Skip to main content

Algebraic aspects of designing behavior based systems

  • PAC Systems
  • Conference paper
  • First Online:
Algebraic Frames for the Perception-Action Cycle (AFPAC 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1315))

Abstract

We address in this paper the design of behavior based systems from a bottom-up viewpoint. Although behavior is an observable property of a system, and therefore immediately causes a topdown model, the approach has to be inverted to support the learning of equivalence classes of the perception-action cycle. After introducing the paradigm in the frame of a socio-ecological theory of biological systems, we discuss the natural science problems to be solved for successful design of behavior based systems by a bootstrap of perception-action cycles. The necessary fusion of robotics with computer vision, neural computation, and signal theory needs a common theoretical framework. This framework consists of a global algebraic frame for embedding the perceptual and motor categories, a local algebraic framework for bottom up construction of the necessary information, and a framework for learning and self-control, based on the equivalence of perception and action. Geometric algebra will be identified as the adequate global algebraic frame, and the Lie theory will be introduced as the local algebraic frame. We will demonstrate several applications of the frames in early visual processing. Finally, we will finish our discussion with the fusion of local approaches and the global algebraic frame with respect to both the formulation of an adequate multidimensional signal theory and the design of algebraic embedded neural processing. In both cases we will discuss the relation to the non-linear Volterra series approach, which, in our framework, will be reduced to a linear one.

This work was supported by DFG grant So 320-2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloimonos Y., Weiss I. and Bandopadhay A.: Active vision. Int. J. Comp. Vis. 7: 333–356. 1988

    Article  Google Scholar 

  2. Aloimonos Y. (Ed.): Active Perception. Lawrence Erlbaum Ass., Hillsdale. 1993

    Google Scholar 

  3. Aloimonos Y.: Active vision revisited. In: [2],, Hillsdale. 1993 pp. 1–18

    Google Scholar 

  4. Aloimonos Y.: What I have learned. CVGIP: Image Understanding 60 (1): 74–85. 1994

    Article  Google Scholar 

  5. Bajcsy R.: Active perception. Proc. IEEE 76 (8): 996–1005. 1988

    Article  Google Scholar 

  6. Ballard D.H.: Animate vision. Artif. Intelligence 48: 57–86. 1991

    Article  Google Scholar 

  7. Bayro-Corrochano E. and Lasenby J.: A unified language for computer vision and robotics. In: Proc. AFPAC'97. Kiel. G. Sommer and J.J. Koenderink (Eds.). LNCS Vol. XXX. Springer-Verlag. Heidelberg. 1997

    Google Scholar 

  8. Bayro-Corrochano E. and Buchholz S.: Geometric neural networks. In: Proc. AFPAC'97. Kiel. G. Sommer and J.J. Koenderink (Eds.). LNCS Vol. XXX. Springer-Verlag. Heidelberg. 1997

    Google Scholar 

  9. Bayro-Corrochano E., Daniilidis K. and Sommer G.: Hand-eye calibration in terms of motion of lines using geometric algebra. In: Proc. 10th Scandinavian Conference on Image Analysis. Lappeenranta. Finland. 1997

    Google Scholar 

  10. Benediktsson J., Sveinsson J., Ersoy O. and Swain P.: Parallel consensual neural networks. IEEE Trans. Neural Networks 8: 54–64. 1997

    Article  Google Scholar 

  11. Brooks R.A.: A robust layered control system for a mobile robot. IEEE Trans. Robotics and Automation 2 (1): 14–23. 1986

    Google Scholar 

  12. Bruske J., Ahrns I. and Sommer G.: Neural fuzzy control based on reinforcement learning and Dynamic Cell Structures. In: Proc. EUFIT, Vol. 2. 710–714. Aachen. 1996

    Google Scholar 

  13. Bruske J. and Sommer G.: An algorithm for intrinsic dimensionality estimation. In: Proc. CAIP'97, Kiel, Sept. 1997. LNCS Vol. XXX. Springer-Verlag. Heidelberg. 1997

    Google Scholar 

  14. Bruske J. and Sommer G.: Dynamic cell structure learns perfectly topology preserving map. Neural Computation 7 (4): 845–865. 1995

    Google Scholar 

  15. Bruske J., Hansen M., Riehn L. and Sommer G.: Adaptive saccade control of a binocular head with dynamic cell structures. In: Proc. ICANN'96. 215–220. LNCS Vol. 1112. Springer-Verlag. 1996

    Google Scholar 

  16. Billow T. and Sommer G.: Multi-dimensional signal processing using an algebraically extended signal representation. In: Proc. AFPAC'97. Kiel. G. Sommer and J.J. Koenderink (Eds.). LNCS Vol. XXX, Springer-Verlag. Heidelberg. 1997

