systems which do not really form

a monolithic specification system, but rather a tool kit.

Our list covers only a part of those systems that we know. which in turn are
certainly only a small fraction of those which exist. Therefore, our choice
should not be interpreted as a judgement. or recommendation I

3.1 SADT (Structured Analysis and Design Techniaue)

SADT was developed by SofTech between 1972 and 1975. It covers the
requirements analysis. the design and the documentation of specifications,
aiming at improved communication between analysts, developers, and users.

3.1.1 The Method

The method SADT focuses on data flow and implies a stepwise refinement of
so called SADT-diagrams which are hierarchically ordered. In its original
definition (Ross. 1977). there is a duality between so called actigrams and
datagrams modelling the data flow in two different ways representing
different views of the system:

actjajams identify functions as central elements of the description
and data providing e.g. input or output for the functions

datagrams identify data as central elements of the description and
functions providing e.g. input or output for the data.

183

The redundancy makes It possible to prove consistency, I.e. one can check
whether every function In an actigram is comprised in some datagram, and
vice versa.

3.1.2 The Language

SADT is a graphical specification language allowing the user to describe the
system in terms of activities and data. As outlined above, on the one hand
there are actigrams conS isting of activities and data. Activities are
represented by boxes and data by arrows. On the other hand there are
datagrams, where boxes stand for data, while arrows represent activities.
Practical experience, however, indicates that most users tend to use only
actigrams. For the reason of complexity the language restricts the number of
boxes per SADT -diagram to seven.

Figure 3 shows an SADT-box with its typical components:

Control

ACTIVITY
Input Output

Resource

Fiaure 3: SADT-box (Actigram)

The three actigrams on the following pages (figures 4, 5, 6) show an activity
("ASSIST SADT USERS") at three different levels of refinement. Note that the
last actigram (f ig. 6) refines an activity ("CREATE KITS") of the second
diagram (fig . 5) . (Source : lissandre et aI., 1984, from IGL, Paris)

3.1.3 Tools

SADT is still a paper and pencil method. And there is no problem in draawing
all the diagrams once. However, when there are changes (and the need for
change is the only property of software that does never change), diagrams
must be redrawn again and again . This is very annoying, Therefore. there have
been several activities for providing tool support: the examples in figures 4,
5, 6 were produced by such a tool. Their capabilities range from simple
graphics (i.e. they are used as an automatic drawing machine) to fairly
sophisticated programs which do some sematic checking and analysis .
According to D.T. Ross, who invented SADT, "none (of the tools) is fully
successful in implementing SADT" (Ross, 1985 b).

! (J
J » o -
i , o ~
 OJ 3 -o 't

>
 , CD

<

CD

U
TI

LI
S

A
TI

O
N

AU

TC
U

R
:

I.G
L

P

R
O

JE
T

:
S

.P
.E

.C
.I.

F.

N
O

TE
S

:
1

2
3

4
5

6
7

8
9

1
0

IN
TE

R
V

E
W

 N
O

TE
S

TE
C

H
N

IC
O

{X
)f,

C
M

E
R

C
w

'D
O

C
U

'-E
N

TS

E
X

TE
R

N
A

l D
IA

G
R

A
M

S
. C

O
M

M
E

N
TS

. R
EA

C
TI

O
N

S

M
A

N
A

G
E

R
S

. T
E

C
H

N
IC

A
l C

O
M

'"
 D

IR
EC

TI
VE

S

N
O

EU
D

:
S

A
S

/A
·O

04

T

Im
E

:

TR
A

V
A

IL

LE
C

TE
U

R

D
AT

E
C

O
N

TE
XT

E

D
AT

E
0

1
/0

4
/8

3

x
R

EC
O

M
M

AN
D

E

R
EV

P

U
B

LI
C

A
TI

O
N

N

E
A

N
T

TE
A

M
 0

8J
E

C
TI

V
E

S

A
S

S
IS

T
D

IA
G

R
A

M
S

· C
O

M
M

E
H

TS
· R

E
A

C
TI

O
N

S

- ~
S

.A
. D

.T
.

P
R

O
JE

C
T

D
O

C
U

M
EN

TA
TI

O
N

U
S

E
R

S

M
E

A
S

U
R

E
M

E
N

TS
. C

H
E

C
K

S

A
S

S
IS

T

S
.A

.D
.T

.
U

S
E

R
S

N

U
M

E
A

O
:

! en
 >
 ~ C

~

OJ
 3 '" Ol - ~ C

T '" o :;; a '0

U
Tl

Ll
S

A
TI

O
N

A

lIl
E

IJ
R

:
I.G

.L

m
A

Y
A

n.

l£
C

T
B

JR

D
AT

E
C

O
N

TE
XT

E

P
R

O
JE

T
:

S
.P

.E
.C

.I.
F.

D

AT
E

0
1

/0
4

/8
3

x

AE
<X

Jt
.t.

IA
N

D
E

R
EV

P

U
B

lIC
A

Tl
O

N

ro
.1

M
E

T
N

O
TE

S
:

1
2

3
4

5
6

7
8

9
1

0

TE
A

M
 o

eJ
E

C
T

lV
E

S

W
TE

R
V

E
W

 N
O

TE
S

C
R

E
A

TE

D
IR

E
C

TI
V

E
S

 F
O

R
 K

IT
 U

S
A

G
E

T

E
C

H
N

IC
O

al
M

M
E

A
C

. D
O

C
U

M
.

E
X

T.
 D

IA
G

 ..
C

O
M

M
 .•

 R
E

A
C

TI
O

N
!>

.
K

IT
S

I

D
IA

G
R

A
M

S
· C

O
M

M
E

N
TS

· R
EA

C
T1

Q
N

S
I

D
IA

G

O
R

 R
EA

C
T

S
/C

O
M

M
E

N
T

S

..
C

C
 I

lM
E

N
TS

 O
N

 E
X

TE
R

A

l
IA

G
R

AM
S

E
X

TE
R

N
A

l C
O

M
M

E
N

TS

C
R

m
cI

Z
E

K
IT

S

R

:lU
E

S
TS

 F
O

R
 P

 O
JE

C
T

D
O

C
U

M
EN

TS
 I

AN
SW

ER
S

M
A

N
A

G
E

R
S

 &
 T

E
C

H
N

iC
A

L
C

O
M

M
. D

IR
E

C
TI

V
E

S

IN
TE

R
FA

C
E

W
Ill

i
'0

1
AI

N'
T

O
R

 E
O

rr
"

O
O

EL
S

M
AN

AG
ER

S
R

E
O

U
E

S
TS

~ H
A

N
D

lE

P
R

O
JE

C
T

D
O

C
U

M
EN

TA
Tl

O
N

M

O
D

EL
S

•
t.4

O
O

EL
S

M
E

A
S

U
R

E
M

E
N

T
O

R
 V

E
R

IF
lC

A
Tl

O
N

R

E
Q

U
E

S
T

M
E

A
S

U
R

E

M
EA

SU
R

EM
EN

TS
 &

 C
H

EC
KS

,
...

