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Abst rac t .  We show how executable specifications may be used to generate 
test cases for bug discovery, locate bugs when test data cause a program to 
fail, and guide deductive and inductive bug correction. 

1 I n t r o d u c t i o n  

Logic programming has gained in popularity" in recent years. This style of program- 
ming, using Horn clauses to express procedural information, allows one to reason 
easily about the effects of executing program statements. 

We present a methodology for reasoning about the relationship between logic 
programs and their specifications, to help debug erronneous programs. To Mlow 
for debugging, the specifications must describe the relationships between the values 
of input and output variables. Since Horn clauses are a powerful subset of first- 
order logic, a program's specifications can oftentimes be written in Prolog itself and 
executed by the Prolog interpreter or compiler directly. (Whereas specifications are 
intended to emphasize clarity and simplicity, in implementing programs, efficiency 
is a major consideration.) 

The debugger follows the pattern of Shapiro's ([12]). We focus on the use of exe- 
cutable specifications to generate test cases for bug discovery, locate bugs when test 
data cause a program to fail, and guide deductive and inductive bug correction ([3]). 
We also ask that  specifications provide information on the well-founded ordering of 
input arguments for recursive procedures. (A well-founded ordering ~- is a transi- 
tive and irreflexive binary relation on elements of a set S such that the S has no 
infinite descending sequences.) The ordering specifies, for each recursive call, which 
arguments should be decreasing. This is used for detecting looping. 

Programs, for our purposes, are presumed to obey their Horn clause declarative 
semantics, i.e., extra-logical features, such as cuts, clause order, and subgoM order, 
may affect efficiency and termination, but not correctness. We also presume that  
specifications faithfully reflect the intended requirements of a program. To obtain 
the desired effect, it is sometimes necessary to use impure features, i.e., non-logical 
control structures, of Prolog. 
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More expressive languages, like EQLOQ ([5]) or RITE ([6]), which use equational 
Horn clauses, may be even more suited to the kind of program manipulations advo- 
cated here. 

Other work on declarative debugging includes [4, 10, 7, 2, 11, 1, 8, 9]. 

2 U s i n g  E x e c u t a b l e  S p e c i f i c a t i o n s  

Executable specifications of a program not only serve to check the output, but also 
generate useful test cases for that program, provided that axioms for primitive pred- 
icates are supplied. The information contained in specifications regarding the ex- 
pected output behavior is indispensable for checking the correctness of the results 
of program execution, while test cases help reveal instances of incorrect output. 

We assume that  the properties of each procedure in the program have been de- 
scribed in the program's specifications, which detail the relationships between pro- 
gram variables. In other words, they define all legal input /output  pairs for each pro- 
cedure. To check for termination, we also need a well-founded ordering under which 
successive input values to recursive procedures are intended to form a descending 
sequence. Any unspecified procedures are presumed correct and terminating. 

A program is (partially) correct with respect to its specification if each clause 
of the program can be proved from the specifications and given domain facts by 
first-order reasoning. If we can find an atomic formula that follows logically from 
the program (and domain facts), but which cannot be proved from the specifications 
(and domain facts), then we have shown that the program is incorrect with respect 
to the given specifications. 

A program is complete with respect to its specifications if each clause of the 
specification follows from the program and domain facts. If  we can find an atomic 
formula that  follows from the specifications (and domain facts) which can not result 
from executing the program, then that  formula is "uncovered" and the program is 
incomplete. 

If  during a computation, the program generates an infinite sequence of procedure 
calls, it is non~erminating. Otherwise, it is said to terminale. 

We test for correctness and completeness by checking a program's computation 
results against its specifications, for a sequence of test inputs. Of course, finding 
no instances of incorrectness or incompleteness does not prove correctness and com- 
pleteness. Termination is tested for by routines that compare the inputs with respect 
to the specified well-founded ordering whenever a procedure is invoked. 

