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Coarse-grid Selection for Parallel Algebraic
Multigrid

Andrew J Cleary, Robett D Falgout, Van Emden Henson, Jim E Jones

Center for Applied Scientific Computing, Lawrence Livermore National Laboatory,
Liveimore, CA

Abstiact. The need to solve linear systems arising fiom pi1oblems posed
on extiemely large, unstiuctured gi1ids has spaiked great interest in pai-
allelizing algebraic multigiid (AMG) To date, however, no parallel AMG
algorithms exist We introduce a parallel algorithm for the selection of
coatse-grid points, a crucial component of AMG, based on modifica-
tions of certain paiallel independent set algoiithms and the application of
hewistics designed to inswme the quality of the coarse mids A piototype
serial veision of the algorithm is implemented, and tests are conducted
to determine its effect on multigiid convergence, and AMG complexity

1 Introduction

Since the intioduction of algebiaic multigiid (AMG) in the 1980’ [4, 2, 3, 5, 19,
16, 18, 17] the method has attiacted the attention of scientists needing to solve
large problems posed on unstiuctmed grids Recently, there has heen a majou
surge of inteiest in the field, due in large pait to the need to solve increasingly
larger systems, with hundieds of millions o1 billions of unknowns Most of the
current research, however, focuses either on impioving the standaid AMG algo-
1ithm [9, 7], or on dramatic new algebiaic approaches [20, 6] Little reseaich has
been done on parallelizing AMG The sizes of the modern problems, however,
dictate that large-scale patallel processing be employed

Methods for parallelizing geometiic multigiid methods have been known for
some time [10], and most of the AMG algotithm can be paiallelized using existing
technology Indeed, much of the parallelization can be accomplished using tools
readily available in packages such as PETSc or ISIS++ But, the heart of the
AMG setup phase includes the coarse-grid selection process, which is inherently
sequential in natuie

In this note we introduce a patallel algorithm for selecting the coarse-giid
points The algorithm is based on modifications of paiallel independent set algo-
rithms Also, we employ heuwiistics designed to insme the quality of the coaise
gtids A prototype setial code is implemented, and we examine the effect the
algorithm has on the multigtid convergence pioperties

In Section 2 we outline the basic principles of AMG Section 3 desciibes
our paiallelization model and the undeilying philosophy, while the details of the
parallel algorithm are given in Section 4 Results of numeiical expetriments with
the setial prototype are presented and analyzed in Section 5 In Section 6 we
make concluding remaiks and indicate directions for future 1esearch
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2  Algebraic Multigrid

We begin by outlining the basic principles of AMG Detailed explanations may
be found in [17] Consider a problem of the foom Au = f, whete Aisan nx n
matiix with entiies a;; For AMG, a “giid” is simply a set of indices of the
vaiiables, so the oiiginal grid is denoted by 2 = {1,2, ,n} In any multigrid
method, the central idea is that error e not eliminated by relaxation is elirinated
by solving the 1esidual equation Ae = r on a coaiser giid, then intetpolating
e and using it to correct the fine-gtid approximation The coarse-grid problem
itself is solved by a recursive application of this method Pioceeding through all
levels, this is known as a multigiid evcle One purpose of AMG is to free the
solver from dependence on geomet1y (which may not be easily accessible, if it is
known at all) Hence, AMG fixes a 1elaxation method, and its main task is to
determine a coaisening process that approximates error the 1elaxation cannot
1educe

Using supeisctipis to indicate level number, wheie 1 denotes the finest level
so that A1 = A and 2! = {2, the components that AMG needs are: “giids”
Moo D 0M, grid operators A', A%, | AM interpolation operators
If k= 1,2, M —1, restriction operators If 7',k = 1,2, A —1, and a
relaxation scheme foi each level Once these components are defined, the recur-
sively defined multigiid cycle is as follows:

