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coNcuRRENCY AND AUTOT4ATA ON INFIITITE SEQLENCES
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Abstract: The paper is concerned with ways in which fair concurrency can be modeIled

rr,sing notations for omega-::egu-lar languages - languages containing infinite seguences,

whose recognizers a.re modified forms of Biichi or MuLler-McNaughton automata. There are
characterization of these languages in terms of recur:sion equation sets which in-
volve both nrinimal and ma<imal. fi>goint operators. The class of t^i-regular. languages

is closed under a fair concurfrency operaton. A gener.al - netho<i for pnoving/deciding
eqrrivalences between such languages is obtained, der.ived fron MilnerrS n61j61 of
Itsimulationrt.

1. Introduction

If a sqnstr"uct (C, par Cr) is understood to call fon concurrent interpretation of
conrnands, rfairness? is the constraint on the language involved which guarantees that

x:=_qge; y:=1; ((whi1e_ x do y:=y+1) par x:=f"f=.)

always terrn-inates, though without guananteeing any bound on the value of y when it
does so. The constraint appears to present a numben of fundarnental problems - one

leason being its association withtulbounded nondeterrninismt, as exhibited by the
value of y in the example, which comes out with a defined, but unbounded walue. App:

arently this variety of nondeternrinism can be given an accurate semantics only by re-
sonting to features - such as the use of monotone, non-continuous functions - r+hich

do not other*rise occur in computation theory. Thus the rich variety of nodels due to
Scott' Plotkin and others is not apparently available, so that satisfactory ansrers
seem to call for a return to nore prindtive notions.

In a previous pape:: [ff] a semantics was obtained for a primitive prograrnnring

langr:age with fair concurrency. ltris involved the use 'of what are here called r,l-regular
e:<Dressions. This paper will be concerned primarily with the theory surrounding
such notations. We hope to discuss practical examples in a later paper, but bniefly
point out here the sort of reasoning vre would expect to be useful in practice.

One would expect that aconstruct such as

while E do C

shouLd be associated with an ul-rcgular expression of the forrn

611= 6r, + Aur)

where A is deterrninerl by tJ and C. And concurnency (the fair merging of command



on o-reguJ.a:r languages.

then be associated. with

rt
rl'

X being the finite seguences'

-.;- -- extencieci l--tgu?g*.t

*uf,t

the infinite sequences ove:: x. Subsets of Xt a:re

az

seguences) will turn out to be expressible by an operator

AI IB

A sequence of cornrnands such as the initial example should

something like

^1sl 
1 I c)

where c corr€sPonds to the tatorniet cornmand,

estabLish-ing terrnination is then

x::false. The crucial equirralence in

A(Bll lc) = AB''(Bl l")et

wlr,ich captures the fact that only finitely nany Bs occur before c is obeyed' Reference

to the interpr.,etations involved. should then a1low replacernent of (Bllc)B+ by (sllc),

reducing the e>pression A(Blllc) to as*(sllc), consisting only of finite sequences'

and therefore with guaranteed termination'

2. Basic Notions

Given any set X' It denotes the extended seg-uenges over X

=X

xu)

For" o e r, x e r:k, y e f,*, X, Y g x-

). denotes the null sequence

xy denotes the concatenation of x with y
XY denotes {xy I *. X* n X, ! € Y} u (x n I')

The notion of concatenation here is different from that of [tt.l in that

x0=xnx0

is not necessarily ellrpty. The intuitive justification fon this definition should' be

clear - the set of computation paths through a serial conposition of programs should

be the concatenation of computation sets for its components.

Apart from XQ : $, other expected elementa?y pr€Perties do hold for this def-

r h- ?i 
^F 

'l htl<.

x(Yz) = (xv)z

X(YuZ) = XYuXZ

(xuY)z = xz'-sYZ

$x:{
(rlx = x{r} = f,

There is a variety of iteration oper.ftors:



starclosure
omega-closulg

dagger-cLosure

rta
A:{I}uAuA'u

rlr +A- = Il if leA

= trorlr2 . [w.eA]

1 /r ,,!Al = { u A-

* r,tu (A n[-) othemise

fNote: it is convenient to take lo = It, for consistency with the fixpoint versions
below. Notice the case fo:r Ao when A contains infinite sequences.l

Iteration operatotrs satisfy fixpoint eguations
*_**A ={tiuAA:{r}uA-A

Au = AA0

Al=111ueet:tlluetR
also (il] u A):rs = Att

' but (ir) u A)+ = ({li u A)o= i+

cf. Salomaa tf3l.

