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CONCURRENCY AND AUTOMATA ON INFINITE SEQUENCES

David Park
Computer Science Dept.,
University of Warwick,

Coventry CV4 7AL,
England.

Abstract: The paper is concerned with ways in which fair concurrency can be modelled
using notations for omega-regular languages - languages containing infinite sequences,
whose recognizers are modified forms of Blichi or Muller-McNaughton automata. There are
characterization of these languages in terms of recursion equation sets . which in-
volve both minimal and maximal fixpoint operators. The class of w-regular languages
is closed under a fair concurrency operator. A general . method for proving/deciding
equivalences between such languages is obtained, derived from Milner's notion ©Ff

Ysimulation".

1. Introduction

If a Gonstruct(cl par Cz) is understood to call for concurrent interpretation of

commands, 'fairness' is the constraint on the language involved which guarantees that

x:=true; y:=1; ((while x do y:=y+l) par x:=false)

always terminates, though without guaranteeing any bound on the value of y when it
does so. The constraint appears to present a number of fundamental problems - one
reason being its association with'unbounded nondeterminism', as exhibited by the
value of y in the example, which comes out with a defined, but unbounded value. App-
arently this variety of nondeterminism can be given an accurate semantics only by re-
sorting to features - such as the use of monotone, non-continuous functions - which
do not otherwise occur in computation theory. Thus the rich variety of models due to
Scott, Plotkin and others is not apparently available, so that satisfactory answers

seem to call for a return to more primitive notions.

In a previous paper [11] a semantics was obtained for a primitive programming

language with falr concurrency. This involved the use of what are here called w-regular

expressions. This paper will be concermed primarily with the theory surrounding
such notations. We hope to discuss practical examples in a later paper, but briefly

point out here the sort of reasoning we would expect to be useful in practice.
One would expect that a.gngtruct Such as
shile E do C
should be associated with an w-regular expression of the form

W

AT(E A% + A)

where A is determined by E and C.  And concurrency (the fair merging of command



sequences) will turn out to be expressible by an operatof
AllB

on w-regular languages. A sequence of commands such as the initial example should

then be associated with something like
aslile)

where c corresponds to the 'atomic' command x:=false. The crucial equivalence in

establishing termination is then
aslile) = a8"(B110)8T

which captures the fact that only finitely many Bs occur before c is obeyed Reference
to the interpretations involved should then allow replacement of (8l 1e)B* by (Blle),

reducing the expression A(Btllc) to AB (Bllc), consisting only of finite sequences,

and therefore with guaranteed termination.

2. Basic Notions

Given any set I, Zt denotes the extended sequences over L

&
XT:Z uzm

*
I being the finite sequences, ¥ the infinite sequences over I. Subsets of XT are

extended languages:

..

For o € Z, x € I¥, y € Z+, X, ¥ ¢ Z+

A denotes the null sequence

Xy denotes the concatenation of x with y

XY denotes {xy ‘ x e I*n¥,ye¥ru (Xn ™)

The notion of concatenation here is different from that of f11] in that

X = XnI¥

is not necessarily empty. The intuitive justification for this definition should be
clear - the set of computation paths through a serial composition of programs should

be the concatenation of computation sets for its components.

Apart from X¢ = ¢, other expected elementary properties do hold for this def-
inition. Thus:

X(YzZ) = (XY)Z

X(YuZ) = XYuXZ
(XuY)Z = XZuYZ
¢X = ¢
{(A}x = X{A} =

There is a variety of iteration operators:




(A} uawu A2u eaaes
tt if  aea

%
{(ww W, ...... |w.eA} u (A nz¥) otherwise
ol2 i

star-closure

omega-closure

# w
dagger—closure AT T A UA

[Note: it is convenient to take A® = Xt, for consistency with the fixpoint versiocns

below. Notice the case for A” when A contains infinite sequences. ]

Iteration operators satisfy fixpoint equatiomns

* e {2} u AA* = {A} v A*A
Am=AAm
AT = (a3 v aal = (a3 v ata
also ({x} v A)s = a%
but (Y v F = () vy gt

cf. Salomaa [13].