Algorithm: MV*{u* £*) The (11, pr2) V-cycle
If k= M, set uM — (AM)=1gM
Other wise:
Relax p1 times on A*uF = £
Peifoim coaise grid conrection
Set uFt! = 0, Rl — II§:+1 (f"" _ Akuk)
“Solve” on level k + 1 with MV &+ (uk+? fhtl)
Coriect the solution by u* + u® + [f  u**!
Relax 9 times on A¥u® = r*

Foi this to work efficiently, two principles must be followed

P1: Errors not efficiently reduced by relazution must be well-approximated
by the range of interpolation

P2: The couwrse-grid problem must provide a good approzimation to fine-
grid error in the range of inter polation

AMG satisfies P1 by automatically selecting the coaise giid and defining inte:-
polation, based solely on the algebiaic equations of the system P2 is satisfied
by defining 1estiiction and the coaise-giid operator by the Gelerkin formulation
[14]:
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Selecting the AMG components is done in a sepaiate prepiocessing step



AMG Setup Phase:
1 Setk=1
2 Patition 2F into disjoint sets C* and F*
(a) Set 28+l = C*
(b) Define inteipolation IF
Set IFF! = (1F,))7 and AFHL = [MHIARTE,
4 If 2%+ is small enough, set M = k+ 1 and stop Otherwise, set
k=k+1and go to step 2

(%]

2.1 Selecting Coarse Grids and Defining Interpolation

Step 2 is the coie of the AMG setup process The goal of the setup phase is to
choose the set C' of coarse-grid points and, fo1 each fine-grid point ¢ € F = 12—,
a small set C; C C of interpolating points Interpolation is then of the foim

ub+t if icC,
(Thw* ), = S wult it ieF @
JEC:

We do not detail the construction of the inteipolation weights w;;, instead 1efer-
ring the 1eader to [17] for details

An underlying assumption in AMG is that smooth eiror is chatacterized by
small 1esiduals, that is, Ae = 0, which is the basis for choosing coaise grids and
defining inteipolation weights For simplicity of discussion heie, assume that A
is a symmetiic positive-definite A -matiix, with a; > 0,a;; < 0 for j # 4, and
2 ai; 20

We say that point i depends on point j if a;; is “large” in some sense, and
hence, to satisfy the ith equation, the value of u; is affected mme by the value
of u; than by other variables Specifically, the set of dependencies of 1 is defined
by

S = {J‘ Fi -y > ari}ggc(—aik)} ) (3)

with a typically set to be 025 We also define the set S’ = {j i€ S;}, that
is, the set of points j that depend on point ¢, and we say that S7 is the set of
influences of point ¢

A basic premise of AMG is that 1elaxation smoothes the et101 in the direction
of influence Hence, we may select C; = 5; N C as the set of interpolation points
for i, and adhere to the following ciiterion while choosing C' and F:

P3: For each i € F, each j € §; is either in C' or S;NC; #

‘That is, if 4 is a fine point, then the points influencing ¢ must either be coaise
points or must themselves depend on the coaise points used to interpolate u;

The coaise giid is chosen to satisfy two ciiteria We enforce P3 in order to
insure good interpolation However, we wish to keep the size of the coarse-grid
as small as possible, so we desite that



P4: C is o mozimal set with the property that no C-point influences
another C-point

It is not always possible to enforce both criteria Hence, we enforce P3 while
using P4 as a guide in coarse-point selection

AMG employs a two-pass process, in which the giid is fiist “colored”, pro-
viding a tentative C/F choice Essentially, a point with the laigest number of
influences (“influence count”) is colored as a € point The points depending on
this ¢ point are colored as F points Other points influencing these F' points
aie mote likely to be useful as C' points, so their influence count is increased
The process is repeated until all points are either ¢' o1 F points Next, a second
pass is made, in which some F points may be 1ecolored as C' points to ensure
that P3 is satisfied Details of the coarse-giid selection algotithm may be found
in {17], while a recent study of the efficiency and robustness of the algoithm is
detailed in [7]

