PRACTICAL METHODS AND TOOLS FOR SPECIFICATION

J. Ludewig
ETH Zirich, Institut fiir Informatik
CH 8092 Ziirich

Contents
0. Introduction

1. Fundamentals

1 Life Cycle Model

2 Cost Distribution

.3 Terminology

4 Why Semi-formal Specification ?

2. Principles of Specifications

2.1 Qualities of Specifications

2.2 Useful Properties of Specifications

2.3 Specification Systems Requirements

2.4 General Structure of a Specification System

3. Specification Systems: Some Examples
(each of the following subheadings consists of three paragraphs:
.1 The Method; .2 The Language; .3 The Tools)

3.1 SADT (Structured Analysis and Design Technique)

32 SA (Structured Analysis) and proMod (Projektmodell)
3.3 PSL/PSA (Problem Statement Language / P. S. Analyzer)

3.4 SREM (Software Requirements Engineering Methodology)

35 EPOS (Entwicklungs- und Proiaktmanagemqpi qrientierttes)
pezifikationssystem

3.6 PRADOS (Projekt-Abwicklungs- und Dokumentations-System)
4. Management Aspects
Conclusions

Appendix: References, and Addresses of Suppliers

Note: Hans Matheis has used an earlier version of this paper for preparing a
paper on languages for real-time software specification. Some of his
extensions have been integrated here.

Our descriptions of specification systems are based on the material available
to us. This information may not be complete, or up to date. Therefore, we are
sorry in case some features are not reported correctly. Please refer to the
material available from the suppliers (see 6.2).

175

0. Introduction

This is a course on Specification. Since it is based on experiences in the field
of Software Engineering, it applies primarily to Software Specifications.
Many observations and reports indicate, however, that, from specification
aspects, there is not much difference between information processing
systems in general and software in particular. Therefore, most of this course

applies also to System Specification.

In the first chapter, some fundamentals are discussed. These include the life
cycle model and the distribution of costs over the various activities, some
definitions, and a rationale for semi-formal specification. The second chapter
provides a general outline of a specification system, whose desirable
properties are deduced from the qualities of good specifications. In the third
chapter, we present some typical specification systems. The primary goal is
to show some typical features of such systems rather than to describe them
in detail. The fourth chapter addresses management aspects. In chapter 5,
some general conclusions are drawn. The appendix (chapter 6) contains a
bibliography on specification, and a list of suppliers.

1. Fundamentals

1.1 _Lif le M

Only very small systems can be built in the same way as primitive peoples
build houses. As soon as the system is slightly complex, a systematic
approach is necessary. The sequence of steps to be taken from the first idea
to operation and further on until the system is discarded, is called the System
Life Cycle. Though there are many different life cycle models, they are all
based on the distinction between certain activities or phases, namely

analysis and specification

design
implementation
integration
operation and maintenance.
Note that the life cycle may be used as a phase model, or a model of

activities, or a list of roles. In the sequel, the second meaning is assumed.

Recently, the life cycle concept has been attacked by several authors, not only
because it does not reflect the experiences of many projects, but also because
alternative ways of building systems (for instance by prototyping) are
ignored. See the references in 6.1.6.

176

1.2 Cost Distributi

About two thirds of the total cost of software are caused by activities which
take place when the software is already operational (i.e. during maintenance)
(Boehm, 1976). Therefore, every attempt to reduce the high cost of software
has to focus on maintenance.

(Note that there is an important difference between maintenance of hardware
and of software: while hardware is actually maintained, i.e. the original state
is conserved or restored, software is corrected, extended, or adapted to new
requirements, i.e. it is modified. A program is different from its original
state after maintenance.)

There are three ways of reducing the need for maintence:
- reduce need for correction
- reduce effort for modification
- reduce total volume (by using standard components or old software)

A good specification contributes to each of these subgoals. Therefore, the
overall goal is not to reduce the effort for specification, but rather to invest
more in specification in order to save much more during maintenance (and also
during design and implementation).

1.3 Terminology
1.3.1 Specification

To date, we have not achieved a stable and well recognized terminology in
Software Engineering. In the sequel, we use a simple, pragmatic definition of
“specification” (from Kramer et al., 1982):

A description of an object stating its properties of interest. It usually
implies that the description should try to be precise, testable, and formal.

It is recommended that "specification® be used with some attribute, e.g.
requirement specification.

Specification is frequently used to mean functional specification which
contains both requirements and design aspects. This form of use is imprecise.

Many more relevant terms are defined by the IEEE (1983).

Specifications are written and read by many people, like analysts, customers,
managers, and programmers. Since these people differ greatly in their
background, education, and interest, they have usually not the same idea of
what a specification should look like. Tools, which can change the
representation of a given information automatically, can help to meet the
requirements of more than just one single group.

177

1.83.2 The System Triangle

When we talk about programming systems, or specification systems, we
distinguish three components, or sets of components, namely methods,
languages, and tools.

Methods indicate how to proceed, like recipes in a cookbook. Languages
restrict the set of possible statements to a particular universe of discourse,
and to a certain syntactical representation. Tools check, store, and transform
such statements.

All three are strongly interrelated by the abstract concepts of the
(specification-) system. Note that the term "methodology” means "science of

methods”, though it is often misused for "method". Figure 1 exemplifies the
system triangle:

Lan-
guage(s

Concepts

Figure 1: System triangle

1.3.3 Levels of Formality

There are languages of various formality. For our purposes, we distinguish
four levels of formality, or styles:

Style Syntax emanti Examples
informal not (prec.) defined not (prec.) defined natur. languages
formatted restricted not (prec.) defined forms
semi-formal defined partially defined pseudo-code

formal defined defined progr. languages

178

For coding programs, we use a formal language. (Though the semantics of most
programming languages are not precisely defined, if at all, there is always a
translator which provides a de-facto-definition.) All other documents are
written in informal language, sometimes on forms. Forms impose certain
restrictions to the way natural language is used, and require the user to
answer all relevant questions. Semi-formal languages are comparatively new;
their first application was in program design languages (pseudo code).

1.4 i-f | ification ?

This paper does not treat formal specification. This does not mean that formal
techniques are not important. However, they are not yet in a state that users
in industry could really apply them. Semi-formal specification, i.e. an
approach which is based on semi-formal specification languages, has (at least
for the time being) several advantages:

- The Iaréguages can be learned and understood with limited effort by people
who did not have extensive training in formal methods

- Documents resemble those written in natural language

- Incomplete and vague information fits better in such a system

On the other hand, semi-formal specification systems are superior to
traditional informal specifications because

- many deficiencies which would be buried in plain text become visible

- it can be stored in, and retrieved form, a data base

- automatic tools can be wused for checking and for changing the
representation.

A Degree of Formalization Development with System for

semi-formal Specification
100% becccccnccnnccnnsssasnsccsssfoscapmeccancancss

supported by Spec.System
kY

Traditional
Development

Phase
S

ldea Specific. Design Coding Test ...