    Google Scholar 

  17. Chevallier D.P.: Lie algebras, modules, dual quaternions and algebraic methods in kinematics. Mech. Mach. Theory 26 (6): 613–627. 1991

    Article  Google Scholar 

  18. Connell J.A.: A behavior-based arm controller. IEEE Trans. Robot. & Automation 5 (6): 784–791. 1989

    Google Scholar 

  19. Cutting J.E.: Perception with an Eye for Motion. MIT Press. Cambridge. 1986

    Google Scholar 

  20. Danielson D.A.: Vectors and Tensors in Engineering and Physics. Addison-Wesley Publ., Redwood City. 1992

    Google Scholar 

  21. Daniilidis K.: Fixation simplifies 3D motion estimation. Comp. Vis. and Image Understanding. 1996. to appear

    Google Scholar 

  22. Daniilidis K. and Bayro-Corrochano E.: The dual quaternion approach to hand-eye calibration. In: Proc. 13th ICPR, Vienna, Vol. A. 318–322. ICPR. 1996

    Google Scholar 

  23. Doran C., Hestenes D., Sommen F. and Van Acker N.: Lie groups as spin groups. J. Math. Phys. 34 (8): 3642–3669. 1993

    Article  Google Scholar 

  24. Eccles J.C.: Evolution of the Brain: Creation of the Self. Routledge. London and New York. 1989

    Google Scholar 

  25. Eigen M. and Schuster P.: The Hypercycle — a Principle of Natural Self-Organization. Springer-Verlag. Heidelberg, New York. 1979

    Google Scholar 

  26. Faugeras O.: Stratification of three-dimensional vision: projective, affine, and metric representations. J. Opt. Soc. Am. A 12 (3): 465–484. 1995

    Google Scholar 

  27. Furth H.G.: Piaget and Knowledge. Theoretical Foundations. Prentice Hall, Inc. Englewood Cliffs. 1969

    Google Scholar 

  28. Gibson J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin. Boston. 1979

    Google Scholar 

  29. Gool van L., Moons T., Pauwels E. and Oosterlinck A.: Vision and Lie's approach to invariance. Image and Vision Computing 13(4): 259–277. 1995

    Article  Google Scholar 

  30. Granlund G.H. and Knutsson H.: Signal Processing for Computer Vision. Kluwer Academic Publ. 1995

    Google Scholar 

  31. Hailu G. and Sommer G.: Learning from reinforcement signal. submitted. 1997

    Google Scholar 

  32. Haken H.: Synergetics. An Introduction. Springer-Verlag. Berlin. 1977

    Google Scholar 

  33. Hestenes D. and Sobczyk G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. D. Reidel. Dordrecht. 1984

    Google Scholar 

  34. Hestenes D.: New Foundations for Classical Mechanics. Kluwer Academic Publ. Dordrecht. 1986

    Google Scholar 

  35. Koenderink J.J.: Wechsler's vision. Ecological Psychology 4 (2): 121–128. 1992

    Google Scholar 

  36. Koenderink J.J.: Embodiments of geometry. In: A. Aertsen (Ed.). Advanced Neural Computers. 303–312. Elsevier Science Publ. Amsterdam. 1990

    Google Scholar 

  37. Koenderink J.J., Kappers A. and van Doorn A.: Local operations: the embodiment of geometry. In: G.A. Orban, H.H. Nagel (Eds.): Artificial and Biological Vision Systems. 1–23. Springer-Verlag. Berlin. 1992

    Google Scholar 

  38. Krüger G. and Zetzsche C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Trans. Image Processing 5 (6): 1026–1042. 1996

    Article  Google Scholar 

  39. Landy M.S., Maloney L.T. and Pavel M. (Eds.): Exploratory Vision. The Active Eye. Springer-Verlag. New York. 1996

    Google Scholar 

  40. Lorenz K.: Evolution and Modification of Behavior. Merhuen. London, 1966

    Google Scholar 

  41. Luong Q.T. and Vieville T.: Canonic representations for the geometries of multiple projective views. In: J.O. Eklundh (Ed.) Proc. ECCV'94. 589–599. LNCS Vol. 800. Springer-Verlag. Berlin. 1994

    Google Scholar 

  42. Malsburg von der C.: Considerations for a visual architecture. In: R. Eckmiller (Ed.). Advanced Neural Computers. 303–312. Elsevier Science Publ. Amsterdam. 1990

