Suitable Databases for Process-centred
Environments Do not yet Exist

Wolfgang Emmerich!, Wilhelm Schafer! and Jim Welsh?

! University of Dortmund, Informatik 10, P.O. Box 500 500,
D-4600 Dortmund 50, Germany
2 University of Queensland, Dep. of Computer Science,
Queensland 4072, Australia

1 Introduction

As early as 1987, Bernstein has argued that dedicated database systems for soft-
ware engineering, specialised with respect to functionality as well as implementa-
tion, are necessary [7]. He argued that the functionality and efficiency of existing
systems (in particular, relational systems) does not adequately support the con-
struction of software engineering tools and environments. Many researchers have
picked up on this and a number of systems, some of which differ radically from
standard relational technology, have been described in the literature. Some of
these are now available as commercial products.

In this paper we argue that, despite the substantial number of proposed new
database systems, a suitable database system for software development environ-
ments and especially process-centred environments does not yet exist. We do so
by revising and refining some of Bernstein’s requirements based on our own ex-
periences in building such environments and tools. The second part of the paper
briefly reviews a number of available database systems and shows that they still
lack important features required by software engineering tools and environments
built on top of them.

2 Database Requirements of Process-centred
Environments

A Process-centred Software Development Environment (PSDE) consists of a
process engine that coordinates the work of developers involved in a project,
a set of integrated, syntax-directed tools that allow developers to conveniently
manipulate and analyse documents and to maintain consistency between related
documents of different types, and an underlying database which is capable of
storing and manipulating process information and documents.

The process engine executes a formal description of a software development
process in order to coordinate the work of developers involved in a project.
It thus determines for each developer his or her personal agenda. The agenda
indicates on which documents he or she may perform which particular actions.
As usually a number of developers work in parallel the process engine must also

manage the effects of the parallel work on each developer’s agenda, i.e. it must
possibly update one developer’s agenda because of another developer’s action.
In addition, presentation and update of an agenda may happen in a distributed
fashion.

The invocation of the tools that enable a developer to perform the actions
contained in an agenda is controlled by the process engine via the agenda. The
tools are used for example to edit, analyse, and transform documents. They
should support the developers in producing syntactically correct documents and
maintain interdocument consistency. They of course must also access documents
in a distributed fashion.

Obviously all documents must be stored persistently. (The formal software
process description plus the derived current state of a project is also considered as
a document in itself which is accessed by the process engine.) Incremental update
of all these documents is necessary to make the environment operate as safely as
possible, i.e. to minimise work loss and to guarantee intra- and interdocument
consistency in case of hardware or software failure, or when a single developer’s
session or even the whole project is suspended for some other reason. In addition,
this incremental update must be fast to guarantee appropriate user response time
of the environment.

The need for fast incremental update, the need for flexible access to shared
documents (i.e. shared access is made possible by accessing different parts of a
document) and the need for maintenance of intra- and interdocument consistency
all require that documents are stored in some very fine-grained format. The most
common representations used today are attributed directed graphs (”abstract
syntax graphs”) which have been proven to be particularly suitable for all kinds
of syntax-directed tools [17], [8], [11], [18] and even the process engine itself [15].

Representing all documents together with their interdocument dependencies
in a graph-like fashion results in a project-wide syntax-graph, in which docu-
ments are syntactically isolated subgraphs. The overall structure of such a graph
has to be defined in terms of the data definition language of the database system
and 1t must be established and controlled by the database’s conceptual scheme.
This implies that the data definition language is appropriate to cope with the
complexity inherent in project-wide syntax-graphs. To manage this complex-
ity the distinction of objects and types, encapsulation of objects’ attributes by
operations and information-hiding as well as inheritance to express generali-
sation/specialisation should be applicable to the data definition. Therefore, a
powerful type mechanism including object constructors for expressing different
types of aggregation and method definitions to achieve encapsulation must be
provided.

As the overall process and all corresponding documents cannot necessarily be
determined in advance, schema updates must still be possible without corrupting
previously developed (parts of) documents.

In addition the database system must provide a query language enabling
ad-hoc query facilities. The process engine, for example, frequently accesses the
database to retrieve information about the current project state, i.e. the different

documents’ states. The nature of such queries cannot usually be determined fully
in advance.

Views to support tool-oriented restriction of the project-wide conceptual
schema are a further requirement.

Multi-user support by process-centred environments requires a sophisticated
version concept for subgraphs which correspond to documents in order to enable
the implementation of sophisticated check-in/check-out mechanisms. Supporting
multiple software developers requires not only access control on the level of
types like expressed by the conceptual schema but it must also be applicable
to instantiated objects, i.e. objects of the same type may be granted different
access rights. Those access rights serve as a basis for implementing flexible and
programmable transaction schemes to support cooperating software developers
as proposed by [6] or by [16].

Finally, a normal project size (let’s say up to 20 developers) allows the
database to run in a client-server mode. A substantial project size (let’s say
more than 20 developers) may require the database to be distributed across
several servers.

3 Why Existing Systems Fail

It has already been argued a lot that relational technology already falls short
in supporting an efficient manipulation of such fine-grained information as a
project-wide syntax-graph. This has also been observed in other areas like CAD
(cf. [14]). In addition, even the more sophisticated data modeling languages like
Entity-Relationship based languages do not provide the powerful type system
necessary. Finally, access control on the level of single tuples in a relation (which
would be needed) as well as view definitions and versioning is either inadequately
or not at all supported by relational systems.

