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1 Introduction

The development of abstract data types and object-oriented programming, from their roots in Simula 67
to their current diverse forms, has been prominent in programming language research for the last two
decades. This tutorial is aimed at organizing and collecting arguments that distinguish between the two
paradigms. The focus of the arguments is on the basic mechanisms for data abstraction, illustrating the
differences with examples. Although more advanced topics, like inheritance, overloading, and mutable
state, are important features of one or the other paradigm, they are not considered in this presentation.
The interpretations of “abstract data type” and “object-oriented programming” compared in this paper
are based upon major lines of development recorded in the literature and in general use.

Abstract data types are often called user-defined data types, because they allow programmers to define
new types that resemble primitive data types. Just like a primitive type INTEGER with operations +,
−, ∗, etc., an abstract data type has a type domain, whose representation is unknown to clients, and a
set of operations defined on the domain. Abstract data types were first formulated in their pure form
in CLU [31, 30]. The theory of abstract data types is given by existential types [33, 13]. They are also
closely related to algebraic specification [20, 23]. In this context the phrase “abstract type” can be taken
to mean that there is a type that is “conceived apart from concrete realities” [41].

Object-oriented programming involves the construction of objects which have a collection of methods,
or procedures, that share access to private local state. Objects resemble machines or other things in the
real world more than any well-known mathematical concept. In this tutorial, Smalltalk is taken as the
paradigmatic object-oriented language. A useful theory of objects associates them with some form of
closure [2, 37, 8], although other models are possible [26]. The term “object” is not very descriptive of
the use of collections of procedures to implement a data abstraction. Thus we adopt the term procedural
data abstraction as a more precise name for a technique that uses procedures as abstract data. In the
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remainder of this paper, procedural data abstraction (PDA) will be used instead of “object-oriented
programming”. By extension, the term “object” is synonymous with procedural data value.

It is argued that abstract data types and procedural data abstraction are two distinct techniques for
implementing abstract data. The basic difference is in the mechanism used to achieve the abstraction
barrier between a client and the data. In abstract data types, the primary mechanism is type abstraction,
while in procedural data abstraction it is procedural abstraction. This means, roughly, that in an ADT
the data is abstract by virtue of an opaque type: one that can be used by a client to declare variables but
whose representation cannot be inspected directly. In PDA, the data is abstract because it is accessed
through a procedural interface – although all of the types involved may be known to the user. This
characterization is not completely strict, in that the type of a procedural data value can be viewed as
being partially abstract, because not all of the interface may be known; in addition, abstract data types
rely upon procedural abstraction for the definition of their operations.

Despite the very different approaches taken by ADT and PDA, they can be understood as orthogonal
ways to implement a specification of a data abstraction. A data abstraction can be characterized in a
very general way by defining abstract constructors together with abstract observations of the constructed
values. Using these notions, a data abstraction may be defined by listing the value of each observation
on each constructor. The difference between PDA and ADT concerns how they organize and protect
the implementation of a data abstraction. The choice of organization has a tremendous effect on the
flexibility and extensibility of the implementation.

ADTs are organized around the observations. Each observation is implemented as an operation
upon a concrete representation derived from the constructors. The constructors are also implemented
as operations that create values in the representation type. The representation is shared among the
operations, but hidden from clients of the ADT.

PDA is organized around the constructors of the data abstraction. The observations become the
attributes, or methods, of the procedural data values. Thus a procedural data value is simply defined by
the combination of all possible observations upon it.

Viewing ADTs and PDA as orthogonal ways to organize a data abstraction implementation provides
a useful starting point for comparing the advantages and disadvantages of the two paradigms. The
decomposition used, either by constructor or observer, determines how easy it is to add a new constructor
or observer. Adding a new feature that clashes with the organization is difficult. In addition, the tight
coupling and security in an ADTs makes it less extensible and flexible, but supports verification and
optimization. The independence of PDA implementations has the opposite effect. However, in several
cases where PDA might be expected to have difficulty, the problems are lessened by the use of inheritance
and subtyping.

Most existing programming languages that support PDA also make use of ADTs. Smalltalk, for
example, is based upon efficient but inflexible ADTs for small integers and arrays. The PDA numbers
and collections are constructed upon this base. Simula and C++ support both ADTs and PDA in the
same framework; the effect is more of interweaving than unification, since the trade-offs between the
two styles are still operative. The explicit opaque types in Modula-3 are based on objects, so good
programming style seems to call for implementing ADTs using objects [5, 10]. CLOS also supports a
mixture of the two forms in an even more flexible way with multimethods and multiple inheritance.

The next section traces the history of ADTs and procedural data abstraction. Section 3 outlines a
matrix form of specification for abstract data, and identifies ADTs and PDA as orthogonal decomposi-
tions of this matrix. Section 4 compares the two techniques with respect to incremental programming,
optimization, typing, and verification. Section 5 discusses the use of ADT and PDA techniques in existing
programming languages. Finally, Section 6 summarizes the important points of the paper.

2 Historical Overview

In 1972, David Parnas published his seminal work on modularization [35]. He showed the value of
decomposition of a system into a collection of modules supporting a procedural interface to hidden local
state. He pointed out the usefulness of modules for facilitating modification or evolution of a system. His
specification technique [36] for describing modules as abstract machines has not been generally adopted,
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but the module concept has had a great impact, especially on the development of languages like Modula-2
[44]. Although Parnas recognized that modules with compatible interfaces can be used interchangeably,
he did not develop this possibility. As a result, modules are not first-class values, so they cannot be
passed as arguments or returned as values.