Figure 2: Degree of Formalization during the Software Life Cycle

179

Figure 2 shows schematically how the software development process is
influenced by a system for semi-formal specification. In the traditional
approach, there is practically no formalized information until the software is
coded. Then, full formalization must be achieved in a single step. This method
is, as we all know, error prone, because there are many misunderstandings,
inconsistencies, simple errors and other shortages in the specs which are not
discovered, because the document produced next, i.e. the code, can only be
understood at the level of single instructions. In the modern approach, there
are much better chances for detecting deficiencies of the specs, and
improving them.

To summarize the message of this paragraph: Specification systems do not
shorten the specification phase, but improve the quality of the resulting
document.

2. Principles of Specification

21 Quali { Specificati

A specification should be

- correct (i.e. it should reflect the actual requirements)

- complete (i.e. it should comprise all the relevant requirements)
- consistent

- unambiguous

- protected against loss of information and unintended changes

- easily writeable and modifyable

- readable and concise (in order to ease the communication between user and
analyst)

- implementable (i.e. it should ease design and implementation)

- verifyable (i.e. there should exist a procedure to check whether or not the
product complies with its specs). This quality is also called "testable".

- validateable (i.e. there should be a mechanism to ensure that the
specification really reflects the user's specification)

- traceable (i.e. when the 3ﬁecification is changed, it should be easy to
identify all statements in other documents affected by that change).

Note that these goals are highly inconsistent. For instance, a formal (e.g.
algebraic) specification is verifyable, but not readable for most people, in
particular not for the customer. Therefore, it is not validateable.

180

The first four of the qualities listed above (correctness, completeness,
consistency, and unambiguity) do not have the same meaning to all people:
vendors of tools for specification, for instance, often claim that their system
can guarantee correctness. This does, of course, not imply that the content
of the specs is correct with respect to the intentions of the customer, but
only that certain formal requirements are met. The reason for this is that
there is no reference (except the user's brain) to prove specifications correct
or complete, in contrast to programs being provably correct with respect to
the underlying specification.

r i ification

In order to achieve the qualities listed above, certain properties are obviously
useful:

- The specifications must be recorded on some permanent medium (e.g.
paper, magnetic tape).

- They should be as formal as possible, and as informal as necessary. Also,
they should support the processing of information which is vague,
incomplete, or not yet well defined (i.e. providing a fill-in that indicates
the lack of information).

- Specs should exist only in one single copy ("single source concept”).

- There should be tools for automatic checks and transformations between
different representations.

- Specs must be available in representations appropriate for those who have
to use them (e.g. graphical representations which naturally mirror human's
way of thinking).

i ir

From the useful properties stated above, we can derive the requirements of
specification systems; such a system should provide

a data base system as the central information repository,

- a semi-formal specification language and several representations,
including a graphical one,

- tools for all clerical tasks (storing, retrieval, checking, transformation).

181

Since software systems are developed by several people, and usually exist in
several versions and variants at the same time, the specification system
should also provide

- multi user operation of tools,

- automatic management of versions and variants.

f ificati m

As mentioned above, an ideal specification system consists of a method, a
language, and a set of tools, which are all based on a common set of concepts.
The list following below summarizes the most desirable features.

Abstract concepts
- Life cycle model
- Stepwise completion
- Permanent validation

Methods supported by the system
- Enter every information immediately
- Allow for informal texts
- Check early for correctness, completeness, consistency, unambiguity
- Concentrate on information necessary for specification.

Languages
- Semi-formal specification language
- Several syntactical representations of a specification
(e.g. graphics, tables etc.).

JTools

- Multi-user data base system
- Tools for checking, retrieval and selection.

In reality, however, most systems are incomplete. They are usually based on
either of the components, and do never cover the full scope. Some activities
started from a particular method (e.g. Structured Analysis, see 3.2), or from a
certain representation (e.g. SADT, see 3.1), or from a set of tools (e.g.
PRADOS, see 3.6). In the next chapter, some specification systems are
presented. Our goal is to give an idea of their dominant feature; we certainly
do not attempt to provide complete information. Please refer to the
references (6.1), or contact the vendors listed in 6.2.

182

3. Specification Systems: Some Examples

In this chapter, we present some examples of specifications in various
languages. Additionally, we briefly describe their underlying methods. The
purpose is to show some typical styles rather than to describe systems in
detail. These are the examples chosen for this paper:

SADT is probably the best known graphical language for expressing
specifications;

Structured Analysis (SA) is similar to SADT, but has a wider range
(towards design). We present it together with proMod, a too! which
supports SA.

PSL/PSA is the classical tool-based specification system.

SREM is a very powerful system for describing, and simulating, real time
software.

EPOS, another tool dedicated to the development of real time systems, is
fairly successful in Germany and central Europe.

PRADOS was chosen as an example of those systems which do not really form
a monolithic specification system, but rather a tool Kkit.

Our list covers only a part of those systems that we know, which in turn are
certainly only a small fraction of those which exist. Therefore, our choice
should not be interpreted as a judgement, or recommendation |

& T r Analysi nd Design Techni

SADT was developed by SofTech between 1972 and 1975. It covers the
requirements analysis, the design and the documentation of specifications,
aiming at improved communication between analysts, developers, and users.

3.1.1 The Method

The method SADT focuses on data flow and implies a stepwise refinement of
so called SADT-diagrams which are hierarchically ordered. In its ariginal
definition (Ross, 1977), there is a duality between so called actigrams and
datagrams modelling the data flow in two different ways representing
different views of the system:

- actigrams identify functions as central elements of the description
and data providing e.g. input or output for the functions

- datagrams identify data as central elements of the description and
functions providing e.g. input or output for the data.

183

The redundancy makes it possible to prove consistency, i.e. one can check

whether every function in an actigram is comprised in some datagram, and
vice versa.

3.1.2 The Language

SADT is a graphical specification language allowing the user to describe the
system in terms of activities and data. As outlined above, on the one hand
there are actigrams consisting of activities and data. Activities are
represented by boxes and data by arrows. On the other hand there are
datagrams, where boxes stand for data, while arrows represent activities.
Practical experience, however, indicates that most users tend to use only
actigrams. For the reason of complexity the language restricts the number of
boxes per SADT-diagram to seven.

Figure 3 shows an SADT-box with its typical components:

l Control

—_— 3 ACTIVITY I——
Input Output

l Resource

Eigure 3: SADT-box (Actigram)

The three actigrams on the following pages (figures 4, 5, 6) show an activity
("ASSIST SADT USERS") at three different levels of refinement. Note that the
last actigram (fig. 6) refines an activity ("CREATE KITS") of the second
diagram (fig. 5). (Source: Lissandre et al., 1984, from IGL, Paris)

3.1.3 Tools

SADT is still a paper and pencil method. And there is no problem in draawing
all the diagrams once. However, when there are changes (and the need for
change is the only property of software that does never change), diagrams
must be redrawn again and again. This is very annoying. Therefore, there have
been several activities for providing tool support; the examples in figures 4,
5, 6 were produced by such a tool. Their capabilities range from simple
graphics (i.e. they are used as an automatic drawing machine) to fairly
sophisticated programs which do some sematic checking and analysis.
According to D.T. Ross, who invented SADT, "none (of the tools) is fully
successful in implementing SADT" (Ross, 1985 b).

