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A b s t r a c t .  We discuss the applicability of schema integration techniques 
developed for tightly-coupled database interoperation to interoperation 
of databases stemming from different modelling contexts. We illustrate 
that in such an environment, it is typically quite difficult to infer the 
real-world semantics of remote classes from their definition in remote 
databases. However, defining relationships between the real-world se- 
mantics of schema elements is essential in existing schema integration 
techniques. We propose to base database interoperation in such environ- 
ments on instance-level semantic relationships, to be defined using what 
we call object comparison rules. Both the local and the remote classifi- 
cations of the appropriately merged instances are maintained, allowing 
for the derivation of a global class hierarchy if desired. 

1 I n t r o d u c t i o n  

Interoperation among pre-existing, heterogeneous, and autonomous databases 
has been an important  research topic in the last few years. Recently, the trend 
in database interoperability research is moving towards architectures for inter- 
operation of databases on a scale that  goes beyond the context of a single organ- 
isation, exploiting the communication facilities offered by world-wide networks. 
The canonical model used is often an object-oriented one [1]. It has been recog- 
nised that  such an environment requires flexible and scalable architectures, where 
users of the component databases are provided with tools to establish importa- 
tion of information from remote data  sources [2,3]. Tightly-coupled approaches, 
where the schemata of all component databases are unified into a single global 
schema by a central modelling authori ty possessing a helicopter view of all com- 
ponent databases [4], are generally agreed to be infeasible in such situations, if 
only because the component databases may be quite diverse, and no-one can be 
expected to grasp all information available in the interoperation environment. 

Two main approaches towards a more loosely-coupled style of database in- 
teroperation can be distinguished. In the multidatabase approach [2], users are 
expected to define their information needs using a powerful query language with 
constructs for on-the-fly semantic reconciliation of heterogeneous data. It has 
been argued, however, that  this puts an unacceptable burden on the user, to 
whom a single logical view of the interoperable databases is no longer presented. 
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An alternative is the federated approach [5], where a locally integrated schema is 
composed out of the schema of the local database and the import schema, which 
is a selection on export schemata of remote databases, by defining relationships 
between local and imported data. In this paper, we address the question to what 
extent schema integration techniques developed primarily for tightly-coupled en- 
vironments are applicable in such environments. 

One of the central problems with this approach is that the definition of rela- 
tionships between local and imported data is far from trivial in a situation where 
information on the meaning of a remote schema is limited. In tightly-coupled 
architectures, the schema integrator is supposed to have a helicopter view of all 
databases, possibly obtained from intensive communication with the DBA's of 
the participating databases, but in our context a schema integrator must typi- 
cally thrive on the remote class definitions and some limited additional informa- 
tion. Although many authors have advocated a more loosely-coupled approach 
to database interoperation, this issue has not been dealt with satisfactorily. In- 
tegrated data definition techniques used in federated architectures are usually 
directly based on schema integration techniques employed in tightly-coupled 
approaches [6], which in turn are often strongly similar to view integration tech- 
niques [7]. All these schema integration techniques require either explicitly or 
implicitly that (the relationship between) the real-world semantics of the classes 
to be integrated is known. This is a reasonable assumption in tightly-coupled 
approaches, but as we will illustrate in this paper, in a federation of databases 
from multiple modelling contexts this may be surprisingly difficult. 

Instance integration [8] has been considered to logically succeed schema inte- 
gration; i.e. once the relationship between classes defined in different schemata 
has been determined, the integration of the database instances becomes an issue. 
More recently, some work has emerged that explicitly considers instances in de- 
termining schematic relationships [9,10]. In this paper, we argue that in absence 
of full knowledge on the semantics of remotely defined classes, instance level 
semantic relationships form an appropriate basis for database interoperation. In 
essence, we maintain both the local and the remote classifications on a set of 
appropriately merged objects. Relationships between local and remote classes 
may then be derived from relationships between the objects they classify. 