In 1973, Stephen Zilles published a paper on “Procedural abstraction: a linguistic protection tech-
nique, ” [45] which showed “how procedures can be used to represent another class of system components,
data objects, which are not normally expressed as programs” (emphasis added). His notion of procedural
abstraction is very similar to Parnas’s modules; however, he views them as data and discusses passing
them as arguments to other procedures, and returning them as values. He also noted the similarity to
objects in Simula. He illustrated them by discussing streams represented as a vector of procedures with
local state. Calling an operation was defined as an indirect procedure call through the vector. He shows
that different classes of stream objects can be defined by building an appropriate vector of procedures.
He also presents two of the main methodological advantages of objects: encapsulation and independence
of implementations.

The following year, in 1974, Zilles published an influential paper with Barbara Liskov on ADTs and
clu [31]. Gone was any mention of PDA; type abstraction had taken its place. The formalism of
ADTs was still presented as closely related to Simula; the main difference was claimed to be that Simula
allowed full inspection of object representations. The publication of this paper initiated a decade of
intense research on ADTs, which soon branched into work on languages [30, 34], algebraic specification
[20, 23, 24, 18, 19], and existential types [33].

In 1975, John Reynolds published a paper called “User-defined data types and procedural data struc-
tures as complementary approaches to data abstraction” [39] in which he compares procedural data
abstraction to user-defined data types. He argued that they are complementary, in that they each has
strengths and weaknesses, and the strengths of one are generally the weaknesses of the other. In particu-
lar, he found that PDAs offer extensibility and interoperability but obstruct some optimizations. ADTs,
on the other hand, facilitate certain kinds of optimizations, but are difficult to extend or get to interop-
erate. He also discussed the typing of the two approaches, and identified recursion in values and types
as characteristic of PDA. One limitation of his presentation is that the objects in his examples only have
a single method. The introduction of a second method was described as an intellectual “tour de force”,
implying that multiple methods are too complicated for use in practical designs.

After 1975 little was written that related to the theory of object-oriented programming, while investi-
gation of ADTs continued. Yet development of object-oriented languages, like Smalltalk [21] and Flavors
[40], continued, especially in the context of extensible, interactive, open systems which encouraged user
programming.

Theoretical interest in object-oriented programming was sparked in 1984 by Cardelli’s paper on “The
semantics of multiple inheritance” [9]. This paper identified the notion of subtyping as central to an
understanding of object-oriented programming. Subtyping and parametric polymorphism were combined
to form bounded quantification, which could describe aspects of update operations on records [13]. The
study of various calculi for records operations and subtyping has continued along a number of lines
[42, 43, 38, 12].

A good explanation for the complementarity noted by Reynolds was presented by Abelson and Suss-
man [1] in 1985, although they do not cite his work. They discuss “data-oriented programming” as a
technique for writing flexible and extensible programs in Lisp. They note that abstractions are character-
ized by observations and representations, where the operation needed to perform an observation depends
upon the representation. Data-oriented programming works by grouping all the observations on a partic-
ular representation together as components, or methods, of a value containing that representation. This
is in contrast to operation-oriented programming, or ADT programming, where a function is written for
each observation with cases for each representation. By organizing the observations and constructors
into a two-dimensional matrix, it becomes clear that ADTs and object-oriented programming arise from
a fundamental dichotomy: there are two ways to organize this table: either by observers for ADTs or by
constructors for PDAs.

There are number of other papers that contribute to the comparison of ADTs and PDA. A distinction
between ADTs and procedural data abstraction is present in the work on PS-algol, which can implement
both techniques using persistent procedures [4]. Danforth and Tomlinson [17] survey the work on type
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Figure 1: An observer/constructor specification for lists.

Constructor of l
Constructor of m nil adjoin(l ′, x)

nil true false

adjoin(m′, x) false (x=y) and equal(l ′, m′)

Figure 2: Specification of the binary equal(l, m) observation.

and subtype theories for ADTs and early models of data objects without procedural components. They
conclude that neither is an adequate explanation of PDA or inheritance. The proposal of exemplars for
Smalltalk is a clear presentation of the PDA model [28]; it is also the inspiration for the basic list example
used in this tutorial.

3 Distinguishing ADTs and PDA

3.1 Data Abstraction

Data abstraction refers to a range of techniques for defining and manipulating data in an abstract fashion.
Abstract data is useful because the conceptual view of the properties of data are often very different
from the properties of the data’s detailed representation in a computational system. In this paper
immutable data abstractions are discussed, however, many of the same considerations apply to mutable
data abstractions, or state abstractions.

A general view of abstract data is based on the notion of abstract constructors and abstract observa-
tions. The constructors create or instantiate abstract data, while the observations retrieve information
about abstract data. The behavior of a data abstraction is specified by giving the value of each observation
applied to each constructor. This information is naturally organized as a matrix with the constructors on
one axis and the observers on the other. Each cell in the matrix defines the behavior of the abstraction
for a given observer/constructor pair.

As an example, consider a data abstraction for integer lists. The constructors are nil, which constructs
an empty list, and adjoin, which takes a list and an integer, and forms a new list with the integer added
to the front of the list argument. The observers are null?, head, and tail. Null? is a predicate that
returns true if its argument is the empty list; i.e. if it is equal to nil. Head returns the first integer in a
non-empty list. Tail returns the rest of a non-empty list.