184

“OY3NNN Sd3sn ‘L'dv'sS ISISSV :=zwu | ¥0 0-V/SVS :an3on
<4
< S3ALLO3HIO WINOD TVIINHOZL ® SHIDVNVIN
SHOIHO ¥ SINIWIHNSYIN SH3SN -
ol SNOLLOV3H 'SINIWNOOD 'SWVHOVIO TVNHILX3
NOLLVANINNOOA 103r0kHd ¢ff 3 .
B Lavs " :
SNOLLOV3H - SINIWNOD - SWVHOVIA 1SISSY RACER S v ol
i SALON MIIAHILNI
[Y

S3ALLO3MEO WAL

INV3IN

NOLLYOINENd

JANVANOO3Y

X

3lva °HNAL0T TVAVHL

0L68.9G5v€EC | ‘SAUON

€8 /v0/10 o
A ‘410’3’ d’S :13roud

TOT wnawny | NOLLYSIILLN

Figure 4. SADT-Diagram, top-level

185

‘OH3NNN SY3SN 'L'AdV'S LSISSV :3uw |10 OV/SVS :an3oN
2
AdIE3A
“$ioaro v sinanaunsvan | O
JHNSVIN
A
15303y
NOLLVOIJIM3A HO IN3WIHNSVAN|
< ST300N
NOLLYIN3WNOOQ L3r0Hd FINVH
(Y)
_ 3
S130C4 1103 HO INIg of s1§300FH [SO | o
% Bpiea e S3ALLOHIO WAOD TVOINHOIL ¥ SHIOVNVI
SHEMSNY / SLN3WNOOA LO3NOHd HO4 S1S3NCRY ¥
‘ A
¢ ST
Er o TSI DY SININNOD TYNHALX3
SHvaOVIq TVfiEELX3 NO SINGWHOO
SNOLLOVaY - SINGAINGO - SAVESVI suy | TNOLOVAH "TOD oVIa 13

J1V3HO

¢ WNOOQA "OHINWNOO-OOINHOAL

3OVSN LY HO SIALLOZHIA <
SALON MIIAHALM
S3ALLO3r80 :«EH
0L68L9SPEC L ‘SAUON
JSANNCS NOLLYOI8Nd A3H
IANYWNOO3Y [X €8/40/10 ava 41'0'3'd’S L3roud
ADAINOD |aiva W3O TUVAVHL 1Ol wnawnv | NOWLYSIILN

Eigure 5: SADT-Diagram, first level below top

186

‘OHINNN S1iM 31vV3HO 344 €0 LV/SVS :an3oN
- S
SIALLOIHIG IOVSN LN Y g
& v | &
SN 7'y S NINHOM S.HOHLNY
1STTHONS HO4 1S3n03Y
/ X
“ 1517 8. 430v3Y A,
SNOUOV3H | 3,vaan
153034 NDLLYOIAIH3A b SIN3WANOD
[mme.zBOQ
SWVHEIVIA TYNY3LXT <
TYNHILDE ENOLLOYIH OGNV SWYHOVIA TYNHILAE
< SNOLLOY3Y SNOLLOY3H TWYNHILE NIVi80O
—1 SWvHOVIQ
SWYHOWIO MaN .
- WVHOVIO 031 $3N034 / WYHOVIO ¥ HO 153n03 EMmmo
SALON F SALON ONV
sisn |%=
S1INS3H MIIAHILNI
$HOTHO IONIHIHOD
SR ISONDMO 1ISNAUALDY HO VIV | uvIwd
'$30NIHIITH SSOHO V— SIN3NNOOa
LS SIHL HO4 1S3NO3Y / 111 XIANI 300N
oV /SVS 0L68L9GVvEC L -S3AION
NOLLYONEnd A3H
e €8/¢0/10 auva T
JEINOD [3iva HNALOTT TVAVHL TOT Hn3invy | NOLLYSIILN

Figure 6; SADT-Diagram, second level

187
3.2 Structured Analysis (SA)

SA was developed by Yourdon and others (see Yourdan, Constantine, 1979).
Although, the name is very similar to SADT, only the data flow as the central
principle is common to both. It is used for analysis and both coarse and
detailed design.

3.2.1 The Method

The method allows the user to model a system with data-flow diagrams
(DFDs) consisting of data, and processes transforming the data. In other
words, DFDs describe the flow of data through the system by denoting sources
and sinks for data flows, the data flows itself, and processes. So called
minispecs are used to describe processes in more detail. For refining the
structure of data, a data dictionary (DD) is used. SA proposes a stepwise
decomposition of DFDs so that each process in the parent DFD is broken down
into several child DFDs. Consequently, several levels of DFDs emerge.

SA proposes two major steps. The first one is to develop a so called context
diagram, which shows how the system is connected to its environment.
Hereby, the user defines the interface in terms of sources and sinks of the
environment, processes, data flows, and files. Note that the data flow
consists of both the data and the direction of flow.

In the second step, the user partitions and refines the system "as long as
possible”, i.e. each process of a DFD is described in more and more detail until
the level of atomic processes is reached. Then the user writes minispecs
demonstrating the algorithmic structure of these atomic processes. Also, a
data dictionary is created containing the structure of the data. SA also gives
naming conventions for processes, dataflows, files, which can help the user to
express his understanding most clearly.

3.2.2 The Language

The sources and sinks belonging to the environment of the target system are
shown as boxes on a data-flow diagram. Other symbols are circles
representing processes, arrows representing data flows, and bars
representing files. Please note that the first time a file is referenced in a DFD
two bars are used (see fig. 7a, file "Bit Map") while further references to this
file (in other DFDs) are denoted by a single bar (see fig. 8a, file "Bit Map”).
The minispecs are written in pseudo-code, the data described in the data
dictionary is written in a BNF-like notation.

188

The examples given below were taken from a paper on the Tektronix-tool
(Bell, 1985). They show data-flow diagrams, together with minispecs and
information stored in the data dictionary.

COPIEA__PIXEL = PIXEL

BIT_MAP_ADDRESS = INTEGER

PIXEL =« LOGICAL

TEXT = ASCIH_CHAR

GRAPHICS = [POLYLINE | POLYMARKER | AREA FILL | GOP|
SCREEN_CONTROL = [SCROLL | ERASE | REVERSE | HORIZ_SCROLL]
KB_SCREEN_CONTROL = SCREEN_CONTROL

BIT_MAP = [PIXEL}

BIT_MAP_PIXEL = PINEL

TEXT_PIXEL = PIXEL

GRAPHICS _PIXEL = PIXEL

COMMAND_STRING = |IASCH__CHAR|+ DELIMITER]
DISPLAY__PRIMITIVES = GRAPHICS + TEXT « SCREEN_CONTROL
GIN = X_POSITION « Y_POSITION

X_POSITION, Y_POSITION = INTEGER

Figure 7a: DFD for a display controller Figure 7b: DD for 7 a

PIXEL

CHARACTER__GENERATION _ MAP_LOCATION = ASCil_CHAR
FORI » 1 TO 12 DO
CHAR_GEN_ MAP_INDEX = |
FORJ = 1 TOSDO
I CHARACTER_ GEN_ MAP_ CONTENTS () = TRUE
SEND 1 TO BIT MAP
ELSE
SEND 0 TO BIT MAP
END
END