Like many linea1 solvers, AMG is divided into two main phases, the sefup
phase and the solve phase Within each of these phases aie certain tasks that
must he parallelized to cieate a parallel AMG algoiithm They are

— Setup phase:
e Selecting the coarse giid points, §2¢+!
» Construction of interpolation and 1estriction operators, It 1>
o Constructing the coaise-giid operator A¥+1 = [FH1 Ak FH

— Solve phase:

Relaxation on A*u* = f*

Calculating the 1esidual v ¢ ¥ — A*y*

Computing the 1estiiction f¥+1 = [F+1rk

Interpolating and coirecting u* « u® + I, u*+!

k+1
Ik

* o @

3 Parallelization Model

In this woik we target massively parallel distiibuted memoty aichitectures,
though it is expected that the method will prove useful in other settings, as well
Cuirently, most of the taxget platforms suppoit shared memory within clusters
of processors (typically of size 4 or 8), although for poitability we do not utilize
this featurie We assume explicit message passing is used among the processors,
and implement this with MPI [15] The equations and data are distiibuted to the
processors using a domain-partitioning model This is natuial for many problems
of physics and engineering, wheie the physical domain is paititioned by subdo-
mains The actual assignment to the processots may be done by the application
code calling the solver, by the giidding piogram, o1 by a subsequent call to a
graph paititioning package such as Metis {12] The domain-pattitioning stiategy
should not be confused with domain decomposition, which refeis to a family of
solution methods

We use object-otiented software design for parallel AMG One benefit of this
design is that we can effectively employ keinels fiom other packages, such as



PETSc (1] in several places thioughout ow code Internally, we focus on a matriz
object that generalizes the featines of “matiices” in widely-used packages We
can wiite AMG-specific routines once, for a variety of matiix data structures,
while avoiding the necessity of reinventing widely available 10utines, such as
matiix-vector multiplication

Most of the 1equited operations in the solve phase of AMG are standard, as
ate several of the cote opeiations in the setup phase We list below the standaid
operations needed by AMG:

— Matriz-vector multiplication: used for residual calculation, for inter polation,
and 1estriction (both use rectangular matiices, 1estriction multiplies by the
transpose) Some packages provide all of the above, while others may have
to be augmented, although the coding is stiaightfmwaid in these cases

— Basic iterative methods used for the smoothing step Jacobi o1 scaled Ja-
cobi are most common for parallel applications, but any iterative method
provided in the parallel package could be applied

— Gathering/scattering processor boundary equations used in the constiuction
of the inte1 polation operatois and in the constiuction of coarse-g1id oper ators
via the Galerkin method Fach processor must access “processor-boundary
equations” stored on neighboting processors Because similar functionality
is 1equired to implement additive Schwaiz methods, parallel packages imple-
menting such methods alieady provide tools that can be modified to fulfill
this requirement

4 Parallel Selection of Coarse Grids

Designing a paiallel algorithm for the selection of the coaise-grid points is the
most difficult task in paiallelizing AMG Classical AMG uses a two-pass algo-
tithm to implement the heuristics, P3 and P4, that assuie giid quality and
control giid size In both passes, the algorithm is inherently sequential The first
pass can be described as:

1) Find a point j with maximal measute w(j) Select j as a C' point
2) Designate neighbois of § as F points, and update the measures of
other neaby points, using hemistics to insme giid quality
Repeat steps 1) and 2) until all points aie either €' o1 F' points

This algorithm is clearly unsuitable for paiallelization, as updating of measures
ocems after each ¢ point is selected The second pass of the classical AMG
algorithm is designed to enfoice P3, although we omit the details and refer the
reader to [17] We can satisfy P3 and eliminate the second pass through a simple
modification of step 2)