3. Q4ega-regu.lalr expressions :

One p::oceeds by sfraightfo:*rand analory, to d,evelop a formalism with alphabet
formed fronr t0, *, ?.', or (r) ), using slmtax variables o e Xr.and. e e L

e :: = o I O | (e + e) | .. | ." | .t
One genenates the language L of omega-regulan expressions over I. The sernantics of L
should be clea:r from the previous section. The stand,a::d reg+ar e>pressions oven X

ane obtained by onitting the final clause of the gramn'rr
+l,Al are introduced by definition
l={" nt=eo+A*

He will use exPr€ssions from L ourselves in preference to standard set theoretic
e>rpressions.

Sorne interesting expressions over, {Orl} are

(onr)t = {strings uith infinitely many ls}*
(1 0)* = {strings with infinitely nrany Os}
- -s fs r,t :t fi(o-tt"o)'= (oo't + tr"o)d

= {strings with infinitely nany ls and Os}

The extended languages denotable by onega-regular expressions are omega-negular
langr-rages. lle are intenested in establ-ishing identities betvreen such extend.ed
languages- An equational system in the style of Salomaa [tsl might therefore be
possibJ-e. Remark&l-y, alJ- except one of the axioms and rul-es of the system f, tf3l
are stil-L valid" But the exception, "Ardenfs nu.Le", is irnportant, since its validity
depends on the unique fixpoint pr\cperty, that for f * X ,



*
X=AX+B iff X=AB

Fo:r omega-regular e>pressions this fails. ftg is another solution. And there nay

be interrnediate solutions:

(o*t)t (fr'o)' (o"rr"o)t

all satisfy X = OX + $, but none of thern is either Ot'$ = 0 or Otq = Oo.

Ttrere is a normaL form theorem:

Theorern 3.1: Every or-reguJ-an A can be written in the form

A = fin (A) + inf (A)

erith A regula:r (i.e. nentioning no Bo), and inf (A) of the form of a finite sum

inf (A) = xB.C..u
1. l*

with B-., C-. regulan, f .F c.
1- 1 - l

the proof is by induction on the forrn of A; fin (A) is the result of replacing

any sube>q::ession Bt by 0 (or by lo, if l, e B); also

inf(o) = inf (0) = Q

inf (A+B) = inf (A) + inf (B)

inf (AB) = fin (A) inf (B) + inf (A)
*ts

inf (A ) : fin (A) inf (A)

inr (e0) = xo if .L e A

fin (A)r' inf (A) + (fin (A))&r other*ise

4. Fi>rpoints of linea:: recursion e,quatione:

Fon a sunmary of the relevant fixpoint theory, see tffl.

Since the class of extend.ed languages fonms a complete lattice, monoton. f,rnctions
on it have rnaximal as well as ninimal- fixpoints. Use regular exprressions over fu{X}
to denote such functions, and forms

ux. r(x) tlx. rtx)

to denote rninina'] and rnaxirnal fixpoints respectively, of such functions. Now we have

*-
Theorrem 4.1-: I) A B = pX- (AX + B)

r,r t2) A* =r{X. (AX)

3) ete = Tlx. (ex + s)

Proof: The standard proof for (I) is sti1l val-id. As regards (2), if ), e A then

xt = llt, so Ao = rt = Jx. nx (rt is the maximal language). rf I g A, then Ao

satisfies X = AX, fr,,cm its d efinition; so Au stlx. (AX). Conversely, suppose
,l, € tl X. AX; then vr e ArlX.AX. Then either vr € inf (A) . At; or w has the fornr

,1"t for some ua e A, vrt ,4X.m. And this step can be repeated to obtain eithen an



infinite sequence * = *lr2r3 ......, with w. e fin (e) or a finite sequence

" = t1t2 .-- wn with wn e inf (A)'

The proof of ( 3) is sirnilan"

gaution: It is surprisingly easy to construct fallacious proofs about omega-regula:r

languages. ltre followi.ng is a counterexample to one tempting assumption:

Take A = (2(O+t)o 1 0), s = 21O102to3t ...