The behavior of the observers on each constructor is given in Figure 1. The cells of the matrix contain
values defined in a Pascal-like syntax. The variables x, y, and z are used to represent integers, while l, m,
and n denote lists. The value of the null? observation on the nil constructor is true, and on the adjoin
constructor it is false. The head and tail observations on nil both result an error condition; how such
errors are treated is not specified.
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Constructor of l
Observations nil adjoin(l ′, x)

equal(l, m) null?(m)
not null?(m)
and x = head(m)
and equal(l ′, tail(m))

Figure 3: Behavior of equal(l, m) with cases only for l.
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Figure 4: The list specification decomposed into observations.

In Figure 1, all of the observations are unary, in that they observe only a single value of abstract
data. It is often necessary to have more complex observations. To compare two values, it is necessary to
observe pairs of abstract data. This complicates the specification, because the value of the observation
must be defined for all combinations of possible constructors for the abstract values being compared.
This technique is illustrated for the binary equal observation in Figure 2. This table can be viewed as
adding a third dimension to the basic table for the unary observations.

This third dimension can be removed by encoding its cases directly into the behavioral specification
of the two-dimensional case. Such a flattened definition for equal is given in Figure 3. In this version, an
explicit classification is made only on the first argument of the observation, while the second is referenced
abstractly with null?, head, and tail.

Using this framework, a mutable data abstraction could be specified by the addition of an abstract
state. The specification would then include not just the value of the observations, but their effect upon
the abstract state of their arguments.

While such tabular presentations of a data abstraction have certain advantages, it is also useful to
decompose the table into more modular units. There are two immediately obvious ways to do this, by
partitioning the table into horizontal or vertical slices. Decomposition has the advantage of reducing the
table to a collection of smaller, uniform pieces. One disadvantage of decompositions is that the symmetry
of the table is lost.

3.2 Abstract Data Types

3.2.1 Decomposition by Observations

ADTs can be viewed as a decomposition of specification matrix into observations, as illustrated in Fig-
ure 4. This slices the table horizontally into a stack of rows, where each row collects the information about
a single observer together in a unit. Information about a given constructor is spread across components.

Each observation is formed into an independent operation that returns the appropriate result when
applied to any of the constructors’ values. The constructors are also included as operations. The connec-
tion between the constructors and the observations is via a shared representation. In order to keep the
representation abstract, its structure is hidden from clients of the ADT. The clients can only create val-
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adt IntList
representation

list = NIL | CELL of integer * list

operations
nil = NIL

adjoin(x : integer, l : list) =
CELL(x, l)

null?(l : list) = case l of
NIL ⇒ true
CELL(x, l) ⇒ false

head(l : list) = case l of
NIL ⇒ error
CELL(x, l ′) ⇒ x

tail(l : list) = case l of
NIL ⇒ error
CELL(x, l ′) ⇒ l ′

equal(l : list, m : list) = case l of
NIL ⇒ null?(m)
CELL(x, l ′) ⇒ not null?(m)

and x = head(m)
and equal(l ′, tail(m))

Figure 5: Implementation of an ADT for lists.

ues of the type by using the constructors, and inspect them only with observer operations. The concrete
representation is usually derived from the form of the constructors, but alternative representations are
also possible. Since they all share access to the real representation of the abstract type, the operations
are tightly coupled.

3.2.2 Implementing ADTs

A wide variety of languages support the implementation of abstract data types. These languages include
use of private types in Ada packages, Clu clusters, ML abstype definitions, and opaque types in Modula-2.
The overall structures of these facilities are very similar. The key element is of course that the represen-
tation of abstract values is hidden from users of the operations. Exactly how the representation type is
defined and how the operations are implemented depends upon the data types and control structures of
the language.

Figure 5 defines an ADT implementing integer lists. The syntax is based loosely on ML. The ADT
has two distinct parts: a representation and a set of operations. The representation is defined as a labeled
union type, or variant record, with cases named NIL and CELL. The NIL variant is simply a constant,
while the CELL variant contains a pair of an integer and a list.

The constructors nil and adjoin are defined as operations that build appropriate representation values.
The observations are defined by a case statement over the representational variants which returns the
appropriate value from the specification. null? is a query operation that determines if a list is nil. head
and tail are accessors which return the first integer in the list, and the abstract list representing the tail,
respectively. The equality operation has a case statement over its first argument but uses operations to
query its second argument. Improvements in the implementation of equal are discussed in Section 4.3.
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Figure 6: The list specification decomposed into constructors.

A client of the ADT is able to declare variables of type list and use the operations to create and
manipulate list values.

var l : list = adjoin(adjoin(nil, 4), 7);
if equal(nil, l) then ...

However, the client cannot inspect the representation of list values. Attempting to determine if l is
equal to NIL would be rejected by the compiler as a violation of the encapsulation of the ADT.

3.3 Procedural Data Abstraction

3.3.1 Decomposition by Constructors

PDA can be viewed as a decomposition of a data abstraction specification into constructors, as illustrated
in Figure 6. This slices the table into a series of columns, each of which collects all the information about
a given constructor into a unit. The values of the different observations are spread across the constructors.

Each constructor is converted into a template, or class, for constructing procedural data values, or
objects. The arguments to the constructor become the local state, or instance variables of the procedural
data value. In the list example the nil object has no local state, while the cons object has two pieces of
state: one to hold the integer value and the other to hold the rest of the list.

The observations become components or fields of the objects made by a constructor. The observations
are often called attributes or methods. Each object is represented as the combination of the observations
applicable to it. Since the result of an observation on a constructor is what a client is interested in, only
the mechanism for producing the observed value needs to be hidden from the client.

In organizing the matrix in this way, a case discrimination is done on the operation to be performed,
not on the constructor representations as in an ADT. Since operations are visible to the user, there is no
need for a hidden case statement: the user can simply select the appropriate observation directly.

