
Debugging Logic Programs Using Specifications

Yuh-jeng Lee 1. and Nachum Dershowitz 2.*

1 Computer Science Department, Naval Postgraduate School
Monterey, CA 93943, U.S.A.

2 Department of Computer Science, University of Illinois
1304 W. Springfield Ave., Urbana, IL 61801, U.S.A.

Abst rac t . We show how executable specifications may be used to generate
test cases for bug discovery, locate bugs when test data cause a program to
fail, and guide deductive and inductive bug correction.

1 I n t r o d u c t i o n

Logic programming has gained in popularity" in recent years. This style of program-
ming, using Horn clauses to express procedural information, allows one to reason
easily about the effects of executing program statements.

We present a methodology for reasoning about the relationship between logic
programs and their specifications, to help debug erronneous programs. To Mlow
for debugging, the specifications must describe the relationships between the values
of input and output variables. Since Horn clauses are a powerful subset of first-
order logic, a program's specifications can oftentimes be written in Prolog itself and
executed by the Prolog interpreter or compiler directly. (Whereas specifications are
intended to emphasize clarity and simplicity, in implementing programs, efficiency
is a major consideration.)

The debugger follows the pattern of Shapiro's ([12]). We focus on the use of exe-
cutable specifications to generate test cases for bug discovery, locate bugs when test
data cause a program to fail, and guide deductive and inductive bug correction ([3]).
We also ask that specifications provide information on the well-founded ordering of
input arguments for recursive procedures. (A well-founded ordering ~- is a transi-
tive and irreflexive binary relation on elements of a set S such that the S has no
infinite descending sequences.) The ordering specifies, for each recursive call, which
arguments should be decreasing. This is used for detecting looping.

Programs, for our purposes, are presumed to obey their Horn clause declarative
semantics, i.e., extra-logical features, such as cuts, clause order, and subgoM order,
may affect efficiency and termination, but not correctness. We also presume that
specifications faithfully reflect the intended requirements of a program. To obtain
the desired effect, it is sometimes necessary to use impure features, i.e., non-logical
control structures, of Prolog.

* Research supported in part by the U. S. Naval Postgraduate School and the U. S. Army
Artificial Intelligence Center.

** Research supported in part by a Meyerhoff Visiting Professorship at the Weizmann Insti-
tute of Science and by the U. S. National Science Foundation under Grants CCR-90-07195
and CCR-90-24271.

76

More expressive languages, like EQLOQ ([5]) or RITE ([6]), which use equational
Horn clauses, may be even more suited to the kind of program manipulations advo-
cated here.

Other work on declarative debugging includes [4, 10, 7, 2, 11, 1, 8, 9].

2 U s i n g E x e c u t a b l e S p e c i f i c a t i o n s

Executable specifications of a program not only serve to check the output, but also
generate useful test cases for that program, provided that axioms for primitive pred-
icates are supplied. The information contained in specifications regarding the ex-
pected output behavior is indispensable for checking the correctness of the results
of program execution, while test cases help reveal instances of incorrect output.

We assume that the properties of each procedure in the program have been de-
scribed in the program's specifications, which detail the relationships between pro-
gram variables. In other words, they define all legal input /output pairs for each pro-
cedure. To check for termination, we also need a well-founded ordering under which
successive input values to recursive procedures are intended to form a descending
sequence. Any unspecified procedures are presumed correct and terminating.

A program is (partially) correct with respect to its specification if each clause
of the program can be proved from the specifications and given domain facts by
first-order reasoning. If we can find an atomic formula that follows logically from
the program (and domain facts), but which cannot be proved from the specifications
(and domain facts), then we have shown that the program is incorrect with respect
to the given specifications.

A program is complete with respect to its specifications if each clause of the
specification follows from the program and domain facts. If we can find an atomic
formula that follows from the specifications (and domain facts) which can not result
from executing the program, then that formula is "uncovered" and the program is
incomplete.

If during a computation, the program generates an infinite sequence of procedure
calls, it is non~erminating. Otherwise, it is said to terminale.

We test for correctness and completeness by checking a program's computation
results against its specifications, for a sequence of test inputs. Of course, finding
no instances of incorrectness or incompleteness does not prove correctness and com-
pleteness. Termination is tested for by routines that compare the inputs with respect
to the specified well-founded ordering whenever a procedure is invoked.