Further, we may allow for parallelism by applying the following one-pass
algorithm Begin by perfoiming step 1) globally, selecting a set of € points, D,
and then perform step 2) locally, with each piocessor working on some poition
of the set D With different criteria for selecting the set D, and armed with



vatious heuristics for updating the neighbois in 2), a family of algorithms may
be developed The overall fiamework is:

Input the n x n matrix A* (level k)

Initialize
F=0,C=0
Yie {1 n},

w(i) +initial value
Loop until |C| + |F|=n
Select an independent set of points D
Yje D
C=CuUj
¥ k in set local to j, update w(k)
ifw(k) =0, F=FUk
End loop

4.1 Selection of the set D

For the measwie w(i), we use |ST| + o(i), the numbes of points influenced by
the point ¢ plus a tandom number in (0,1) The rtandom number is used as a
mechanism for breaking ties between points with the same number of influences
The set D is then selected using a modification of a parallel maximal independent
set algorithm developed in [13, 11, 8]

A point j will be placed in the set D if w(j) > w(k) for all & that either
influence ot depend on j By construction, this set will be independent While cur
implementation selects a maximal set of points possessing the 1equisite property,
this is not necessary, and may not be optimal An impo:tant observation is that
this step can be done entirely in parallel, provided each processor has access to
the w values for points with influences that cioss its processor boundaiy

4 2 Updating w{k) of neighbors

Desctiibing the hewistics for updating w(k) is best done in teims of graph theoy
We begin by defining S, the auxiliary influence matriz

|1 if je 5,

Sij = {0 otherwise 4)
That is, S;; = 1 only if ¢ depends on § The ith row of S gives the dependencies
of ¢ while the ith column of S gives the influences of i We can then form the
directed graph of S, and obseive that a diected edge fiom vertex ¢ to veirtex
j exists only if Si; # 0 Notice that the directed edges point in the direction
of dependence To update the w(k) of neighbots, we apply the following pair of
heuristics



P5: Values at € points are not interpolated, hence, neighbois that in-
fluence a ¢ point are less valuable as potential C' points themselves

Pé: Ik and j both depend on ¢, a given C point, and j influences &, then
7 is less valuable as a potential C point, since k can be inteipolated
fiom ¢

The details of how these heutistics aie implemented are:

Ye € D,
P5:
VjlS; #0, (each j that influences ¢)
w(j) + w(j) ~1 (dectement the measure)
Se;+ 0 (temove edge ¢f fiom the giaph)
Pé:
VilSje#0 (each j that depends on c},
Sje 40 (remove edge je fiom the graph)
Vk|Se #0, (each k that j influences),
if Spe #0 (if £ depends on ¢),
w(j) + w(j) — 1 (decrement the measure)
Sp; <0 (emove edge kj fiom the graph)

The heuristics have the effect of lowering the measure w(k) fo a set of neighbors
of each point in I As these measures are lowered, edges of the graph of 5 are
removed to indicate that cettain influenc es have aheady been taken into account
Frequently the step w(f) = w(j) ~ 1 causes [w(j)| = 0 When this cccuis j is
flagged as an F' point

Once the hewistics have been applied for all the points in 1), a global com-
munication step is 1equited, so that each processor has updated w values for all
neighhos of all their points The entite process is then repeated C points are
added by selecting a new set, D, fiom the vertices that still have edges attached
in the modified graph of S This process continues until all » points have either
been selected as €' points o F points

5 Numerical Experiments

To test its effect on convergence and algorithmic scalability, we include a serial
impleinentation of the parallel coaisening algmithm in a standard sequential
AMG solver Obviously, this does not test parallel efficiency, which must wait
for a full paiallel implementation of the entire AMG algorithin

Figwe 1 shows the coaise grid selected by the paiallel algoiithm on a stan-
dard test problem, the 9-point Laplacian operator on a 1egular g1id This test is
impoitant because the grid selected by the standaid sequential AMG algoi1ithm
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Fig 1 Coorse grids for the structured-giid 9-point Loplacion operator The durk cireles
are the C points Left: Grid selected by the standard algorithm Right: Grid selected by
the parollel algorithm