The remainder of this paper is organised as follows. In Section 2, we review 
some basic ideas of schema integration, illustrating that the semantic knowledge 
required by these techniques may not be available in loosely-coupled environ- 
ments. In Section 3, we propose an instance-based approach to database inte- 
gration. In Section 4, we discuss the derivation of integrated objects and classes 
from instance level relationships. Section 5 then illustrates that several schema- 
integration techniques are still applicable in our approach. Section 6 presents 
our conclusions. 
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2 S c h e m a  i n t e g r a t i o n  

In this section, we explain why traditional schema integration is not quite suited 
for federations where knowledge on the semantics of imported schemata is lim- 
ited. Many techniques for schema integration exist [6]. We do not intend to 
discuss existing schema integration techniques in depth here; rather, we focus 
on some basic assumptions that  do not apply to loosely-coupled federations. 

2.1 Classes and entity types 

The definition of a class is the result of conceptual modelling performed during 
database design, in which entity types [11] are distinguished. An entity type E 
is defined as a set of similar real-world objects. Each of the real-world objects 
grouped in an entity type is described by a set of properties associated with 
the entity type. In the database schema implementing the conceptual model, an 
entity type is represented by a class C, whose definition contains the properties 
associated with E.  The entity type represented by a class C is called the Real- 
World Semantics (RWS) [12] of C. Moreover, the class may be populated with 
database objects representing some (not typically all) of the real-world objects 
grouped by the entity type. This set is called the extension of C. 

As entity types are just sets of real-world objects, set relationships between 
entity types may exist. In this section, we will use the subset relationship as 
an example. 1 If an entity type E '  contains a subset of the real-world objects 
represented by E,  E '  is called a subentity of E,  or E '  isa E. Let E '  be represented 
in the database by a class C'. Within a database, we expect the following four 
statements to be equivalent: (1) C' is a subclass of C; (2) the RWS of C'  is a 
subset of the RWS of C (E' isa E); (3) the extension of C' is a subset of the 
extension of C; (4) the set of properties describing C'  is a superset of the set of 
properties describing C. 

Example Consider a database DB containing classes Person and Employee, represent- 
ing the entity types consisting of the set of persons resp. employees in the real world. 
Assuming that all employees are persons, Employee is a subentity of Person. Therefore 
each employee is described by the properties Name and Age, say, in his capacity as a 
person, and by the additional property Salary, which is used exclusively to describe em- 
ployees. Moreover, to ensure the integrity of the database, every database object in the 
extension of Employee is contained in the extension of Person as well. Hence Employee 
isa Person. Figure la illustrates this situation, where C--Person and C'--Employee. 
[] 

2.2 View integration, database integration 

Both view integration [7] and (tightly-coupled) database integration are con- 
cerned with reconciling multiple conceptual models. The difference is that  the 

1 Throughout this section, we will make simplifying assumptions. Our goal here is not 
to discuss schema integration in depth, but rather to illustrate some features that 
limit the applicability of these techniques. 
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Fig. 1. Real-World Semantics, extensions, and modelling horizons 

1 
former is a design activity, whereas the latter deals with schemata that are al- 
ready populated [6]. Existing work in both of these fields requires some kind 
of integration assertions postulating the relationship between the RWS of the 
schema elements to be integrated. We here illustrate this for database integra- 
tion. 

Let E be an entity type implemented in a database D B  by a class C with 
properties prop(C) and extension ext(C). Let E' be an entity type implemented 
in a database D B  r by a class C' with properties prop(C t) and extension ext(C'). 
Suppose we have the integration assertion E' C E. Note however, that due to 
modelling autonomy, prop(C) C_ prop(C ~) does not necessarily hold, nor does 
ext(C') c_ ext(C), as illustrated in Figure lb. An integrated schema would then 
define virtual classes IC and IC', where prop(IC') = prop(C') U prop(C) and 
prop(IC) = prop(C). Moreover, the extensions of the virtual classes are defined 
as ext(IC') = ext(C'), and ext(IC) = ext(C) U ext(C'). Now it is assured that 
IC and IC ~ satisfy the four aspects of an • relationship listed above. 