AN
D

V

E
R

IF
Y

 ,

N
Q

EU
D

:
S

A
S

/A
O

01

TI

TR
E:

A

S
S

IS
T

S
.A

.D
.T

.
U

S
E

R
S

N

U
M

E
A

O
:

--
--
-
-

-

i I I

- '" '"

!. C
/l

}>

o -;-
i o iii"
 '" OJ 3 "' CD o o " a. ~ CD

U
TI

LI
S

A
TI

O
N

A

lJ
lE

U
R

:
I.G

,L

TR
A

V
A

IL

LE
C

TE
lJ

R

D
AT

E
C

O
N

TE
XT

E

P
R

O
JE

T
:

S
,P

,E
,C

.I,
F,

D

AT
E

0
1

1
0

4
1

 8
3

x

R
EO

C
lM

M
AN

D
E

R
EV

P

U
B

LI
C

A
TI

O
N

N
O

TE
S

:
1

2
3

4
5

6
7

8
9

1
0

S

A
S

i A
O

N
O

D
E

IN
D

E
X

 L
IS

T
!

E
O

U
E

S
T

FO
R

 T
H

IS
 L

IS
T

O
O

CU
M

EH
TS

C

R
O

S
S

 R
EF

ER
EN

C
E

,

C
R

EA
TE

D

AT
A

O
R

 A
<

tn
vl

T
Y

LI
S

T

D
IA

G
N

O
S

TI
C

S
,

..
 TE

R
V

IE
W

 R
E

S
U

lT
S

C

O
H

ER
EN

C
E

C
H

EC
K

•
LI

S
TS

AN

D
 N

O
TE

S

,
N

O
TE

S

C
R

E
A

TE

R
E

Q
U

E
S

T
FO

R
 A

 D
IA

G
R

A
M

! R
EQ

U
E

TE
D

 D
IA

G
R

A
M

f-
NE

W

N
E

W
 D

IA
G

R
AM

S
D

IA
G

R
A

M
S

- g:
06

T
A

lN

E
X

TE
R

N
A

LR
E

 C
TI

O
N

S

R
E

A
cn

aN
S

E
X

TE
R

N
A

L
D

IA
G

R
AM

S
AN

D
 R

E
A

C
O

O
N

E

X
TE

R
N

A
L

f-E
X

TE
R

N
A

L
D
~

pac
uM

EN
TS

pR

A
M

S

V
E

R
IF

lC
A

Tl
(

N
R

E
O

U
E

S
T

C
O

M
M

EN
TS

U

PD
AT

E
F

lE
A

cn
aN

S

r-
D

IA
G

R
A

M
S

R

E
A

D
E

R
'S

 LI
S

T!

I-
R

E
O

U
E

S
TF

O
R

S
U

C
H

 L
IS

T

AU
TH

O
R

'S
 W

O
A

K
FI

U

KI
TS

M
A

K
E

U
P

A
 K

IT

KI
T

U
S

A
G

E
 D

IR
E

C
Tl

V
E

S

5

N
Q

E
U

D
:

S
A

S
IA

I
0

3

m
A

E
:

C
R

E
A

T
E

K

IT
S

NU

M
EA

O
:

187

3,2 Structured Analysis (SA)

SA was developed by Yourdon and others (see Yourdan, Constantine, 1979),
Although, the name is very similar to SADT, only the data flow as the central
principle is common to both . It is used for analysis and both coarse and
detailed design,

3.2.1 The Method

The method allows the user to model a system with data-flow diagrams
(DFDs) consisting of data, and processes transforming the data. In other
words, DFDs describe the flow of data through the system by denoting sources
and sinks for data flows, the data flows itself, and processes. So called
mlnlspecs are used to describe processes in more detail. For refining the
structure of data, a data dictionary (DO) is used. SA proposes a stepwise
decomposition of DFDs so that each process in the parent DFD is broken down
into several child DFDs. Consequently, several levels of DFDs emerge.

SA proposes two major steps. The first one is to develop a so called context
diagram, which shows how the system is connected to its environment.
Hereby, the user defines the interface in terms of sources and sinks of the
environment, processes, data flows, and files. Note that the data flow
consists of both the data and the direction of flow.

In the second step, the user partitions and refines the system "as long as
possible", i.e. each process of a DFD is described in more and more detail until
the level of atomic processes is reached , Then the user writes minispecs
demonstrating the algorithmic structure of these atomic processes. Also, a
data dictionary is created containing the structure of the data. SA also gives
naming conventions for processes, dataflows, files, which can help the user to
express his understanding most clearly.

3,2.2 The Language

The sources and sinks belonging to the environment of the target system are
shown as box e s on a data-flow diagram. Other symbols are ci rcles
representing processes, arrows representing data flows . and ~
representing files. Please note that the first time a file is referenced in a DFD
two bars are used (see fig. 7a, file "Bit Map") while further references to this
file (in other DFDs) are denoted by a single bar (see fig. 8a, file "Bit Map").
The minispecs are written in pseudo-code, the data described in the data
dictionary is written in a BNF-like notation.

188

The examples given below were laken from a paper on the Tektronix-tool
(Bell, 1985) . They show data-flow d iagrams, together with minispecs and
information stored in the data dictionary.