Thens has aprefix in eachAk, k > 0, but =$et. Technically this is afailure
of cocontinuity of the function

f(X) = AX

Mone strongly, this is an example where

.o
,tt 1 frf

A* + n A-X-
i=o

hoLds - contra intuition.

The fixpoint identities can be used to elirninate iteration operators in favour'

of various fixpoints. Fo:r' example

* * r,r * ,r,r
o r(0 il.)* = uX.(oX + 1(o I1)*)

-:_ = ux.(ox +rJv.(ot'uv))
= ux.(oX + rdY.uz- (oz + 11Y))

= ux.(ox + rrJv.uz. (oz + 1 uw.tY))

The last riglrt hand side can be w:ritten in a less opaque notation, using recu::sion

equations - rrriting the conventi.onal € where a minirnal fixpoint is intended,

and r+ in case of a rnximal fixpoint. Thus

X € OX+IY
'Y,+Z

Z.e.AZ+IW
W €lY

The sequence in which this set of equations is wr.itten is signifieant, since it
conveys functional dependencies between the equations, which affect the behaviour oi
fixpoint operators. In the above set, the solution obtained for Z is got by rnini-
rnizing over possible solutions after eliminating W, and has Y (and in principle X)

as parameters.

Strictly, Lre are regarding subsets of I t {'Xr, Xrr..o.X,..,} as defining n-al:y

finear functi.ons on extencied languages. i,lanip'-r]31ions like those above are justified
sinnp the nner.airrs involved respect su5sti:utions for free paraneters in lirean (i"e.

rightmost) contexts. (Not true for ali ccnte/.ts -- consider X0)" If such a language

of linear fornis i.s o-regular, it can be denoted by an expression
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I

F(Xl ..

for ArA, o-regular over X.

The function
elements selected

with B,.a linear forrn over {Y,

X=
K

.. . Y_) and B-,- ur-regular to obtain the solution
m l-K

ts k:l
8.. (n. + ) B.. x. )KK ^ : ]-K1

a

n e + In.x.s11
1

is atomic linear if, in addition each ArA- is a finite sum of
fron x u {I}.

A linear systern (of recu:nsion equations) (wittr free paranete::s {t, ... Yr}) is a

sequence of eqr:ations of the form

x1 {' Ff(x1 ... xn,Yl ...

{2o Er(x1 .-- xn,Yt .--

xR + Fn(xL ... xn,Y]...

with each F, l-inear ove:r x u {x, ... X_} u {v, ... L} and eacb occurrence of t €'
l-Jnrm

standing fon either ' + ' or''+ -. The intended solution to such a systen can be

defined by induction on n, to obtain solutions fon X.'' ... X- which are linear ovelr

f, u {Y., ... Y-}. Girren n+I equations for X, ... X_.., solve the last n, to obtain
th ' J- n+l--

solutions for X, X linea:r oven X u tx.)u{Y. ... Y }. Substitute for these into
IDI-J.N

the equation for Xa and obtain a solution (maximal if ' '+ ', rrinimal if 'o -) linea::
over X u tYt .." tr,). Substitute this soluticn into those already obtained for
X. X_ to obtain the remaining components.ztl

The forn:al nranipulatLons corresponding to these steps are applications of
Theorem t+.1 (1) and (3). At the (n-k+l)th step this neans solving an equation

K

K +B+In..x.
K K :].K].

Y)
ul

Y)
m

Y)
ul

[on the sare form, with 1in place of tt , in the case of .) ].
this solution can then be substituted back into the remaining equations for Xr. ..\_f ,
and into the linear forms already obtained for XO., ... Xn. These steps conform

to the denotation rules given above fo:r the system; and they preserve linea:rity o!
the forrrs involved - from associativity and distributivity rules 

:_._-

One night expect a hierarchy structur€ on o-reguJ-ar languages dependent on the
seguence oi *, and e operators needed to defj-ne them. It is well-known, for example,

that preci.sely the (standard) regular sets are definabl-e by atonric linean systenas

involving onJ.y the nrinimum fixpointing ' * ' . the proof of this is closely related
to that of Kleene's theorem. But in fact for u-regulan sets only one alternation of
fixpoints abo.re is needed. Systems in which no ' + - precedes a t =) ' equation can

define arbitrary o-regular sets. This follovrs fr.om the normal form resu-lt 3.1

i - h , a- ^ 
0

N - IJ ? LO.L.
i11
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for D, B-., C-. all regulan, f * C, . The equations needed to define A can be takeu- 1- 1 " | -i
asn

x+Y + lz;
i=I -

H.-'Vr. I
}l^ovz2
H.ov'

followed by eqr.rations using € to define

V-l.tL-9

Z, =B.ll . i=1,2...n
l_ Ll- '

