Skip to main content

Representing partial spatial information in databases

  • Session 8: Enhanced Modeling
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1157))

Abstract

In this paper we present a spatial data model which facilitates the representation of and reasoning with various forms of qualitatively and quantitatively incomplete spatial information. The model is founded on a combination of object-oriented and constraint-based data modeling facilities and provides for representations of variable precision and granularity. We identify four basic reasoning tasks required for query processing operations and outline algorithms for each task. Finally, we discuss extensions of the model and outline an implementation based on the Telos knowledge base management system extended with an appropriate constraint reasoning component.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baudinet, J. Chomicki, and P. Wolper. Temporal Deductive Databases. In Temporal Databases: Theory, Design, and Implementation, pages 294–320. Benjamin/Cummings, 1993.

    Google Scholar 

  2. E. Ciapessoni, E. Corsetti, A. Montanari, and P. San Pietro. Embedding Time Granularity in a Logical Specification Language for Synchronous Real-time Systems. Science of Computer Programming, 20:141–171, 1993.

    Google Scholar 

  3. R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence, 49:61–95, 1991.

    Google Scholar 

  4. K. Dyreson and R. Snodgrass. Valid Time Indeterminacy. In Proceedings of the 9th International Conference on Data Engineering, 1993.

    Google Scholar 

  5. Max Egenhofer. Reasoning about Binary Topological Relations. In Second Symposium on Large Spatial Databases (SSD'91), pages 143–160, 1991.

    Google Scholar 

  6. Max Egenhofer. What's Special about Spatial: Database Requirements for Vehicle Navigation in Geographic Space. In Proc. of ACM/SIGMOD Conf., pp. 398–402, 1993.

    Google Scholar 

  7. H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

    Google Scholar 

  8. J. Glasgow and D. Papadias. Computational Imagery. Cognitive Science, 16:355–394, 1992.

    Google Scholar 

  9. R-H. Guting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. The VLDB Journal, 4:243–286, 1995.

    Google Scholar 

  10. Ralf H. Guting. An Introduction to Spatial Database Systems. The VLDB Journal, 3(4):357–399, 1994.

    Google Scholar 

  11. Thanasis Hadzilacos. On Layer-Based Systems for Undetermined Boundaries. In P.A. Burrough and A. Frank, editors, Geographic Objects with Undetermined Boundaries. Taylor & Francis, 1995.

    Google Scholar 

  12. Pat Hayes. The Second Naive Physics Manifesto. In J. Hobbs, R. Moore: Formal Theories of the Commonsense World.Ablex Publishing, 1985.

    Google Scholar 

  13. Daniel Hernandez. Qualitative Representation of Spatial Knowledge. PhD thesis, Faculty of Informatics, Technical University of Munich, 1992.

    Google Scholar 

  14. P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Long version. Also appearred in Proc. of 9th ACM PODS, 1990.

    Google Scholar 

  15. H. Kautz and P. Ladkin. Integrating Metric and Qualitative Temporal Reasoning. In Proceedings of AAAI-91, pages 241–246, 1991.

    Google Scholar 

  16. Manolis Koubarakis. Dense Time and Temporal Constraints with ≠. In Proceedings of KR-92, pages 24–35, 1992.

    Google Scholar 

  17. Manolis Koubarakis. Database Models for Infinite and Indefinite Temporal Information. Information Systems, 19(2): 141–173, March 1994.

    Google Scholar 

  18. Manolis Koubarakis. Foundations of Temporal Databases. PhD thesis, National Technical University of Athens, 1994.

    Google Scholar 

  19. P. Ladkin and R. Maddux. Representation and Reasoning with Convex Time Intervals. Technical Report KES.U.88.2, Kestrel Institute, 1988.

    Google Scholar 

  20. A.K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8(1):99–118, 1977.

    Google Scholar 

  21. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: A Language for Representing Knowledge About Information Systems. ACM Transactions on Office Information Systems, 8(4):325–362, 1990.

    Google Scholar 

  22. J. Mylopoulos, V. Chaudhri, D. Plexousakis, A. Shrufi, and T. Topaloglou. Implementing Knowledge Management Systems. The VLDB Journal (to appear), 1996.

    Google Scholar 

  23. C.B. Medeiros and F. Pires. Databases for GIS. ACM SIGMOD Record, 23:107–115, 1994.

    Google Scholar 

  24. J. Orenstein and F. Manola. PROBE: Spatial Data Modelling and Query Processing in an Image Database Application. IEEE Transactions on Software Engineering, 14(5):611–629, 1988.

    Google Scholar 

  25. Dimitris Papadias. Relation-based Representations for Spatial Databases. PhD thesis, National Technical University of Athens, 1994.

    Google Scholar 

  26. Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  27. E. Puppo and G. Dettori. Towards a formal model for multiresolution spatial maps. In Proc. of SSD'95, pages 153–169, 1995.

    Google Scholar 

  28. D. Papadias and T. Sellis. Qualitative Representation of Spatial Knowledge in Two-Dimensional Space. The VLDB Journal, 3(4):479–517, 1994.

    Google Scholar 

  29. D. Papadias, Y. Theodoridis, T. Sellis, and M. Egenhofer. Topological Relations in the World of Minimum Bounding Rectangles: A Study with R-trees. In SIGMOD-95, 1994.

    Google Scholar 

  30. N. Roussopoulos, C. Faloutsos, and T. Sellis An Efficient Pictorial Database System for PSQL. IEEE Transactions on SE, 14(5):639–650, 1988.

    Google Scholar 

  31. D. Rozenkrantz and H. Hunt. Processing Conjunctive Predicate and Queries. In VLDB-80, pages 64–72, 1980.

    Google Scholar 

  32. P. Rigaux and M. Scholl. Multi-Scale Partitions: Applications to Spatial and Statistical Databases. In Proc. of SSD'95, pages 171–183, 1995.

    Google Scholar 

  33. P. Sistla, C. Yu, and R. Haddad. Reasoning about Spatial Relationships in Picture Retrieval Systems. In VLDB-94, 1994.

    Google Scholar 

  34. Thodoros Topaloglou. First Order Theories of Approximate Space. In AAAI-94 Workshop on Spatial and Temporal Reasoning, pages 47–53, 1994.

    Google Scholar 

  35. Thodoros Topaloglou. On the Representation of Partial Spatial Information in Knowledge Bases. PhD thesis, Department of Computer Science, University of Toronto, 1996.

    Google Scholar 

  36. Peter van Beek. Exact and Approximate Reasoning About Qualitative Temporal Relations. TR/CS 90-29, University of Alberta, 1990.

    Google Scholar 

  37. X.S. Wang, S. Jajodia, and V.S. Subrahmanian. Temporal Modules: An Approach Towards Federated Temporal Databases. In Proceedings of ACM/SIGMOD Conference, pages 227–236, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Thalheim

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Topaloglou, T., Mylopoulos, J. (1996). Representing partial spatial information in databases. In: Thalheim, B. (eds) Conceptual Modeling — ER '96. ER 1996. Lecture Notes in Computer Science, vol 1157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0019932

Download citation

  • DOI: https://doi.org/10.1007/BFb0019932

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61784-6

  • Online ISBN: 978-3-540-70685-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics