
On Learning Soccer StrategiesRafa l Sa lustowicz, Marco Wiering, J�urgen SchmidhuberIDSIA, Corso Elvezia 36, 6900 Lugano, Switzerlande-mail: frafal, marco, juergeng@idsia.chIn W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, editors,Proceedings of the Seventh International Conference on ArtificialNeural Networks (ICANN'97), volume 1327 of Lecture Notes in ComputerScience, pages 769{774. Springer-Verlag Berlin Heidelberg, 1997.Abstract. We use simulated soccer to study multiagent learning. Eachteam's players (agents) share action set and policy but may behave dif-ferently due to position-dependent inputs. All agents making up a teamare rewarded or punished collectively in case of goals. We conduct sim-ulations with varying team sizes, and compare two learning algorithms:TD-Q learning with linear neural networks (TD-Q) and ProbabilisticIncremental Program Evolution (PIPE). TD-Q is based on evaluationfunctions (EFs) mapping input/action pairs to expected reward, whilePIPE searches policy space directly. PIPE uses an adaptive probabilitydistribution to synthesize programs that calculate action probabilitiesfrom current inputs. Our results show that TD-Q has di�culties to learnappropriate shared EFs. PIPE, however, does not depend on EFs and�nds good policies faster and more reliably.1 IntroductionSoccer recently received much attention by various multiagent researchers. Therehave been attempts to learn low-level cooperation tasks such as pass play. Pub-lished results on learning entire soccer strategies, however, have been limitedto extremely reduced scenarios (e.g., two single opponent players in a 5 � 4grid world [5]). Our comparatively complex case study will involve simulationswith continuous-valued inputs, simple physical laws to model ball bounces andfriction, and up to 11 players (agents) on each team.Evaluation functions versus search through policy space. There aretwo rather obvious classes of candidate algorithms for multiagent reinforcementlearning (RL). The �rst includes traditional single-agent RL algorithms basedon adaptive evaluation functions (EFs) [1]. Usually online variants of dynamicprogramming and function approximators are combined to model EFs map-ping input-action pairs to expected discounted future reward. Methods fromthe second class do not require EFs. Their policy space consists of completealgorithms de�ning agent behaviors, and they search policy space directly. Well-known members of this class are Levin search [3], Genetic Programming, e.g. [2],and Probabilistic Incremental Program Evolution [6].

Comparison. In our case study we compare two learning algorithms, eachrepresentative of its class: TD-Q learning with linear neural nets (TD-Q) [4] andProbabilistic Incremental Program Evolution (PIPE) [6]. TD-Q selects actionsaccording to linear neural networks trained with the delta rule to map playerinputs to evaluations of alternative actions. PIPE uses a probability distribu-tion to synthesize programs that calculate action probabilities from inputs. Theprobability distribution is then adapted using an evolutionary approach.2 Soccer SimulationOur discrete-time simulations involve two teams. There are either 1 or 11 play-ers per team. Players can move with and without the ball or shoot it. As inindoor soccer the �eld is surrounded by impassable walls except for the twogoals centered in the east and west walls. The ball slows down due to friction(after having been shot) and bounces o� walls obeying the law of equal re
ectionangles. Players are \solid". If a player, coming from a certain angle, attempts totraverse a wall then it \glides" on it, loosing only that component of its speedwhich corresponds to the movement direction hampered by the wall. Collisionsof players cause them to bounce back to their positions at the previous timestep. If one of them had the ball then the ball changes owners. There are �xedinitial positions for all players and the ball (see Figure 1). A game lasts from
Fig. 1. 22 players and ball in initial positions. Players of a 1 player team are thosefurthest in the back (goalkeepers).time t = 0 to time tend.Action Framework/Cycles. At each discrete time step 0 � t < tend eachplayer executes a \cycle". A cycle consists of: (1) an attempt to get the ball, if itis close enough, (2) input computation, (3) action selection and execution, and(4) another attempt to get the ball, if it is close enough. Once all players haveexecuted a cycle we move the ball. If a team scores or t = tend then all playersand ball are reset to their initial positions.Inputs. Player p's input at a given time t is an input vector i(p; t). Vectori(p; t) has 14 components: (1) Three boolean inputs that tell whether the player/ateam member/an opponent has the ball. (2) Polar coordinates (distance, angle)of both goals and the ball with respect to a player-centered coordinate system.(3) Polar coordinates of both goals with respect to a ball-centered coordinatesystem. (4) Ball speed. Note that these inputs make the environment partiallyobservable.