Figure 7a : DFD for a display controller

Figure 8a: DFD for Generate Bit Map
from figure 7 .a

~f"-PlXE~ • PIXEl
811 _~~ESS _ IHUOEI".
PIXEL _ lOOlCAl
1M • A$OLCMAA
(IIIAPtUC$ • (POl YUHI': I POl Yw.RKIEA I 4AEA Fill I GOPI
.$CREiEfLCOHlROl _ ISCROl.l I [AASE I REVERSE r 1iOAIL5O'Oll/
K.I_ &CREEN_ COHlAOI.. • SCREEtLCONlAOl
1II1'_ 1oIAI' • jP!Ult
en .-.WI_ f'lXEL • PlXEl
TOT_ PIlIIU _ PlXEl
~~. l'U£l
C()M.I,U.H()_ STRIHG _ UASCI_ OtA.AI ' Dt'UYfIERI
DI$PLA't_ PMIUIIIVES • GRAPttICS • TEXT. SCAEEH_ COHTFO..
GIN • ILPOSITIOH • Y _ F'OSIlJC>l
ILPOSffiON Y_ POSIT'ION • INTEGER

Figure 7b : DD for 7 a

QV.IIACTER_GENE~llOH_w.r_LOCATlON • ...sCII_ Ou..R
FOAl. 1101200

CHAA_ GEN_,._ WOU. I
f~J.'TO'OO

IIF CM.oVVoCTER_ Gf.H_ 1oIAI' _ CCWl[N'TS U) - TRUE
SEP4D , TO 811,.

""
'NO

'"'
SIENO 0 TO 8n IUS'

Figure 8b: Minispec for 8a

seLECT

IW"
--MTG--\ ~'"

seLECT
DElAYEO
TRIGGER ,

189

Figure 9: Top level DFD of a trigger gate array

CONTROO.
"'~, ,

Fiaure 10: DFD of Count Delays
(from figure 9)

MIHISPEC ~.,

ClFlCUIT E1.EMEHTS: 2A'2. 2FF:!, 2FF4, ~. 2G5
OVERVIEW: Tl-IIS CIRCUIT IS A 3-FllP.FLOP STATE MACHINE. 2FF2

CON'mOLS THE START OF COONTING DELAY, 2f'F3 SETS
AT THE END OF EVENTS COUNT. AND 2FF4 SETS AT THE
END OF THE TlME-OELAY COUNT. SPECIAL.cASC coums
OF NO EVENTS ANO 1 EVENT ARE CONTROllED BY LEVEl
INPUTS $El 8'1' THE PROCeSSOR THE IHITlAL STATE
OCCURS WHEN THE AAoceSSOR S'mOefS RSTACO. THIS
CLEAfIS 2FF2. WHOSC 06AR OUTPUT ClEARS 21'1'4. 2ff3
IS CLE.AJ'lEO BY THE A TRIGGER FliP-FlOP IFF! . THE
FIRST [)CU(AFTER ... TRIGGER WILL SET 2FF2 TO f NA8Lf
TliE OEL.AY COUtflER. IF ONEVNT .. I, ifFl WILL ALSO
SET AT THIS TIME. OCUCS WIlL SE COUNTED UNTIl DElTC
.. I, CAUSING 2Ff3 TO SET. WHEN f OE .. I, THE SELECT
OELAY Q.QCI(lOGIC SWITCHES TO COUNTING OEl AY BY
TIME. nns WILl CONTINUE UNTIL THE NEXT CX:CUR­
RENee OF O€L TC .. 1, WHEN f oo .. I WILL OCCUR. Tl-IE
STAn: MACHINE REMAINS IN THIS STATE UNTIL 1'1-IE NEXT

<oooc, =""'.
AlL FUP-fLOPS ARE RESET ASYNCHRONOUSLY BY PRQC1:SSOR
"'noN·

SET STRTtlEL .. 0 WHEN AST ... CO .. 1
SET eoo .. 0 WHEN STRTDElB .. 1
SET fOE .. 0 WHEN ATB .. 1

AU FUP-FlQPS WILL SfT ON CONOITION ON THE RISING eDGe Of
OCU< •

SET STRTDEL ~ 1 WHEN AT • 1 (RESETS ARE NOW REMOVED
FAOM 2FF3, 2FF4)

SET EOE(N .. '\ _ ONEVNT • DEL TC • EOE • NOE:VNTS
SET EOO(N+' _ (EVON .. EOO)'(DELTC .. EOD) _ EVtlN"DELTC
"00

Figure 11 : Minispec of Contro l Delay
(from f igure 10)

190

ow
SYSTEM

Fiaure , 2: DFD of a product development

3.2.3 Tools for SA: proMod (Projektmodell)

,

proMod was developed bei GEl , Aachen , FRG. It is based on the Structured
Analysis/Structured Des ign -concept.

Wh ile the project proceeds , all in1ormation is accumulated in the preMed
project library .

Tools for Structured
DFD-processor
DO-processor
TD-proccessor
AAD-analyzer

Tooois for Structured
Translator
MS - processor
FS - processor
DO - processor
SE - analyzer

Analys is are:
editing and processing of data flow diagrams
data dict ionary system
minispec - processor
cross checking between DFDs, DO and minispecs .

Design are :
from SA - to SO - System
for module specificat ions
for functiona l specificat ions
data dictionary system
cross-checking at SO - leve l

Below the level of SO , proMod prov ides POL
pseudo-code-systems . Other tools generate code-frames

and DARTS , two
in several lang uages

(PASCAL, FORTRAN, COBOL).
proMod is available on VAXlVMS, and IBM-PC (XT, AT) / PC-DOS.

191

3.3 Problem Statement Language/Problem Statement Analyzer (PSUPSA)

PSL was developed at the University of Michigan by the ISDOS-project
(Information System Design and Optimization System) in the seventies. PSL
primarily supports requirements analysis and documentation.

Like some other systems developed at a university. PLS/PSA is now
supported, improved, and commercially distributed by a private company
(M ETA-systems).

3.3.1 The Method

PSUPSA was the very first tool-based system for semi-formal specification
which was actually useful - and commercially successful. All other such
systems are copies of PSUPSA, at least in part.

PSUPSA emerged since 1970 in a very organiC manner, and Daniel Teichroew
and his co-workers did never put too much effort in writing down the method
they had in mind. Still, there is a method behind PSL: It is the one sketched in
2.4.

3.3.2 The Language

PSL is based on the entity-relationship approach first described by Chen
(Chen, 1976). but applied long before. The entity-relationship model was
originally used as a database model splitting the world to be described into
entities, and relationships between these entities. The dominant feature 01
this approach is the similar treatment of entities and relationships.