3.3.2 Implementing PDA

As combinations of procedural observations with shared local state, PDAs are naturally implemented as
closures containing records of procedures [37]. The procedures are derived from the specification of the
data abstraction. The record is formed by using the observations as field names and the procedures as
values. The closure is used to encapsulate the constructor’s arguments, which act as local state for the
procedures.

The class constructs in most PDA languages can be viewed as special mechanism for creating closures
of records. This form of closure is different from the kind commonly found in functional languages like
Lisp for two reasons. First, in functional languages it is often only possible to form closures over functions,
not records. Thus records must be simulated as an explicit case over a set of field names [2]. Second, the
closures are not a general construct of the language, but are provided only within the class construct.
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Nil = recursive self = record
null? = true
head = error;
tail = error;
cons = fun(y) Cell(y, self);
equal = fun(m) m.null?
end

Cell(x, l) = recursive self = record
null? = false
head = x;
tail = l;
cons = fun(y) Cell(y, self);
equal = fun(m) (not m.null?)

and (x = m.head)
and l.equal(m.tail) end

Figure 7: Implementation of lists as PDAs.

The two constructors for list objects are defined in Figure 7. The constructor functions, Nil and
Cell, return record values. The constructor for cells takes two arguments, x and l, which play the role of
instance variables of the object. In this example they are not changed by assignment, though there is no
essential reason why they could not be modified (if, for example, a set-head method were introduced).

Each constructor creates a record with fields named null?, head, tail, cons, and equal. The imple-
mentation uses recursive records, where the identifier self refers to the record being constructed. An
observation m on an object o, which is written m(o) in the specification, is implemented by selecting
the m field of the object: o.m. Explicit functional abstraction is introduced to represent the methods:
the notation fun(x)b represents a functions of one argument named x. Unlike the ADT implementation,
there are no explicit case statements in the PDAs. An implicit case statement is used to select the
appropriate observation from the objects.

There are several levels of recursion in the implementation [7]. The Nil and Cell objects pass themselves
as an argument to the Cell constructor, in response to a adjoin message. In addition, the Cell constructor
function is itself recursive, because it is called from within the cell adjoin method. It is also possible for
objects to return themselves as values of a method, as is common in Smalltalk. An additional layer of
recursion, in the types of objects, will be discussed in Section 4.4.

A client of the PDA creates objects and sends requests, or messages, to them.

var l = Nil.adjoin(4).adjoin(7);
if Nil.adjoin(8).equal(l) then ...

As in the case of ADTs, the client cannot inspect the internal representation of list values, although
the external format of all the messages is known.

4 Comparing ADTs and PDA

The difference between ADTs and procedural abstraction involve both the client’s use of the abstrac-
tion and the implementors definition of the abstraction. The differences are illustrated in the areas of
incremental programming, optimization, typing, and verification.

The client has an abstract view of data in both ADTs and PDA. The major difference between them
is the technique used to enforce the encapsulation and abstraction. In an ADT the mechanism is type
abstraction, while in PDA it is procedural abstraction. Another major difference is that in PDA the
objects act as clients among themselves, and so are encapsulated from each other. In an ADT, the
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abstract values are all enclosed within a single abstraction, and so they are not encapsulated from each
other.

4.1 Adding New Constructors

Adding new or different constructor to a data abstraction can extend the semantics of the abstraction or
provide a more efficient description of an existing construction. For example, lists of random numbers,
intervals of sequential integers, or a list that is computed from a function might be added to the basic
lists. These examples provide efficient representations for lists that would be cumbersome to represent
explicitly. A constructor for explicit circular lists would also constitute an extension, because they
cannot be represented in the original specification. The random and functional lists may also extend
the specification to allow infinite lists. It is also useful to allow a constructor to be part of more than
one specification. This can be viewed as allowing a constructor from one specification to be added into
another specification.

The question of whether a client can add a new constructor, or whether the addition must be made
by the implementor of the abstraction. If the client can add a constructor, the new object should be
allowed to intermix with existing object.

In general, it is much easier to a new construction to a data abstraction implemented as PDA than
as an ADT. The issues are illustrated by adding a constructor for intervals of integers to the previously
defined list abstractions. The representation for an interval of integers is as a pair of bounding integers.

4.1.1 Extending an ADT Representation

Adding a new constructor to an ADT involves extending its concrete representation. This, in turn,
requires that all of the case statements in the operations be extended to cover the new representational
variant. This effect is illustrated in Figure 8, where the INTERVAL representation is added throughout
the implementation.

A new operation, interval, is introduced to construct interval lists; it tests whether the bounds define
an empty interval, returning nil if they do. Since the tail operation is extended to call the abstract
interval constructor rather than simply create an INTERVAL representation directly, it will return NIL
when the interval becomes empty.

Adding a new constructor to an ADT requires intrusive changes to the existing implementation. This
is because the ADT paradigm organizes the observer/constructor matrix according to operations, so that
adding a constructor clashes with the natural structure of the implementation.

4.1.2 Adding a New PDA Constructor

Adding a new constructor in an PDA is easy, and is common practice in such programs. The represen-
tation is decentralized, with each object specifying its own local state. For example, intervals can be
created by defining a new object constructor, as in Figure 9.

The constructor simply returns the Nil object if the interval is empty. Otherwise it constructs an
object with methods that return the first number in the interval or construct a new interval object. By
interpreting records, the construction of new interval objects can be made lazy: they are only created as
needed. A practical realization of this would involve inserting an empty function abstraction in front of
each field value.