To generate test cases for a given goal, we first run the specifications of that  goal 
to obtain a pair consisting of an input along with its expected output. We then use 
only the input value to run the goal on the program to be debugged. If the execution 
fails, goes into a loop, or returns an incorrect output value, then this test case has 
shown us that  there is at least one bug in the program. In other words, a test case 
consisting of a correct input/output pair can be used to discover bugs should they 
cause the program to fail to compute the correct answer. If one of the predicates in 
the specifications of a program is defined in the form of a "generator", then we can 
generate alternate test cases by utilizing Prolog's built-in backtracking facility. 
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3 Bug Location 

When a Prolog program does not compute correct results, it may be that the program 
contains incorrect clauses, is incomplete in defining certain relationships between 
program variables, or has an infinite procedure invocation sequence. 

We constructed a meta-interpreter which executes programs, diagnoses errors 
according to the specifications of programs, and locates and reports bugs. Figure 1 
summarizes the algorithm in pseudo-Prolog code. 

execute( (Goal1, Goal~), Message ) :- 
execute( Goall, Msg_Goall ), 
if Msg_Goall = ok( Goal1 ) 

then execute( GoalP, Message ) 
else Message = Msg_Goall 

execute( Coal, ok(Goal) ) : -  
system( Goal ), eaU( aoa~ ) 

execute( Goal, looping(Goal)):-  
not decreasing( Goal ) 

execute( Goal, Message ) :- 
not system( Goal ), 
clause( Coal, Subgoals ), 
execute( Subgoals, Msg_Subgoal ), 
if  Msg_Subgoal = ok( Subgoals ) 

then if spec( Coal ) 
then Message = ok( Goal ) 
else Message = incorrect( (Coal :- Subgoals) ) 

else Message = Msg_Subgoal 
execute( Goal, uncovered(Goal) ) :- 

spec( Goal ) 

Fig. 1. Algorithm for Automated Bug Location 

The procedure ezecute(Goal,  Message)  serves two functions: goal reduction and 
bug location. The first clause deals with conjunctive goals. If the first conjunct 
executes correctly, the remaining conjuncts will be tried in order; otherwise, it just 
returns the error found to the  top level. The second clause executes built-in primitives 
directly. The next three clauses detect bugs of nontermination, incorrect clauses, and 
uncovered goals, respectively. 

The procedure first checks if the input variables violate the well-founded ordering 
defined in the specification of the procedure that covers the goal. To accomplish this, 
the parameters to each recursive call are recorded (asserted) during computation. If 
such is the case, we have an instance of a looping goal. 

If the input cannot cause an infinite sequence of procedure calls, the interpreter 
will proceed to check if the program can actually complete the computation on the 
given input. It first finds a clause whose head can be unified with Goal and then 
recursively executes the subgoals in the body of that clause. If a bug is found in the 
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body of a clause, it will be returned to the top level (for subsequent correction). If 
all the subgoals complete successfully, then all the output variables in Goal will be 
instantiated. The interpreter then checks if the output value is correct with respect 
to the specifications of Goal. If not, then we have found an incorrect clause. 

If the goal fails because there is no clause in the program that covers it for the 
given input data (i.e., no unifying clause or a subgoal fails in every unifying clause), 
then, provided Goal is satisfiable according to the specifications, the program must 
be incomplete and we have an instance of an uncovered goal. 

4 B u g  C o r r e c t i o n  

Bug correction requires reasoning with knowledge of the domain and intended algo- 
rithm, the semantics of the programming language and the input/output specifica- 
tions. Some automatic debugging systems use information stored in their system's 
knowledge base for bug correction by matching (maybe partially) and replacing the 
buggy program with the established code fragments. In our case, we have only the 
knowledge contained in the specifications of the individual procedures, plus some 
heuristics that suggest possible causes of errors. Deductive and inductive corrective 
measures are employed. 