V, = CrH, i : f,2 ... n

which are alJ. standard ::egular in E u {W,.1.
(Precise eguations nay be obtained r"on, it. tnansition rules for nondeternrinistic
recognisers for these sets, in an obvious way). These results are summanised in
the following

Theorem 4.2: The following a::e identical

1) the class of ro-reguJ.a:r languages
2) the cLass of languages denoteble by linean systens of

equatlons
3) the class of languages denotable by atonic linear

systems of the form

x, =t F,(x. x ,J. ,.I -L nl

*' *'* ,r. ... x )K K .L N-

\*t - Fi.nt(Xl ... *r,)

;""j F (x. .... x )nnl.n
Cal1 this last form of system an atomic max-rnin system.

-.-:
5. 9nre€Ia Automatg

These are forrned from standard finite automata by the addition of sbnucture fon
r:recognisingt infinite sequences. The automata specified. here diffe:: from those
usually defined in that they also recognise finite sequences (in the standard, way).
The resulting modifications do not essentially alten the existing theory

The reader wiIl be fami]-iar with standard (nond.eterministic) finite automata
(with e-moves, here). Our notation for such ,, automata over X is

l'1 =(s,",11,F>o

ltith s the state set of 14, with start sta.te so e sr'and.witlr a-ccept states P g S

transition lunction t{ : Sx(Iu{I}) -> p(S). il : S 
". 

X" * p(S) is the usual extension



of M to finite seguences. The Sinite Sapes accepted by f''l are then

fin(l'1) = {w Ill fso,w) nr* O}. }lewillneedtotaLkaboutpathsne Stwhichlead
frpm a state s e Srand, correspond (via iteraticns of M) to a sequence w e ft;
we refer to this relation as ?r € paths (s,w). If n e So, In('n) is the set of states
which occun infinitely often in n.

An omega-automaton is a finite autornaton to which some additional st:ructure is
added which allows a set inf(ll) to be recognised consisting of infinite sequences.

The two principal va::ieties are

B-automaton: an additional set G c S of green states is specified
inr (l'1) = {w | .tf,""" exists

(introduced by Buchi t sl).
M-automaton: aset D cP(S)of

ing (11) = iwl there exists n

(first mentioned in Mul1en t Sl -
particularly Mcllaughton [ 8] and

The conbined t([tl) . xt is now

r(11) = rin(l{) u inr(ll)
[Note: the cond.ition that inf(l'l1 S ft consist of only infinite sequences is..,intended

to''imiJl-y that no sequence of-e-moves cycles through an accepting set. I
Fv"ry B-autorcaton can be converted to an egu-ivalent M-automaton, taking

D={tlesrss}
Theorem 5.1: The following classes are identical

n e paths (s , w), rith rn(n) n c + 0) g It

accepting sets is specified
e paths (s',,*), with In(n) e f) S r0
in the context of concurrent circuit theony; see

Choueka i t+l).

, , j..l,i:

the trl-regul-ar
r,r-no ot l'l a n

1)the cla5s-,of {$-regular languages .' .t ,

2)the class of set-s of the forto f(li) f,{ a non-aeterministic B-automaton

3)the class of sets of the forrn t(14) i'l a non-dete:nr,rinistic M-automaton

4)the class of sets of the form t(ltl) f"l a deternLinistic M-automaton

One of the steps here is notoriously hard. This is lhe.inequality (]) c (4?:.lni.l

can be established by the ingenious and elaborate constr:uction in McNaughton t8l. ,
which we cannot pursue here. Minor modifications are required to alI pr:oofs to.deal
with finite stnings, which rnay be accepted by the automata specified here. These

rrest on observations that the results can be decorposed into separate discussion of
the finite and the infinite seguences involved. For just finite seguences, the
results are embodied in the famiJ.iar development of Kleeners theorem, while the in-
finite results are precisely those available in the literature on Bi:chi and !!ull-er-
HcNaughton autontta. The other obser.rations called for are that each of the classes

is closed under union (for class (a) a deterrninistic recognisen is needed - which
folJ-ows from a product construction analogous to that used in Rabin-Scott t12l).