Different lrom SADT and SA, PSL is a linear (textual) language. PSL provides
some 30 entity-classes and 75 relations to the user. The most important ones
are:

Entity-classes:
REAL WORLD ENTITY
PROCESS
INPUT
SET

Relations:
GENERATES
RECEIVES
UPDATES
CONSISTS

objects outside the target system
activities
input data
set of data elements

e.g. <process> GENERATES <data>
e.g . <process> RECEIVES <data>
e.g . <process> UPDATES <data>
describes data structures;
e.g. colour CONSISTS yellow, red, green, blue

PSA Version AS.2R2t1

192

Jul 23. 1~83 20:05: I~
PSL/PSA - 15005 - VMlcns

IPSL Input Source Listing

Parameters: OB-VESSEL.OBF INPUT-VESSEL.PSL SOURCE-LISTING NOCROSS-R[FERENCE
UPDATE OATASASE-REFERENCE NO~ARN-NE~-OSJECTS NOSTAT£MENT-NUMB£RS
DBNBUF-200 VIDTH-8~ LINES-60 INOENT-O HEADING PARAt1ETERS PAG[-CC-OH
NOEXPLANATION

LINE S T t1 T

1 >/* This is a set of PSL statements to define user views */
2 >
3 >/*
4 >

Here is the global users' view #/

5 >DEF ENTITY
G > TKEY
7 > SUBPARTS ARE
8 >
~ >

10 >
II >
12 >
13 > •
lit > DESC;

Uservlews:
'Global';
User-Vlew-I.
User-Vlew-Z.
User-Vlew-3 .
User-VIew-it,
User-Vlew-S ,
User-View-G.
User-Vlew-7;

15 >This Is a global view of a ship c~pany.;
16 >
17 >
18 >/*
I~ >
20 >DEf ELE
21 >
22 >
23 >
24 >
25 >

Vcssel.Cargo-Voluec.Detalls.Port.Oatc-of-Arrival.
Oate-of-Oeparture.Conslgnee,Contalner/.Slze.
Shlpping-Agent.Vayblll/.
Del Ivery-Date. Contents.
Handling-Instructions:

26 >
27 >/*
28 >

Here Is the local users' view */

29 >OEF ENTITY
30 > TKEY
31 > tSTS OF
32 > AnR ARE
33 >
34 > RPD IS
35 > DESt;

User-View-I;
'VI' :
Viewl-Ship;
FREQUENCY-IS
TIHING-REQUIREt1ENT
'E. Basar';

100.
25:

36 >Information is stored about each ship. including
37 >the volume of its cargo storage capacity .:
38 >
39 >
"0 >OEF ENT I TY
Itl > TKEY
"z > tSTS OF
43 >
44 >
45 >
46 >
47 >
48 >

ATTR ARE

RPO IS
DESC ;

User-Vlew-2;
' V2' ;
View2-Ship,
Vicw2-Ship-Port,
View2-Port ;
fREQUENCY-IS
TIt1ING-REQUIAEt1ENT
' E. Basar':

100,
50:

Figure 13: PSL source listing (incomplete)

~~A versIon A~.2H2~

1I NE S T M T

193

Jul 23. 191:13 20:05: 19
PSl/PSA - ISODS - VM/C~

IPSl Input Source listing

49 >A ship stops at many ports and it is necessary to
50 >print out Its itinerary . :
51 >
52 >
53 >DEf ENT ITY
54 > TKEY
55 > CSTS OF
56 >
57 >
58 >
59 >
60 >

ATTR ARE

61 > RPD IS
62 > DESC:

User-V iew-3:
'V3' ;
View3-eonsignee.
View3-Port.
View}-Ship.
View}-Container;
fREQUENCY-IS
TI~INC-REQUIRE~ENT

, E. Basar' :

25.
7:

63 >Persons who ship goods are referred to as consignees.
64 >Their goOds must be crated or stored in shipping containers.
65 >Thes~ are given a container identification number. A list
66 ~can be obta i ned. when requested t of what containers have
67 >been sent by a consignee.:
68 >
69 >
70 >DEF ENTITY
71 > TKEY
72 > CSTS OF
73>
7~ >
75 >
76 >

ATTR ARE

77 > RPD IS
78 > DESt;

User-View-4;
'V4' ;
View4-Agent.
View4-Port.
View4- Container:
fREQUENCY-IS
TI~ING-REQUIRE~ENT

'Chiang Wan';

110.
75:

79 >The shipments are all handled by shipping agents. A
80 >shipping-agent report must be generated, listing all
81 >the containers that a g iven agent is handling and giving
82 >their waybill numoers.:
83 >
8\ >
85 >OEF ENTITY
86 > TKEY
87 > tSTS OF
88 >
89 >
90 >
91 >
92 >

ATTR ARE

93 > OESC:

User-View-5;
' V5' ;
Vi ew5-Waybi II,
View5-Port,
ViewS-Ship .
ViewS-Container;
fREQUENCY-I S
TIMING-REQUIREMENT

lOa .
50:

94 >A waybill related to a shipment of goods between two
95 >ports on • specified vessel . The shipment may consist
96 >of one or more containers.:
97 >
98 >
99 >OEF ENTITY

100 > TKO
101» eSTS OF

User-View-6:
'v6' ;
View6-Ship,

figure 13: incomplete PSL source listing (continued)

194

Figure 13 shows a fragment of a PSL-input source listing; the specification
describes cargo-vessels and their organizational environment.
(Source of all examples in 3.3: Papers from ISOOS, 1983)

3.3.3 The Tools

PSA, the tool, is actually the heart of the whole system. It is built upon a
COOASYL-database system, and offers a large selection of services and report
functions. PSA is a huge FORTRAN-program consisting of some 60 000 loc. It
is available on almost any hardware and operating system; implementation on
pes was announced some time ago.

Two reports follow below; the second one (figure 15) shows a tree-structure
(the hierarchical content-relation) by indentation . The first one (figure 14)
shows part of the the same information in a table. These examples represent
the traditional position of the ISOOS-project, where all output had to be
line-printer oriented . Therefore, pseudo-graphics was the best representa­
tion available. But the system has now been extended by new tools, which
support also high-resolution diagrams (not shown here).