To generate test cases for a given goal, we first run the specifications of that goal
to obtain a pair consisting of an input along with its expected output. We then use
only the input value to run the goal on the program to be debugged. If the execution
fails, goes into a loop, or returns an incorrect output value, then this test case has
shown us that there is at least one bug in the program. In other words, a test case
consisting of a correct input/output pair can be used to discover bugs should they
cause the program to fail to compute the correct answer. If one of the predicates in
the specifications of a program is defined in the form of a "generator", then we can
generate alternate test cases by utilizing Prolog's built-in backtracking facility.

77

3 Bug Location

When a Prolog program does not compute correct results, it may be that the program
contains incorrect clauses, is incomplete in defining certain relationships between
program variables, or has an infinite procedure invocation sequence.

We constructed a meta-interpreter which executes programs, diagnoses errors
according to the specifications of programs, and locates and reports bugs. Figure 1
summarizes the algorithm in pseudo-Prolog code.

execute((Goal1, Goal~), Message) :-
execute(Goall, Msg_Goall),
if Msg_Goall = ok(Goal1)

then execute(GoalP, Message)
else Message = Msg_Goall

execute(Coal, ok(Goal)) : -
system(Goal), eaU(aoa~)

execute(Goal, looping(Goal)):-
not decreasing(Goal)

execute(Goal, Message) :-
not system(Goal),
clause(Coal, Subgoals),
execute(Subgoals, Msg_Subgoal),
if Msg_Subgoal = ok(Subgoals)

then if spec(Coal)
then Message = ok(Goal)
else Message = incorrect((Coal :- Subgoals))

else Message = Msg_Subgoal
execute(Goal, uncovered(Goal)) :-

spec(Goal)

Fig. 1. Algorithm for Automated Bug Location

The procedure ezecute(Goal, Message) serves two functions: goal reduction and
bug location. The first clause deals with conjunctive goals. If the first conjunct
executes correctly, the remaining conjuncts will be tried in order; otherwise, it just
returns the error found to the top level. The second clause executes built-in primitives
directly. The next three clauses detect bugs of nontermination, incorrect clauses, and
uncovered goals, respectively.

The procedure first checks if the input variables violate the well-founded ordering
defined in the specification of the procedure that covers the goal. To accomplish this,
the parameters to each recursive call are recorded (asserted) during computation. If
such is the case, we have an instance of a looping goal.

If the input cannot cause an infinite sequence of procedure calls, the interpreter
will proceed to check if the program can actually complete the computation on the
given input. It first finds a clause whose head can be unified with Goal and then
recursively executes the subgoals in the body of that clause. If a bug is found in the

78

body of a clause, it will be returned to the top level (for subsequent correction). If
all the subgoals complete successfully, then all the output variables in Goal will be
instantiated. The interpreter then checks if the output value is correct with respect
to the specifications of Goal. If not, then we have found an incorrect clause.

If the goal fails because there is no clause in the program that covers it for the
given input data (i.e., no unifying clause or a subgoal fails in every unifying clause),
then, provided Goal is satisfiable according to the specifications, the program must
be incomplete and we have an instance of an uncovered goal.

4 B u g C o r r e c t i o n

Bug correction requires reasoning with knowledge of the domain and intended algo-
rithm, the semantics of the programming language and the input/output specifica-
tions. Some automatic debugging systems use information stored in their system's
knowledge base for bug correction by matching (maybe partially) and replacing the
buggy program with the established code fragments. In our case, we have only the
knowledge contained in the specifications of the individual procedures, plus some
heuristics that suggest possible causes of errors. Deductive and inductive corrective
measures are employed.

If a clause p(x, y) : -p l ,Pn returns an incorrect output y~ on input x p, we exe-
cute the specification of p with goal p(x', Y), to get a correct output y". If p(x', yJ')
is covered by another clause in the program, then the incorrect clause should pre-
sumably have failed for this input. We, therefore, attempt to find extra conditions
to prevent computation for input x ~, by trying to construct a proof that the right
hand side of the clause implies the left hand side. If the proof fails because of some
missing conditions, we ~add them as subgoals to the clause. (In the worst case, we
can always add the subgoal fail to the clause. Although this might be too strong a
fix and might result in some other goals becoming uncovered, we will see below how
to deal with any uncovered goals.)