Note however that whereas this settles things from a conceptual perspective, 
there are problems providing values for the properties of the integration classes. 
For example, ICt-objects, stemming from ext(C ~) in DB ~, do not have values 
for prop(C), as these properties are defined in the context of DB only. This is a 
known problem inherent to database integration. 

2.3 Database  in tegra t ion  in a loosely-coupled env i ronment  

So far, we tacitly assumed that set relationships between entity types stemming 
from different environments were discovered. In the view integration case, this 
assumption is quite realistic, as different user groups can be asked to provide pre- 
cise definitions of the entity types they distinguish. The assumption may still be 
applicable for tightly-coupled database integration performed within a coherent 
context. However, if database interoperation is performed at such a scale that 
this kind of communication between database developer and database integrator 
is infeasible, an integrator is faced with the task of inferring the entity type a 
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class represents from the class definition only. In this subsection, we discuss why 
this might be surprisingly difficult. We illustrate that ,  since conceptual modelling 
is always done within a part icular  context [12], one has to be extremely care- 
ful in postulat ing relationships between enti ty types from different conceptual 
models. The main problems we identify are modelling horizons and subjectivity 
of classification. 

Example: Modelling horizons Suppose database DB is a university database. DB 
contains a class ~.~ployee, which is the implementation of an entity type Employee 
distinguished in its conceptual model. Let DB' be the database of the computer science 
department of this particular university. DB' contains a class Person implementing an 
entity named Person from its conceptual model. Given the general meaning of these 
terms, common sense may easily lead an integrator to conclude that Employee i s a  
P e r s o n .  This would be incorrect, however. Even though DB appears to implement the 
entity 'any employee', we know from the context of DB that this database is concerned 
with employees working for this particular university only. Moreover, DB' only regards 
persons as far as they have any connection to the CS-department, such as students and 
faculty. [] 

Wha t  we encounter here, is that  the context in which conceptual modelling is 
performed introduces a modelling horizon to a conceptual model (this corre- 
sponds to the way in which the te rm 'context '  is used in [13]). Whenever an 
entity type E is modelled, it is usually intended to mean ~E as far as it is of any 
concern to us'. Thus, instead of implementing E,  a class C really implements an 
enti ty type horiz(E), where horiz(E) C_ E. 

Within a single database,  or even within a tightly-coupled environment of 
databases,  this horizon is usually of no importance,  as all enti ty types are im- 
plicitly constrained by the same horizon. All relationships one expects to hold 
between enti ty types are valid. For example,  

E C_ E' =~ horiz(E) C_ horiz(E') 
When trying to deduce the enti ty types implemented by classes s temming from 
di~erent modelling contexts and determining their relationships, however, this 
modelling horizon is quite relevant indeed, as it may invalidate obvious relation- 
ships between enti ty types. In other words, 

E C_ E' ~ horiz(E) C_ horiz'(E') 

Example As illustrated in Figure lc, Employee (C') is not a subclass of Person (C) 
when their modelling horizon is taken into account. Even in this simple example, where 
the contexts of the different databases are quite closely related, deducing the relation- 
ships between the entity types represented by the classes from the class definition 
alone is far from trivial. If an integrator would have knowledge of the contexts of 
the databases, he would make the correct assertion that these classes have a common 
virtual superclass PersonAtOurUniversity. [] 

Some authors [14] explicitly disregard modelling horizons by introducing an 
'equivalent domain assumption ' .  In our view, such an approach is infeasible in 
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loosely-coupled database interoperation~ where the modelling horizon can be 
regarded as an important  semantic aspect of a class. 

Subjectivity of classification Another important  problem with inferring the RWS 
of remote classes is that  conceptual modelling of a real-world domain is essen- 
tially a classification of 'similar' real-world objects into entity types. The problem 
with classifications is that  they are inherently subjective, which hampers the def- 
inition of mappings between such classifications, as in [14,15]. Think of classifica- 
tions like FederatedDBS versus MultiDBS, Hotel versus BudgetAccomodation, 
or even AmericanCar versus BeautifulThing. Many real-world examples of dif- 
ferent classifications for identical real-world domains exist. It is then often very 
hard to precisely define the relationships between these classifications. 