If a clause p(x, y) : -p l  .... ,Pn returns an incorrect output y~ on input x p, we exe- 
cute the specification of p with goal p(x', Y), to get a correct output y". If p(x', yJ') 
is covered by another clause in the program, then the incorrect clause should pre- 
sumably have failed for this input. We, therefore, attempt to find extra conditions 
to prevent computation for input x ~, by trying to construct a proof that the right 
hand side of the clause implies the left hand side. If the proof fails because of some 
missing conditions, we ~add them as subgoals to the clause. (In the worst case, we 
can always add the subgoal fail  to the clause. Although this might be too strong a 
fix and might result in some other goals becoming uncovered, we will see below how 
to deal with any uncovered goals.) 

If the atom p(x ~, yl~) is only covered by the incorrect clause, then we proceed to 
add conditions that preclude computation of the wrong answer y~, with input x ~, 
as above, or an inductive approach may be taken. Ifp(x ' ,  y~) is not covered by any 
clause, then the fix proceeds in different directions, depending on whether p(z ~, y ' )  
can be unified with the head of the incorrect clause. If the head does unify, but 
some of the subgoals fail for yJ~, then we presume that the incorrect clause should 
cover the goal p(z ~, y) and compute y~ instead of y~. In this case, we can combine 
fixes for the uncovered goal, p(z ~, y~), and the incorrect clause that computes the 
erroneous solution p(z',  y'). We check, for p(z',  y") (i.e., under the current input and 
correct output), which of the subgoals in the clause fail with the output constrained 
to be yJ~. After identifying any such incorrect subgoals, we try to fix them by either 
applying a heuristic rule or an inductive method. We rearrange, replace, delete, 
or add new variables within subgoals until the original incorrect clause computes 
p(x', y") correctly, as in the refinement method of [12]. 

The last possibility is that p(z ~, y~l) cannot be unified with the head of the incor- 
rect clause, nor is it covered by other clauses in the program. In this case, we assume 
that  the incorrect clause we have identified should cover this goal. Accordingly, the 
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only way to correct the bug is to first fix (i.e., weaken) the clause head so that  it is 
unifiable with p(z t, y"). The methods described above can then be used to fix any 
incorrect subgoals. 

To find subgoals that  correct a faulty clause, we modify the approach of [13]. 
Our (incomplete) prover employs the following rules, in which G (possibly with a 
subscript) represents a goal, H (possibly with a subscript), an hypothesis, A, V, and 

stand for logical "and", "or", and "not", respectively, H ---* G" for "if H then 
G", and "A ~ B" for "to prove A, it is sufficient to prove B". 

R u l e l .  H ---* G1 A G2 r (H --+ G1) A (H --~ G2) 
R u l e  2. H --~ G1 V G2 ~ (H ~ G1) V (H ---* G2) 
R u l e  3. (H1 V H2) --+ G r (H1 ---* G) A (H2 ---* G) 
R u l e  4. H -~ (G1 ~ G2) <:=: (H A G1) ~ G2 
R u l e  5. (H1 --* H2) ~ G r (~H1 --~ G) A (H2 ---* G) 
R u l e  6. ~ H  ~ ~G r G ---+ H 
R u l e  7. ~H1 A H2 ~ ~ G  ~ G A H2 ---+ H1 

We replace a goal with its definition, as given in the goal's specification: 

R u l e  8. H ~ G ~ H ---* G I, i f  G = G I. 

A logical simplifier is invoked after each reduction step and performs tasks such as 
removing nested conjunctions, duplicate goals, and tautologies. Also, domain facts 
can be used to replace a goal with something equivalent. 

We use transitivity of implication: 

R u l e  9. H ---* G ~ H ~ G', i f  G' --~ G. 

In particular, if the head of a correct program clause matches the goal, we can replace 
the goal with the subgoals obtMned from that clause. Also, when a specific domain 
fact is known, it can be used to strengthen a goal. 

Similarly, domain facts may be used to weaken hypotheses: 

R u l e l 0 .  H -+ G ~ H I --- G, /f H --+ Hq 

An effort was also made to build in some domain knowledge about lists and inequal- 
ities so that  it can employ a bit of common sense when reasoning about programs. 