The PDA can even be extended beyond the original specification of the data abstraction, to allow
infinite lists. One implementation of infinite lists is as a stream, whose elements are successive applications
of a transition function. A Stream constructor is defined in Figure 10. The state of the stream is
given by an initial value and the transition function. A program designed to use only the original list
implementations Nil and Cell will operate just as well on intervals or streams. Of course, if the equality
observation is included, then it may diverge if applied to a stream.
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adt IntList
representation

list = NIL | CELL of integer * list
| INTERVAL of integer * integer

operations
nil = NIL

interval(x : integer, y : integer) =
if x ≤ y then INTERVAL(x, y) else nil

null?(l : list) = case l of
NIL ⇒ true
CELL(x, l) ⇒ false
INTERVAL(x, y) ⇒ false

head(l : list) = case l of
NIL ⇒ error
CELL(x, l ′) ⇒ x
INTERVAL(x, y) ⇒ x

tail(l : list) = case l of
NIL ⇒ error
CELL(x, l ′) ⇒ l ′

INTERVAL(x, y) ⇒ interval(x+1, y)

adjoin(x : integer, l : list) =
CELL(x, l)

equal(l : list, m : list) = case l of
NIL ⇒ null?(m)
CELL(x, l ′) ⇒

not null?(m)
and x = head(m)
and equal(l ′, tail(m))

INTERVAL(x, y) ⇒
not null?(m)
and x = head(m)
and equal(tail(l), tail(m))

Figure 8: Implementation of lists with intervals as an ADT.

4.2 Adding New Observations

A new observation can extend the functionality of a specification or provide more efficient access to specific
information. The example given here is the addition of a length observation to the list abstraction.

Since ADTs are organized around observations, it appears that it should be easy to add new obser-
vations. Conversely, it should be difficult to one to a PDA. However, this is not always the case.

4.2.1 Adding Observations to an ADT

Adding new observations to an ADT is complicated by the fact that the hidden representation must
be shared by all operations. In some way the new observation operation must be inserted within the
scope of the representation type. Existing languages do not support this capability, but there is little to
prevent a simple language extension to allow it. Without this extension, the definition of the ADT must
be changed to insert the new code into the scope of the representation.
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Interval(x : integer, y: integer) =
if x > y then

Nil
else

recursive self = record
null? = false
head = x;
tail = Interval(x+1, y)
cons = fun(z) Cell(z, self);
end

Figure 9: A PDA for interval lists.

Stream(f : integer → integer, x : integer) =
recursive self = record

null? = false
head = x;
tail = Stream(f, f(x))
cons = fun(y) Cell(y, self);
end

Figure 10: A PDA for infinite streams.

Adding a length operation involves inserting the following operation defined in Figure 11 into theADT
defined in Figure 5.

4.2.2 Adding PDA Observations

To add a length message to the PDA lists, it is necessary to add it to each constructor. Even though the
addition of an operation clashes with the natural organization of PDA programs according to constructors,
the mechanism of inheritance is available to make this easier. An example will illustrate this simple use
of inheritance to add an operation. The precise meaning of this inheritance mechanism is omitted (see
[15, 16]).

A new family of object constructors is defined in Figure 12 by reference to the original implementations
in Figure 7 that adds the length field.

4.3 Optimizing Operations

Optimizing operations is an important consideration in programming. One of the benefits of abstraction
is that some optimizations can be performed in isolation within an abstraction. However, abstraction can
also prevent optimization because it prevents access to the information on which the optimization would
be based.

When the interval representation is added to the lists, the equality operation becomes very inefficient
because it must create the complete sequence of numbers in the interval. It is easier to optimize the ADT
implementation because the list values are not encapsulated from each other as they are in the procedural
data abstraction.

11



length(l : list) = case l of
NIL ⇒ 0
CELL(x, l ′) ⇒ 1+length(l ′)

Figure 11: A length operation for the list ADT.

NilWithLength =
inherit Nil
with [

length = 0
]

CellWithLength(x, l) =
inherit Cell(x, l)
with [

length = l.length+1
]

IntervalWithLength(x : integer, y: integer) =
inherit Interval(x, y)
with [

length = (y - x + 1)
]

Figure 12: Adding a length operation to list constructors using inheritance.

4.3.1 Optimizing ADTs

In the ADT it is possible to improve the efficiency, because the representations of both arguments to the
equality function may be inspected. The equality operation in the list ADT can be improved by adding
cases for the constructors of both arguments to the operation. Previously, all operations performed a
case statement on only their first argument. By using case statement on both arguments of the equal
operation, as shown in Figure 13, a much more efficient comparison of intervals is possible. This is
still not the most efficient implementation possible, but it does illustrate examination of more than one
representation.

4.3.2 Optimizing PDAs

In PDA it is much more difficult to optimize operations, because the representation of argument to the
equality observation cannot be determined. For example, the equality method on an interval object
cannot be optimized because there is no way to determine if its argument is also an interval. This is the
cost of the flexibility of objects.

The optimization of methods is only one form of optimization; addition of specialized representations
can also be viewed as a form of optimization, which is supported by objects. Another promising ap-
proach involves compilation techniques that create special code for common combinations of arguments
to methods [25, 22, 14].