3. Omega-regular expressions:

One proceeds by straightforward analogy, to develop a formalism with alphabet

formed from {4, +, *, w, (,) }, using syntax variables ¢ ¢ I,and e € L
ei:zo | ¢ (e+e)]ee|e | e

One generates the language L of omega-regular expressions over &. The semantics of L

should be clear from the previous section. The standard regular expressions over I

are obtained by omitting the final clause of the grammar

A,AT are introduced by definition

%
Az AT = A% 4 4

We will use expressions from L ourselves in preference to standard set thecretic

expressions.

Some Interesting expressions over {0,1} are i
%
(0 1)*
#*
(1’0} = {strings with infinitely many Os}
% % %
(0110 = (00 1 + 11 0)

= {strings with infinitely many ls and Os}

{strings with infinitely many 1s}

The extended languages denotable by omega-regular expressions are omega-regular

languages. We are interested in establishing identities between such extended ;
languages. An equational system in the style of Salomaa [13] might therefore be
possible. Remarkably, all except one of the axioms and rules of the system Fl [13]
are still valid. But the exception, "Arden's rule", is important, since its validity

depends on the unique fixpoint property, that for A ¢ X .



P
X =AX + B iff X = AB

For omega-regular expressions this fails. AtB is another solution. And there may.

be intermediate solutions:
* Eg i N
(0 1)* 1o (01
13
all satisfy X = OX + ¢, but nocne of them is either 0 ¢ = ¢ or OT¢ = o%.

There is a normal form theorem:

Theorem 3.1l: Every w-regular A can be written in the form

A = fin (A) + inf (&)
with A regular (i.e. mentioning no BY), and inf (A) of the form of a finite sum
inf (A) = rB.C. "
. 131
with B., C. regular, X ¢ c. -

The proof is by induction on the form of A; fin (A) is the result of replacing
any subexpression B® by ¢ (or by Eh, if X € B); also
inf(e) = inf (¢) = ¢
inf (A+B) = inf (A) + inf (B)

inf (AB) = fin (A) inf (B) + inf (4)
inf (A7) = fin (A)" inf (A)
inf (AY) =¥ if A e A )

%
fin (A) inf (A) + (f£in (AN® otherwise,

L, Fixpoints of linear recursion equations:

For a summary of the relevant fixpoint theory, see [371].

Since the class of extended languages forms a complete lattice, monotone functions
on it have maximal as well as minimal fixpoints. Use regular expressions over Lu{X}

to denote such functions, and forms

uX. F(X) Ax. F(x)

to denote minimal and maximal fixpoints respectively, of such functions. Now we have

Theorem 4.1: 1) AxB = uX. (AX + B)
2) A% =Ax. (ax)

3)  als =4dx. (ax + B)

Proof: The standard proof for (1) is still valid. As regards (2), if A e A then
ET = AZT, so AY = ZT = AX. AX (Zf is the maximal language). If X ¢ A, then Am

satisfies ¥ = AX, from its definition; so AY E]JX. (AX). Conversely, suppose
W € Y’X. AX; then v ¢ AJX.AX. Then either w ¢ inf (A) ¢ Am; or w has the form

wlw' for some Wy € A, w! e {x.AX. And this step can be repeated to obtain either an
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W =W.H ... W with w e inf (A).
12 n n

infinite sequence W = W. W _W_ .ea... ,» with W, € fin (A) or a finite sequence

The proof of (3) is similar.
Caution: It is surprisingly easy toconstruct fallacious prcofs about omega-regular
languages. The following is a counterexample to one tempting assumption:

Take A = (2(0+1)  + 0), s = 21010°10°1 ...