PRIMITIVES

FEigure 8a: DFD for Generate Bit Map Eigure 8b: Minispec for 8a
from figure 7.a

189

Figure 9:

+—EVENTS,

DEL
CLK

Figure 10: DFD of Count Delays
(from figure 9)

Top level DFD of a trigger gate array

MINISPEC 4.3

CIRCUIT ELEMENTS: 2FF2, 2FF3, 2FF4, 2G4, 2G5

OVERVIEW: THIS CIRCUIT IS A 3-FLIP-FLOP STATE MACHINE. 2FF2
CONTROLS THE START OF COUNTING DELAY, 2FF3 SETS
AT THE END OF EVENTS COUNT, AND 2FF4 SETS AT THE
END OF THE TIME-DELAY COUNT. SPECIAL-CASE COUNTS
OF NO EVENTS AND 1 EVENT ARE CONTROLLED BY LEVEL
INPUTS SET BY THE PROCESSOR. THE INITIAL STATE
OCCURS WHEN THE PROCESSOR STROBES RSTACQ. THIS
CLEARS 2FF2, WHOSE QBAR QUTPUT CLEARS 2FF4. 2FF3
IS CLEARED BY THE A TRIGGER FLIP-FLOP 1FF1. THE
FIRST DCLK AFTER A TRIGGER WILL SET 2FF2 TO ENABLE
THE DELAY COUNTER. IF ONEVNT = 1, 2FF3 WILL ALSO
SET AT THIS TIME. DCLKS WILL BE COUNTED UNTIL DELTC
= 1, CAUSING 2FF3 TO SET. WHEN EOE = 1, THE SELECT
DELAY CLOCK LOGIC SWITCHES TO COUNTING DELAY BY
TIME. THIS WILL CONTINUE UNTIL THE NEXT OCCUR-
RENCE OF DELTC = 1, WHEN EOD = 1 WILL OCCUR. THE
STATE MACHINE REMAINS IN THIS STATE UNTIL THE NEXT

LOGIC: RSTACQ.

ALL FLIP-FLOPS ARE RESET ASYNCHRONOUSLY BY PROCESSOR

TION-
SET STRTDEL = 0 WHEN RSTACQ = 1
SET EOD = 0 WHEN STRTDELB = 1
SET EQE = 0 WHEN ATB = 1
Blél. :I.IF'-FLOPS WILL SET ON CONDITION ON THE RISING EDGE OF
L .

SET STRTDEL = 1 WHEN AT = 1 (RESETS ARE NOW REMOVED
FROM 2FF3, 2FF4

SET EOE(N+ 1) = ONEVNT + DELTC + EOE + N S

SEESE'I)[N-*‘ = (EVDN + EOD)*(DELTC + EOD) = EVDN'DELTC

+

Figure 11:

Minispec of Control Delay
(from figure 10)

190

SYSTEM
BEMAVIOR

FUM:T*)NAL CUSTOMI
REQUIREMENTS ——

Figure 12: DFD of a product development

3.2.3 Tools for SA: proMod (Projektmodell)

proMod was developed bei GEI, Aachen, FRG. It is based on the Structured
Analysis/Structured Design-concept.

While the project proceeds, all information is accumulated in the proMod
project library.

Tools for Structured Analysis are:

DFD-processor editing and processing of data flow diagrams
DD-processor data dictionary system

TD-proccessor minispec - processor

AAD-analyzer cross checking between DFDs, DD and minispecs.

Toools for Structured Design are:

Translator from SA - to SD - System
MS - processor for module specifications
FS - processor for functional specifications
DD - processor data dictionary system

SE - analyzer cross-checking at SD - level

Below the level of SD, proMod provides PDL and DARTS, two

pseudo-code-systems. Other tools generate code-frames in several languages
(PASCAL, FORTRAN, COBOL).
proMod is available on VAX/VMS, and IBM-PC (XT, AT) / PC-DOS.

iked

n Problem ment Analyzer (PSL/P

PSL was developed at the University of Michigan by the ISDOS-project
(Information System Design and Optimization System) in the seventies. PSL
primarily supports requirements analysis and documentation.

Like some other systems developed at a university, PLS/PSA is now
supported, improved, and commercially distributed by a private company
(META-systems).

3.3.1 The Method

PSL/PSA was the very first tool-based system for semi-formal specification
which was actually useful - and commercially successful. All other such
systems are copies of PSL/PSA, at least in part.

PSL/PSA emerged since 1970 in a very organic manner, and Daniel Teichroew
and his co-workers did never put too much effort in writing down the method
they had in mind. Still, there is a method behind PSL: It is the one sketched in
2.4.

3.3.2 The Language

PSL is based on the entity-relationship approach first described by Chen
(Chen, 1976), but applied long before. The entity-relationship model was
originally used as a database model splitting the world to be described into
entities, and relationships between these entities. The dominant feature of
this approach is the similar treatment of entities and relationships.

Different from SADT and SA, PSL is a linear (textual) language. PSL provides
some 30 entity-classes and 75 relations to the user. The most important ones
are:

Entity-classes:
REAL WORLD ENTITY objects outside the target system

PROCESS activities
INPUT input data
SET set of data elements

Relations:
GENERATES e.g. <process> GENERATES <data>
RECEIVES e.g. <process> RECEIVES <data>
UPDATES e.g. <process> UPDATES <data>
CONSISTS describes data structures;

e.g. colour CONSISTS yellow, red, green, blue

PSA Version A5.2R2M

Parameters:

DENBUF=200 WIDTH=84 LINES=60

>/% This is a set of PSL statements to define user views &/

DB=VESSEL.DBF

192

Jul 23, 1983 20:05:19

PSL/PSA - ISDOS = VH/CHS

IPSL Input Source Listing

>/% Here is the global users' view #/

Userviews;
‘Global';
User-View-1,
User-View-2,
User=-View=3,
User=View=4,
User-View=5,
User-View-6,
User=-View-7;

>This is a2 global view of a ship company.;

>/# ELEMENTs are declared #/

>Information is stored about each ship, including

Vessel,Cargo-Volume,Details,Port,Date~of-Arrival,
Date~of-Departure,Consignee,Containerd,Size,

Shipping=-Agent,Waybill#,
Delivery-Date,Contents,
Handling-Instructions;

/% Here is the local users' view #®/

User-View=1:

lvll:

Viewl=Ship;

FREQUENCY=IS 100,
TIMING-REQUIREMENT 25;
‘€. Basar';

>the volume of its cargo storage capacity.;

NOEXPLANATION
LINE STHMHT
|
2>
3
L >
5 >DEF ENTITY
6 > TKEY
7> SUBPARTS ARE
8 >
9 >
10 >
11 >
12 >
13 > .
14 > DESC;
15
16 >
17 >
18
19 >
20 >DEF ELE
21 >
22 >
23 >
24 >
25 >
26 >
27 >
28 >
29 >DEF ENTITY
30 > TKEY
31 > CSTS OF
32 > ATTR ARE
33>
34 > RPD IS
35 > DESC;
36
37
38 >
39 >
LO >DEF ENTITY
L1 > TKEY
L2 > CSTS OF
L3 >
Ly >
L5 > ATTR ARE
L6 >
L7 > RPD IS
L8 > DESC;