He should discuss the result that B-automata recognise precisely
languages; this fol.l-ows direetJ-y from the obsenvation of 4.2(3), that
Ianguages ar€ recognisabl-e by atomic linear systems of the form



xro

L * ""..'
\*r o ""

f e-.x. +

=j' Il l
J-4

-Ie .x.
.;-"r Dl l
J-r

e t rl-Dl-t

A"r

The corresPondence

take 11 = ( Sr

and M(X.,o) = {x.lor- l,

We now want to
the equation set.

Here BT:1r.l
n-1

B:' *
'l

x3
D

with A. ,A-. *

is vezy c1ose.

sor Mr F, G)
s={x,

s =[-oJ.

F={t}
G={Xt

= [..] u {rlo:.f

sircw that T(l!)

+A
n

e sums of elements fronr lu{l}}

with

... xn,t)

... K )
K

= Ai)

is the same language as is obtained by solving

l-:-- First, solve the last n-k equations, substituting back at each stage

a seguence of systems
m

x-*IgT.x.+BTr ir:: 'L
t

L'*':::::::
w + ..
^k+l
::'::.':"

h

x =Inn.x. + Bnm :ml I ml
= gT. + BT Btt'Bt.r'l r*Ttt. i, jrk<m:n
= BT + nT s*"e*I Lmnnrm

to obtain

This is the fanril-ian sequence of identities used in the construction of regula:r exp-

ressions fronr finite automata. Use the notations:

C(s,strm) = {w | "o*" n e paths(s,w) reaches st, passing
J.

through no Xn, I ( n) g X"

D(s,m) = {w I ror. n e paths(s,w) passes through no Xn, g(m, but
X^ e In(r) fon some m ( p ( k) c X0

D

tr



l0

then B?- : C( X-. ,X. ,m)f'l4J T J

k(m, i,j(m
BT = c(X' 'l'm)

Above k, we have

sTll = gT. + aT e* ts*.Ll 1l 1m mm -nl

BT-1= BT +eTe4tnm 
i'i(m(k

L L lmErn-m
And nor+, by induction on k-rn:

BT.. = c(X.. ,X.,,m) u,D(X_.,m)LJ r I r'
i,j < n ( k

BT = C(x-.,1,m) u D(X.,m)l1-r'

So finally, the solution for X, is.

X, = B! = iw | "o*" n e paths(Xr,w) has

X^ e fn(n)rsome p<k]

= r(1.1)

[Note: if t e Btr , sone rn ( k, then [] tra" an accepting e-loop, and must be amenCed,
so that all sequences, finite and infinite, arie accepted from Xr.. In this case we

need !{(X 'o) = Xr, o e X; and X, must be added. to F. We omit proof that theEI-

::esulting [] accepts the solution to the equation sequence, in this case.l

It is worth noting that this direct r.elationship of rnax-min sets with B-automata
genez'alises to tmin-max-rnin sets t of atomic linear equations with alternations J-obking
like

Xt +:

x.l
"; ";

h

These conr€sDond to a varietlr of automata used. in McNaughton I g J. The vanieties
defined by the initial + equations correspond to a set of tred.t states R. The accep-
tance criteria are as for B-automata, exceDt for: requiring that p. be passed thz,ough
only finitely often - i.e. In(r) n R : $.

From (l) : (4) it follows that the r.u-regular sets, as Cefined here, are closed
under complernentation as weL} as und,er union, since an obvious conplementation con-
struction applies to deterniinistic M-automata. So o-regular sets are closed unden
intercection also.
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6 . Concu:rency Operators:

The jleterninistic mer€ function

dmerge : 11 x xt x {0,1}o * ll

is the r.:nique function satisfying

drnerge (lrwrd) = dmenge (wrlrd) = w

drnerge (owrwt rod) .= o dmerge(wrwt rd)

dnrenge (wrswt rod) : o dmerge(wrwt rd)

[a is usually called an o::acle fo:r the nergeJ.

wrt y"fg."= Hrwt if
wr' : dmerge (wrwtrd) for some d. e tOrl)o

and w" is a fai:r nerge if d can be chosen vith infinitely many of both 0s and ls, i.e.
*. :'s ,..