Then s has a prefix in each Ak, k > 0, but s $ AY. Technically this is a failure

of cocontinuity of the function

£f(X) = AX

More strongly, this is an example where
A o A
i=o

holds - contra intuition.

The fixpoint identities can be used to eliminate iteration operators in favour

of various fixpoints. For example

]

PX.(0X + 1(0" 11)%)

ux. (0% + Lly.(0°117))

uX.€0X + 1HY.uZ.(0Z + 11Y))
UX.(0X + 1W¥.uZ.(0Z + 1 uW.1Y))

F3 E3
0 1(0 11)"

The last right hand side can be written in a less opaque notation, using recursion
equations - writing the conventional 4= where a minimal fixpoint is intended,

and = in case of a maximal fixpoint. Thus

X & OX + 1Y

Y = Z
Z e« 0Z + 1W
W « 1Y

The sequence in which this set of equations is written is significant, since it
conveys functional dependencies between the equations, which affect the behaviour of
fixpoint operators. In the above set, the solution obtained for Z is got by mini-
mizing over possible solutions after eliminating W, and has Y (and in principle X)

as parameters.

Strictly, we are regarding subsets of I T % XQ,..o.Xq} as defining n-ary

l’
linear functions on extended languages. Manipulations like those above are justified
since the operators involved respect substitutions for free parameters in linear (i.e.
rightmost) contexts. (Not true for all contexts -- consider X@). If such a language

of linear forms is w-regular, it can be denoted by an expression




F(Xp ... X ) = A+ ZAiXi
i
for A,Ai w-regular over I.

The function is atomic linear if, in addition each A,Ai is a finite sum of

elements selected from I u {A}.

A linear system (of recursion equations) (with free parameters {Yl . Ym}) is a

sequence of equations of the form

X1 had Fl(Xl .o Xn,Yl .o Ym)

3_‘3:.’.2()(1 e XYy el Y)

Xn b Fn(Xl e Xn,Yl... Ym)

with each Fi linear over I u {Xl .o Xn} U {Yl ces Ym} and each occurrence of ~ « *

standing for either ™ ¢ “ or ™ = 7. The intended seolution to such a system can be

defined by induction on n, to obtain solutions for Xl .o Xn which are linear over

I u {Yl cen Yn}. Given n+l equations for Xy eee X 1o solve the last n, to obtain
solutions for Xy eee Xn linear over L v {Xl}U{Yl ces Yn}. Substitute for these into
the egquation for Xl and obtain a solution (maximal if > = “, minimal if “* “) linear
over I U {Yl een Yn}' Substitute this solution into those already obtained for

X2 cen Xn to obtain the remaining components.

The formal manipulations corresponding to these steps are applications of

Theorem 4.1 (1) and (3). At the (n-k+l)th step this means solving an equation

X
X ® B+ JZ_BikXi

with Bya linear form over {Yl .o Ym} and Bik w-regular to obtain the solution
L k-1 A
% % By Kt E Bix%s) i}

[or the same form, with { in place of * , in the case of ~ = 1.

This solution can then be substituted back into the remaining equations for Xl"’xk—l’

and into the linear forms already obtained for Xk, cee Xn' . These steps conform

to the denotation rules given above for the system; and they preserve linearity of

the forms involved - from associativity and distributivity rules.

One might expect a hierarchy structure on w-regular languages dependent on the
sequence of =, and * operators needed to define them. It is well-known, for example,
that precisely the (standard) regular sets are definable by atomic linear systems
involving only the minimum fixpointing ~ = “ . The proof of this is closely rélated
to that of Kleene's theorem. But in fact for w-regular sets only one alternation of
fixpoints above is needed. Systems in which no * ¢ “ precedes a ~ = “ equation can

define arbitrary w-regular sets. This follows from the normal form result 3.1

A =D+ 1B.CY
37171



| for D, Bi’ C; all regular, A ¢ Ci' The equations needed to define A can be taken
as n
X=Y+ } 2,
Lo
i=1
=»
LY Vl
Wy, =V,