User-View-2:

W2';

View2-Ship,
View2-Ship-Port,
View2=Port;

FREQUENCY-IS 100,
TIRING-REQUIREMENT 50;
‘E. Basar';

Figure 13: PSL source listing (incomplete)

INPUT=VESSEL.PSL SOURCE-LISTING NOCROSS-REFERENCE

UPDATE DATABASE-REFERENCE NOWARN-NEW-0BJECTS NOSTATEMENT-NUMBERS
INDENT=0 HEADING PARAHETERS PAGE-CC=ON

193

PS5A version A5.2H2M Jul 23, 1983 20:05:19

L INE

L9
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
n
72
73
74
75
76
77
78
79
8o
81
82
83
84
85
86
87
88
89
90
91
92
93
9l
95
96
97
98
99
100
101

PSL/PSA - 1SDOS - VM/CHMS

IPSL Input Source Listing

5T MHT

>A ship stops at many ports and it is necessary to

>print out its itinerary.;

>

>

>DEF ENTITY User-View=-3;

> TKEY 'V3';

> CSTS OF View3-Consignee,

> View3-Port,

> View3-Ship,

> View3l-Container;

> ATTR ARE FREQUENCY~-IS 25,
> TIKING-REQUIREHKENT 7:
> RPD 1S ‘€. Basar';

> DESC;

>Persons who ship goods are referred to as consignees.

>Their goods must be crated or stored in shipping containers.
>These are given a container identification number. A list
>can be obtained, when requested, of what containers have
>been sent by a consignee.;

>

>

>DEF ENTITY User-View-L;

> TKEY W',

> CSTS OF Viewk-Agent,

> Viewh-Port,

> Viewh-Container;

> ATTR ARE FREQUENCY-1IS 110,
> TIMING-REQUIREMENT 715;:
> RPD 1§ 'Chiang Wan';

> DESC;

>The shipments are all handled by shipping agents. A

>shipping-agent report must be generated, listing all
>the containers that a given agent is handling and giving
>their waybill numoers.;

>
>

>DEF ENTITY User-View=-5;

> TKEY 'v§';

> CSTS OF Viewb-Waybill,

> View5-Port,

> View5-Ship,

> View5-Container;

> ATTR ARE FREQUENCY-IS 100,
> TIMING-REQUIREMENT 50;
> DESC:

>A waybill related to a shipment of goods between two
>ports on a specified vessel. The shipment may consist
>of one or more containers.;

>
>

>DEF ENTITY User-View-6;
> TKEY 'V6';

> CSTS OF Viewb-Ship,

13: incomplete PSL source listing (continued)

194

Figure 13 shows a fragment of a PSL-input source listing; the specification
describes cargo-vessels and their organizational environment.
(Source of all examples in 3.3: Papers from ISDOS, 1983)

3.3.3 The Tools

PSA, the tool, is actually the heart of the whole system. It is built upon a
CODASYL-database system, and offers a large selection of services and report
functions. PSA is a huge FORTRAN-program consisting of some 60 000 loc. It
is available on almost any hardware and operating system; implementation on
PCs was announced some time ago.

Two reports follow below; the second one (figure 15) shows a tree-structure
(the hierarchical content-relation) by indentation. The first one (figure 14)
shows part of the the same information in a table. These examples represent
the traditional position of the ISDOS-project, where all output had to be
line-printer oriented. Therefore, pseudo-graphics was the best representa-
tion available. But the system has now been extended by new tools, which
support also high-resolution diagrams (not shown here).

An % in (i,j) means that column j is contained
directly or indirectly in row i. The columns

do not consist of anything further. Intermediate
GROUPS are ignored.

Ih Size -=-ccemmmccciccancanccea- /
13 Handling-instructions ====----- /
12 Contents --==scccec—ccccacnan. /
11 Delivery-Date -=--==--=ccecaun /
10 Waybi) I ==smeemmmcee e /
9 Shipping-Agent -==-=-=-o------ /
8 Containerd ===--=emcecccncnans /
] Consignee —=~-=-vemccccccccean /
6 Date-of-Departure =-==--=====- /
5 Date-of ~Arrival ===-==c-cecaan /
b Port ==eccemmemccccaccae s /
3 Details ===ecccoccaccacsnaana~ Z
2 Cargo-Volume ~--===-ccecccen-. /
| Vessel ==—----emcmccccmcaacea. /

--------------------------------- +-!-------~+-----—----+---——---+
| User-Views] ==-e-cecmmcccaooa. L
2 User=View=2 -<--e--ec-ceeneaa- & LA
3 User-View=3 ===c-ccccmcccacnan & %8 ftn e
L User-View-kL =--ecmccmemaacaa # & L B
A USC""ViGH‘S ------------------ f] AR A | AR

Fmmm—meeeee domm e m———— oo man +
6 User-View-6 ====remmcmcmmcaaa. £ £ #
7 User-View=] =-==scecmmcccccanx ® 2 # Ll
-------------------------------- e e §

Figure 14: A PSA-report (Basic Content Matrix)

195

PSA Version A5.2R2M Jul 23, 1983 20:05:19
PSL/PSA - 15D0S - VH/CHMS

Contents Report

Parameters: DB=VESSEL.DBF FILE=PSANAMES.PSATEMP NOCOMPLETENESS-CHECK
NOINDEX NOPUNCHED-NAMES LEVELS=ALL LINE-NUHBERS LEVEL-NUMBERS
OBJECT-TYPES PRINT NONEW-PAGE DBNBUF=200 WIDTH=B4 LINES=60 INDENT=0
HEADING PARAMETERS PAGE-CC=ON NOEXPLANATION

1% (ENTITY) 1 User=View-1

1 (GROUP) 2 Viewl!-Ship

2 (ELEMENT) 3 Vessel

3 (ELEMENT) 3 Cargo-Volume

L (ELEMENT) 3 Details
2% (ENTITY) 1 User-View-2

1 (GROUP) 2 View2-Ship

2 (ELEMENT) 3 Vessel

3 (GROUP) 2 View2=Ship=Port

L (ELEMENT) 3 Port

5 (ELEMENT) 3 Vessel

6 (ELEMENT) 3 Date-of -Arrival

7 (ELEMENT) 3 Date-of -Departure
8 (GROUP) 3 View2=Ship (M-1)
g (ELEMENT) L Vessel

10 (GROUP) 3 View2-Port (M-1)
11 (ELEMENT) L Port

12 (GROUP) 2 View2-Port
13 (ELEMENT) 3 Port
3% (ENTITY) 1 User-View=3

1 (GROUP) 2 View3-Consignee

2 (ELEMENT) 3 Consignee

3 (GROUP) 3 View3~Container (M)
L (ELEHENT) k Container#

5 (ELEMENT) L Date-of=-Arrival
6 (ELEMENT) L Shipping-Agent
7 (GROUP) L View3=Port (I)
8 (ELEMENT) 5 Port

