
Mixtures of Experts Estimate A PosterioriProbabilitiesPerry MoerlandIDIAP, CP 592, 1920 Martigny, SwitzerlandAbstract The mixtures of experts (ME) model o�ers a modular struc-ture suitable for a divide-and-conquer approach to pattern recognition.It has a probabilistic interpretation in terms of a mixture model, whichforms the basis for the error function associated with MEs. In this paper,it is shown that for classi�cation problems the minimization of this MEerror function leads to ME outputs estimating the a posteriori probabil-ities of class membership of the input vector.1 IntroductionIt is well-known that for arti�cial neural networks trained by minimizing sum-of-squares or cross-entropy error functions for a classi�cation problem, the networkoutputs approximate the a posteriori probabilities of class membership [2]. Thisproperty is a very useful one, especially when the network outputs are to beused in a further decision-making stage (e.g. rejection thresholds) or integratedin other statistical pattern recognition methods (as in hybrid NN-HMMs).Recently, a modular architecture of neural networks known as a mixture ofexperts (ME) has attracted quite some attention [6][7]. MEs are mixture modelswhich attempt to solve problems using a divide-and-conquer strategy; that is,they learn to decompose complex problems in simpler subproblems. In particular,the gating network of a ME learns to partition the input space (in a soft way, sooverlaps are possible) and attributes expert networks to these di�erent regions.The divide-and-conquer approach has shown particularly useful in attributingexperts to di�erent regimes in piece-wise stationary time series [9] and modelingdiscontinuities in the input-output mapping.Mixtures of experts have also been successfully applied to classi�cation prob-lems [4][8], though a proof that minimization of the ME error function (basedon the formulation as a mixture model) leads to ME outputs estimating the aposteriori probabilities of class membership, is still lacking. The purpose of thispaper is to show that at the global minimum of this ME error function, the MEoutputs do indeed estimate a posteriori probabilities.2 Mixtures of ExpertsIn this section the basic de�nitions of the mixture of experts model are givenwhich will be used in the rest of the paper.
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Expert 1 Expert 3Expert 2Figure1. Architecture of a mixture of experts network.Figure 1 shows the architecture of a ME network, consisting of three expertnetworks and one gating network both having access to the input vector x; thegating network has one output gi per expert. The standard choices for gatingand expert networks are generalized linear models [7] and multilayer perceptrons[9]. The output vector of a ME is the weighted (by the gating network outputs)mean of the expert outputs: y(x) = mXj=1 gj(x)yj(x) (1)The gating network outputs gj(x) can be regarded as the probability that inputx is attributed to expert j. In order to ensure this probabilistic interpretation,the activation function for the outputs of the gating network is chosen to be thesoft-max function [3]: gj = exp(zj)Pmi=1 exp(zi) ; (2)where the zi are the gating network outputs before thresholding. This soft-maxfunction makes that the gating network outputs sum to unity and are non-negative; thus implementing the (soft) competition between the experts.A probabilistic interpretation of a ME can be given in the context of mixturemodels for conditional probability distributions (see section 6.4 in [1]):p(tjx) = mXj=1 gj(x)�j(tjx); (3)where the �j represent the conditional densities of target vector t for expert j.The use of a soft-max function in the gating network and the fact that the �jare densities guarantee that the distribution is normalized: R p(tjx) dt = 1:As outlined in the next section this distribution forms the basis for the MEerror function which can be optimized using gradient descent or the Expectation-Maximization (EM) algorithm [7].



3 Estimating Posterior ProbabilitiesA standard way to motivate error functions is from the principle of maximumlikelihood of the (independently distributed) training data fxn; tng (see section6.1 in [1]): L =Yn p(xn; tn) =Yn p(tnjxn)p(xn):A cost function is then obtained by taking the negative logarithm of the like-lihood (and dropping the term p(xn) which does not depend on the networkparameters): E = �Xn lnp(tnjxn): (4)The most suitable choice for the conditional probability density depends on theproblem. For regression problems a Gaussian noise model is appropriate (leadingto the sum-of-squares error function); for classi�cation problems with a 1-of-ccoding scheme and outputs yc for each class, a multinomial density is mostsuitable: p(tnjxn) = CYc=1(ync )tnc : (5)This o�ers us the framework to obtain a cost function for the mixtures ofexperts model. In its most general form the ME error function to be minimizedis (substituting (3) in (4)):E = �Xn ln mXj=1 gj(xn)�j(tnjxn);the exact formulation of which depends on the choice for the conditional densities�j(tnjxn). Since, our main interest is in MEs for classi�cation problems, the �jare assumed to be multinomial densities (5) in the rest of this paper. As in thegating network of a ME, a suitable choice for the activation function for theexpert output units is then the soft-max function (2):yjc = exp(ajc)Pk exp(ajk) ; (6)where the ajc are the expert network outputs before thresholding.In the limit of an in�nite data set (to avoid bias and variance) the �nite sumover patterns can be replaced with an integral:E = � Z Z ln0@ mXj=1 gj(x)�j(tjx)1A p(t;x) dtdx;factoring the joint distribution:E = � Z Z ln0@ mXj=1 gj(x)�j(tjx)1A p(tjx)p(x) dtdx:



The interpretation of the ME outputs when this error function is minimized, canbe obtained by setting to zero the functional derivatives [5] of E with respect tothe gating network outputs zj(x) and the network outputs of expert j, ajc(x).The solution of these equations will then result in expressions for gj(x) and yj(x)at the minimumof E (along the lines of section 6.1.3 of [1] for the sum-of-squareserror function).De�ning: E0 = ln mXj=1 gj(x)�j(tjx); (7)we are then interested in the following two functional derivatives set to zero. Forthe gating network: �E�zj = � Z �@E0@zj � p(tjx)p(x) dt = 0; (8)and for the expert network (using the chain rule):�E�ajc = � Z � @E0@ajc�p(tjx)p(x)dt = � Z Xk @E0@yjk @yjk@ajc p(tjx)p(x)dt = 0: (9)In section 6.4 of [1], the partial derivatives for the gating network occurringin (8) have been calculated in the context of a gradient descent algorithm forthe mixture model (3). Bishop's outcomes are restated here:@E0@zj =Xk @E0@gk @gk@zj =Xk ��kgk (�jkgk � gjgk) = gj � �j; (10)where the posterior probability �j is de�ned as:�j(x; t) = gj�jPi gi�i ; (11)and �jk is the Kronecker delta. The functional derivative set zero with respectto the gating network outputs is (substituting (10) in (8)):�E�zj = � Z (gj � �j) p(tjx)p(x) dt = 0: (12)The solution of the expert network equation (9) will be treated in some moredetail. Recall that for classi�cation problems, the expert outputs are obtainedwith a soft-max function (6). Therefore, the second partial derivative, @yjk=@ajc,in (9) is similar to its counterpart in the gating network equation @gk=@zj (seethe second term in (10)): @yjk@ajc = �ckyjk � yjcyjk: (13)



Using the de�nition of E0 (7) and of the multinomial density �j (5) gives for the�rst partial derivative in (9):@E0@yjk = @ ln mPj=1 gj�j!@yjk = @  ln mPj=1gj CQc=1(yjc)tc!@yjk ;that is, taking the partial derivative and using (11):@E0@yjk = gj(yjk)(tk�1)tkmPi=1 gi�i CYc=1;c6=k(yjc)tc = gj�jmPi=1 gi�i tkyjk = �j tkyjk : (14)Preparing for the solution of (9) one needs (using (13) and (14)):Xk @E0@yjk @yjk@ajc =Xk �j(x; t) tkyjk (�ckyjk�yjcyjk) = �j(x; t)tc��j(x; t)yjc; (15)where in the last step it has been used that for 1-of-c classi�cation problems,Pk tk = 1. The functional derivative set to zero with respect to the expertnetwork outputs is (substituting (15) in (9)):�E�ajc = � Z (�j(x; t)tc � �j(x; t)yjc) p(tjx)p(x) dt = 0: (16)What is left is to determine the gj(x) and yj(x) that solve (12) and (16) (andtherefore minimize the ME error function). For the gating network outputs (12):�E�zj = �gjp(x) Z p(tjx) dt + p(x) Z �j(x; t) p(tjx) dt = 0:using that the conditional probability p(tjx) is normalized:�E�zj = �gjp(x) + p(x) Z �j(x; t) p(tjx) dt = 0:Therefore, at the minimum of the ME error function the gating network outputssatisfy: gj = Z �j(x; t) p(tjx) dt: (17)For the expert network outputs (16):�E�ajc = �p(x) Z �j(x; t)tc p(tjx) dt + yjcp(x) Z �j(x; t) p(tjx) dt = 0:Therefore, at the minimumof the ME error function the expert network outputssatisfy: yjc = R �j(x; t)tc p(tjx) dtR �j(x; t) p(tjx) dt : (18)



Finally, using (17) and (18), the output vector of a mixture of experts thatminimizes the ME error function is (1):yc(x) =Xj gj(x)yjc(x) =Xj Z �j(x; t)tc p(tjx) dt;exchanging integration and summation:Z Xj �j(x; t)tc p(tjx) dt = Z tc p(tjx) dt := htcjxi; (19)where we have used that the posterior probabilities �j(x; t) (11) sum to unity.The interpretation of (19) is that the output yc(x) of a ME at the minimumof the ME error function is equal to the conditional average of the target data.This is exactly the same as for the outputs of a network trained by minimizingthe sum-of-squares or cross-entropy error functions [1]. It is a well-known resultthat for a classi�cation problem with 1-of-c coding the conditional average ofthe target data is (see, for example, section 6.6 in [1]) :yc(x) = P (Ccjx);so that the outputs of a ME do indeed estimate the a posteriori probability thatx belongs to class Cc.4 DiscussionIn section 3, it was assumed that the conditional density �j(tnjxn) of expert jis multinomial. However, this is not a necessary condition for ME to estimate aposteriori probabilities. It can be shown that also a Gaussian noise model:�j(tnjxn) = 1(2�)(c=2)exp��jjt� yj(x)jj22 �leads to this result.AcknowledgmentsThe author gratefully acknowledges the Swiss National Science Foundation(FN:21-45621.95) for their support of this research.References1. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford UniversityPress, Oxford, 1995.
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