W_=1Y
n n

followed by equations using <= to define

1

N
1!
o
E 24

1,2 ... n
V. = C.W. i=z1,2....n
il

which are all standard regular in £ u {wi}.
(Precise equations may be obtained from the transition rules for nondeterministic

recognisers for these sets, in an obvious way). These results are summarised in

the following
Theorem 4.2: The following are identical

1) the class of w-regular languages

2) the class of languages denotable by linear systems of
equations

3) the class of languages denotable by atomic linear
systems of the form

=
on; L ] of:l(xl T Xn)

X ® E (X el X))
Kep1 B (X -or X))

X & F (X, eeee X))
n n 1 n
Call this last form of system an atomic max-min system.

5. Omega Automata

These are formed from standard finite automata by the addition of structure for
'recognising' infinite sequences. The automata specified here differ from those
usually defined in that they also recognise finite sequences (in the standard way).

The resulting modifications do not essentially alter the existing theory.

The reader will be familiar with standard (nondeterministic) finite automata

(with €-moves, here). Our notation for such .. automata over I is
M=<s, SO,M,F>

with S the state set of M, with start state S, € S, and with accept states F £ S
2ot set sStant state . )

transition function M : Sx(Iu{i}) - P(S). H:sSx XK + P(S) is the usual extension




Theorem 5.1: The following“classes are identical

of M to finite sequences. The finite tapes accepted by || are then

fFin (M) = (w ] ﬁ'(so,w) nF % $}. We will need to talk about paths 7 € st which lead
from a state s € S,and correspond (via iteraticns of M) to a sequence w ¢ Xt;
we refer to this relation as wn € paths (s,w). If 1 ¢ Sm, In(w) is the set of states

which occur infinitely often in w.

An omega-automaton is a finite automaton to which some additional structure is

added which allows a set inf(}]) to be recognised consisting of infinite sequences.

The two principal varieties are

B-automaton: an additional set G £ S of green states is specified

inf (M) = {w | there exists 7 ¢ paths (So’ w), with In(n) n G $ ¢} ¢ i
(introduced by Buchi [ 31).

M-automaton: a set [} < P(S) of accepting sets is specified

inf (M) = {w] there exists 7 ¢ paths (SS’W)’ with In(w) € )} < A
(first mentioned in Muller [ 9] - in the context of concurrent circuit theory; see
particularly McNaughton [ 8] and Choueka [ u4l).
The combined T(M) ¢ t¥ is now

(M = £in() v ins(t)
[Note: the conditiocn that inf(M) < ¥ consist of only infinite sequences ig:intanded
to"”imﬁly that no sequence of -e-moves cycles through an accepting set. ]
Every B-automaton can be converted to an equivalent M-automaton, taking
D=1{T]GerTecs} : B

1)the class_of w-~regular languages [ - : ",iwfff
2)the class of sets of the form T([]) M a non-deterministic B-automaton
3)the class of sets of the form T(]) || a non-deterministic M-automaton

4)the class of sets of the form T(M) M a deterministic M~automaton

One of the steps here is notoriously hard. This is the inequality (1) = (%), yhig?

can be established by the ingenious and elaborate construction in McNaughton [8] ,
which we cannot pursue here. Minor modifications are required to all proofs té‘deal
with finite strings, which may be accepted by the automata specified here. These
rest on observations that the results can be-decomposed into separaté discussion of
the finite and the infinite sequences involved. For just finite sequences, the
results are embodied in the familiar development of Kleene's theorem, while the in-
finite results are precisely those available in the literature on Buchi and Muller—
McNaughton automata. The other observations called for are that each of the classes
is closed under union (for class (4) a deterministic recogniser is needed - which

follows from a product construction analogous to that used in Rabin-Scott [12]).