9 (GROUP) L View3-Ship (M-1)
10 (ELEMENT) 5 Vessel

11 (GROUP) 2 View3=-Port

12 (ELEMENT) 3 Port

13 (GROUP) 2 View3-Ship

14 (ELEMENT) 3 Vessel

15 (GROUP) 2 View3-Container

16 (ELEMENT) 3 Container#

17 (ELEMENT) 3 Date-of-Arrival
18 (ELEMENT) 3 Shipping-Agent

19 (GROUP) 3 View3-Port (1)

20 (ELEMENT) 4 Port

21 (GROUP) 3 View3-Ship (H-1)
22 (ELEMENT) 4 Vessel
L% (ENTITY) 1 User-View=L

1 (GROUP) 2 Viewh-Agent

2 (ELEMENT) 3 Shipping-Agent

3 (GROUP) 3 Viewh-Container (H)
L (ELEMENT) 4 Container#

5 (ELEMENT) 4 Waybill#

6 (ELEMENT) L Consignee

7 (ELEMENT) L Vessel

Figure 15: A PSA report (Contents Report)

196
i in h

SREM is directly based on PSL/PSA; it was developed by TRW since about
1975. It supports the early phases (analysis, definition, verification, and
validation of requirements) of the software development process. It is
especially tailored for the development of large, embedded, real-time
systems; the U.S. Air Force was the contractor of that project. For more
information on SREM, see papers by M. Alford (references in 6.1.4).

3.4.1 The Method

SREM possesses two important features missing from most other methods or
languages for specification. Firstly, it allows the stepwise development of
specifications beginning with informal descriptions, from which an
increasingly formal specification is developed. Secondly, data on performance
(estimated or required) of the target system can be formally included in the
specification. Since there is a tool for simulating specs, software designers
can check early whether or not they will be able to meet response time
requirements.

The method (SREM) is applied in seven steps:

1. Define kernel: identify the interface between the system and the
environment and describe the data flows and the data-processing units
inside the system.

2. Establish baseline: outline the very first description of the system using
either the graphical R-Net formalism (R-Net means requirements-net, a
stimulus-response network) or the linear language RSL (requnrements
statement language).

3. Define data: define data input to, and output from, each so called ALPHA
(active component); complete, and improve the RSL-specification
developed so far; mplement Pascal-procedures for ALPHAs.

4. qu project information, and establish traceability: add management
nformations, e.g. deadlines, milestones, needed tools etc.

5. Simulate functionalily: prove syntactical correctness and simulate
dynamic behaviour

6. Identify performance requirements: define traceable, testable performance
requirements, each path should be constrained by response time and
accuracy

y r feasibility: prove that the current design is useful as a basis
or a technical realization by means of a analytical feasibility study

197

3.4.2 The Language

SREM offers the user two means of description:
- a graphical language (R-Nets) and
- a textual language (RSL).

R-Nets are stimulus-response networks describing reactions in a system
evoked by events. An R-Net consists of nodes (ALPHAs and SUBNETs) and arcs
connecting the nodes. While ALPHAs are functional specifications of
processes, SUBNETs are specifications of processes at a lower level of
hierarchy. The flow of control is described by some single entry - single exit
constructs (AND for parallel execution, OR for a multiway branch, FOR EACH
for a loop). Additionally, validation-points can be inserted in order to express
performance requirements.

See figure 16 for a list of all symbols used in R-Nets.

RSL is a textual specification language
based on the following concepts:

Elements
are standard types defining features ALPHA
of each object of such a standard
type. For example, MESSAGE, DATA, AND
and FILE are standard types used to I —
describe data; e.g. ALPHAs stand for .
processes. Elements represent nouns ENTRY NODE ON SUBNET
in the language.
EVENT
Belationshi
express logical links between N

Elements, e.g. <data> INPUT TO NPUT_INTERFACE, OUTPUT_INTERF.
<alpha>. They represent verbs in the
language. FOR
= CONSIDER OR
Attributes
are used to complete the description sELECT
of Elements, e.g. <data> INITIAL
VALUE <value>. They represent o
adjectives in the language.
Structures TERMINATE

are used to define the sequences of
processing steps and represent
R-Nets, SUBNETs, and VALIDATION-
PATHs in terms of RSL-statements.

VALIDATION_POINT

GDDO@ﬂ‘@U@@dQ}@D

Figure 16: Symbols in SREM

198

RSL is also used to enter the R-Nets, which are then automatically drawn.

A few examples are given below. Figure 17 shows a schematic R-Net. In
figures 18a and b both the RSL-representation and the flow graph
representation of a sample R-Net are exhibited.

(Source: M. W. Alford, Proceedings of the COMPSAC Conferences 1978, 1980).

INPUT INTERFACE
VALIDATION POINT

PROCESSING STEP (ALPHA)

GO
v
A
EJB:I E::'L—I s2 ¢
Va

*AND" NODE
S1 s3 SELECTOR
Ve _ VARIABLE
TRUE ~ OTHERWISE A ¥ OTHERW! o] ” OTHERWIJE "OR"NODE

D

OUTPUT
INTERFACES

8
8

Figure 17: A schematic R-Net

3.43 The Tool

Like PSL/PSA, SREM is based on a large tool, called REVS (Requirements
Engineering Validation System). Beyond the abilities of other tools, REVS
allows for project dependent extensions of the specification language, and for
simulation of the specs. Maybe that REVS is currently the most powerful tool
for specification; but prospective customers in Europe cannot buy it because
its distribution is still limited to the U.S.

199

R NET: PROCESS RADAR RETURN.
STRUCTURE :
INPUT INTERFACE RADAR RETURN BUFFER
EXTRACT MEASUREMENT
DO (STATUS = VALID RETURN)
DO UPDATE STATE AND KALMAN FILTER END
DETERMINE ELEVATION
DETERMINE_IF REDUNDANT
TERMINATE
OTHERWISE
DETERMINE IF OUTPUT NEEDED
DO DETERMINE IF REDUNDANT
DETERMINE_ELEVATION
TERMINATE
AND DETERMINE IF GHOST
TERMINATE
END
END
END.

Eigure 183: A sample R-Net, textual representation

RN BUFFE
EXTRACT
MEASUREMENT|
OTHERWISE I (STATUS = VALID_RETURN)
LS
DETERMINE_IF_ 1
OUTPUT NEEDED &
® IKALMAN__FIL'I'ER UPDATE_STATE

DETERMINE_IF e
REDUNDANT
DETERMINE
I’W)E m_'le_ i
IF_GHOST _ | _E‘A\J.L-"m_

DETERMINE_ DETERMINE_IF
EVALUATION | DUNDANT |

X X X

Eigure 18b: A sample R-Net, flow graph representation

200

3.5 EPOS
(Entwicklungs- und Projektmanagement orientiertes Spezifikationssystem)

EPOS was developed at TU Stuttgart by R. Lauber and co-workers since 1978
(Biewald et al., 1979). The product is now sold and supported by GPP (see 6.2).

3.5.1 The Method

EPOS is one of the systems which do explicitely not support a particular
method (though they do refer to the general principles of SADT).