An fo:. in Ci .j) me .. ns that column j is contained
directly or indirectly in row i. The co lumn s
do not consist of anyth i ng further . Intermediate
GROUPS are ignored .

14 Size ----.-------- -.--- ------- /
13 Hand! ing-Inslructions ------ -- /

12 Contents ------------------- - - /
11 Delivery-Date -+-- ------------ /

10 Waybi III -------------------- I
9 Shipping-Agent --------------- I

8 Containerl ------------------- I
7 Consignee -------------------- I

6 Date-of-Departure ------------ I

5 Date-ot-Arrival -------------- I
4 Port ------------------ - ------ I

.3 Octai Is --------------------.- I
2 Cargo-Volume ----------------- / I

1 Vessel ----------------------- I I
------------------- --------------+----------+----------+--------+
I User-View-I ------------- __ ___ ft * ~
2 User-View-2 --------------____ ft •• •
} User-View-} ----------------__ ~
4 User-View-4 -----------_______ • • • 1\ 6' lit •

5 User-View-5 ------------------ ~ ft • • n • n *. ft 6'

+----------+----------+--------+
6 Uscr-View-6 ----------------- - I' .' I . I I
7 User-View-7 ------------------ 6' • ft •

---------------------------------+----------+----------+--------+
Figure 14: A PSA-report (Basic Content Matrix)

PSA Version A5.2R211

195

Jul 23. 1983 20,05 " 9
PSl/P5A - ISOOS - VM/CHS

Contents Report

Parameters: DS-VESSEL.DBF FllE-PSANAH£S.PSATEI1P NOCOMPLETEN£SS-CHECK
NQINO[X NOPUNCHED-NAKES LEVELS-ALL LINE-NUMBERS LEVEL-NUMBERS
OBJECT-TYPES PRINT NDNEW-PAGE OBNBUF-200 WIOTH.8~ LINES-60 INOENT~O
HEADING PARAMETERS PAGE-CC-ON NOEXPLANATION

I· ([NT r TV) I User-View-I
I (GROUP) 2 Viewl-Ship
2 (ELEMENT) 3 Vencl
3 (ELEI1ENT) 3 Cargo-Vo I ume
4 ([LEI1[NT) 3 Oetai Is

2· (ENTITY) I User-View-2
I (GROUP) 2 View2-Ship
2 (ELEMENT) 3 Vessel

3 (CROUP) 2 View2-Ship-Port
4 (ELEMENT) 3 Port
5 (ElEHENT) 3 Vessel

• (ElEMENT) 3 D. te-of -Arr iva 1

7 (£LEI1ENT) 3 Date-ot-Departure
8 (GROUP) 3 View2-Ship (M-I)

9 (ElEMENT) • Vessel

10 (GROUP) 3 View2-Port (M-I)

II (ElEMENT) 4 Port
12 (CROUP) 2 Vicw2-Port
13 (ELEMENT) 3 Port

3" (ENTI TV) 1 User-View-3
I (GROUP) 2 View)-Consignee
2 (ElEMENT) 3 Consignee

3 (GROUP) 3 Vi ew)-Conta i ner (M)

4 (ELEMENT) • Conui nerl
5 (ELEMENT) • Oate-of-Arr i va I

• (ElEMENT) • Shipping-Agent

7 (GROUP) 4 View)-Port (I)

8 (ELEMENT) 5 Port

9 (GROUP) • View)-Ship (M-I)

10 (ELEMENT) 5 Vessel
II (GROUP) 2 View)-port
12 (ELEMENT) 3 Port
13 (GROUP) 2 View)-Ship
14 (ELEMENT) 3 Vessel
15 (GROUP) 2 Vi ICw)-Conta i ner
I. (ElEI1ENT) 3 Conta i nedl
17 (ElEMENT) 3 Date-of-Anival
18 (ELEI1ENT) 3 Shipping-Agent
19 (CROUP) 3 View)-Por'"t (I)

20 (ELEMENT) 4 Port
21 (GROUP) 3 VilCw3-Ship (';-1)

" (ElEMENT) • Vessel .- (ENTIn') I User-View- 4
I (CROUP) 2 View4-Agent
2 (El EKENT) 3 Sh i ppi ng-Agent

3 (CROUP) 3 Vi ew4-Conta i ner (M)

• (ELEKENT) 4 Contaj nerll

5 (ELEKENT) 4 Waybill#

• (HEI1ENT) 4 Consignee

7 (ELEMENT) 4 Vessel

Figure 15: A PSA report (Contents Report)

196

3.4 Software Requirements Engineering Methodology (SREM)

SREM is directly based on PSUPSA; it was developed by TRW since about
1975, tt supp0r1s the early phases (analysis, definition, verification, and
validation of requirements) of the software development process, It is
especially tailored for the development of large, embedded, real-time
systems; the U,S, Air Force was the contractor of that project. For more
information on SREM, see papers by M, Alford (references in 6,1,4),

3.4,1 The Method

SREM possesses two impor1ant features missing from most other methods or
languages for specification , Firstly, it allows the stepwise development of
specifications beginning with informal descriptions, from which an
increasingly formal specification is developed, Secondly, data on performance
(estimated or required) of the target system can be formally included in the
specification , Since there is a tool for simulating specs, software designers
can check early whether or not they will be able to meet response time
requirements .

The method (SREM) is applied in seven steps:

1, Pefine kernet : identify the interface between the system and the
environment and describe the data flows and the data-processing units
inside the system,

2, Establish baseline : outline the very first description of the system using
either the graphicat R-Net formalism (R-Net means requirements-net, a
stimulus-response network) or the linear language RSL (requirements
statement language) ,

3, Pefine data: define data input to, and output from, each so called ALPHA
(active component); complete, and improve the RSL-specification
developed so far; implement Pascal-procedures for ALPHAs,

4, Md project information, and establish traceabil ity : add management
Informations, e.g. deadlines, milestones, needed tools etc.

5, ""=!.!.llc.' prove syntactical correctness and simulate

6, Identify performance requirements : define traceable, testable performance
requirements ; each path should be constrained by response time and
accuracy

7, Pcemonstrat~ feasibility : prove that the current design is useful as a basis
or a technrcal realization by means of a anatytical feasibility study

197

3.4.2 The Language

SREM offers the user two means of description:
- a graphical language (R-Nets) and
- a textual language (RSL) .