We should discuss the result that B-automata vrecognise precisely the w-regular

languages; this follows directly from the observation of 4.2(3), that w-regular o

languages are recognisable by atomic linear systems of the form



n

X + A

= YA .X.
1 321 133 l

®e 000 essv s e

Xy ees

®e® e s env e e
n

X+ A X. A
LR i)

'with Ai’Aij ¢ {finite sums of elements from Lu{A}}
The correspondence is very close.
Take H =<8S, s M, F, G > with
S = {Xl . Xn,k}

So ° Xl
F = {)} .
G ={X; ... X}
and M(X;,0) = {Xj}o = Aij} v afo = A}

We now want to show that T(}]) is the same language as is obtained by solving
the equation set.

First, solve the last n-k equations, substituting back at each stage to obtain
a sequence of systems : e

m
= Tgl m ’ -
X, %sljxj +B) o

L T

m
x «=¥8".x. + B"
m £mi’j m

- %
Here B?.l = B’;. + Bg’magms:.
J . i i, j, k<mzn
g1 - g% 4 " " "
1 1 lm mm mn

This is the familiar sequence of identities used in the construction of regular exp-

ressions from finite automata. Use the notations:

C(s,s',m) = {w | some m € paths(s,¥) reaches s', passing

E3
through no Xq, Qa<n} cl
D(s,m) = {w I some 7 € paths(s,w) passes through no Xq, qQ<m, but

Xp € In(n) for some m < p < k} ¢ A
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then BY. = C(X.,X.,m)
ij i*73
kS<Sm, i,j<mn
m
B = C(X;,3,m)

Above k, we have

Ll g™ 4 BT A" 1T
ij ij im“mm “mj .
i, 3<m<k
™1 = g™ 4 g7 g7 1"
i i imTmm Tm
And now, by induction on k-m:
m -
Bij = C(Xi,Xj,m) U‘D(Xi,m)
i,j<am<k
m
Bi = c(xi,k,m) U D(Xi,m)

So finally, the solution for Xl is-

>
"
to
"

3 1 {w [ some T € paths(Xl,w) has
Xp € In(n),some - p < k}

= (M

[Note: if A € BEm, some m < k, then /| has an accepting e£-loop, and must be amended,
so that all sequences, finite and infinite, are accepted from Xm'~ In this case we
need M(Xm,c) = Xm, o € I; and Xm must be added to F. We omit proof that the

resulting [ accepts the solution to the equation sequence, in this case.]

It is worth noting that this direct relationship of max-min sets with B~automata
generalises to 'min-max-min sets' of atomic linear equations with alternations looking
like

X <=
1

2o es w0 e

X. =
3]

Css0ense
X <=
n

These correspond to a variety of automata used in McNaughton [ g 1. The varieties
defined by the initial + equations correspond to a set of 'red' states R. The accep-
tance criteria are as for B-automata, except for requiring that R be passed through

only finitely often - i.e. In{w) n R = 4.

From (1) = (4) it follows that the w-regular sets, as defined here, are closed
under complementation as well as under union, since an obvious complementation con-

struction applies to deterministic M-automata. So w~regular sets are closed under

intersection also.
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6. Concurrency Operators:

The deterministic merge function

dmerge : Vst x (0,11 » Zt
is the unique function satisfying

dmerge (A,w,d) = dmerge (w,A,d) = w

dmerge (ow,w',ocd) .

o dmerge(w,w',d)

o dmerge(w,w',d)

i

dmerge (w,ow',gd)

[d is usually called an oracle for the mergel.

merges Ww,w' if

w"
w" = dmerge (w,w',d) for some d ¢ {O,l}m

and w" is a fair merge if d can be chosen with infinitely many of both Os and 1ls, i.e.
f %
if d € (0 117 0y®

Given extended languages A,B ¢ 21, their fair merge is
Al]B = {w" | w" fair merges some w € A, w' € B}