3.5.2 Languages

In EPOS, there is no clear distinction between languages and tools, i.e. the
same name is used both for the language and for the program which is used for
processing that language. Therefore, the following list may be inconsistent
with other papers on EPOS.

There are three languages used for input:

EPOS-R language for requirements definition (formatted)
EPOS-S language for system design (semi-formal)
EPOS-P language for project management information

(semi-formal)
Several graphical representations can be generated by the tools.

3.5.3 The Tools

The tools of EPOS are separated in four groups:

EPOS-M Tools for project management
EPOS-A Analyzer and report generator (for all levels)
EPOS-D Generator for documentation (e.g. Petri-Nets,

Nassi-Shneiderman-Diagrams)
EPOS-C Human-computer interface of EPOS

Epos-A stores all information in a (non-standard) data base, which is
accessed by all tools.

EPOS is available on PDP 11/RSX 11-M, VAX/VMS, IBM 370/VM/CMS, Intel
8086, 80286/iRMX and several other machines.

201

: I . .

PRADOS was (and is still being) developed by SCS, Hamburg and Munich, FRG. It
is tailored to UNIX and uses components of the UNIX-System.

3.6.1 The Method

While EPOS is based on a vague idea of a method, which has not been made
explicit, PRADOS does not even have such an idea, because it is a collection of
tools many of which existed before PRADOS was developed.

3.6.2 The Languages

The languages of PRADOS are the languages of its tools. When SADT is
available, there will be at least one genuine specification language in the
system.

3.6.3 The Tools

Three general components are:
UNIFY relational database
XED text processing system

IFE-GRAPH business graphics system

Upon these, all other components are built:

PV, PM project management tool

PB project library

1B text processing

MB methods library

SADT SADT Generator (announced)

DSA data description based on entity-relationship-model
ESS design specification language processor

PS pseudo code pre-compiler

ST Nassi-Shneiderman-chart-generator

BT & TR test monitor

4. Management Aspects
There are two important management aspects in the topic of this paper:
First, the decision to use a specification system, and the choice of a

particular product, require a commitment of the management. Introduction of
a specification system is very expensive. The cost of the system itself and,

202

possibly, of new hardware is often high, but it is usually negligible compared
to the cost of training (or the failures due to insuffient training). The step to
using a specification system is of similar importance like the step to using a
computer; if you are not prepared to do it right, don't do it at alll Problems are
inevitable, and there will be a situation when an important project seems to
be late, because it is done with a specification system. If the management is
not prepared to show a bold front against the breakers, they will not succeed.

Second, the specification system may improve quality assurance and project
control. Most vendors advertise some management tools as part of their
products. To date, these are not very powerful. The real improvement stems
from the disciplin and standardization implied by the application of a
specification system. This side effect is in fact the main advantage of a
specification systeml

5. Conclusions

- There are many specification systems commercially available. Everybody
who uses any of the more common machines, and operating systems, will
find a specification system, if he or she wants to.

- It is obviously still possible to produce software (and systems) without a
specification system. Special problems, like developing user interfaces, are
actually better done by other approaches, e.g. prototyping.

- A specification system causes large expenses, mainly for training, but can
improve quality and productivity significantly. Therefore, it should be
regarded as a (medium- or long-range) investment.

- A specification system improves standardization in the way that every
member of a project uses the same method, the same language, and the
same tool. Moreover, the documents itself have standardized features. This
implies a discipline which is the real benefit of a specification system!

- Vendors say little about the methods, which are most important for the
customers.

- Maintenance of specifications is not yet supported by the tools. Therefore,
the responsibility to change all documents, when one is modified, rests
with the user. If he or she fails to do so (what is the normal situation), the
specification becomes obsolete.

- Implementing one's own specification system is hardly feasible, because it
takes at least ten person years to develop just a prototype.

203

6. References and Addresses of Suppliers

6.1 References
1.1 r ineeri

Boehm, B. W. (1980): Software Engineering Economics.
Prentice Hall, Englewood Cliffs, N.J.

Fairley, R. (1985): Software Engineering Concepts.
McGraw-Hill Book Company, New York usw.

Sommerville, |. (1985): Software Engineering. Addison-Wesley Publishing
Company, London etc., 2nd ed.

6.1.2 The Life Cycle

Lehman, M.M. (1880): Programs, life cycles, and laws of software evolution.
Proc. of the IEEE, 68, 9, 1060-1076.

Ludewig, J. (1982): Computer aided specification of process control software.
IEEE COMPUTER, 15, 5, 12-20.

Swartout, W., R. Balzer (1982): On the inevitable intertwining of
specification and implementation. Commun. ACM, 25, 7, 438-440.

F I inci f ificati

Balzer, R., N. Goldman (1979): Principles of good software specification and
their implications for specification languages.
in Proceedings of Specification of Reliable Software (SRS),
IEEE Cat. No. 79 CH 1402-9C, pp.58-67.

Boehm, B.W. (1976): Software Engineering.
IEEE Transactions on Computers, C-25, pp.1226-1241.

Brooks, W.D. (1981): Software Technology Payoff: Some statistical evidence.
Journal of Systems and Software, 2, 3-9.

IEEE (1983): Standard glossary of software engineering terminology.
IEEE Std 729-1983.

Kramer, J. (ed.) (1982): Glossary of terms.
TC on Application Oriented Specification.
Jeffrey Kramer, Imperial College, 180 Queen's Gate, GB - London SW7 2BZ.

204

Parnas, D.L. (1977): The use of precise specifications in the development of
software. in Gilchrist, B. (ed.): Information Processing 77. North
Holland Publishing Company, Amsterdam, New York, Oxford, pp.861-867.

Timm, M. (1982): Grundlagen von Anforderungs-und
Entwurfsspezifikationen im ProzeD der Software-Entwicklung.
GMD-Studien, Nr. 66, 82 S.

J.4 Surv Articl nd Book

Balzert, H. (1982): Die Entwicklung von Software-Systemen.
Reihe Informatik/34, Bibliographisches Institut, Mannheim.

Hommel, G. (Hrsg.) (1980): Vergleich verschiedener Spezifikations-
verfahren, am Beispiel einer Paketverteilanlage.
KIK-PDV 186, Teile 1 und 2, Kernforschungszentrum Karlsruhe, BRD.

Cheng, L.L. (1978): Program design languages - an introduction.
Report No. ESD-TR-77-324, Electronic Systems Division, Hanscom Air
Force Base, MA 01731.

COMPUTER (1982): Special issue on application oriented specification.
IEEE COMPUTER 15, 5 (May 1982), 10-59.

COMPUTER (1985): Special issue on requirements engineering environments.
IEEE COMPUTER 18, 4 (April 1985), 8-91.

IEEE-SE (1977): Special collection on requirements analysis.
IEEE Trans. Software Eng., SE-3, 2-84.

Ludewig, J., W. Streng (1978):
Methods and tools for software specification and design - a survey.
EWICS TC on Safety and Security, Paper No. 149, 23 Seiten.