If the atom p(x ~, yl~) is only covered by the incorrect clause, then we proceed to
add conditions that preclude computation of the wrong answer y~, with input x ~,
as above, or an inductive approach may be taken. Ifp(x ' , y~) is not covered by any
clause, then the fix proceeds in different directions, depending on whether p(z ~, y ')
can be unified with the head of the incorrect clause. If the head does unify, but
some of the subgoals fail for yJ~, then we presume that the incorrect clause should
cover the goal p(z ~, y) and compute y~ instead of y~. In this case, we can combine
fixes for the uncovered goal, p(z ~, y~), and the incorrect clause that computes the
erroneous solution p(z', y'). We check, for p(z', y") (i.e., under the current input and
correct output), which of the subgoals in the clause fail with the output constrained
to be yJ~. After identifying any such incorrect subgoals, we try to fix them by either
applying a heuristic rule or an inductive method. We rearrange, replace, delete,
or add new variables within subgoals until the original incorrect clause computes
p(x', y") correctly, as in the refinement method of [12].

The last possibility is that p(z ~, y~l) cannot be unified with the head of the incor-
rect clause, nor is it covered by other clauses in the program. In this case, we assume
that the incorrect clause we have identified should cover this goal. Accordingly, the

79

only way to correct the bug is to first fix (i.e., weaken) the clause head so that it is
unifiable with p(z t, y"). The methods described above can then be used to fix any
incorrect subgoals.

To find subgoals that correct a faulty clause, we modify the approach of [13].
Our (incomplete) prover employs the following rules, in which G (possibly with a
subscript) represents a goal, H (possibly with a subscript), an hypothesis, A, V, and

stand for logical "and", "or", and "not", respectively, H ---* G" for "if H then
G", and "A ~ B" for "to prove A, it is sufficient to prove B".

R u l e l . H ---* G1 A G2 r (H --+ G1) A (H --~ G2)
R u l e 2. H --~ G1 V G2 ~ (H ~ G1) V (H ---* G2)
R u l e 3. (H1 V H2) --+ G r (H1 ---* G) A (H2 ---* G)
R u l e 4. H -~ (G1 ~ G2) <:=: (H A G1) ~ G2
R u l e 5. (H1 --* H2) ~ G r (~H1 --~ G) A (H2 ---* G)
R u l e 6. ~ H ~ ~G r G ---+ H
R u l e 7. ~H1 A H2 ~ ~ G ~ G A H2 ---+ H1

We replace a goal with its definition, as given in the goal's specification:

R u l e 8. H ~ G ~ H ---* G I, i f G = G I.

A logical simplifier is invoked after each reduction step and performs tasks such as
removing nested conjunctions, duplicate goals, and tautologies. Also, domain facts
can be used to replace a goal with something equivalent.

We use transitivity of implication:

R u l e 9. H ---* G ~ H ~ G', i f G' --~ G.

In particular, if the head of a correct program clause matches the goal, we can replace
the goal with the subgoals obtMned from that clause. Also, when a specific domain
fact is known, it can be used to strengthen a goal.

Similarly, domain facts may be used to weaken hypotheses:

R u l e l 0 . H -+ G ~ H I --- G, /f H --+ Hq

An effort was also made to build in some domain knowledge about lists and inequal-
ities so that it can employ a bit of common sense when reasoning about programs.

The proof process terminates when the original goal is reduced to t rue , in which
case the clause is proved correct; when the original set of hypotheses (that is, the
subgoals in the body of the clause) is reduced to false, meaning that there are
conflicting subgoals in the clause, and that the clause is vacuously correct; when the
goal is reduced to a subset of the hypotheses, in which case the implication is also
established; or when the original goal is reduced to primitives and hypotheses, in
which case those goals not appearing as hypotheses are added as subgoals to the
original clause. In the latter case, we have identified those missing subgoals which
will make the clause correct.

Once we identify an incorrect subgoal, we can correct it using either a heuristic
rule or an inductive method, besides using the deductive methods outlined above.

We employ heuristics meant to correct certain commonly made, easily corrected,
errors. For example, one of the rules is to swap the variables if there are only two

80

variables in the subgoal. Other rules include moving a simple variable to a different
position, replacing simple variables with more complicated terms, deleting seemingly
redundant variables, and adding free variables that have appeared elsewhere in the
same clause.