2.4 O u r  a p p r o a c h  

In this paper, we present a possible alternative for the definition of integration 
assertions of the form above. In particular, instead of defining semantic rela- 
tionships between different classifications for a similar real-world domain, we 
provide for the definition of semantic relationships among the classified objects. 
By applying both classifications on the set of appropriately merged objects, re- 
lationships between the different classes may then be derived. Note that  such 
comparisons are also made in traditional integration approaches in the phase of 
instance integration [8], which is usually considered to logically succeed schema 
integration. 

3 Instance-based integration 

We treat  interoperable databases as a collection of database objects, each rep- 
resenting a certain real-world object. Database objects are grouped into classes. 
Each class is assigned a set of properties by which the objects of that  class are 
described. The set of properties determines the structure of an object. Each prop- 
erty has a domain from which its values are taken. For referential properties, this 
domain is a class. Each database object provides values for its properties. This 
set of values determines the state of a database object. We consider different 
databases describing a similar real-world domain in different ways. 

Example Figure 2 shows a database DB which is used by a university department for 
purposes of reporting on its output. DB keeps track of publications and master's theses 
realised by the department. An example database instance is shown. The classification 
of the database objects reflects DB's purpose. In this context, it is important to dis- 
tinguish professional publications from scientific ones, and refereed publications from 
non-refereed ones, as each of these classes of publications have different status. 

On the other hand, Figure 3 depicts a database DB ~ maintained within a certain 
research project, recording research publications realised within the project. Although 
the databases have similar application domains, they differ both in the objects dis- 
tinguished and the classification for these objects, reflecting the different contexts in 
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Fig. 2. The department's publications database 

which the databases are used. Note that it would be far from easy to a priori define 
relationships between concepts such as NonRefPubl and Paper. 

In the following, we assume that a user of the department database (the local 
database) wishes to create an integrated view of his own database and the project's 
database (the remote database). [] 

3.1 O b j e c t  r e l a t i o n s h i p s  

We now define a number  of object relationships, which are basically the instance 
level equivalent of class relationships distinguished in tradit ional  schema inte- 
gration [6]. We do not on ly  consider equality of a local object O 2 and a remote  
object O' [8], but also additional instance relationships, representing semantic 
relationships tha t  are usually dealt with at the schema level. The following re- 
lationships are considered: 

- O' may  be equal to some locally observed object O. In the example,  O~ is 
equal to 04, 'Violence in Cartoons ' .  The local and remote database  thus 
distinguish the same real-world object. 

2 The term 'object O' is to be interpreted as 'the real-world object represented by 
database object O' throughout this section. For clarity, a real-world object may also 
be referred to by the value of a key property. 
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- O r may be similar to some set of locally observed objects {Oi , . - .  Oj}, col- 
lected in the local class C. We distinguish between strict and approximate 
similarity. 
Strict similarity occurs when O' logically belongs to C. That  is, had O r been 
observed locally, it would have been classified under C. For example, had 
the department known about the publication of 'Animals in Cartoons'  (O~), 
it would have been classified as a Re fe reedPub l  (assuming all journals axe 
refereed). 
Approximate similarity occurs when C U {O r} is a meaningful class. That  
is, O r and the objects ia C are sufficiently similar to group them into a 
new, more general class. In the example, a PhD thesis can be seen as ap- 
proximately similar to a Master's thesis. That  is, MasterTh U{O~} would 
represent  a meaningful class; let's call it GradTh. 

- Locally O r would not be seen as an object in its own right, but rather as 
a set of property values used to describe another object O", where O" is 
equal or similar to a local object O. We say that  (9 is descriptive of O ' .  For 
example, the object O~ is locally seen as a value of the 'forum' property of 
the object 'Violence in Cartoons '(O" = (94). 

- (9' would locally be seen as a constituent of, or constituted by, an object 
O" which is similar or equal to a local object O. That  is, O' and O are 
observed at different levels of granularity. O r is an aggregation of O and 
some other objects, or vice versa. For example, (9~ ('Readings in Cartoons')  
is a book containing a chapter by the editors, represented in DB (03). Note 
that  we distinguish between aggregation and delegation. The former is used 
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for composition of objects into a larger object, while the latter expresses 
relationships among objects. 

To express these object relationships 3, we use the following predicates: 

1. Eq(A, B) holds iff object A is the same as the object represented by the 
modelling abstraction B. As illustrated above, B can either be an object 
(equal objects) or a set of properties (descriptive object). 

2. Sire(A, B[, NewCl]) holds iff object A is similar to the objects represented 
by the modelling abstraction B. Again B may be an object or a set of 
values. If the similarity is approximate, NewCl is the name of the new class 
classifying A and B. 

3. Aggr(A, B[, Role]) holds iff the object represented by the modelling abstrac- 
tion A is an aggregate of the object represented by the modelling abstraction 
B. A specific role played by B in A may be specified optionally. 

Example For the databases of Figure 2 and 3, the relationships sketched above may 
be postulated as follows: 

- Both databases describe technical report no. 15: Eq( 01, 0'1). 
- Proceedings are seen as separate objects in DB ~ and as values describing conference 

papers in DB: Eq(O~, O4.{forum}) and Sim(O~, ConfPaper.{forum}). 
- Book O r 3 is a value describing O3 in DB:Eq(O~, O3.{forum}). 
- We might import Short's PhD thesis as something approximately similar to a 

master's thesis: Sire(Or4, MasterTh, GraduationTh). 
- There are papers appearing in both databases: Eq(O~, 04). 
- The chapter by Jones and Black is contained in their book: Aggr(Oa, 0~). 
- A PhD thesis is refereed: Sim(O~,RefereedPub). 
- The journal paper is a refereed one: Sim(O~, RefereedPubl). 
- 'New Cartoons' did not appear in a refereed forum: Sim(O~, NonRefPubl). 
- 'JournSE' is a journal: Sire(05, JournalPaper). 
- By default, we assume that all remote objects are similar to Pub1. 

[] 

3 . 2  O b j e c t  c o m p a r i s o n  r u l e s  

Obviously, when integrating databases, the integrator cannot be expected to 
inspect individual objects in a pairwise manner to discover relationships between 
them. We therefore introduce objec~ comparison rules as a means to specify 
conditions under which objects have a certain relationship with one another. 
For example, 

Sim(O l : Con:fPaper,Re:fereedPub) ~-- OI.proe.re]? = true 
Eq(O' : Pro:fessionalPubl, O : TechReport) ~-- oeeurs(coneat('TR',O.nr), O'.descr) 

3 A further relationship between O and O t may be distinguished: a hidden relationship, 
a relationship modelled in neither the local nor the remote database. For example, 
let O' be the object 'the Netherlands', then O~ might be written in the Netherlands. 
Thus, O' might be the value of a new referential property 'written in' of Oa. In this 
paper, we do not consider such relationships between local and remote objects. 
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Comparable rules may be defined to specify the other relationships occurring in 
our example. Observe that such rules are able to deal with so-called schematic 
discrepancies [16], as they describe instances rather than classes. They distin- 
guish themselves from the usual assertions used in schema integration [15] in 
that the sets of related objects that they define need not coincide with the class 
extensions of any of the schemata. Note that these rules extend the identity 
rules of [8] in that they allow for the definition of object relationships other than 
identity. We discuss these rules further in Section 5. 

4 I n t e g r a t e d  o b j e c t s  a n d  c l a s s e s  

Having compared local and remote objects, a set of integrated objects and their 
classification must be determined. The problem that needs to be attacked here 
can be described as follows: 

Given: (1) A set of local objects SL; (2) A classification CL for these objects; 
(3) A set of remote objects SF; (4) A classification CF for these objects; (5) 
Relationships between SL and SF; 

Find: (1) A new set of objects SI (Subsection 4.1); (2) A classification CI 
for these objects (Subsection 4.2). 