The proof process terminates when the original goal is reduced to t rue ,  in which 
case the clause is proved correct; when the original set of hypotheses (that is, the 
subgoals in the body of the clause) is reduced to false, meaning that  there are 
conflicting subgoals in the clause, and that the clause is vacuously correct; when the 
goal is reduced to a subset of the hypotheses, in which case the implication is also 
established; or when the original goal is reduced to primitives and hypotheses, in 
which case those goals not appearing as hypotheses are added as subgoals to the 
original clause. In the latter case, we have identified those missing subgoals which 
will make the clause correct. 

Once we identify an incorrect subgoal, we can correct it using either a heuristic 
rule or an inductive method, besides using the deductive methods outlined above. 

We employ heuristics meant to correct certain commonly made, easily corrected, 
errors. For example, one of the rules is to swap the variables if there are only two 
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variables in the subgoal. Other rules include moving a simple variable to a different 
position, replacing simple variables with more complicated terms, deleting seemingly 
redundant variables, and adding free variables that have appeared elsewhere in the 
same clause. 

When the heuristic rules cannot correct the errors in a subgoal, a general induc- 
tive strategy is employed with the hope of fixing the bugs. This is done by applying 
some refinement operations on terms within the subgoals. For example, we can try 
to unify two free variables, or unify a compound term with variables appearing 
elsewhere in the same clause. 

It  should be noted that all heuristic fixes will be tested immediately after the 
changes are made; and if the fixes cannot correct the errors, all the changes will be 
undone. 

To remedy the problem of an uncovered goal, we first check if the goal can be 
unified with the head of a clause. If  indeed such a clause exists, then we presume that 
it should cover this goal. Since the original clause might be useful for other goals, 
instead of modifying the clause directly, we make local changes on a copy. We locate 
the subgoal that  causes this clause to fail and either try to fix it inductively (by 
rearranging, replacing, deleting, or adding variable within the subgoal) or eliminate 
the offending subgoal entirely and use deductive means to correct it, if necessary. 

When there is no clause whose head unifies with the uncovered goal, we use the 
specifications to synthesize a new clause. This can be done by using the uninstanti- 
ated goal as the clause head and the specifications as the clause body, simplifying 
the resulting clause as much as possible, or by an inductive method such as that  in 
[12], using the specifications to guide the search. We can also fix a clause head so 
that  it can be unified with the uncovered goal, and then debug the subgoals in the 
clause. 

When the input to a procedure call violates the well-founded ordering defined for 
that  procedure, a likely cause is that the input argument of the call is too general. 
For example, it may contain an irrelevant variable that  does not appear in either the 
clause head or other subgoals of the same clause. Other possibilities are that  some 
variables are missing or that the order of arguments is wrong. In any of these cases, 
wha t  we have is a clause that contains a looping call caused by incorrect arguments. 
We try to fix the offending subgoal, using the same inductive method as for fixing 
incorrect subgoals. Alternatively, we can weaken it and employ deductive techniques 
to ensure that  the well-founded condition is met. 

It  is also possible that  a subgoal that would preclude the looping case is missing 
(and that  the goal is covered by another clause). This can be treated in the same 
way as an incorrect clause. 

5 T h e  C o n s t r u c t i v e  I n t e r p r e t e r  

W'e integrated the functions of test case generation, bug discovery, bug location, and 
bug correction into an automated debugging environment, called the Consirucr 
Interpreter. Its structure is described in Fig. 2 in pseudo-Prolog code. Upon receiving 
a goal, the interpreter first examines the input variables. If  the input is symbolic 
(partially uninstantiated), then by executing the specifications of the procedure, 



81 

interpret( Goal ) :- 
spec( Goal ), 
freeze_input_variables( Goal, 
execute( Goal', Message ), 
if Message r ok(Goal') 

then fix_bug( Message ) 

Goal' ), 

Fig. 2. The Constructive Interpreter 

the interpreter will generate test cases. If the input variables are instantiated, then 
running the specifications on the given input checks if the input values are satisfiable. 
Once the legMity of the input is established or a legal test input generated, the 
interpreter proceeds to execute the program on the input. Note that  the interpreter 
will "freeze" the variables at this point, treating them as constants so that  they 
will not be changed by the Prolog system. If execution completes successfully, the 
interpreter returns correct output values. In the case of symbolic input, the user can 
continue to generate alternate test cases and execute the program on different inputs. 
If the execution ever fails, that  is, if the program contains an incorrect, incomplete, 
or nonterminating procedure, then the interpreter returns a diagnostic message with 
the location. Bug-fixing routines will then be invoked to correct the bug that  has 
been identified and located. 