Fig.2 Coarse grids for an unstructured grid The large circles are the C points Left:
Grid selected by the standord olgorithm Right: Grid selected by the parallel algorithm
Graph connectivity is shown on the left, while the full digraph is shown on the 1ight

is also the optimal grid used in geometric multigrid for this problem Examining,
many such test problems on 1egular giids, we find that the paiallel coaisening
algorithm typically produces coarse grids with 10-20% moie C points than the
sequential algorithm Omn unstructwed grids o1 complicated domains, this in-
ciease tends to be 40-50%, as may be seen in the simple example displayed in
Figuie 2

The impact of the paallel coaisening algoithm on convergence and scal-
ability is shown in two figures Figure 3 shows the conveigence factor for the
9-point, Laplacian operator on 1egular grids ranging in size fiom a few hundied
to neatly a half million points Several different choices for the smoother and the
parameter o are shown In Figuie 4 the same tests are applied to the 9-point,
Laplacian operator for anisotiopic grids, where the aspect 1atios of the under-
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Fig 38 Convergence factors for parallel AM@ for the 9-poini Laplacian

lying guadiilateral finite elements ate extiemely high In both figures, we see
that convergence factors for the grids chosen by the paiallel algorithm ate sig-
nificantly larger than standard AMG (shown as “AMG” in Figure 3, not shown
in Figuie 4), although the parallel algorithm still produce solutions in a 1eason-
able number of itetations Of moie concern is that the convergence factors do
not scale well with increasing problem size We believe that this may be caused
by choosiug too many coarse grid points at once, and that simple algoiithmic
modifications mentioned below may impiove our 1esults

Figure 5 shows the grid and operator complexities for the parallel algorithm
applied to the 9-point Laplacian operator Grid complexity is the total number
of g1id points, on all grids, divided by the number of points on the o1iginal grid
Operator complexity is the total number of non-zeros in all operators A, A,
divided by the number of non-zeros in the otiginal matiix Both the giid and
operaton complexities geneiated using by the parallel algorithm aie essentially
constant with incieasing pioblem size While slightly laiger than the complexities
of the sequential grids, they nevertheless appear to be scalable

The fiamework desciibed in Section 4 peimits casy modification of the al-
gorithm For example, one may alter the choice of the set D of ¢ points We
believe that the convergence factor degiadation shown in our 1esults may be due
to selecting too many coarse grid points One possibility is to choose the minimal
number of points in D, that is, one point per processor This amounts to running
the sequential algorithm on each processor, and there a number of different ways
to handle the interprocessor boundaiies One possibility is to coaisen the pro-
cesso1 boundary equations fist, using a parallel MIS algorithm, and then treat
each domain independently Another option is to 1un the sequential algorithm
on each processor ignoting the nodes on the boundary, and then patch up the
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Fig. 4 Convergence rates for parallel AMG for the anisofropic giid problem.

grids on the processor boundaries

6 Conclusions

Modein massively parallel computing 1equires the use of scalable linear solvers
such as multigrid Foi unstructued-girid problems, however, scalable solvers have
not been developed Paiallel AMG, when developed, promises to be such a solver
AMG is divided into two main phases, the setup phase and the solve phase The
solve phase can be parallelized using standar d techniques common to most paial-
lel multigrid codes However, the setup phase coaisening algorithm is inherently
sequential in nature

We develop a family of algorithms for selecting coarse giids, and prototype
one member of that family using a sequential code Tests with the prototype
indicate that the quality of the selected coaise giids are sufficient to maintain
constant complexity and to provide convergence even for difficult anisotiopic
problems However, convergence 1ates are higher than for standaid AMG, and do
not scale well with problem size We believe that this degradation may be caused
by choosing too many coarse grid points at once, and that simple algorithmic
modifications may improve out 1esults Exploration of these algorithm variants
is the subject of our current 1esearch
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