Actions. Players may execute actions from action set ASET. ASET contains:go forward, turn to ball, turn to goal and shoot. Shots are noisy and noise makeslong shots less precise than close passes. For a detailed description of the soccersimulator see [7].3 Probabilistic Incremental Program Evolution (PIPE)We use PIPE [6] to synthesize programs which, given player p's input vectori(p; t), select actions from ASET.Action Selection. Action selection depends on 5 variables: g 2 IR, Ai 2 IR,8i 2 ASET . Action i 2 ASET is selected with probability PAi according to theBoltzmann-Gibbs distribution at temperature 1g :PAi := eAi�gP8j2ASET eAj �g 8i 2 ASET (1)All Ai and g are calculated by a program.Programs. A main program Program consists of a program Progg whichcomputes the \greediness" parameter g and 4 \action programs" Progi (i 2ASET). The result of applying Prog to data x is denoted Prog(x). Giveni(p; t), Progi(i(p; t)) returns Ai and g := jProgg(i(p; t))j. An action i 2 ASETis then selected according to (1).Program Instructions. A program Prog contains instructions from afunction set F and a terminal set T . We use F = f+;�; �;%; sin; cos; exp; rloggand T = fi(p; t)1, . . . , i(p; t)v ; Rg, where % denotes protected division (8y; z 2IR; z 6= 0: y%z = y=z and y%0 = 1), rlog denotes protected logarithm (8y 2IR; y 6= 0: rlog(y)=log(abs(y)) and rlog(0) = 0), i(p; t)l 1 � l � v denotescomponent l of a vector i(p; t) with v components and R represents the genericrandom constant from [0;1).PIPE Overview. PIPE programs are encoded in n-ary trees that are parseddepth �rst from left to right, with n being the maximal number of function ar-guments. PIPE generates programs according to a probability distribution overall possible programs composable from the instruction set (F [T). The proba-bility distribution is stored in an underlying probabilistic prototype tree (PPT).The PPT contains at each node an initial probability for each instruction fromF [T and a random constant from [0;1). Programs are generated by traversingthe PPT depth �rst starting at the root node. At each node an instruction ispicked according to the node's probability distribution. In case the generic ran-dom constant is picked it is instantiated either to the value stored in the PPTnode or a random value from [0;1), depending on the instruction's probability. Toadapt PPT's probabilities PIPE generates successive populations of programs.It evaluates each program of a population and assigns it a scalar, non-negative\�tness value", which re
ects the program's performance. To evaluate a programwe play one entire soccer game. PIPE then adapts PPT's probabilities so thatthe overall probability of creating the best program of the current population

increases. Finally PPT's probabilities are mutated to better explore the searchspace. All details can be found in [6].4 TD-Q LearningOne of the most widely used EF-based approaches to reinforcement learningis TD-Q learning. We use Lin's successful TD(�) Q-variant [4]. For e�ciencyreasons our TD-Q version uses linear neural nets (nets with hidden units requiretoo much simulation time). The goal of the networks is to map the player-speci�c input i(p; t) to action evaluations Q(i(p; t); a1); : : : ;Q(i(p; t); a4), whereai 2 ASET . We use the same networks for all policy-sharing players. We rewardthe players equally whenever a goal has been made or the game is over.Action selection. We use a linear net for each of the four actions fa1; : : : ;a4g. To select an action for player p we �rst calculate Q-values of all actions.The Q-value of action ak, given input i(p; t) isQ(i(p; t); ak) = j=vXj=1wkj i(p; t)j + wkv+1; (2)where wk is the weight vector for action network k, v denotes the number ofinputs, and wkv+1 is the bias strength. Once all Q-values have been calculated,a single action is chosen according to the Boltzmann rule (see assignment (1)).TD-Q learning. Each game consists of separate trials. For each player pthere is a variable time-pointer t(p). At trial start we set t(p) to current gametime tc. We increment t(p) after each cycle of player p. The trial stops once oneof the teams scores or the game is over. Denote player p's �nal time-pointerby t�(p). To achieve an optimal strategy we want the Q-value Q(i(p; t); ak) forselecting action ak given input i(p; t) to approximateQ(i(p; t); ak) � E(
t�(p)�t(p)R(t�(p))); (3)where E denotes the expectation operator, 0 �
 � 1 the discount factorwhich encourages quick goals (or a lasting defense against opponent goals), andR(t�(p)) denotes the reinforcement at trial end (-1 if opponent team scores, 1 ifown team scores, 0 otherwise).To learn these Q-values we monitor player experiences in player-dependenthistory lists with maximum size Hmax. After each trial we calculate examplesusing the TD-Q method. For each player history list, we compute desired Q-values Qnew(t) for selecting action at, given i(p; t) (t = t1(p); : : : ; t�(p), wheret1(p) = Max(1; t�(p) + 1 �Hmax)) as follows:Qnew(t�(p)) := R(t�(p));Qnew(t) :=
 � [� �Qnew(t + 1) + (1 � �) �MaxkfQ(i(p; t); ak)g]:� determines future experiences' degree of in
uence.