ifde(.O11o)*
' Given extended languages A'B S xt, their Sair nerge is

Al f.e = {w" I w" fair merges some }r e A, wt e B}

ltreorem 6.1-: For each M-automab"l'1 = ( Srs,'l'l'F'D> over f,, and each

|r]' = ( Strs trM',F', D') over x?, there is an M-automato"(l{l l|.1 ) over f, u Er with
tt_:_ r(1,11 ll,l ) = r(11) | lrrll )

P:roof: l'l,ltlt mu"t first be transfonmed so that there a:re

(1) No self-loops; s $ u(sro), any s < S, o e f, u {f}
[tf there is such an s, adjoin a new sr to S, with M(stro) = M(sro);

then substitute st fon s in M(s,o); add st to r if s e F; and

D u {st} to f; whenever s € D . D l

(2) llo singleton accepti.ng sets {s} e l)
[Given (I), no such set can be In(n); so it nray be removed from ! 1

Now, assum. 1"1, 11' have properties (1) - (2) above. Defin. l'11 lll' - at'Jro'it'jt'j D"t
as follows:

Stt = S x Sr
ItSo = (F.r-sor)

M" ((s,s'),o) = {d,st> | 3 e M(s,d), o e X utl}i
u {( s,3t> | 3'. M(" lo), o e I'utr}}

Ftt=FxFr
ll

D = {D x{s'} | u . D, s'r. Ft}
u{ts}xD'lDr€D,seF

rr?
u {x I xs S x s', rr(x) e I), n2(x) eU }

where nI, n2 are the projection functions on pains. By induction on the length of
w", we have, for finite wtt
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nrt < paths (Grst)rwtf ) " Ttt menges r, Tl

wtt merges w, wl

with n < Paths(s,w),:Tt € Paths(sl wt)

The equivalence follows trivially from this, the only complications anising in showing

rl' e inf (tll ltl') - w" e t(Pl) [ [rt[4')

The reasoning is as follows: under the hypothesis

In(ntt) e [", somu nt' e paths(sotjwtt).

If a', (In(n")) = {s} is a singleton, then {s} * D frorn (2), so s e F; and after'

some finite initial segment of ntt, each state must have first component sI so lttt

involves no fl moves aften this point, from (1). So r" merges nrnt with n finite and

In (nt) e Dt. This means the correspond.ing w,w? are accepted., and w"e t(l'l)llftl4t).

Sinilarly, if n, (In(n")) is a singleton. Fina1ly, if rr(fn(n")) e D '
nr(In(ir")) e Dt, th.r, neither set is a singleton, from (Z), and this is onJ.y possible

if ltt fai:rnerges appropriate nrnf, since r" makes an infinite number of transitions

of both sorts

Corollarv: If ArB are or-regulan. io is their fair merge glln.

ltre concuuency operator is easily proved conrmutative and associative using obvious

isomorphisms between state sets.
[For associativity, note that l'11 llf inherits properties (I) - (2)]

7. Sinulations on Autonata:

In [tt ], the p:r'oblem of fai:rness is viewed !n the context of a "fixpointrr app-

roach; the novelty lies in introducing expressions with both sonts of fi>rpoint op-

er.ator in thern. The novelty raises the question how known proof prineiples can be

brought to bear. In fact, technical difficulties anise just with the maxinal. operator"'

in the context d.escri-bed here. Although the Scott induction principle dua-ljsesr its 
-

scope is considerably more limited - since combinaticns which are continuous in the

conventional sense may cease to be so in the dual sense (when the lattice is tturned

upside down"). This was seen in Section 4, with the example

F(X) = (Z(O+:-)t' + O) X

showing that concatenation between extended languages is not cocontinuous - so, without

special justification, forms involving concatenation cannot appean in the h34potheses

for dualised Scott induction.

T'lris nzrrwides extra motivation to be interested in proof principles fon automata

such as those involved here - even though their utility for the Purlposes of pperational)

semantics of prograns is obviously limite<l

The sort of rule to be discusseci can be seen to <Ievelop from the known decision

prrccedures for problenrs concerning these automata- But in the form given here, they
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are best related to notions of $wbak homomorphismttlO] or

Firstly, we give definitions fon the notion applied
.-t

11 = <s, so, M, r>, I'1 = (SrrsotrMr,Ft)'

Say that fl simrrlates lt1' .rti. R - in symbols ltl i'"l'lt
R g SxSt, and, writing S ->St fon (Srst) € R,

1) 
"o -r"ot

2) s€Frs->sf.+steF

3) o e f, u {r}, "1-r"rt ,s2 € M(sr,o)

o 
"2 -t=2t for some "2t . Mt(srr'o)

Say that f,l bisinulates 1.1' via R (in symborsll .?t 1,1 , etc.) ir f"t sirnulat"" l'1' via R,

arra f{t simulates l'1 rri" R = {(sr,9 I (s,sr) e R}.