When the heuristic rules cannot correct the errors in a subgoal, a general induc-
tive strategy is employed with the hope of fixing the bugs. This is done by applying
some refinement operations on terms within the subgoals. For example, we can try
to unify two free variables, or unify a compound term with variables appearing
elsewhere in the same clause.

It should be noted that all heuristic fixes will be tested immediately after the
changes are made; and if the fixes cannot correct the errors, all the changes will be
undone.

To remedy the problem of an uncovered goal, we first check if the goal can be
unified with the head of a clause. If indeed such a clause exists, then we presume that
it should cover this goal. Since the original clause might be useful for other goals,
instead of modifying the clause directly, we make local changes on a copy. We locate
the subgoal that causes this clause to fail and either try to fix it inductively (by
rearranging, replacing, deleting, or adding variable within the subgoal) or eliminate
the offending subgoal entirely and use deductive means to correct it, if necessary.

When there is no clause whose head unifies with the uncovered goal, we use the
specifications to synthesize a new clause. This can be done by using the uninstanti-
ated goal as the clause head and the specifications as the clause body, simplifying
the resulting clause as much as possible, or by an inductive method such as that in
[12], using the specifications to guide the search. We can also fix a clause head so
that it can be unified with the uncovered goal, and then debug the subgoals in the
clause.

When the input to a procedure call violates the well-founded ordering defined for
that procedure, a likely cause is that the input argument of the call is too general.
For example, it may contain an irrelevant variable that does not appear in either the
clause head or other subgoals of the same clause. Other possibilities are that some
variables are missing or that the order of arguments is wrong. In any of these cases,
wha t we have is a clause that contains a looping call caused by incorrect arguments.
We try to fix the offending subgoal, using the same inductive method as for fixing
incorrect subgoals. Alternatively, we can weaken it and employ deductive techniques
to ensure that the well-founded condition is met.

It is also possible that a subgoal that would preclude the looping case is missing
(and that the goal is covered by another clause). This can be treated in the same
way as an incorrect clause.

5 T h e C o n s t r u c t i v e I n t e r p r e t e r

W'e integrated the functions of test case generation, bug discovery, bug location, and
bug correction into an automated debugging environment, called the Consirucr
Interpreter. Its structure is described in Fig. 2 in pseudo-Prolog code. Upon receiving
a goal, the interpreter first examines the input variables. If the input is symbolic
(partially uninstantiated), then by executing the specifications of the procedure,

81

interpret(Goal) :-
spec(Goal),
freeze_input_variables(Goal,
execute(Goal', Message),
if Message r ok(Goal')

then fix_bug(Message)

Goal'),

Fig. 2. The Constructive Interpreter

the interpreter will generate test cases. If the input variables are instantiated, then
running the specifications on the given input checks if the input values are satisfiable.
Once the legMity of the input is established or a legal test input generated, the
interpreter proceeds to execute the program on the input. Note that the interpreter
will "freeze" the variables at this point, treating them as constants so that they
will not be changed by the Prolog system. If execution completes successfully, the
interpreter returns correct output values. In the case of symbolic input, the user can
continue to generate alternate test cases and execute the program on different inputs.
If the execution ever fails, that is, if the program contains an incorrect, incomplete,
or nonterminating procedure, then the interpreter returns a diagnostic message with
the location. Bug-fixing routines will then be invoked to correct the bug that has
been identified and located.

Procedure fiz_bug(Message) implements the bug correction heuristics discussed
in Section 4.

This interpreter is constructive in the sense that it assumes an active role during
the debugging process and actually tries to complete the construction of the program
being debugged, all with very little user involvement. It consists of the three major
components: test case generator, bug locator, and bug corrector. The test case gen-
erator executes specifications to either generate test input or verify the satisfiability
of user-supplied input. The bug locator also carries out the computation. It has a
run-time stack that records all the procedure invocations. This information and the
specified well-founded ordering are used to check against looping. The execution is'
simulated to perform depth-first search and backtracking upon failure. A message
stack is maintained during execution, and an error message is recorded whenever an
error occurs. The bug corrector contains three main procedures, dealing with three
different kind of errors respectively. In addition to performing error analysis and
suggesting fixes, they all have access to the deductive theorem prover and inductive
subgoal refiner.

In the remainder of this section, we illustrate the integrated functions, including
test case generation, bug location, and correction, of the Conslructive Interpreter.
Our experimental implementation is able to generate test cases that reveal errors
and locate bugs for all the sorting examples in [12].