Procedure fiz_bug(Message) implements the bug correction heuristics discussed 
in Section 4. 

This interpreter is constructive in the sense that it assumes an active role during 
the debugging process and actually tries to complete the construction of the program 
being debugged, all with very little user involvement. It  consists of the three major 
components: test case generator, bug locator, and bug corrector. The test case gen- 
erator executes specifications to either generate test input or verify the satisfiability 
of user-supplied input. The bug locator also carries out the computation. It  has a 
run-time stack that  records all the procedure invocations. This information and the 
specified well-founded ordering are used to check against looping. The execution is' 
simulated to perform depth-first search and backtracking upon failure. A message 
stack is maintained during execution, and an error message is recorded whenever an 
error occurs. The bug corrector contains three main procedures, dealing with three 
different kind of errors respectively. In addition to performing error analysis and 
suggesting fixes, they all have access to the deductive theorem prover and inductive 
subgoal refiner. 

In the remainder of this section, we illustrate the integrated functions, including 
test case generation, bug location, and correction, of the Conslructive Interpreter. 
Our experimental implementation is able to generate test cases that  reveal errors 
and locate bugs for all the sorting examples in [12]. 

Consider the quicksort program in Fig. 3, with the specifications in Fig. 4. The 
specifications say that qsort(X, Y) holds if Y is sorted and Y is a permutation of X, 
that part(L, E, X, Y) holds if Y is the list obtained by removing elements of X from 
L and E is greater than all the elements in X and smaller then all the elements in 
Y, and that  append(X, Y, Z) is true if Z is the combination of lists X and Y, in their 



82 

qsort([XlL], LO) :7 part(L, X, L1, LP), qsort(L1, L3), qsort(L2, L4), 
append([Xli3], 54, go) 

part([Xli], Y, 51, [XIL2]) :- part(L, Y, i l ,  L2) 
part([XlL], Y, [XILI], Lr :- X < Y, part(L, Y, L1, Lg) 

part([ ], X, IX], [ ]) 
append([XlL1], L~, [XIL3]) :- append( Li, Le, L3) 

appe.d([ ], L, L) 

Fig. 3. A Buggy Quicksort Program 

spec(qsort(X, Y)) :- ordered(Y), perm(X, Y) 
spec(part( L, E, X, Y) ) :- rm_list( X, L, Y), gt_all( E, X), 

It_all(E, Y) 
spee(appe.d(X, Y, Z)) :- Ze.gth(Z, N), ]ro.t(N, Z, Z), 

rm_list( X, Z, Y) 
wfo( qsort( X, Y), qsort(U, V) ) :- shorter(X, U) 

wfo(part( X, A, B, C), part(Y, D, E, F) ) :- shorter(X, Y) 
wyo( append( X, A, B ), append(Y, C, D ) ) :- shorter(X, Y) 

Fig. 4. Specifications for the Quicksort Program 

original order. The predicate wfo specifies the well-founded ordering for sequences 
of input values. For procedures qsort, part, and append, the number of elements in 
the input list should decrease with each recursive call. The predicates perm, ordered, 
rm_list, gl_all, lt_all, and shorter can be defined as standard Prolog procedures, as 
in Fig. 5. 

Invoking the debugger on the symbolic goal qsort(U, V) generates a test case 
qsort([ ], X) which it tries to satisfy. It discovered that this goal should have a solu- 
tion qsort([ ], [ ]) according to the specification of qsort, but cannot get it from the 
program supplied. It then The debugger uses the specification for qsort to synthe- 
size the clause qsort([ ], []):-ordered([ ]),perm([ ], []) to cover that goal. Since the 
body of this clause can be reduced to true, the debugger added a unit clause to the 
program (by asserting it to the database). 