R-Nets are stimulus-response networks describing reactions in a system
evoked by events. An R-Nel consists of nodes (ALPHAs and SUBNETs) and il!l<li
connecting the nodes. While ALPHAs are functional specifications of
processes, SUBNETs are specifications of processes at a lower level of
hierarchy . The flow of control is described by some single entry - single exit
constructs (AND for parallel execution, OR for a multiway branch, FOR EACH
for a loop) . Additionally, validation-points can be inserted in order to express
performance requirements .
See figure 16 for a list of all symbols used in R-Nets.

RSL is a textual specification language
based on the following concepts:

Elements
are standard types defining features
of each object of such a standard
type . For example, MESSAGE, DATA,
and FILE are standard types used to
describe dala; e.g. ALPHAs stand for
processes. Elements represent nouns
in the language.

Relationships
express togical links between
Elements, e.g. <data> INPUT TO
<alpha>. They represent verbs in the
language.

Attributes
are used to complete the description
of Elements, e.g. <data> INITIAL
VALUE <value> . They represent
adjectives in the language.

Structures

""'"
...,
EHTRY NOOeONR_NET

amrf NODE ON SUEIET

EVENT

FOR"""

IllPUT_MERFACE.OLm'UT_I4TERf.

FOR

COHSIOEROR

,a.m

,,-,",ET

.......
"R'"''''
VAJ,.IOATlOtCPOM

D
@

'fj

V
®
0

0
@

ar-
®

c:::>
b.
();..

<D are used 10 define the sequences of
processing steps and represent
R-Nets, SUBNETs, and VALIDATION­
PATHs in terms of RSL-stalements. Figure 16; Symbols in SREM

196

RSL is also used to enter the R-Nets, which are then automatically drawn.

A few examples are given below. Figure 17 shows a schematic R-Net. In
figures 18a and b both the RSL-representation and the flow graph
representation of a sample R-Net are exhibited.
(Source: M. W. Alford, Proceedings of the COMPSAC Conferences 1978, 1980).

51 52

OTHER'N\ E

y

Fieure 17: A schematic R-Net

3.4.3 The Tool

INPUT tNTERFACE

VAlJOATrQN POINT

PROCESSING STEP (AlPHA)

c

VI

z

-AND" OOOE

53 SReeTOR
VARIABLE
"OR" NODE

OJTPUT
INTERFACES

Like PSUPSA, SREM is based on a large tool, called REVS (Requirements
Engineering Validation System) . Beyond the abilities of other tools, REVS
allows for project dependent extensions of the specification language, and for
simulation of the specs. Maybe that REVS is currently the most powerful tool
for specification ; but prospective customers in Europe cannot buy it because
its distribution is still limited to the U.S.

199

R NET: PROCESS RADAR RETURN.
STRUCTURE:

INPUT INTERFACE RADAR RETURN BUFFER
EXTRACT MEASUREMENT
DO (STATUS = VALID RETURN)

DO UPDATE STATE AND KALMAN FILTER END
DETERMINE ELEVATION
DETERMINE IF REDUNDANT - -TERMINATE

OTHERWISE

END
END.

DETERMINE IF OUTPUT NEEDED - - -DO DETERMINE IF REDUNDANT
- -DETERMINE ELEVATION

TERMINATE
AND DETERMINE IF GHOST

TERMINATE
END

Figure 1 Sa: A sample R·Net, textual representation

OTHERWISE (STAl1JS. VAUD_RETURN)

DETERMINE_IF _
0U11'UT NEEDED

DET INE_
IF GHOST

OETEAMINE_
EVALUATION

DETEAMINE_
A UA

Figure lSb: A sample R·Net, flow graph representation

200

3.5 EPOS
(Entwlcklungs- und Projektmanagement orientiertes Spezifikationssystem)

EPOS was developed at TU Stuttgart by R. Lauber and co-workers since 1978
(Biewald et al.. 1979). The product is now sold and supported by GPP (see 6.2).

3.5.1 The Method

EPOS is one of the systems which do explicitely not support a particular
method (though they do refer to the general principles of SAOT).

3.5.2 Languages

In EPOS. there is no clear distinction between languages and tools. i.e . the
same name is used both for the language and for the program which is used for
processing that language. Therefore. the following list may be inconsistent
with other papers on EPOS.

There are three languages used for input:

EPOS-R

EPOS-S

EPOS-P

language for requirements definition (formatted)

language for system design (semi-formal)

language for project management information
(semi-formal)

Several graphical representations can be generated by the tools.

3.5.3 The Tools

The tools of EPOS are separated in four groups:

EPOS-M

EPOS-A

EPOS-O

EPOS-C

ToOlS for project management

Analyzer and report generator (for all levels)

Generator for documenlation (e.ll . Petri-Nets.
Nass i-Sh ne id erman-Olag rams)

Human-computer interface of EPOS

EpoS-A stores all information in a (non-standard) data base. which is
accessed by all tools.

EPOS is available on PDP 111RSX 11 -M. VAX/VMS. IBM 370NMICMS. Intel
8086. 802861iRMX and several other machines.

201

3.6 PRADOS (Projekl-AbwjcklunQs- und Dokumentatjons-System)

PRADOS was (and is still being) developed by SCS. Hamburg and Munich, FRG. It
is tailored to UNIX and uses components of the UNIX-System.

3.6.1 The Method

While EPOS is based on a vague idea of a method, which has not been made
explicit, PRADOS does not even have such an idea, because it is a collection of
tools many of which existed before PRADOS was developed.

3.6.2 The Languages

The languages of PRADOS are the languages of its tools. When SADT is
available, there will be at least one genuine speCification language in the
system.