Theonein 7.1: Fon finite automata H, ltlt
a) rr frl =Hr then r(11) . t([1')

r --tb) rf ltf is deterrninistic, then T(fil) . T(lvli ) irr l'1

c) If 11, pl' u"" detenninistic, tiren r(Fl) = T(l'1) iff
Let T(M,s) denote the tapes accepted by lt1 with stant state

a) prove, by induction on length of tapes w that
s -> sr, 1r € T(Mrs) + w € T(Mt,sr)
r(tti) s r(ltl'-) forfows, putting s = sor Sr = so'.

b) one direction follows from (a).

suppose r(14) s t(14'l; define i' ly

s l,> st iff s e E(sorw), st e Et(sf,,w) for some w
' R 

and T(M, s) c T(Mt, s')

rf simulationtf [10].

to finite automata

Itt tl, o:r just 11 -rtl - if

Proof:

-'1.1'
l'1 .- 11'

changed to s.

For simulations
CallXcS

^ -ir^ ..\o1 . tra-Or |\)t

n ) def r'ne <-> hc) (.rclrr,r.E -H- tY

s <-> sl
R

on M-automata,

accessible (via

=-l-"2" "'".rul '

iff s . Ei*o, w), sr e llr(sf, w) for some w

and T(Mr s) : T(Mt, sr).

we need the following definition:

=L=2.....sn) if there exist w, wt e Xts with

paths(=-,_, t), and X = {r1, =2 .=rr} .

So X is accessible iff X consists of accessible states, and is generated by

some cycle, and iff X = In(n) for some infinite path n. Accessibifity is decidable;
t

since if X is accessible, it is accessible via a path of length. k-, where k is

the size of X. [Tf,e k2 bound fol]-ows from an elementary argumentl suppose

'l= {x,, X^!....', }'fan o-rnh i fhr.nn ir: n.atir ffom x. tO X-.,, Of Iength <k --L / "'Y-'' ]- ].tr
thc bound c.rn bc r'e.luced by more carefuL analysis, but is still O(k'). ]
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For l,I-automata l,l, I4tdefine ;> to be a simulation relation by adding a four:th

condition to (l) - (3) above:

4) Let f be an automaton with state set the given relation
R = {(s, st> | . -t st} , with start state.=o, =lt t
and with transitions for each s, -> si , and each o e I u{I}
M*(<sr, =i.t, o) = {<sr, sj> | "z -t "i, =z 6 M(srr o)1

and sl e Mf(sl, o)1 
,

Ihen if X c R is accessible, and nr(X) e fVl, then rr(X) e fil .

fTho na:rio- mi.ght care to check some equivalences in which (4) plays a non-t:rivialL...v 5

rala- Tnv i\g obvious automata coryesponding to the following expressions:.a J

(6:t11:rg)o ((oor,t) + (rl'to))!r (ootll Io) l
Theorem 7.2: (a) - (c) of 7.1 hold for. M-automat. iul, lult

Proof: So far as finite sequences are concerned, all pnoperties are clear from 7.I.
Otherwise:

a) Suppose w € inf(pl); then In(n') e f, fon some,r g paths(so, w). Suppose

T = sosls2......; From (1), (s) there exists nt € paths(sj, w), with

"i -t s! for. all i -- by induction on i, So nt'=.=o, s:t.sl, =it."2, =1t....
is an infinite path in R. Ciroosing a suitably long and late finite segment

of rt'which cycles in R, *" must get an accessible X with nr(X) = In(n),
n^(X) = In(n') I and wt . ir,f (l4t ) then folLows fr.om (a).z-

b) Define frt.= in 7.1(b). Let X be any accessible subset of the nesulting ft;
choose (s, st> e X, and a path r which cyeles through X, n e paths((s, Stt, *)i
if n,(X) e f), then wur € T(M, s), .o "'e T(Mt, st), since s -> st; so n.(x) e D.t--t

c) is clear from (a) and (b), defining <;> as in 7.I1c).

llote: for deterministic M-automata, the decision method which results from 7.2

is closely related to the classical decidability r"esults dependent on . closu:re

under the boolean operations on languages. The latter suggest the construction of
tt

an automaton f"l , such that

r(14") = r(Il )u r(14')

rrren T(lVl) g T(l{') iff r(ljl") = xt. The automaton R needed for (r+) is ju=t |l1" restricted
to accessible states. Given (1), (3); (Z) notas iff each accessible state accepts (in
the finite sense); and (4) nol-as iff inf (1V1") = ,t.