Direct optimization of methods is possible in some cases. By adding additional messages to the
object, it is possible for other objects to query these messages and perform more efficiently. These
messages can easily degenerate into simply specifying representational details. The trick is to define
sufficiently abstract queries that provide quick answers for some implementations, while not prohibiting
other implementations. To give a simple example illustrating this, consider the addition of an append
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equal(l : list, m : list) =
case l of

NIL ⇒ null?(m)
CELL(x, l ′) ⇒

(not null?(m))
and (x = head(m))
and equal(l ′, tail(m))

INTERVAL(x, y) ⇒
case m of

NIL ⇒ false
CELL(y, m′) ⇒

(x = y) and equal(tail(l), m′)
INTERVAL(x′, y′) ⇒

(x = x′) and (y = y′)

Figure 13: Efficient comparison of ADT intervals.

operation to the list ADT and PDA. A simple ADT operation for append is easily defined.

append(l : list, m : list) = case l of
NIL ⇒ m
CELL(x, l ′) ⇒ new adjoin(append(l ′, m), x)

This operation is inefficient because it will copy its first argument in cases where the second argument
is null. Thus a better implementation will check its second argument as well.

append(l : list, m : list) = case l of
NIL ⇒ m
CELL(x, l ′) ⇒

case m of
NIL ⇒ l
CELL(y, m′) ⇒

new adjoin(append(l ′, m), x)

This optimization can be implemented in the PDA version because the nil operation is already present
for determining when a list is null.

NilWithAppend =
inherit Nil
with [

append = fun(m) m
]

CellWithAppend(x, l) =
inherit Cell(x, l)
with [

append = fun(m)
if m.null? then

self
else

l.append(m).adjoin(x)
]

Another example involves optimization of the equality method. If the list interface included a quick
length message, then equality could be defined to first check equality of the length of the lists.
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4.4 Typing

Types are partial specifications of a program. Type systems are usually defined to be as expressive as
possible while still permitting efficient checking by a compiler.

Several different levels of specificity are possible for describing interfaces, from simply a simple method
list to full behavioral specification. The most that a language can be expected to check automatically is
syntactic compatibility, based on interfaces with method names and argument types. This will be taken
as the definition of interface from this point on.

4.4.1 Signatures of ADTs

The type theory of ADTs is derived by analogy with abstract algebra. An ADT implementation is an
algebra; that is, it is a set together with operations on that set. As in algebra, the exact nature of the
set is considered to be less important than the relative effects of the different operations.

The operations in an algebra is characterized by its signature. A signature provides a name for the
carrier set, or sort, of the algebra, and specifies the operations on the carrier. The signature names each
operation and defines the type of its arguments and return value. A signature for the integer list algebra
is given below.

signature List
sort t
operations

nil : t
null? : t → boolean
head : t → integer
tail : t → t
adjoin : t × integer → t

The List signature does not ensure that the algebra defines operations that behave correctly for lists,
only that it has certain format of operations. One way a signature can be expanded into a type that
specifies behavior is by adding axioms. This is discussed in Section 4.5.

A signature is a type that classifies algebras. It must not to be confused with the sort t of the algebra,
which is the type of integer list values. Thus there are at least two types involved in the analysis of ADTs:
the type of the implementation and the type of abstract values manipulated by the implementation.

A third type is present, but invisible, within an ADT. This is the type of the concrete representation
of the abstract type values. This type is known only within a particular implementation, but is shared
among all the operations.

Signature types are especially useful if ADT implementations are first-class values. Using signature
types, it is possible to pass ADT implementations or return them as values from a procedure. In most
languages, including Ada, ML (at least in its abstype construct), and Modula, abstract data types are
not first-class values and each of their signature types is statically bound to a single implementation;
of course, this implementation can be replaced or refined as the program is modified. The ML module
system allows parameterization of ADT values, although they are still not completely first-class.

ADTs have been formalized as existential types [33, 13]. Using existential types, it is possible to
parameterize fully over the implementations of abstract data types.

List = Exists t . [
nil : t,
null? : t → boolean,
head : t → integer,
tail : t → t,
adjoin : t × integer → t
equal : t × t → boolean ]
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Every ADT supports an abstract type of values. In languages where the ADT implementation is
statically bound to its signature, the name of the ADT often serves as the name for the abstract sort of
values.

In languages where ADTs are first-class values, the ADT must be opened around a given scope in
which the abstract type will be defined. The requirement that an ADT must be ‘opened’ before it can
be used can lead to difficulties. One problem is that each time an ADT is opened it creates a new
distinct type, so that two openings of the same ADT cannot use each others values or operations [32].
The practical effect of this is to force all ADTs to be opened outside the scope of their use, often at
the outermost block level of a program. Techniques for avoiding this problem have been developed, by
allowing a compiler to determine in some cases that two openings are equal [11].

4.4.2 Interfaces to Procedural Data Values

The interface to a procedural data value is a type that specifies the names, arguments, and return values
of each procedure in the value. Since objects are passed as arguments and returned as values, the types
of objects are higher-order. If the object returns itself as a value, or requires other parameters like itself,
its interface will be recursive. Interfaces are not sufficient to guarantee that an object behaves properly;
though behavior descriptions can be easily attached to them. The interface for the integer lists are
recursive and higher-order.

list = [
null? : boolean;
head : integer;
tail : list;
adjoin : integer → list;
equal : list → boolean
]

This type is very similar to the body of the ADT signature, except that the first occurrence of the
existentially bound type t has been removed from each operation. This argument is missing because it is
the object on which the interface is defined. The other uses of t are converted to a recursive reference to
list.

4.4.3 Partially Abstract Interfaces

A hybrid typing model with partially abstract interfaces seems to be more appropriate for understanding
object-oriented languages like Simula, C++, and Eiffel. In these languages the types have both explicit
procedural interface information and also hidden components. Thus they are only partially abstract. A
model for partially abstract types is given by bounded existential quantification [13]. A partially abstract
list type includes message information as a bound on the abstract type.

List = Exists t ⊆ [
null? : boolean,
head : integer,
tail : t,
adjoin : integer → t
equal : t → boolean
] .