Theorem 6.1: For each M—automabnr1= < S,s~,M,F,D> over I, and each

1
M =<st',s ",M',F', D'> over %', there is an M-automaton ([}||}] ) over L v Z' with

. 1M = ]t

!
Proof: M,M must first be transformed so that there are

(1) No self-loops; s ¢ M(s,0), any s € S, o e L u {}}
[If there is such an s, adjoin a new s' to S, with M(s',0) = M(s,q);
then substitute s' for s in M(s,o); add s' to F if s ¢ F; and
Du{s'} to ]) whenever s ¢ D €[] ]

(2) No singleton accepting sets {s} € ])

{Given (1), no such set can be In(w); so it may be removed from D1

"onon

L 4 1 1 1
Now, assume [, || have properties (1) - (2) above. Define MIIH = <S,§5,M,F, D‘>
as follows:
S" =8 x S'
So = <8¢>5,>
M" (<Ss,s'>,0) = {<5,s™ I s € M(s,0), o € £ u{A}}

u {< 5,8 | s'e M(s}a), o e tula}}

1

FxrF!'
{Dx{s'} | De D, s" e F}
1
u{{s} xD'" | D e],seF
1
vxxesxs,m el o, e

oo
f

where Ty» W, are the projection functions on pairs. By induction on the length of

w", we have, for finite w"
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1" € paths (<s,s'™>,w") © 7" merges W, T,
W' merges W, W}

with ¥ € paths(s,w),n' € paths(s] w')
The equivalence follows trivially from this, the only complications arising in showing
|
w e inf (M) = w" e T[T

The reasoning is as follows: under the hypothesis

In(w") € D", some 7" e paths(sgiw").

If T (In(7")) = {s} is a singleton, then {s} ¢ ] from (2), so s € F; and after
some finite initial segment of w", each state must have first component s; so w"
involves no M moves after this point, from (1). So 7" merges w,7' with m finite and

In (v') € [)'. This means the corresponding w,w' are accepted, and w'e T(H)[lT(M').

Similarly, if T, (In(w")) is a singleton. Finally, if vl(In(w")) e D>
n2(In(w")) € D', then neither set is a singleton, from (2), and this is only possible
if 7" fairmerges appropriate m,w', since 7" makes an infinite number of transitions

of both sorts.

Corollary: If A,B are u-regular. so is their fair merge A['B.
The concurrency operator is easily proved commutative and assoclative using obvious

isomorphisms between state sets.

" [For associativity, note that HI!H' inherits properties (1) - (2)1

7. Simulations on Automata:

In [11], the problem of fairness is viewed in the context of a "fixpoint" app-
roach; the novelty lies in introducing expressions with both sorts of fixpeint op-
erator in them. The novelty raises the question how known proof principles can be
brought to bear. In fact, technical difficulties arise just with the maximal operator,
in the context described here. Although the Scott induction principle dualises, its
scope is considerably more limited - since combinations which are continuous in the
conventional sense may cease to be so in the dual sense (when the lattice is "tqrne&

upside down'"). This was seen in Section 4, with the example
F(X) = (2(0+1) + 0) X

showing that concatenation between extended languages is not cocontinuous - so, without
special justification, forms involving concatenation camnot appear in the hypotheses

for dualised Scott induction.

This provides extra motivation to be interested in proof principles for automata
such as those involved here - even though their utility for the purposes of Eperaticnal)

semantics of programs is obviously limited.

The sort of rule to be discussed can be seen to develop from the known decision

procedures for problems concerning these automata. But in the form given here, they
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are best related to notions of "weak homomorphism"[6] or "simulation"[101.

Firstly, we give definitions for the notion applied to finite automata
1
<s, 50: M, P>, M = <S',SQ',M' ,E'> .