The debugger generates a one element list qsort([x], X) as its next test input. 
(Note that the generated input, [x], contains a Skolem constant x.) This time, it 
finds an incorrect clause in the procedure part, because partitioning an empty list 
should result in two empty sublist, so the result of parti([ ], x, X, Y) should be 
part([ ], x, [], []) instead of part([ ], x, Ix], []). After further analysis, the debugger 
concludes that part(D ,X, IX], D):-true is incorrect. Since it can not fix the head, 
it retracts the clause. After synthesizing a clause that covers part([ ], x, [], []), the 
debugger reexecutes all the test goals generated so far to make sure the changes do 
not destroy anything. (Note that there is no way a correctly synthesized clause can 
cause a problem; retracting an incorrect clause, however, can cause some goals to 
become uncovered.) 



orde~d([ ]) 
ordered(IX]) 

ordered(IX1, XPlXs]) 

perm([ 1, [ ]) 
perm([XlX4, Ys) 

del(X, [X[Xs], Xs) 
del( X, [YIXs], [Y[ Ys]) 

rm_list([], Y, Y) 
rm_list([ H lT], Y, Z) 
remove(A, [AIT], T) 

remove(A, [HIT], [HlCq) 

gt_all( E, []) 
gt_all(E, In IT]) 

lt_aU(E, [ ]) 
It_all(E, [H[T]) 

front(N, Z, X) 
shorter(X, Y) 

Fig. 5. Some Utility Procedures 
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:- lt(X1, X2), ordered([XelXs]) 

:- del( X, Ys, Zs), per~( X~, Z~) 

:- del(X, Xs, Ys) 

:- remove(H,Y, YY), rm3ist(T, YY, Z) 

:- remove(A, T, U) 

:-E > 21, gt_all(E,T) 

:-E < T, lt_all(E,r) 

:- append(X, Y, Z), length(X, N) 
:- length(X, Lz), length(Y, Ly), Lx < Ly 

The next test case generated is qsort([O, 1],X). Unlike the previous two test 
cases, the goal qsort([O, 1], X) is solved directly by the clauses currently in the pro- 
gram. Continuing with qsort([1, 0], X) results in the location of an incorrect clause 
in the procedure part. A trace of the procedures shows that the correct solution to 
part([O], 1, X, Y) can be obtained from the other clause of part. Thus, this incorrect 
clause should have failed, but did not because of a missing subgoal. The corrected 
clause is part([XlY], Z, U, [XIW]):-Z <=  X, part(Y, Z, U, W). 

Rechecking the previous goal qsort([1,O],X), the instance qsort([1, O],[1,O]) 
:- part([O], 1, [01,[]), qsort([O], [0]), qsort([], []), append([1, O], [], [1, O]) is found 
false. That  is, qsort([XlW], U) :- part(W, X, U1, V1), qsort(U1, Y), qsort(V1, Z), 
append([XlY], Z, U) contains an incorrect subgoal append([XlY],Z,U ). The lo- 
cal fix is qsort([XlV],Z) :- part(Y,X,W, X1), qsort(W, Zl), qsort(Xl,V1), 
append(Z1, [XIV1], Z). 

Up to this point, all the bugs in the original program have been detected and 
corrected. If we now continue to debug the program, the debugger will keep on gener- 
ating arbitrarily long lists as test input without reporting an error. We would be led 
to believe, in this case, that the program is correct with respect to its specifications. 
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6 C o n c l u s i o n  

In this work, we have explored a distinctive feature of logic programming, namely 
the ability to use logic for both specification and computation. We have shown 
how user-supplied executable program specifications are used to define the intended 
behavior of a program and to generate test cases for bug discovery. We have employed 
the execution mechanism of a Prolog machine to locate bugs, using specifications 
to validate computation results. We have also devised heuristics to analyze bugs 
and suggest fixes, and used deductive theorem proving and inductive synthesis to 
mechanize the bug correction process, again with the help of specifications. 
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