Consider the quicksort program in Fig. 3, with the specifications in Fig. 4. The
specifications say that qsort(X, Y) holds if Y is sorted and Y is a permutation of X,
that part(L, E, X, Y) holds if Y is the list obtained by removing elements of X from
L and E is greater than all the elements in X and smaller then all the elements in
Y, and that append(X, Y, Z) is true if Z is the combination of lists X and Y, in their

82

qsort([XlL], LO) :7 part(L, X, L1, LP), qsort(L1, L3), qsort(L2, L4),
append([Xli3], 54, go)

part([Xli], Y, 51, [XIL2]) :- part(L, Y, i l , L2)
part([XlL], Y, [XILI], Lr :- X < Y, part(L, Y, L1, Lg)

part([], X, IX], [])
append([XlL1], L~, [XIL3]) :- append(Li, Le, L3)

appe.d([], L, L)

Fig. 3. A Buggy Quicksort Program

spec(qsort(X, Y)) :- ordered(Y), perm(X, Y)
spec(part(L, E, X, Y)) :- rm_list(X, L, Y), gt_all(E, X),

It_all(E, Y)
spee(appe.d(X, Y, Z)) :- Ze.gth(Z, N),]ro.t(N, Z, Z),

rm_list(X, Z, Y)
wfo(qsort(X, Y), qsort(U, V)) :- shorter(X, U)

wfo(part(X, A, B, C), part(Y, D, E, F)) :- shorter(X, Y)
wyo(append(X, A, B), append(Y, C, D)) :- shorter(X, Y)

Fig. 4. Specifications for the Quicksort Program

original order. The predicate wfo specifies the well-founded ordering for sequences
of input values. For procedures qsort, part, and append, the number of elements in
the input list should decrease with each recursive call. The predicates perm, ordered,
rm_list, gl_all, lt_all, and shorter can be defined as standard Prolog procedures, as
in Fig. 5.

Invoking the debugger on the symbolic goal qsort(U, V) generates a test case
qsort([], X) which it tries to satisfy. It discovered that this goal should have a solu-
tion qsort([], []) according to the specification of qsort, but cannot get it from the
program supplied. It then The debugger uses the specification for qsort to synthe-
size the clause qsort([], []):-ordered([]),perm([], []) to cover that goal. Since the
body of this clause can be reduced to true, the debugger added a unit clause to the
program (by asserting it to the database).

The debugger generates a one element list qsort([x], X) as its next test input.
(Note that the generated input, [x], contains a Skolem constant x.) This time, it
finds an incorrect clause in the procedure part, because partitioning an empty list
should result in two empty sublist, so the result of parti([], x, X, Y) should be
part([], x, [], []) instead of part([], x, Ix], []). After further analysis, the debugger
concludes that part(D ,X, IX], D):-true is incorrect. Since it can not fix the head,
it retracts the clause. After synthesizing a clause that covers part([], x, [], []), the
debugger reexecutes all the test goals generated so far to make sure the changes do
not destroy anything. (Note that there is no way a correctly synthesized clause can
cause a problem; retracting an incorrect clause, however, can cause some goals to
become uncovered.)

orde~d([])
ordered(IX])

ordered(IX1, XPlXs])

perm([1, [])
perm([XlX4, Ys)

del(X, [X[Xs], Xs)
del(X, [YIXs], [Y[Ys])

rm_list([], Y, Y)
rm_list([H lT], Y, Z)
remove(A, [AIT], T)

remove(A, [HIT], [HlCq)

gt_all(E, [])
gt_all(E, In IT])

lt_aU(E, [])
It_all(E, [H[T])

front(N, Z, X)
shorter(X, Y)

Fig. 5. Some Utility Procedures

83

:- lt(X1, X2), ordered([XelXs])

:- del(X, Ys, Zs), per~(X~, Z~)

:- del(X, Xs, Ys)

:- remove(H,Y, YY), rm3ist(T, YY, Z)

:- remove(A, T, U)

:-E > 21, gt_all(E,T)

:-E < T, lt_all(E,r)

:- append(X, Y, Z), length(X, N)
:- length(X, Lz), length(Y, Ly), Lx < Ly

The next test case generated is qsort([O, 1],X). Unlike the previous two test
cases, the goal qsort([O, 1], X) is solved directly by the clauses currently in the pro-
gram. Continuing with qsort([1, 0], X) results in the location of an incorrect clause
in the procedure part. A trace of the procedures shows that the correct solution to
part([O], 1, X, Y) can be obtained from the other clause of part. Thus, this incorrect
clause should have failed, but did not because of a missing subgoal. The corrected
clause is part([XlY], Z, U, [XIW]):-Z <= X, part(Y, Z, U, W).