3.6.3 The Tools

Three general components are :

UNIFY
XED
IFE-GRAPH

relational database
text processing system
business graphics system

Upon these, all other components are built:
PV, PM project management tool
PB project library
TE text processing
MB methods library
SADT SADT Generator (announced)
DSA data description based on entity-relationship-model
ESS design specification language processor
PS pseudo code pre-compiler
ST Nassi-Shneiderman-chart-generator
BT & TR test monitor

4. Management Aspects

There are two important management aspects in the topic of this paper:

First, the decision to use a specification system. and the choice of a
particular product, require a commitment of the management. Introduction of
a specification system Is very expensive. The cost of the system itself and,

202

possibly, of new hardware is often high, but it is usually negligible compared
to the cost of training (or the failures due to insuffient training). The step to
using a specification system is of similar importance like the step to using a
computer; if you are not prepared to do it right, don't do it at alii Problems are
inevitable, and there will be a situation when an important project seems to
be late, because it is done with a specification system. If the management is
not prepared to show a bold front against the breakers, they will not succeed.

Second, the specification system may improve quality assurance and project
control. Most vendors advertise some management tools as part of their
products. To date, these are not very powerful. The real improvement stems
from the disciplin and standardization implied by the application of a
specification system. This side effect is in fact the main advantage Of a
specification systeml

5. Conclusions

There are many specification systems commercially available . Everybody
who uses any of the more common machines, and operating systems, wil l
find a specification system, if he or she wants to .

It is obviously still possible to produce software (and systems) without a
specification system. Special problems, like developing user interfaces. are
actually better done by other approaches. e.g. prototyping.

A specification system causes large expenses, mainly for training, but can
improve quality and productivity significantly . Therefore, it should be
regarded as a (medium- or long-range) investment.

A specification system improves standardization in the way that every
member of a project uses the same method, the same language, and the
same tool. Moreover, the documents itself have standardized features. This
implies a discipline which is the real benefit of a specification system!

Vendors say little about the methods. which are most important for the
customers.

Maintenance of specifications Is not yet supported by the tools. Therefore,
the responsibility to change all documents, when one is modified , rests
with the user. If he or she fa ils to do so (what is the normal situation) , the
specification becomes obsolete .

Implementing one's own specification system is hardly feasible, because il
takes at least ten person years to develop just a prototype.

203

6. References and Addresses of Suppliers

6.1 Beferences

6.1.1 Textbooks on Software Engineering

Boehm, B. W. (1980) : Software Engineering Economics.
Prentice Hall, Englewood Cliffs, N.J .

Fairley, B. (1985) : Software Engineering Concepts.
McGraw-Hili Book Company. New York usw.

Sommerville, I. (1985): Software Engineering . Addison-Wesley Publishing
Company, London etc., 2nd ed.

6,1.2 The Lif!) Cycle

Lehman, M.M. (1980): Programs, life cycles, and laws of software evolution.
Proc. of the IEEE, 68, 9, 1060-1076.

Ludewig, J. (1982) : Computer aided specification of process control software.
IEEE COMPUTER, 15,5, 12-20.

Swartout, W. , B. Balzer (1982) : On the inevitable intertwining of
specification and implementation. Commun. ACM, 25, 7,438-440.

6,1,3 Fundamentals and Principles of Specification

Balzer, 8., N. Goldman (1979) : Principles of good software specification and
their implications for specification languages.
in Proceedings of Specification of Reliable Software (SRS),
IEEE Cat. No. 79 CH 1402-9C, pp.58-67.

Boehm, B.w. (1976) : Software Engineering.
IEEE Transactions on Computers, C-25, pp. 1226-1241.

Brooks, W.O. (1981) : Software Technology Payoff: Some statistical evidence.
Journal of Systems and Software, 2, 3-9.

IEEE (1983): Standard glossary of software engineering terminology.
IEEE Std 729-1983.

Kramer, J. (ed.) (1982): Glossary of terms.
TC on Application Oriented Specification.
Jeffrey Kramer, Imperial College, 180 Queen's Gate, GB - London SWl 28Z.

204

Pam as, D.L. (1977): The use of precise specifications in the development of
software. in Gilchrist, B. (ed.): Inlormatlon Processing 77. North
Holland Publishing Company, Amsterdam, New York, Oxford, pp.861-867.

Timm, M. (1982) : Grundlagen von Anlorderungs- und
Entwurfsspezilikatlonen im ProzeB der Software-Entwlcklung.
GMD-Studien, Nr. 66, 82 S.

6.1.4 Surveys (Articles and Books)

Balzert, H. (1982): Ole Entwlcklung von Software-Systemen.
Reihe Informatikl34, Bibliographisches Institut, Mannheim.

Hommel, G. (Hrsg.) (1980) : Verglelch verschledener Spezllikations­
verfahren, am Beispiel einer Paketvertellanlage.
KIK-PDV 186, Teile 1 und 2, Kernforschungszentrum Karlsruhe, BRD.

Cheng, L.L. (1978) : Program design languages - an introduction.
Report No. ESD-TR-77-324, Electronic Systems Division, Hanscom Air
Force Base, MA 01731 .

COMPUTER (1982) : Special issue on application oriented specification.
IEEE COMPUTER 15, 5 (May 1982), 10-59.

COMPUTER (1985) : Special issue on requirements engineering environments.
IEEE COMPUTER 18, 4 (April 1985), 9-91 .

IEEE-SE (1977): Special collection on requirements analysis.
IEEE Trans. Software Eng., SE-3, 2-84.

Ludewig, J ., W. Streng (1978) :
Methods and tools for software specification and design - a survey.
EWICS TC on Salety and Security, Paper No. 149,23 Seiten.

Ludewig, J. (Hrsg.) (1983) : Spezilikation von Realzelt-Systemen­
Konzepte, Liisungen, Erlahrungen. 54. Tagung der Schweizerischen
Gesellschaft fOr Automatik (SGA-ASSPA), BadenlAargau, 1983- 3-21 .

Ohno, Y. (ed.) (1982) : Requirements Engineering Environments.
Proceedings of the International Symposium on current issues of
Requirements Engineering Environments; Kyoto, Japan, September 20-21 ,
1982. NHPC, Amsterdam usw.
(some of the papers have also been published in COMPUTER, 1985).

205

Prentice, D. (1981): An analysis of software development environments.
ACM SIGSOFT Software Engineering Noles, 6, No.5, 19-27.

Ramamoorthy, C.v., H.H. So (1977) : Survey of principles and techniques of
software requirements and specifications.
in Software Engineering Techniques, Vo1.2, Infotech Intern. Ltd. ,
Nicholson House, Maidenhead, Berkshire, England, pp.265-318.