M

]
say that [] simulates N' via R - in symbols M‘i?.m': or just M ~>M - if

< SxS', and, writing s ~>s' for <s,s’> ¢ R,

s
n

1) s ~>s '
2) seF, s~s'"=s'eF

~ '
3) getrud{r}l, sy 8" .8, € M(sl,c)

= —~ t ) 1 4 t
s, ~>S, for some s,’ € M (sl »0)

1 L]
Say that M bisimulates ' via R (in symbokf]<§> M , etc.) if M simulates M via R,
t A )
and M| simulates M via R = {<s',> | <s,s"™> ¢ R}.

1
Theorem 7.1: For finite automata }, ]

a) 1£ M ~M then TqD < TM) '

] 4
b) If M is deterministic, then T(M) < T(M') iff M~>
c) 1£ M, M' are deterministic, then T(M) = T(M) iff [} <> }

Proof: Let T(M,s) denote the tapes accepted by ]| with start state changed to s.

a) prove, by induction on length of tapes w that
s ~> s'", we T(M,s) = we T(M',s")

.
T(M) < T(}] ) follows, putting s = Sg> st = so'.

b) one direction follows from (a).

Suppose T(M) = T(M'); define > by

s E> s' iff s ¢ E(so,w), s! e'ﬁ'(sé,w) for some w

and T(M, s) c T(M', s")
c) define <x> by
s <E> s' iff s Glﬁ(so, w), s' € ﬁ*(sé, w) for some w

and T(M, s) = T(M', s').

For simulations on M-automata, we need the following definition:

Call X ¢ S accessible (via 5152""'Sn) if there exist w, w' € I% with

s_} .

s, € M(so, W)y S.S,_ eeuen s S, € paths(s PELEERD n

1° w'), and X = {sl, s

So X is accessible iff X consists of accessible states, and is generated by

some cycle, and iff X = In(m) for some infinite path w. Accessibility is decidable;

since if X is accessible, it is accessible via a path of length < k2, where k is
the size of X. [The k2 bound follows from an elementary argument; suppose

= v Y. : . is <k =
X {xl, xQ, ..... Ak}, for each i there is a path from %5 to i1 of length <k

the bound can be reduced by more careful analysis, but is still O(kQ).]

P |
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For M-automata M, M'define 7 to be a simulation relation by adding a fourth

condition to (1) - (3) above:

4) Let R be an automaton with state set the given relation
= {<s, s"> | s~> s'} , with start state <Sgs sé> .y
and with transitions for each s; ~> si , and each g ¢ ¥ u{)}
MR(ssl, sl>, c) {<32, sé> ] S, ~> s2, S, € M(sl, al),s
: and s! e M'(s!, o)}
2 1 .
Then if X € R is accessible, and wl(X) e M, then vz(X) eM.

[The reader might care to check some equivalences in which (4) plays a non-trivial

role. Try the obvious automata corresponding to the following expressions:
(0%11%0)% ((00%1) + (11%0))¥ (0%[].1*) ]

i
Theorem 7.2: (a) - (c¢) of 7.1 hold for M-automata M, M

Proof: So far as finite sequences are concerned, all properties. are clear from 7.1.

Otherwise:

a) Suppose w ¢ inf(M); then In(x) € [), for some x ¢ paths(so, w). Suppose

T TS SiSpeec.e. 3 From (1), (3) there exists ¢! ¢ paths(sé, w), with
s; ~> si for all i -- by induction on i. So " = <s s sé><sl, si><32, sé>....
is an infinite path in R. choosing a suitably long and late finite segment
of #" which cycles in R we must get an accessible X with nl(X) = In(w),

WQ(X) = In(m') ; and w' € 1nf(M ) then follows from (4).

-

b) Define 3> as in 7.1(b). Let X be any accessible subset of the resulting R ;
choose <s, s'> ¢ X, and a path 7 which cycles through X, m ¢ paths(<s, s'>, w);

if nl(X) € D), then w* ¢ T(M, s), so w” € T(M', s'), since s ~> s'; so n2(X) e D.