So-called structurally object-oriented systems like PCTE/OMS [12], CAIS-
A [2], Damokles [10], PGraphite [19] and GRAS [13] suffer from what we call
the granularity problem. Their implementations assume objects to be of a cer-
tain level of granularity. Either objects are supported which have the size of
complete documents and then correspond essentially to files or objects which
have the size of basically a string together with some attributes, are the basis
for the implementation. Whichever assumption is made, the systems fail to pro-
vide efficient manipulation of objects of other sizes.
None of these systems allows the definition of appropriate views.
In addition, these systems include either none or only predefined transaction
schemes (and corresponding lock modes). They thus do not allow programming
or adjustment of a transaction scheme to a particular project structure.
Finally, none of these systems except PCTE/OMS provides a mean for distri-
bution of databases, nor do they allow distributed access to data stored on a
server.

4 The Way Ahead

So-called fully object-oriented database systems [4] like Gemstone [9], Ontos [3]
and Os [b] seem to be the most promising as environment platforms. By defini-
tion, the object constructors required to define the aggregations that occur in
syntax-graph definitions such as tuples, sets, multi-sets and lists are provided by
these systems. They also allow encapsulation and information-hiding. The inher-
itance mechanism supports late-binding, overloading and overriding of methods.
As these databases are fairly general, their designers cannot assume any par-
ticular degree of granularity for the objects they manage. Thus, the granularity
problem does not exist in these systems.

The way views are proposed in [1] for fully object-oriented databases is appro-
priate for presenting to a tool exactly those parts of a project-wide syntax-graph
which the tool requires.

Some systems already provide different lock modes and thus enable definition of
different transaction schemes. They all offer a client/server model to access the
database in a distributed fashion.

These systems do still lack the more sophisticated transaction management
and versioning needed by PSDEs. Nevertheless, their available functionality is an
excellent basis to start from. In pursuit of this approach, an ESPRIT III project
called GoodStep (General Object-Oriented Database for SofTware Engineering
Processes) is currently under way to build an environment platform on top of

0.

References

1. S. Abiteboul and A. Bonner. Objects and Views. In Proc. of the ACM SIGMOD
Conf. on Management of Data, Denver, Co, pages 238-247. ACM Press, 1991.

2. Ada Joint Program Office. Common Ada Programming Support Environment
(APSE) Interface Set (CAIS), Revision A. Technical Report DoD-STD-1838A,
U.S. Department of Defense, 1988.

3. T. Andrews and C. Harris. Combining Language and Database Advances in an
Object-Oriented Development Environment. In Proc. of Object-oriented program-
ming systems languages and applications, Orlando, Florida, pages 430-440, 1987.

4. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
object-oriented database system manifesto. In Proc. of the 1¥' Int. Conf. on De-
ductive and Object-Oriented Databases, Kyoto, Japan. Elsevier Science Publishers
B.V (North-Holland), 1990.

5. F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Data-
base System: the Story of O2. Morgan Kaufmann, 1991.

6. N. S. Barghouti. Concurrency Control in Rule-based Software Development Fnui-
ronments. PhD thesis, Columbia University, 1992. Technical Report No. CUCS-
001-92.

7. P. A. Bernstein. Database System Support for Software Engineering. In Proc. of
the 9™ Int. Conf. on Software Engineering, Monterey, Cal., pages 166178, 1987.

8. P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR: the system. ACM SIGSOFT Software Engineering Notes,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

13(5):14-24, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineer-

ing Symposium on Practical Software Development Environments, Boston, Mass.

. R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,

and M. Williams. The GemStone data management system. In W. Kim and F. H.
Lochovsky, editors, Object-Oriented Concepts, Databases and Applications, pages
283-308. Addison-Wesley, 1989.

K. R. Dittrich, W. Gotthard, and P. C. Lockemann. Damokles — a database sys-
tem for software engineering environments. In R. Conradi, T. M. Didriksen, and
D. H. Wanvik, editors, Proc. of an Int. Workshop on Advanced Programming Fn-
vironments, LNCS 244, pages 353-37T1. Springer, 1986.

G. Engels, C. Lewerentz, M. Nagl, W. Schafer, and A. Schiirr. Building Integrated
Software Development Environments. ACM Transactions on Software Fngineer-
ing and Methods, 1, 1992. To appear, also Technical Report 60, University of
Dortmund, Dept. of Computer Science, Chair for Software Technology.

F. Gallo, R. Minot, and I. Thomas. The object management system of PCTE as a
software engineering database management system. ACM SIGPLAN NOTICES,
22(1):12-15, 1987.

C. Lewerentz and A. Schirr. GRAS, a management system for graph-like doc-
uments. In Proc. of the 3% Int. Conf. on Data and Knowledge Bases. Morgan
Kaufmann, 1988.

D. Maier. Making database systems fast enough for CAD applications. In W. Kim
and F. H. Lochovsky, editors, Object-Oriented Concepts, Databases and Applica-
tions, pages 573-582. Addison-Wesley, 1989.

B. Peuschel and W. Schafer. Concepts and Implementation of a Rule-based Pro-
cess Engine. In Proc. of the 14" Int. Conf. on Software Engineering, Melbourne,
Australia, pages 262-179, 1992.

B. Peuschel, W. Schafer, and S. Wolf. A Knowledge-based Software Development
Environment Supporting Cooperative Work. International Journal for Software
Engineering and Knowledge Engineering, 2(1), 1992. To appear.

T. W. Reps and T. Teitelbaum. The Synthesizer Generator — a system for con-
structing language based editors. Springer, 1988.

J. Welsh, B. Broom, and D. Kiong. A Design Rational for a Language-based Edi-
tor. Software — Practice and Experience, 21(9):923-948, 1991.

A. L. Wolf, J. C. Wileden, C. D. Fisher, and P. L. Tarr. P Graphite: An Exper-
iment in Persistent Typed Object Management. ACM SIGSOFT Software Engi-
neering Notes, 13(5):130-142, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments,
Boston, Mass.

This article was processed using the IATRX macro package with LLNCS style