Ludewig, J. (Hrsg.) (1983): Spezifikation von Realzeit-Systemen -
Konzepte, Losungen, Erfahrungen. 54. Tagung der Schweizerischen
Gesellschaft fur Automatik (SGA-ASSPA), Baden/Aargau, 1983- 3-21.

Ohno, Y. (ed.) (1982): Requirements Engineering Environments.
Proceedings of the International Symposium on current issues of
Requirements Engineering Environments; Kyoto, Japan, September 20-21,
1982. NHPC, Amsterdam usw.

(some of the papers have also been published in COMPUTER, 1985).

205

Prentice, D. (1981): An analysis of software development environments.
ACM SIGSOFT Software Engineering Notes, 6, No.5, 19-27.

Ramamoorthy, C.V., H.H. So (1977): Survey of principles and techniques of
software requirements and specifications.
in Software Engineering Techniques, Vol.2, Infotech Intern. Ltd.,
Nicholson House, Maidenhead, Berkshire, England, pp.265-318.

1.5 Paricular ification Meth n m

Alford, M. (1977): A requirements engineering methodology for real time
processing requirements.
IEEE Transactions on Software Engineering, SE-3, 60-69. (on SREM)

Alford, M. (1985): SREM at the age of eight: The distributed computing design
system. IEEE COMPUTER 18, 4, 36-46.

Balzert, H. (1985):
Moderne Software-Entwicklungssysteme und Werkzeuge.
Reihe Informatik/44, Bibliographisches Institut, Mannheim.
(contains material on proMod, PRADOS and other systems; in German)

Bell, R. (1985): Structured analysis aids in micro-computer system design.
EDN, March 21, 1985, 251-257. (on Structured Analysis)

Biewald, J., P. Goéhner, R. Lauber, H. Schelling (1979): EPOS - a specification
and design technique for computer controlled real-time automation
systems. 4th Intern. Conf. on Software Engineering, Miinchen, 1979,
IEEE Cat. No. 79 CH 1479 - 9C, pp.245-250.

Hamilton, M., S. Zeldin (1976): Higher Order Software - a methodology for
defining software.
IEEE Transactions on Software Engineering, SE-2, 9-32. (on HOS)

Lissandre, M., P. Lagier, A. Skalli, H. Massié (1984): SPECIF - A specification
assistance system. Institut de Génie Logiciel, Paris, France. (SADT-tool)

Ludewig, J., M. Glinz, H.J. Huser, G. Matheis, H. Matheis, M.F. Schmidt (1985):
SPADES - A Specification and Design System and its Graphical Interface.
8th Intern. Conf. on Software Engineering, IEEE
CH2139-4/85/0000/0083, 83-89.

Ross, D.T. (1977): Structured analysis (SA): A language for communicating
ideas. IEEE Trans. on Software Engineering, SE-3, 16-34. (on SADT)

206

Ross, D.T. (1985 a): Applications and extensions of SADT.
IEEE COMPUTER 18, 4, 25-34.

Ross, D.T. (1985 b): Douglas Ross talks about Structured Analysis.
IEEE COMPUTER 18, 7, 80-88. (on SADT)

Teichroew, D., E.A. Hershey Il (1977): PSL/PSA: a computer aided technique
for structured documentation and analysis of information processing
systems. IEEE Trans. Software Eng., SE-3, 41-48.

Yourdon, E., L.L. Constantine (1979): Structured Design: Fundamentals of
a disciplin of computer programs and systems design.
Prentice Hall Inc., Englewood Cliffs.

3. f Pr mmin n for ification, Pr in

Goldsack, S.J. (ed.) (1985): Ada for specification: Possibilities and
limitations. Cambridge University Press (for the Commission of the EC).

Boehm, B.W., T.E. Gray, Th. Seewald (1984): Prototyping versus Specifying: A
multi-project experiment. 7th ICSE, Orlando, FL., March 1984, 473-484;
also in IEEE Trans. on SE, SE-10, 290-303.

Budde, R. K. Kuhlenkamp, L. Mathiassen, H. Zillighoven (eds.) (1984):
Approaches to Prototyping. Springer-Verlag, Berlin etc.

ALE re Engineering Envirgonmen

Howden, W. (1982): Contemporary software development environments.
Comm. ACM, 25, 5, 318-329.

Hunke, H. (ed.) (1981): Software Engineering environments.
Proc. of the Symposium held at Lahnstein, June 16 - 20, 1980.
North Holland Publishing Company, Amsterdam, New York, Oxford.

Osterweil, L. (1981): Software environment research: directions for the next
five years. IEEE COMPUTER, April 1981, 35-43.

6.2 Adresses of Vendors

Please note that the following list is rather arbitrary, and far from complete,
and it does not imply @ judgement or recommendation !

207

EPOS (Entwurfsunterstiitzendes ProzeB-Orientiertes Spezifikationssystem)
GPP, Kolpingring 18a, D 8024 Oberhaching. Tel. D 089 - 61 10 42 18

HOS (Higher Order Software) and USE.IT
Higher Order Software, Inc., 2067 Massachusetts Avenue
Cambridge, Massachusetts 02140, USA, Tel. USA 617-661-8900

MASCOT (Modular Approach to Software Construction, Operation, and Test)
MASCOT Suppliers Association
c¢/o Computing Standards Section, Room L303, Royal Signals and Radar
Establishment, St. Andrews Rd., Malvern, Worcestershire, WR14 3PS, GB

Perspective
Software Technology Centre, System Designers Ltd.,
Systems House, 1 Pembroke Broadway,
Camberley, Surrey GU15 3XH Great Britain, Tel. GB (0276) 62244

PET (Programm-Entwicklungs-Terminalsystem)
PHILIPS AG, Data Syst., Allmendstr. 140, 8027 Zirich, Tel. CH 01 432211

PRADOS (Projekt-Abwicklungs- und Dokumentationssystem)
SCS Techn. Autom. und Systeme GmbH,
Horselbergstr.3, D 8000 Miinchen 80, Tel. D 089 -4127 -0

proMod (Projektmodell)
GEI, Albert Einstein Str. 61, D-5100 Aachen, Tel. D 02408 - 130

PSL/PSA (Problem Statement Language/Analyzer) and related systems
META-systems, 315 E. Eisenhower Pkwy., Suite 200,
Ann Arbor, Ml 48104, USA; Tel. USA (313) 663-6027

Softool (Softw. Management, Developm., Maintenance, and Conversion Tools)
via mbp, Semerteichstr. 47, D 4600 Dortmund 1, Tel. D 0049 231 43480
or directly from SOFTOOL Co., 340 S. Kellogg Av., Goleta, CA 93117

SPECIF (Specification System) for SADT-Diagrams
Institut de Génie Logiciel (IGL), 39 rue de la Chausée d'Antin,
F-75009 Paris, France; Tel. F (33) 1 281 41 33

Tektronix SA Tools (Structured Analysis)
Tektronix Inc, P.O.B. 500, Beaverton, OR 97077, Tel. USA (503) 627-7111

TOPAS-N (alias NET, an editor and simulator for extended Petri-Nets)
TOPAS-B (formerly BOIE, a tree-oriented development tool)
PS! GmbH, Heilbronner Strae 10, D 1000 Berlin 31, Tel. 0049 30 890030