4.1 A n e w  set  o f  ob jec t s  

Object-value conflicts To arrive at a set of integrated objects, first the local 
and remote view as to which aspects of the real world are modelled as objects 
must be reconciled. In particular, whenever an object O in database DB is 
found to be descriptive of an object O ~ in DB r, i.e. Eq(O, O~.Props) holds, it 
must be decided whether Props is to be expressed as an object (as in DB) or 
as a value (as in DB'). Such an object-value conflict is usually settled using a 
fixed strategy, such as 'settle every object-value conflict in favour of the local 
database', or 'settle every object-value conflict in favour of the object'. 

To conform objects and values, conformed object sets SLC and SFC are 
created from SL and SF, respectively. This involves the creation of a virtual 
object from a value-set whenever an object-value conflict is settled in favour 
of the object, and the hiding of an object whenever an object-value conflict is 
settled in favour of the value. 

Although we cannot treat object-value conflicts in depth here, we do remark 
that the creation of a virtual object gives rise to new object relationships. Let 
O" be a virtual object created from the values of a property set PS of an object 
O based on the relationship Eq(O.PS, 0~). This relationship is now replaced by 
Eq(O", 0 ~) . Alternatively, let O "~ be a virtual object created from the values 
of a property set PS  of an object O based on the relationship Eq(O".PS, Or), 
where O" ~ O, but O and O" both belong to the class C defining the properties 
PS. Then (approximate) similarity may hold between O m and the class C ~ to 
which O ~ belongs. Such similarity relationships may be assumed by default or 
specified through additional rules. 



189 

ExampleConsider the relationships Eq(O'2, O4.{forum}) and Eq(O~, Oz.{forum}). 
Note that the strategy of settling all conflicts in favour of the local database would 
favour the value representation. We here assume that the object preference strategy is 
applied, however. Thus, virtual local objects Or and Os are created from the values 
'Readings in Cartoons' and 'Proc.Cartoons and Society' of the forum property of Os 
and 04. Moreover, a virtual object O9 is created for the forum value 'TrSE' of 05, as 
this object belongs to the class $c i , n t i f i cPub l  in which the property forum is defined. 
All virtual objects belong to the virtual class Forum. The relationships Eq(07, O's) and 
Eq(O8,0'2) are deduced. [] 

I n t e g r a t e d  o b j e c t s  Given the conformed object sets SLC = {O1, 0 2 , . . . ,  On} 
? ! I and S F C  = { 0 1 , 0 2 , . . . , 0 m }  , we generate an integrated object set SI  = 

E i E ' Eq(Oi, 05) } U {Oojl~3i : q(O~, Oj)}. Thus, the {Oijl q(Oi, Oj)} U {Oi0[~3j : 
integrated object set is a merge of the adapted local and remote object sets, 
merging duplicate representations of the same real world object into a single 
integrated representation. Moreover, the aggregation relationship between inte- 
grated objects is derived from the aggregation relationship between local and 
remote objects by substituting the integrated equivalent of each of the related 
objects. 

Example The set SI in our example is formed by 

- Representations for real-world objects modelled as objects by both the local and 
the remote model: Oll, O4B. 

- Foreign objects locally observed only virtually (i.e. as values): 07z, Os2. 
- Virtual local objects not observed in the remote database: 090. 
- Objects observed only locally: 020,030,050,080. 
- Foreign objects not observed locally: Oo4,005, O0~, O0s. 

Furthermore, O~3 is at a different level of aggregation than 030. See also Figure 4. [] 

4.2 A n e w  c l a s s i f i c a t i o n  

In essence, we maintain both the local and the remote classification on the 
integrated object set. Tha t  is, initially the set of classes in the integration CI 
equals {CtC 6 CL} U {r 6 CF}, writing C to represent the integrated 
equivalent of the local class C. The set of integrated objects belonging to an 
integrated class is determined as follows: 

- If a local object Oi belongs to a local class C, then the integrated object Oij 
belongs to C. (Oi may be virtual, in that  case C refers to the corresponding 
virtual class) 

- If a remote object O 5 belongs to a remote class C', then Oij belongs to r  
(05 may be virtual, in that  case C' refers to the corresponding virtual class) 

- If an object O 5 is strictly similar to a class C, then O~j belongs to C. 
- If an object O 5 is approximately similar to a class C, then a virtual superclass 

CV is introduced. Both Oij and all objects Okl derived from objects in C 
belong to CV~ 
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- I f  an integrated object Oij belongs to C and C', where C and C' stem from 
different databases, and neither C i s a  C' nor C' • C holds, then a virtual 
subclass CV is introduced. Oij belongs to CV. 

Fig. 4. Integrated objects and classes 

Example In our running example, seventeen(!) integrated classes arise. Some exam- 
ples: PAPER={O48,050, O05i O07}, JOURNALPAPER={Oso, O05}, CONFPAPER={O46, O07}, 
the local virtual class FORUM={O~s, Os2, Ooo}, and integrated virtual classes such as 
REFCONFP={O4c } and PROCEEDTNGS={O73,082 }. The complete set of integrated classes 
is depicted in Figure 4. [] 

Although in principle the definition of integrated extensions for local classes is an 
appropriate basis for loosely-coupled database interoperation, in some situations 
it is desirable to derive an integrated class hierarchy describing the relationships 
between local and remote classes. Such class relationships follow from relation- 
ships between the integrated extensions. That is, the integrated class hierarchy 
is a consequence of relationships between local and remote objects rather than 
being defined explicitly. In particular, the following relationships between the in- 
tegrated equivalent of a local class C and the integrated equivalent of a remote 
class r  may arise: 

1. C i s a  r  i.e. VO C C30' E C' I Eq(O,O')VSim(O,C') (or C" i s a  C etc.). 
2. C and r  are identical, i.e. C i s a  r  and r  i s a  C. 
3. C and r  have a common virtual subclass CV, i.e. 30 E C,O' E 

C' I Eq(O., 0') V aim(O, C') v Sim(O', C). 
4. C and C' have a common virtual superelass CV, i.e. VO E C,O' E 

C' I Sirn.(O, C', CV) V Sim(O', C, CV). 
5. C and C' have CV-generalisable elements, i.e. 30 '  6 C' I Sim(O', C, CV) 

(or 30  E C etc.). Here CV is a superclass of C and a virtual subclass CV' 
of r  where CV' = {0'10' e C' A Sim(O', C, CV)}. 

The class hierarchy for our example is depicted in Figure 4. 
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5 Specifying instance-based interoperability 

5.1 Description overlap 

Having determined a set of integrated objects and a corresponding classification, 
we turn to the discussion of structure and state of integrated objects. We touch 
upon this subject only briefly, as it has been treated exhaustively by existing 
schema integration methodologies. 

In principle, we could simply define the structure and state of integrated 
objects as the merge of their local and remote counterparts. However, there 
is the possibility of description overlap; i.e. the local and the remote database 
contain descriptions of identical real-world properties. Description overlap may 
occur in any of the kinds of object relationships we distinguished. To establish 
the description overlap between objects stemming from classes C and C r, prop- 
erty equivalence assertions between their properties must be defined. A property 
equivalence assertion states that a local and a remote property represent the 
same real-world property. In general, m properties of C may be equivalent to n 
properties of Ct. That is, a property p of C derived from these m properties may 
be equivalent to a similar derived property p~ of C ~. Equivalent local and remote 
properties are merged into a single integrated property. Equivalent properties 
need not have identical domains, however. For integration purposes, a conver- 
sion function [17] between these domains must be defined. Even when domains 
of equivalent properties have been mapped to one another, different databases 
may disagree on the value chosen from that domain to represent a property p of 
a certain object O. Some decision function [18] is then applied. 

Some additional observations can be made for referential properties. As the 
domain of a referential property is a class, conversion and integration of equiv- 
alent referential properties is influenced by the integrated class hierarchy. Con- 
version of a referential property is implicit; the integrated property refers to 
integrated objects instead of local objects. To infer an integrated delegation hi- 
erarchy, we again use an instance-based approach. That is, the domain of an 
integrated referential property is the most specific integrated class containing all 
referenced integrated objects. 

Example Consider the integrated class REFCONFP. Local and remote objects merged in 
this class have the equivalent referential properties 'proc' resp. 'forum'. The domain 
class PROCEEDINGS is now inferred for the integrated referential property. [] 

5.2 Specification of database interoperation 

A database interoperation specification consists of object comparison rules ac- 
companied by property equivalence assertions. To express object relationship 
conditions, a tailored equality predicate =prop is used to compare values of equiv- 
alent properties, which is defined modulo any conversion function defined on the 
properties involved. 
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Object relationships and inheritance Let C be a local class and C~, C~ be remote 
classes such that C~ i s a  C~. Then 

VO, O' I Eq(O : C, 0 ' :  C~) ~ Eq(O : C, 0 ' :  C~) and 
VO, O ' ] O ' e C ~ . A E q ( O : C , O ' : C [ ) ~ E q ( O : C , O ' : C ~ )  and 
v o  I s~m(o  : c , c ~ )  => s~,, ,(o : c ,  c i )  

These laws can be used to derive additional object relationships from those 
defined directly by the object comparison rules. Equality is a stronger notion 
than similarity; hence equality rules are evaluated before similarity rules. A 
specifier may exploit these laws by defining equality rules on as general classes 
as possible, but similarity is defined on the most specific class. 

The following requirements are made to ensure that Eq has the intended 
semantics. (1) Every equality rule defines a one-to-one mapping; and (2) the 
definition of equality rules of the form Eq(O : C, O' : C') *-- r when there also 
exists a rule Eq(O : Cs~,p, O' : C's~p) *-- r where C • Cs~p or C' • C~p, is 
allowed only if r ~ r Furthermore, to avoid inconsistencies, the definition of 
similarity rules of the form Sim(O : C, C') ~-- r is not allowed if there exists a 
rule Sirn(O : C, C~up) *-- r where C' • C'8~ p and r ~ -1r 

6 D i s c u s s i o n  

The purpose of this paper has been to demonstrate the use of extensions in 
loosely-coupled database interoperation. We have argued that instance level re- 
lationship specifications can be the basis of a database interoperation mechanism. 
We believe that the information provided by the database extension can com- 
pensate for the decrease in knowledge of remote schemata and their modelling 
contexts, which is inherent to loose coupling. Thus, we avoid having to define 
class relationships, which we believe to be error-prone in view of modelling hori- 
zons and subjectivity of classification. 

It may be observed that the use of object comparison rules is similar to 
works exploiting a query language for defining multidatabase mappings such as 
[19], and also [20]. Distinguishing features are the various object relationships 
we defined, leading to a style of specification which is suitable to loosely-coupled 
database interoperation, and the possibility of deriving a global class hierarchy. 
Note that in mediator systems aimed at interoperation of data not necessarily 
managed by a DBMS, instance-based approaches have been developed as well 
[21i22]. Compared to these contexts the schema information available in a fed- 
eration of databases allows for the derivation of a schema for the integrated 
instances obtained through the interoperation mechanism. 

Since we derive an integrated class hierarchy based on instance-level informa- 
tion, our approach is primarily targeted at relatively stable environments where 
discrepancies exist between the viewpoints of different databases containing re- 
lated data. As in principle changes in the local extensions may result in changes 
to this integrated class hierarchy, our approach must be extended to also deal 
with dynamic environments where extensional relationships between classes are 
unstable. For example, a query mechanism capable of dealing with schema evo- 
lution at the integrated level could be devised. Alternatively, object comparison 
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rules could be used in the context of import /expor t -based database interoper- 
ation [23], where a global hierarchy is not used at all. This is a subject of our 
current research. 

We are also working on the inclusion of methods and constraints in our inte- 
gration strategy. In particular, we are interested in the additional semantics that  
local methods and constraints provide for the local data  structures, and the way 
in which this information can be used to detect inconsistencies in interoperation 
specifications. Some results in this direction can be found in [24]. 
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