    Google Scholar 

  43. Marr D.: Vision. W.H. Freeman. San Francisco. 1982

    Google Scholar 

  44. Mataric M.J.: Integration of representation into goal-driven behavior-based robots. IEEE Trans. Robot. & Automation 8 (3): 304–312. 1992

    Google Scholar 

  45. Michaelis M. and Sommer G.: Junction classification by multiple orientation detection. In: J.O. Eklundh (Ed.). Proc. ECCV'94. 101–108. LNCS Vol. 800. Springer-Verlag. Berlin. 1994

    Google Scholar 

  46. Michaelis M. and Sommer G.: A Lie group approach to steerable filters. Patt. Rec. Lett. 16: 1165–1174. 1995

    Article  Google Scholar 

  47. Michaelis M.: Low Level Image Processing Using Steerable Filters. PhD Thesis. Technical Faculty. University of Kiel. Germany. 1995

    Google Scholar 

  48. Newell A. and Simon H.A.: Computer science as empirical enquiry: symbol and search. Commun. of the ACM 19: 113–126. 1976

    Article  Google Scholar 

  49. Nicolis J.S.: Chaotic Dynamics Applied to Biological Information Processing. Akademie-Verlag, Berlin. 1987

    Google Scholar 

  50. Pao Y.H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley. 1989

    Google Scholar 

  51. Park F.C., Bobrow J.E. and Ploen S.R.: A Lie group formulation of robot dynamics. Int. J. Robotics Res. 14 (6): 609–618. 1995

    Google Scholar 

  52. Paton R. (Ed.): Computing with Biological Metaphors. Chapman and Hall. London. 1994

    Google Scholar 

  53. Pauli J., Benkwitz M. and Sommer G.: RBF networks for appearance-based object detection. In: Proc. ICANN'95, Vol. 1. 359–369. ICANN, Paris. 1995

    Google Scholar 

  54. Pearson D.W.: Linear systems equivalent to artificial neural networks via Lie theory. Neurocomputing 8: 157–170.1995

    Article  Google Scholar 

  55. Pelc A.: Purposive Progressive Representation of Images using Wavelet Nets. Master Thesis (in German). Cognitive Systems Group. Computer Science Institute. University of Kiel. Germany. 1997

    Google Scholar 

  56. Pellionisz A. and Llinas R.: Tensor network theory of the metaorganization of functional geometries in the central nervous system. Neuroscience 16 (2): 245–273. 1985

    Article  PubMed  Google Scholar 

  57. Popper K.R.: Objective Knowledge. The Clarendon Press. Oxford, 1972

    Google Scholar 

  58. Porteous I.R.: Clifford Algebras and the Classical Groups. Cambridge University Press. 1995

    Google Scholar 

  59. Rayner P.J.W. and Lynch M.R.: A new connectionist model based on a nonlinear adaptive filter. In: Proc. IEEE Int. Conf. Acoust., Speech & Signal Process. Vol. 2. 1191–1194. 1989

    Google Scholar 

  60. Rooney J.: On the three types of complex numbers and planar transformations. Environment and Planning B5: 89–99. 1978

    Google Scholar 

  61. Sattinger D.H. and Weaver O.L.: Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics. Springer-Verlag. New York. 1993

    Google Scholar 

  62. Schetzen M.: Nonlinear system modeling based on the Wiener Theory. Proc. IEEE 69 (12): 1557-57

    Google Scholar 

  63. Segman J. and Y.Y. Zeevi: Image Analysis by wavelet-type transforms: group theoretical approach. J. Math. Imaging and Vision 3: 51–77. 1993

    Article  Google Scholar 

  64. Sommer G., Bayro-Corrochano E. and Bülow T.: Geometric algebra as a framework for the perception-action cycle. In: Proc. Int. Workshop Theor. Foundations of Computer vision. Dagstuhl. March 1996. Springer-Verlag. Wien. 1997

    Google Scholar 

  65. Tikhonov A.N. and Arsenin V.Y.: Solutions of Ill-Posed Problems. Wiley. New York. 1977

    Google Scholar 

  66. Tinbergen N.: The Study of Instinct. Oxford University Press. New York, 1951

    Google Scholar 

  67. Workshop on Visual Behaviors. Seattle. Washington. June 19, 1994, Proc.: IEEE Computer Society Press. Los Alamitos. 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Jan J. Koenderink

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sommer, G. (1997). Algebraic aspects of designing behavior based systems. In: Sommer, G., Koenderink, J.J. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 1997. Lecture Notes in Computer Science, vol 1315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017858

Download citation

  • DOI: https://doi.org/10.1007/BFb0017858

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63517-8

  • Online ISBN: 978-3-540-69589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics