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Abstract The mixtures of experts (ME) model offers a modular struc-
ture suitable for a divide-and-conquer approach to pattern recognition.
It has a probabilistic interpretation in terms of a mixture model, which
forms the basis for the error function associated with MEs. In this paper,
it is shown that for classification problems the minimization of this ME
error function leads to ME outputs estimating the a posteriori probabil-
ities of class membership of the input vector.

1 Introduction

It 1s well-known that for artificial neural networks trained by minimizing sum-of-
squares or cross-entropy error functions for a classification problem, the network
outputs approximate the a posteriori probabilities of class membership [2]. This
property is a very useful one, especially when the network outputs are to be
used in a further decision-making stage (e.g. rejection thresholds) or integrated
in other statistical pattern recognition methods (as in hybrid NN-HMMs).

Recently, a modular architecture of neural networks known as a mizture of
experts (ME) has attracted quite some attention [6][7]. MEs are mixture models
which attempt to solve problems using a divide-and-conquer strategy; that is,
they learn to decompose complex problems in simpler subproblems. In particular,
the gating network of a ME learns to partition the input space (in a soft way, so
overlaps are possible) and attributes ezpert networks to these different regions.
The divide-and-conquer approach has shown particularly useful in attributing
experts to different regimes in piece-wise stationary time series [9] and modeling
discontinuities in the input-output mapping.

Mixtures of experts have also been successfully applied to classification prob-
lems [4][8], though a proof that minimization of the ME error function (based
on the formulation as a mixture model) leads to ME outputs estimating the a
posteriori probabilities of class membership, is still lacking. The purpose of this
paper is to show that at the global minimum of this ME error function, the ME
outputs do indeed estimate a posteriori probabilities.

2 Mixtures of Experts

In this section the basic definitions of the mixture of experts model are given
which will be used in the rest of the paper.
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Figurel. Architecture of a mixture of experts network.

Figure 1 shows the architecture of a ME network, consisting of three expert
networks and one gating network both having access to the input vector x; the
gating network has one output g; per expert. The standard choices for gating
and expert networks are generalized linear models [7] and multilayer perceptrons
[9]. The output vector of a ME is the weighted (by the gating network outputs)
mean of the expert outputs:

m

y(x) = g (x)y; (%) (1)

ji=1

The gating network outputs g;(x) can be regarded as the probability that input
x 1s attributed to expert j. In order to ensure this probabilistic interpretation,
the activation function for the outputs of the gating network is chosen to be the
soft-max function [3]:
g = exp(z;)) (2)
T exp(x)]

where the z; are the gating network outputs before thresholding. This soft-max
function makes that the gating network outputs sum to unity and are non-
negative; thus implementing the (soft) competition between the experts.

A probabilistic interpretation of a ME can be given in the context of mixture
models for conditional probability distributions (see section 6.4 in [1]):

m
plblx) = g5(x)é5(t]x), (3)
ji=1
where the ¢; represent the conditional densities of target vector t for expert j.
The use of a soft-max function in the gating network and the fact that the ¢;
are densities guarantee that the distribution is normalized: [ p(t|x)dt = 1.
As outlined in the next section this distribution forms the basis for the ME

error function which can be optimized using gradient descent or the Expectation-
Maximization (EM) algorithm [7].



3 Estimating Posterior Probabilities

A standard way to motivate error functions is from the principle of maximum
likelihood of the (independently distributed) training data {x”,t"} (see section
6.11in [1]):

= [Ipem 6" = T p(e" I p(x™).

A cost function is then obtained by taking the negative logarithm of the like-
lihood (and dropping the term p(x™) which does not depend on the network
parameters):

E == Inp(t"[x"). (4)

The most suitable choice for the conditional probability density depends on the
problem. For regression problems a Gaussian noise model is appropriate (leading
to the sum-of-squares error function); for classification problems with a l-of-¢
coding scheme and outputs y. for each class, a multinomial density is most

suitable:
c

pex) = [T (5)
c=1
This offers us the framework to obtain a cost function for the mixtures of
experts model. In its most general form the ME error function to be minimized
is (substituting (3) in (4)):

7= =3I Y gy (s (47",

n

the exact formulation of which depends on the choice for the conditional densities
$;(t7|x™). Since, our main interest is in MEs for classification problems, the ¢;
are assumed to be multinomial densities (5) in the rest of this paper. As in the
gating network of a ME, a suitable choice for the activation function for the
expert output units is then the soft-max function (2):

. exp(a;.) (6)
c — I

T rexp(ajr)

where the a;. are the expert network outputs before thresholding.

In the limit of an infinite data set (to avoid bias and variance) the finite sum
over patterns can be replaced with an integral:

E= —//ln ]Z:;gj(x)qu(ﬂx) p(t, x) dtdx,

factoring the joint distribution:

p=—[ [ ;mx)@(ﬂx) p(tlx)p(x) dbdx.



The interpretation of the ME outputs when this error function is minimized, can
be obtained by setting to zero the functional derivatives [5] of E with respect to
the gating network outputs z;(x) and the network outputs of expert j, a;.(x).
The solution of these equations will then result in expressions for g;(x) and y; (x)
at the minimum of F (along the lines of section 6.1.3 of [1] for the sum-of-squares
error function).

Defining:

=1In Z g;(x)¢; (t]x), (7)

we are then interested in the follovvmg two functional derivatives set to zero. For

the gating network:
OF OF'
_— = — t dt =

and for the expert network (using the chain rule):

5E OF OF 8y]k
= - t dt = 0.
(Sa]'c / (aa]c) ( |X /Z ay]k 3a]c |X)p(x> 0 (9)

In section 6.4 of [1], the partial derivatives for the gating network occurring
in (8) have been calculated in the context of a gradient descent algorithm for
the mixture model (3). Bishop’s outcomes are restated here:

OF' OF'" 9 T
—,:Z—i’?:Z—g—:@wk—gm:w—m, (10)
k k

where the posterior probability m; is defined as:

(%, t) = ngj:@ (11)

and 6;1 is the Kronecker delta. The functional derivative set zero with respect
to the gating network outputs is (substituting (10) in (8)):

o == [ e = ) plebxpde = (12)

(SZ]'

The solution of the expert network equation (9) will be treated in some more
detail. Recall that for classification problems, the expert outputs are obtained
with a soft-max function (6). Therefore, the second partial derivative, dy;/dq;.,
in (9) is similar to its counterpart in the gating network equation dgy/0z; (see
the second term in (10)):

3yjk
aa]'c

=8k Yt — YjcYik- (13)



Using the definition of £’ (7) and of the multinomial density ¢; (5) gives for the
first partial derivative in (9):
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that is, taking the partial derivative and using (11):

OE"  gi(yin) BVt 9;9; tx tp
T il ]m) [[ (i) = mjijy—k =T (14)
J > 9idi e=1,c#k > 9idi J
=1 i=1

Preparing for the solution of (9) one needs (using (13) and (14)):

oOF' 3y]'k i
= Ti (X, 6)—(bcr Vit —YicYin) = 73 (X, 6)t.— 75 (X, t)y;., (15
Zk: Byir Daje Zk: i( )yjk( kKYik = YjeYik) j(x,t) (%, t)y;e, (15)

where in the last step i1t has been used that for 1-of-¢ classification problems,

> i tr = 1. The functional derivative set to zero with respect to the expert
network outputs is (substituting (15) in (9)):

SE

5. =— | (mi(x, t)t. — m(x, t)y;.) p(t|x)p(x)dt = 0. (16)

What is left is to determine the g;(x) and y;(x) that solve (12) and (16) (and
therefore minimize the ME error function). For the gating network outputs (12):

% = —gjp(X)/p(tlx) dt + p(X)/ﬂ'j(x,t)p(ﬂx) dt = 0.

J

using that the conditional probability p(t|x) is normalized:

oK
Foa —g;p(x) + p(x)/ﬂ'j(x,t)p(ﬂx) dt = 0.
J
Therefore, at the minimum of the ME error function the gating network outputs
satisfy:
g; = /ﬂ'j(x,t)p(ﬂx) dt. (17)

For the expert network outputs (16):
oF

(Sa]'c

= —p(x)/ﬂ'j(x,t)tcp(ﬂx) dt + yjcp(x)/wj(x,t)p(ﬂx) dt = 0.

Therefore, at the minimum of the ME error function the expert network outputs
satisfy:
[ mi(x, )t p(t]x) dt (18)
Yje = .
/ [ 7 (x,t) p(t]x) dt




Finally, using (17) and (18), the output vector of a mixture of experts that
minimizes the ME error function is (1):

) = 300500 = 3 [ 73,0t el e
J J
exchanging integration and summation:

/Zﬂ'j(x,t)tcp(ﬂx) dt = /tc p(t|x) dt = {t.|x), (19)

where we have used that the posterior probabilities 7, (x,t) (11) sum to unity.
The interpretation of (19) is that the output y.(x) of a ME at the minimum
of the ME error function is equal to the conditional average of the target data.
This is exactly the same as for the outputs of a network trained by minimizing
the sum-of-squares or cross-entropy error functions [1]. It is a well-known result
that for a classification problem with 1-of-c¢ coding the conditional average of
the target data is (see, for example, section 6.6 in [1]) :

ye(x) = P(Cc|x),

so that the outputs of a ME do indeed estimate the a posteriori probability that
x belongs to class C..

4 Discussion

In section 3, it was assumed that the conditional density ¢;(t"|x") of expert j
1s multinomial. However, this is not a necessary condition for ME to estimate a
posteriori probabilities. It can be shown that also a Gaussian noise model:

ni,ny __ 1 ||t—y](X)||2
56" = greesy (-4

leads to this result.
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