:-.

For nondeterninistic automata, the methodis not always applicable, even for. finite
automata. For exarnple, consider the dutomata 14. 14 

t 
with state diagrams below: 

.,



l5

t"-=€

(8, O are the accept states.l 14 -t 14' sending A -> Cr [ -1 D, B -> D ; but there is

no slnulation [|'-> l'1.

In general, therefore, t:lanslation to deterrninistic automata may be essential

to establish equivalence etc.. But actually, in the context of prognamming constructst

nondeterminism is usuarfy controllabre -- fon example, by adopting a negime in which

ncontrol cha:racterstr in path expressions act as terrninators for particular component

automata in concatenations and iterations. We might hope because of such devices fon

a system where only deterministic recognizing automata fon path expressions need be

considered. But in the presence of concuFency such hopes ar'e unrealistic' He must

check that concurrency is itwell-behavedrr in a mor:e subtle sense'

Lenma 7,3: If X is accessible in I''11 I [V]t then, fon i = It 2z either nr(X) is

accessible' or nt(X) is a singleton.

Iheo:rem 7.4: rr fil, f;,' l4z , l'li g' |r]; then ['tr ll |tli ta Mzll U'ror some r' 
.

Proof: Note first that the construction in (1) of 6.1 does not spoil simulations.

If sl is introduced to remove a self-loop of state s, then setting st -> str whenever

s -> stt (o:r srt -> st whenever s p> srt) does not affect the simulation. So we may

assume none of the automata in.lolved has self-loopso Now define T by

<st' si> T, .=2' "it iff 
"L 

-t "2 and sl -t "l
Let ft, S, T b" the automata which comespond to R, S, T. J is i=o*onphic t" RlI S'
by the map whieh exchanges 2nd and 3nd elements of the quad::uples for T. So if X

is any accessible set of T, Lemma 7.3 can be applied to pnoject it into accessible

or singleton sets in ft and $. ttre result then follows f::om the simulation conditions

on ft and $ , and the definition of the concurrency operaton.

Simulations can also be shown to be well-behaved with respect to suitable

choices coresponding to the regular: operators of Section 3. (Using e-moves, these

const::uctions can be made straightforward...The ionstruction corresponding to concat-

enation, for example, can be based on E-moves between accept and start states.)



_Unresolved problems.

1) Transitivity of simulations is not

omega-automata. Considen the following

lr = tia)) tic])

on passing from finite automata

16

preserved

1,11, 112, lle'
o

Dz=

There are simulations l'1, -t |l], ana l'4, -, l{a, it,,,t no simulation ft'la -' |\ta - Is there

a modification of (4) to cure this ?

2) Identities between standard regular expressions can be elegantly provable

by setting up suitable bisimulations, using the rules for forming denivatives

of regular expressions [1]to venify simulation conditions ( related to Ginzburgrs

pnocedure t S l. ) One looks fon a simii-ar appr:oach to identities between o-regular

expressions, denivative rules for: which are straightforward.. But the relationship
between de::ivative structune and deterministic recognizer structure is not analogous

-- one cannot necessarily identify equivalent states of M-automata. Considen

o
t

D = t{e, ei}

States ArB are equivalent, but cannot be identified without accepting all infinite
sequences. Perhaps a reformulation of the M-automaton notion would remove this
awkwardness? One idea is to talk in terms of transitions taken infinitely often.

3) The idea of (2) is related to a question open at the

Define A+ = A;q,'r. Is it always the case that, if S = (BC)o =

Acknor.rledg-e$ent s :

The ideas of Section 4 arose from collaboration with Jerzy Tiuryn. I have also

benefited much from discussion with Michael Paterson, Robin i4ilner, Gordon Plotkin

and Sven Skvum.

time of wniting.
(cB)or, then 5 = 1n+c+;02
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