Rechecking the previous goal qsort([1,O],X), the instance qsort([1, O],[1,O])
:- part([O], 1, [01,[]), qsort([O], [0]), qsort([], []), append([1, O], [], [1, O]) is found
false. That is, qsort([XlW], U) :- part(W, X, U1, V1), qsort(U1, Y), qsort(V1, Z),
append([XlY], Z, U) contains an incorrect subgoal append([XlY],Z,U). The lo-
cal fix is qsort([XlV],Z) :- part(Y,X,W, X1), qsort(W, Zl), qsort(Xl,V1),
append(Z1, [XIV1], Z).

Up to this point, all the bugs in the original program have been detected and
corrected. If we now continue to debug the program, the debugger will keep on gener-
ating arbitrarily long lists as test input without reporting an error. We would be led
to believe, in this case, that the program is correct with respect to its specifications.

84

6 C o n c l u s i o n

In this work, we have explored a distinctive feature of logic programming, namely
the ability to use logic for both specification and computation. We have shown
how user-supplied executable program specifications are used to define the intended
behavior of a program and to generate test cases for bug discovery. We have employed
the execution mechanism of a Prolog machine to locate bugs, using specifications
to validate computation results. We have also devised heuristics to analyze bugs
and suggest fixes, and used deductive theorem proving and inductive synthesis to
mechanize the bug correction process, again with the help of specifications.

R e f e r e n c e s

1. Paul Brna, Alan Bundy, and Helen Pain. A framework for the principled debugging of
Prolog programs: How to debug non-terminating programs. In D. R. Brough, editor,
Logic Programming: New Frontiers, chapter 2, pages 22-55. Intellect, Oxford, 1992.

2. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with as-
sertions. In Proceedings of a Workshop on Meta-Programming in Logic Programming,
Bristol, June 1988.

3. Nachum Dershowitz and Yuh-jeng Lee. Deductive debugging. In Proceedings of the
Fourth IEEE Symposium on Logic Programming, pages 298-306, San Francisco, CA.

4. G6rard Ferrand. Error diagnosis in logic programming, an adaptation of E. Y. Shapiro's
method. Technical Report 375, Institut National de Recherche en Informatique et en
Automatique, Le Chesnay, France, March 1985.

5. Joseph A. Goguen and Jos6 Meseguer. EQLOG: Equality, types, and generic mod-
ules for logic programming. In D. DeGroot; G. Lindstrom, editor, Logic Programming:
Relations, Functions, and Equations. Prentice Hall, Englewood Cliffs, N J, 1986.

6. N. Alan Josephson and Nachum Dershowitz. An implementation of narrowing: The RITE

way. In Proceedings of the IEEE Symposium on Logic Programming, pages 187-197, S~lt
Lake City, UT, September 1986.

7. J. W. Lloyd. Dedarative error diagnosis. New Generation Computing, 5:133-154, 1987.
8. L. Naish. Declarative debugging of lazy functional programs. Report 92/6, Department

of Computer Science, University of Melbourne, Australia, 1992.
9. H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages, tn

M. Bruynooghe and M. Wirsing, editors, Proceedings of the Fourth International Sym-
posium on Programming Language Implementation and Logic Programming, pages 385-
399, Leuven, Belgium, August 1992. Available as Vol. 631 of Lecture Notes in Computer
Science, Springer-Verlag.

10. L. M. Pereira. Rational debugging in logic programming. In Proceedings of the Third
International Conference on Logic Programming, pages 203-210, London, United King-
dom, July 1986. Available as Vol. 225, Lecture Notes in Computer Science, Springer-
Verlag.

11. L. M. Pereira and M .C. Calejo. A framework for Prolog debugging. In Proceedings of
Fifth International Conference and Symposium on Logic Programming, Seattle, August
1988.

12. Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
13. Douglas R. Smith. Derived preconditions and their use in program synthesis. In Pro-

ceedings of the Sixth Conference on Automated Deduction, pages 172-193, New York,
NY, June 1982.