Once all players have created TD-Q training examples, we train the selectednets to minimize their TD-Q errors. All player history-lists are processed asfollows: we train the networks starting with the �rst history list entry of player1, then we take the �rst entry of player 2, etc. Once all �rst entries have beenprocessed we start processing the second entries, etc. The nets are trained usingthe delta-rule with learning rate LrN . All details can be found in [7].5 ExperimentsWe analyze TD-Q's and PIPE's behavior as we vary team size. We perform 10independent runs for each combination of learning algorithm and team size. Weplay 3300 games of length tend = 5000 for both team sizes (1 and 11). Every100 games we test current performance by playing 20 test games (no learning)against a \biased random opponent" BRO and summing the score results.BRO randomly executes actions from ASET. BRO is not a bad player dueto the initial bias in the action set. If we let BRO play against a non-actingopponent NO (all NO can do is block) for twenty 5000 time step games thenBRO wins against NO with on average 71.5 to 0.0 goals for team size 1 and 108.6to 0.5 goals for team size 11.PIPE Set-up. Parameters for PIPE runs are: PT=0.8, " = 1, Pel = 0,PS=10, lr=0.2, PM=0.1, mr=0.2, TR=0.3, TP=0.999999 (see [6] for details).During performance evaluations we test the current best-of-current-populationprogram (except for the �rst evaluation where we test a random program).TD-Q Set-up. After a thorough parameter search we found the followingbest parameters for TD-Q runs:
=0.99, LrN=0.0001, �=0.9, Hmax=100. Allweights are randomly initialized in [�0:01; 0:01]. During each run the Boltzmannrule's greediness parameter g is linearly increased from 0 to 60.Results. We plot goals scored by learner and opponent against number ofgames in Figure 2. PIPE's score di�erences continually increase. It always quickly
0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 1-player

learner
opponent

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

TD-Q 1-player

player
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 11-players

learner
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

TD-Q 11 players

player
opponent

Fig. 2. Average number of goals scored during all test phases, for team sizes 1 and 11.

learns an appropriate policy regardless of team size. PIPE learns much faster thanTD-Q. This is partially due to PIPE's ability to e�ciently select the relevantinput features for each action. TD-Q's score di�erences �rst increase until TD-Q scores roughly twice as many goals as in the beginning (when it was stillrandom). Then, however, performance breaks down. This phenomenon is mostpronounced in the 11 player TD-Q run.TD-Q's outlier problem.To understand TD-Q's major performance break-down in the 11 player case we saved a network just before breakdown (after 2300games). We then analyzed the network's behaviour with our simulator and dis-covered the \outlier problem". There are particular game constellations wherethe opponent has the ball and is close to the goal but somehow fails to score.Instead, the TD-Q team manages to grab the ball and score soon afterwards.How does this a�ect its EFs? Once the linear nets have learned a good EF, theyassign negative evaluations to all actions in such dangerous situations, since mostof the times the opponent will indeed score. But once there is an outlier, the netsare trained on completely di�erent values. In single-player teams this is less of aproblem. In 11 player teams, however, the e�ect on the nets is 11-fold. We couldnot get rid of this problem, neither by (1) bounding error updates nor by (2)lowering learning rates or lambda. Case (2) actually just causes slower learning.Increasing the greediness value tends to help a bit, but does not work well either.6 DiscussionIn a simulated soccer case study with policy-sharing agents we compared a directpolicy search method (PIPE) and an optimized EF-based one (TD-Q). Bothcompeted against a biased random opponent. PIPE quickly learned to beat thisopponent. TD-Q achieved performance improvements, too, but its results wereless exciting, especially in case of multiple agents per team. TD-Q's problemswere due to: (1) partial observability of the environment, and (2) inability tohandle outliers.AcknowledgmentsThanks to Jieyu Zhao, Nicol Schraudolph, Luca Gambardella, and CristinaVersino for valuable comments and suggestions.References1. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-ti�c, Belmont, MA, 1996.2. N. L. Cramer. A representation for the adaptive generation of simple sequentialprograms. In J.J. Grefenstette, editor, Proceedings of an International Conferenceon Genetic Algorithms and Their Applications, pages 183{187, Hillsdale NJ, 1985.Lawrence Erlbaum Associates.3. L. A. Levin. Universal sequential search problems. Problems of Information Trans-mission, 9(3):265{266, 1973.4. L. J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,Carnegie Mellon University, Pittsburgh, January 1993.

5. M. L. Littman. Markov games as a framework for multi-agent reinforcement learn-ing. In A. Prieditis and S. Russell, editors, Machine Learning: Proceedings of theEleventh International Conference, pages 157{163. Morgan Kaufmann Publishers,San Francisco, CA, 1994.6. R. P. Sa lustowicz and J. Schmidhuber. Probabilistic incremental program evolu-tion. Evolutionary Computation, to appear, 1997. See ftp://ftp.idsia.ch/pub/rafal/-PIPE.ps.gz.7. R. P. Sa lustowicz, M. A. Wiering, and J. Schmidhuber. Learning team strategieswith multiple policy-sharing agents: A soccer case study. Technical Report IDSIA-29-97, IDSIA, 1997. See ftp://ftp.idsia.ch/pub/rafal/soccer.ps.gz.