[ nil : t ]

This type gives the overall structure of an ADT implementation. The abstract type t is constrained
to be a subtype of the list object interface. An extended notion of bounded polymorphism is used to allow
the bound variable t to appear in the bound [6].

The nil constructor is the only operation supplied directly in the ADT. The other operations are
defined as messages to values in the partially abstract type.
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4.5 Verification

While ADTs were developed with correctness proofs in mind, PDA has evolved without the benefit (or
hindrance) of concern about formal verification. Specification of immutable procedural data abstractions,
as illustrated in this paper, is equivalent to specification of higher-order functions. Correctness proofs for
mutable PDA are much more difficult.

The practical consequences of the correctness problem in a procedural data abstraction is easily
illustrated. Since there is no centralized control over abstractions, there is little to stop an incorrect
object from finding its way into places that it is not appropriate. For example, there are many objects
which resemble lists but do not behave properly. For example, this object is particularly uncooperative:

Bad = recursive self = record
null? = true,
head = 10,
tail = Nil,
adjoin = fun(y) self
equal = fun(l) true
end

It has a head value of 10 and its tail is empty, so it seems to represent the list (10). But its adjoin
method always returns the same list (10); it is expected that Bad.adjoin(4) should return a list that
represents (4, 10). In addition, Bad always claims that it is empty. It also claims that it is equal to every
other list.

However, Bad has type List, because it satisfies the superficial description of methods and arguments.
This is not to say that interfaces are worthless, only that while they do not guarantee correct behavior,
they can prevent certain kinds of incorrect behavior.

Several proof systems for PDA have recently been proposed. The first is Pierre America’s axiomatic
specification system for a simple language [3]. It supports the behavioral specification of objects, veri-
fication that an implementation meets a specification, and a subtyping relation between specifications.
The object language includes message passing and mutation of instance variables; however, it does not
allow objects to be passed as parameters of a message – all the arguments to messages must be primitive
values (non-objects). The problem of aliasing must be solved before this technique can be extended to
allow objects as first-class values.

The second is an algebraic specification system [29]. This system handles class specifications and
subtyping, but does not allow mutation of objects. It also allows any object to be passed as first-class
values. Thus this work should be directly applicable to the immutable data abstractions considered in
this paper. However, the problem of aliasing must be addressed before the system can be extended to
cover state abstraction.

5 Languages Supporting PDA

5.1 Simula and Related Languages

Simula 67 was the first object-oriented language. It was defined as an extension of Algol 60 by allowing
blocks to be detached from the normal nested activation scheme and have an independent lifetime. The
declarations in a detached block were made accessible to other parts of the program through a reference.
The definition of such blocks were called classes, which also acted as types or qualifications on references.
Classes could also be defined by extension of previous classes, resulting in an inheritance hierarchy. Early
versions of the language did not provide sufficient encapsulation of the attributes of classes, but later
versions corrected this problem.

Simula was the inspiration for both the pure ADT languages, like CLU, and the pure PDA language
Smalltalk. This is not surprising, because Simula embodies aspects of both techniques. This composite
approach has been preserved in most of its statically-typed descendants, including C++, Beta, and Eiffel.

A class definition is both constructor of objects and a type. This dual nature can be seen in the two
contexts in which class names are used: in a new expression, or in declaration of a variable. The type
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defined by a class is partially abstract, as outlined in Section 4.4.3, because they may have both public
and hidden components. If the hidden part is empty then the class resembles an object-oriented interface.
Such classes are sometimes called abstract classes. If a class with private components is used as a type,
then it is acting more like an ADT.

Simula and C++ also support a distinction between virtual and non-virtual operations. When a virtual
operations is invoked, the method to be called is determined from the object on which the operation is
being performed. This is the behavior that has been assumed as normal in the general discussion of
PDA. All operations are virtual in Smalltalk, Eiffel, and Trellis. The method for a non-virtual operation
is determined from the class of the variable used to refer to the object, not from the object itself. Non-
virtual operations model the operations in an ADT, because they are taken from the implementation of
the type, not from the abstract values themselves. Classes in which all of the operations are virtual are
called virtual classes.

Thus PDA is expressed in these languages by using virtual abstract classes as types. The use of
non-abstract or non-virtual classes are used as types indicates the use of ADT techniques. Thus classes
are able to express both ADTs and PDA in the same syntactic form, but the distinction between the two
techniques still exists, and the practical trade-offs are still operative.

5.2 Smalltalk

Smalltalk was developed from ideas in Simula 67 and Lisp. It has gone farthest in developing a pure
object-oriented language. The language has no static typing, but it is still a strongly typed language,
because erroneous message sends and variable accesses are caught at runtime.

Since it lacks a static type system, it is impossible for it to have user-defined type abstraction. Instead,
Smalltalk relies consistently on procedural abstraction, even at the level of basic control structures like
conditionals and iterations.

The Smalltalk library contains a mixture of mutable and immutable object classes. The immutable
ones include the booleans (True and False), the numbers (SmallInteger, LargeNegativeInteger, Large-
PositiveInteger, Integer, Fraction, and Float), the ParseNodes (one for each kind of expression in the
language). The mutable objects include the collections (Set, Dictionary, Array, LinkedList), except In-
terval, which is immutable. These classes are all implemented as PDAs.

However, at the lowest levels of the system, in the handling of primitive numbers and arrays, Smalltalk
relies upon built-in ADTs. One type represents small integers in the range 0-256. Another is used for basic
floating-point numbers. In addition, a primitive array construct is built into the basic class mechanism.
The PDA versions of integers, factions, complex numbers, and collections are built upon these primitive
ADTs.