6.1,5 Particular Specification Methods and Systems

Alford, M. (1977): A requirements engineering methodology for real time
processing requirements.
IEEE Transactions on Software Engineering, SE-3, 60-69. (on SREM)

Alford, M. (1985): SREM at the age of eight: The distributed computing design
system. IEEE COMPUTER 18, 4, 36-46.

Balzert, H. (1985):
Moderne Software-Entwicklungssysleme und Werkzeuge.
Reihe Informatikl44, Bibliographisches Institut, Mannheim.
(contains material on proMod, PRADOS and other systems: in German)

Bell, R. (1985): Structured analysis aids in micro-computer system design.
EON, March 21,1985,251-257. (on Structured Analysis)

Biewald, J ., P. Gtihner, R. Lauber, H. Schelling (1979): EPOS - a specification
and design technique for computer controlled real-time automation
systems. 4th Inlern_ Conf. on Software Engineering, Munchen, 1979,
IEEE Cat. No. 79 CH 1479 - 9C, pp.245-250.

Hamilton, M., S. Zeldin (1976) : Higher Order Software - a methodology for
defining software.
IEEE Transactions on Software Engineering, SE-2, 9-32. (on HOS)

Lissandre, M., P. Lagier. A. Skalli, H. Massie (1984) : SPECIF - A specification
assistance system. Institut de Genie Logiciel, Paris, France. (SADT-tool)

Ludewig, J., M. Glinz, H.J. Huser, G. Matheis, H. Matheis, M.F. Schmidt (1985) :
SPADES - A Specification and Design System and its Graphical Interface.
81h Inlern. Conf. on Software Engineering, IEEE
CH2139-4/85/000010083. 83-89.

Ross. D.T. (1977): Structured analysis (SA) : A language for communicating
ideas. IEEE Trans. on Software Engineering, SE-3, 16-34. (on SADT)

206

Ross, D.T. (1985 a) : Applications and extensions 01 SADT.
IEEE COMPUTER 18, 4, 25-34.

Ross, D.T. (1985 b) : Douglas Ross talks about Structurad Analysis.
IEEE COMPUTER 18, 7, 80-88. (on SADT)

Teichroew, D., EA Hershey III (1977) : PSLJPSA: a computer aidad technique
for structured documentation and analysis of information processing
systems. IEEE Trans_ Software Eng" SE-3, 41-48.

Yourdon, E .. L.L. Constantine (1979): Structured Design: Fundamentals of
a dlsclplln of computer programs and systems design.
Prentice Hall Inc .. Englewood Cliffs.

6.1 .6 Use of Programming Languages for Specification, Prototvping

Goldsack, S.J. (ad.) (1985): Ada for specification: Possibilities and
limitations. Cambridge University Press (for the Commission of the EC) .

Boehm, BW., T.E. Gray, Th. Seewald (1984): Prototyping versus Specifying : A
multi-project experiment. 7th ICSE, Orlando, FL., March 1984, 473-484:
also in IEEE Trans, on SE, SE-l0, 290-303.

Budde, R. K. Kuhlenkamp, L. Mathiassen, H. Zullighoven (ads.) (1984):
Approaches to Prototyplng . Springer-Verlag, Berlin etc.

6.1.7 Software Engineering Environments

Howden, W. (1982): Contemporary software development environments.
Comm_ ACM, 25, 5, 318-329.

Hunke, H. (ad.) (1981): Software Engineering environments.
Proc. of the Symposium held at Lahnstein, June 16 - 20, 1980.
North Holland Publishing Company, Amsterdam, New York, Oxford.

Osterweil, L. (1981) : Software environment research: directions for the next
five years. IEEE COMPUTER, April 1981, 35-43.

6.2 Adresses of Vendors

Please note that the following list is rather arbitrary, and far from complete,
and it does not imply a judaement or recommendation!

207

EPOS (EntwurfsunterstUlzendes ProzeB-Orientiertes Spezifikationssystem)
GPP, Kolpingring 18a, D 8024 Oberhaching . Tel. D 089 - 61 104218

HOS (Higher Order Software) and USE_IT
Higher Order Software, Inc., 2067 Massachusetts Avenue
Cambridge, Massachusetts 02140, USA, Tel. USA 617-661-8900

MASCOT (Modular Approach to Software Construction , Operation, and Test)
MASCOT Suppliers Association
clo Computing Standards Section, Room L303, Royal Signals and Radar
Establishment, SI. Andrews Rd., Malvern, Worcestershire, WR14 3PS, GB

Perspective
Software Technology Centre, System Designers Ltd.,
Systems House, 1 Pembroke Broadway,
Camberley, Surrey GU15 3XH Great Britain, Tel. GB (0276) 62244

PET (Programm-Entwicklungs-Terminalsystem)
PHILIPS AG, Data Sysl., Allmendstr. 140,8027 Zurich , Tel. CH 01432211

PRADOS (Projekt-Abwicklungs- und Dokumentationssystem)
SCS Techn. Autom. und Systeme GmbH,
Horselbergstr.3, D 8000 Munchen 80, Tel. D 089 - 41 27 - 0

pro Mod (Projektmodell)
GEl, Albert Einstein Str. 61, D-5100 Aachen, Tel. D 02408 - 130

PSUPSA (Problem Statement Language/Analyzer) and related systems
META-systems, 315 E. Eisenhower Pkwy. , Suite 200,
Ann Arbor. MI48104, USA; Tel. USA (313) 663-6027

Soltool (Softw. Management, Developm., Maintenance, and Conversion Tools)
via mbp, Semerteichstr. 47, D 4600 Dortmund 1, Tel. D 0049 231 43480
or directly from SOFTOOL Co., 340 S. Kellogg Av., Goleta, CA 93117

SPECIF (Specificalion System) for SADT-Diagrams
Institut de Genie Log iciel (IGL) , 39 rue de la Chausee d'Antin,
F-75009 Paris, France; Tel. F (33) 1 281 41 33

Tektronix SA Tools (Structured Analysis)
Tektronix Inc. P.O.B. 500, Beaverton , OR 97077, Tel. USA (503) 627-7111

TOPAS-N (alias NET, an editor and simulator for extended Petri-Nets)
TOPAS-B (formerly BOlE, a tree-oriented development tool)

PSI GmbH, Heilbronner StraBe 10, D 1000 Berlin 31, Tel. 0049 30 890090