¢) is clear from (a) and (b), defining <> as in 7.1%¢).

Note: for deterministic M-automata, the decision method which results from 7.2
is closely related to the classical decidability results  dependent on . closure

under the boolean operations on languages. The latter suggest the construction of

an automaton M , such that

M) = v M)

1] . 1" 1- 13
Then T(M) = TM ) iff T} ) = £'. The automaton R needed for (4) is just M restricted

to accessible states. Given (1), (3); (2) holda iff each accessible state accepts (in

the finite sensze); and (4) holds iff 1nr(M ) = 2

For nondeterministic automata, the methodis not always applicable, even for finite

1
automata. For example, consider the automata ], M with state diagrams below:
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=

1
(B, D are the accept states.) M~M sending A ~>C, A ~>D, B ~>D j but there 1is

]
no simulation M ~> M.

In general, therefore, translation to deterministic automata may be essential
to establish equivalence etc.. But actually, in the context of programming constructs,
nondeterminism is usually controllable -- for example, by adopting a regime in which
"oontrol characters' in path expressions act as terminators for particular component
automata in concatenations and iterations. We might hope because of such devices for
a system where only deterministic recognizing automata for path expressions need be
considered. But in the presence of concurrency such hopes are unrealistic. We must

check that concurrency is "well-behaved" in a more subtle sense.

1
Lemma 7.3: If X is accessible in M|| M then, for i = 1, 2, either ni(X) is

accessible, or ni(X) is a singleton.
) ? 1 1
Theorem 7.4: If Ml % M2 R Ml 2> M2 then Ml I Ml g M2|| Mgifor some T.

Proof: Note first that the construction in (1) of 6.1 does not spoil simulationms,
If s' is introduced to remove a self-loop of state s, then setting s' ~> s" whenever
s ~> s" (or s" ~> s' whenever s ~> s") does not affect the simulation. So we may

assume none of the automata involved has self-loops. Now define T by

<S:> Si> 7> <S,» s£> iff s, ~> s, and Si ~> 35

Let R, S, T be the automata which correspond to R, S, T. | is isomorphic to R|| S,

by the map which exchanges 2nd and 3rd elements of the quadruples for T. So if X

is any accessible set of |, Lemma 7.3 can be applied to project it into accessible

or singleton sets in R and S. The result then follows from the simulation conditions

on R and § , and the definition of the concurrency operator.

Simulations can also be shown to be well-behaved with respect to suitable
choices corresponding to the regular operators of Section 3. (Using €-moves, these
constructions can be made straightférward..The construction corresponding to concat-

enation, for example, can be based on £-moves between accept and start states.)




16

8. Unresolved problems.

1) Transitivity of simulations is not preserved on passing from finite automata
to omega-automata. Consider the following M, My Mye
o o o
o
2) () )
00, O=20

D, = ttan D, = {{ch D, = {{EN

There are simulations Ml ~> M2 and M2 ~> M3’ but no simulation Ml ~> MS' Is there

a modification of (4) to cure this ?

2) Identities between standard regular expressions can be elegantly provable
by setting up suitable bisimulations, ~ using the rules for forming derivatives
of regular expressions [ 1l]to verify simulation conditions ( related to Ginzburg's
procedure [ 51.) One looks for a similar approach to identities between w-regular
expressions, derivative rules for which are straightforward. But the relationship
between derivative structure and deterministic recognizer structure is not analogous

‘~— one cannot necessarily identify equivalent states of M-automata. Consider

o

lccmmor IS

D = {{a, B}}

States A,B are equivalent, but cannot be identified without accepting all infinite
sequences. Perhaps a reformulation of the M~automaton notion would remove this

awkwardness? One idea is to talk in terms of transitions taken infinitely often.

3) The idea of (2) is related to a question open at the time of writing.

Define AT = AA%. Is it always the case that, if S = (BC)m = (CB)m, then S = (B+C+)w?
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