The way in which this is done is very interesting. For integers, the system is implemented so that
arbitrary new integer representations may be defined and intermixed with other implementations. Since
binary operations cannot know the exact representation of their arguments, a unary protocol is used to
extract digits one at a time from the argument object. The digit protocol includes a message digitLength
to determine the number of digits in an integer, and digitAt: n to access nth digit. The number n must
be a primitive small integer, which restricts the number of digits, however, the digits are represented
in base 256, and the number of digits is typically on the order of 65,000, so extremely large integers
can be represented. The interesting thing about this arrangement is that special representations may be
invented to represent large numbers. For example, 2m − 1 can be represented by a special object that
returns digits with the appropriate number of 1 bits set depending on the argument n of digitAt. In order
to fully integrate a new integer representation, it may be necessary to change other methods so that they
create the new integer when appropriate.

For other kinds of numbers, including fractions, floats, and complex numbers, there is a generality
hierarchy. This is a total ordering of the various Number classes. A general number class must define
how to convert less general numbers into the extended representation without losing information, and
also how to truncate the extended representation so that it can be used where a less general number is
expected.
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5.3 The Lambda-Calculus

According to the definitions given here, the lambda-calculus is the oldest and most pure language sup-
porting PDA. Since its only construct is functional abstraction, all data must be represented as functions.
Its purity comes from the fact that it lacks not only user-defined ADTs but also the familiar builtin data
types like integer and boolean found in Pascal and Fortran. On the other hand, the lambda-calculus also
lacks imperative constructs for assignment of variables, which are often considered essential for PDA in
practice.

Programming languages based on the lambda-calculus, like Scheme, use these same techniques to
implement PDA [2]. It is possible to define PDAs in statically-typed derivatives of the lambda-calculus,
like ML, but much of the flexibility of the technique is lost due to the lack of subtyping. Adding types
and parametric polymorphism to the lambda-calculus enables it to accurately model ADTs [33].

5.4 CLOS

The Common Lisp Object System (CLOS [27]) seems to defy characterization using the distinction
between PDA and ADTs.

The model was originally motivated as a generalization of the classical object model in Smalltalk.
In this model a message is sent to a distinguished object, and the method to invoke is determined
by examining the type, or class, of that object. The arguments of the message do not play a role in
determining the method to invoke. In the generalized object model, the message is viewed as an operation
on a collection of arguments, and any or all of the arguments may play a part in determining which
method to run. Whereas the selection process is localized to a single object and its class in the classical
model, in the generalized model the system must select a method based on interactions among classes.

It may be possible to view CLOS as being organized around the original multi-dimensional specifica-
tion of a data abstraction. This matrix is not decomposed as it is in the ADT and PDA approaches, but
is managed as a whole by the system. In this scheme, representational structures and operations are rel-
atively independent entities. The resulting system is less modular than the ADT or object organizations,
but has the advantage of symmetry and flexibility. The degree of encapsulation provided by the system
is also not clear. An appropriate type system has also not been identified.

6 Conclusion

The essence of object-oriented programming is procedural data abstraction, in which procedures are used
to represent data and procedural interfaces provide information hiding and abstraction. This technique
is complementary to ADTs, in which concrete algebras are used to represent data, and type abstraction
provides information hiding.

The two paradigms can be derived from a fundamental dichotomy in decomposing a matrix of ob-
servers and constructors that specify abstract data. PDA decomposes this matrix into constructors: a
class is associated with each constructor and the observations become attributes, or methods, of the
class’s instances. In effect, the values in the abstraction are nothing more or less than the collection of
legal observations on them. ADTs, on the other hand, decompose the matrix into observations: each
observation is an operation defined on an abstract type that includes the constructors as representational
variants.

As would be expected, given the organization biases of the two paradigms, they are complementary in
the sense that each has advantages and disadvantages. Using PDA it is easy to add new constructors, and
the absence of a shared abstracted type reduces code interdependence. With inheritance and subtyping
it is also possible to add new observations (methods). However, the use of strong functional abstraction
prevents optimizations that might be performed if more than one representation could be inspected at a
time. Binary observations in particular cause difficulties for PDA.

Using ADTs, it is difficult to add fundamentally new constructors: the shared representation type
and all of the operations must be changed. It is easier to add a new observation, although support
for this is not provided in most languages. Subtyping allows different implementations to be used, but
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implementations cannot be intermixed. On the other hand, the unifying properties of type abstraction
allow optimizations which require access to more than one value’s representation at a time.

Simula was the inspiration for the development of both abstract data types (exemplified by CLU)
and PDA (exemplified by Smalltalk). This is not surprising, because Simula embodies a combination of
both techniques, a characteristic preserved by its descendants C++, Eiffel, and Beta. The combination
is more of an interweaving than a unification, because the trade-offs outlined above are still operative.

In general, the advantages of one paradigm are the disadvantages of the other. A detailed analysis
of the trade-offs involved must be made in order to choose whether an ADT or PDA is better suited
for a problem. Some relevant questions in this choice are: How likely is it that the system will be
extended? Must the security of the system be preserved, even at the expense of extensibility? Is it
possible the unforeseen interactions may be desired? Is the environment dynamically extensible, and
must the additions interact in complex ways with existing code? How much efficiency is required? Is
it likely that there will be a large number of binary operations with complex behavior? Unfortunately,
the future changes in requirements may invalidate this choice. In this case it is possible to mechanically
translate from one paradigm to the other. In this context, questions like “Which paradigm is better
for modeling the real world” are virtually meaningless. The choice depends upon how the world is
conceptualized, and what additional properties are expected of the model.
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