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A b s t r a c t .  In this paper we propose a methodology for structured par- 
allel programming using functional skeletons to compose and coordinate 
concurrent activities written in a standard imperative language. Skele- 
tons are higher order functional forms with built-in parallel behaviour. 
We show how such forms can be used uniformly to abstract all aspects 
of a parallel program's behaviour including data partitioning, placement 
and re-arrangement (communication) as well as computation. Skeletons 
are naturally data parallel and are capable of expressing computation and 
co-ordination at a higher level of abstraction than other process oriented 
co-ordination notations. Examples of the application of this methodology 
are given and an implementation technique outlined. 

1 I n t r o d u c t i o n  

This paper proposes the use of skeletons as a coordination language for pro- 
gramming parallel architectures. The coordination language model, as proposed 
by Gelernter and Carriero, builds parallel programs out of two separate com- 
ponents, the computation model and the coordination model [4]. Applications 
written in this way have a two-tier structure. The coordination level abstracts 
all the relevant aspects of a program's parallel behaviour, whilst the computa- 
tion level expresses sequential computation through procedures written in an 
imperative base language. Such a separation allows the task of parallel program- 
ming to focus on the parallel coordination of sequential components. This is in 
contrast to the low level parallel extensions to languages where both tasks must 
be programmed simultaneously in an unstructured way. 

Although developing coordination languages has become a significant re- 
search topic for parallel programming, there is still no general purpose coor- 
dination language designed to meet the requirements of constructing verifiable, 
portable and structured parallel programs. In this paper, we propose an approach 
for parallel coordination using functional skeletons to abstract all essential as- 
pects of parallelism including data  distribution, communication and commonly 
used parallel computation structure. Applying skeletons to coordinate sequential 
components, we have developed a structured parallel programming framework, 
SPP(X),  where parallel programs are constructed in a structured way. In the 
SPP framework, an application is constructed in two layers: a higher skeleton 
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coordination level and a lower base language level. Parallel programs are con- 
structed by using a skeleton based coordination language (SCL) to coordinate 
fragments of sequential code written in a base language (BL). The fundamental 
compositional property of functional skeletons naturally supports modularity of 
such programs. Using skeletons as the uniform means of coordination and compo- 
sition removes the need to work with the lower level details of computation such 
as port connection. The uniform mechanism of high level abstraction of parallel 
behaviour means that all analysis and optimisation required can be confined to 
the coordination level which, being functional and constructed from pre-defined 
units, is much more amenable to such analysis and manipulation than the base 
language components or other coordination mechanisms. 

This paper is organised into the following sections. In section 2, a skeleton 
coordination language, SCL, for is introduced and an example is presented to 
show its programming style and expressive power. In section 3, a concrete SPP 
programming language is proposed by taking Fortran as the base language for 
specifying sequential computation. Related work is overviewed in section 4. We 
finally summarise our work in section 5. 

2 S C L :  A S t r u c t u r e d  Coordination Language 

We introduce a structured coordination language SCL as a general purpose co- 
ordination language by describing its three components: configuration and con- 
figuration skeletons, elementary skeletons and computational skeletons. 

2.1 Configuration and Configuration Skeletons 

The basic parallel computation model underlying SCL is the data parallel model. 
In SCL, data parallel computation is abstracted as a set of parallel operators 
over a distributed data structure. In this paper distributed arrays are used as 
our underlying parallel data structure, though this idea can be generalised to 
richer and higher level data structures. Each distributed array, called a parallel 
array, has the type ParArray index a where each element is of type c~ and each 
index is of type index. In this paper we use << . . .  >> to represent a ParArray. 
To take advantage of locality when manipulating such distributed data struc- 
tures one of the most important issues is to coordinate the relative distribution 
of one data structure to that of another, i.e. data alignment. The importance 
of abstracting this configuration information in parallel programming has been 
recognised in other languages such as High Performance Fortran (HPF), where 
a set of compiler directives are proposed to specify parallel configurations [5]. In 
SCL, we abstract control over both distribution and alignment through a set of 
configuration skeletons. 

A configuration models the logical division and distribution of data objects. 
Such a distribution has several components: the division of the original data 
structure into distributable components, the location of these components rela- 
tive to each other and finally the allocation of these co-located components to 
processors. In SCL this process is specified by a p a r t  i t  ion function to divide the 
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initial structure into nested components and an a l i gn  function to form a collec- 
tion of tuples representing co-located objects. This model, illustrated in Fig.l, 
clearly follows and generalises the data distribution directives of HPF. Applying 

Arrays 

�9 ~ Virtual Processors 

Partition ] ] ~ r  

Fig. 1. Data Distribution Model. 

this general idea to arrays, the following configuration skeleton distribution 
defines tile configuration of two arrays A and B: 

distribution (f,p) (g,q) A B = 
align (p o partition f A) (q o partition g B) 

This skeleton takes two functions pairs, f and g specify the required partition- 
ing (or distribution) strategies of A and B respectively and p and q are bulk 
data-movement functions specifying any initial data re-arrangement that may 
be required. The d i s t r i b u t i o n  skeleton is defined by composing the functions 
a l i g n  and p a r t i t i o n .  P a r t i t i o n  divides a sequentiM array into a parallel array 
of sequential subarrays: 

partition :: Partition_pattern -+ SeqArray index a-+ 
ParArray index (SeqArray index ~) 

where P a r t i t i o n _ p a t t e r n  is a function of type (indexs --+ indexp), where 
indexs is associated with the SeqArray and indexp addresses the ParArray. 
The type SeqArray is the ordinary sequentiM array type of our base language. 
Some commonly occurring partitioning functions are provided as built-in func- 
tions. For example, partitioning a i x m two-dimensional array using row_block 
we will get: 

partition (row_block p) A = << ii := B I ii +- [I, ,p] >> 
where B = SeqArray (l:i/p, l:n) 

[(i,j) := A (i+(ii-l)*i/p,j) I i~--[l..1/p], j~-[l..n]] 

Other similar functions for two-dimensional arrays are col_block, row_col_block, 
row_cyclic and col_cyclic. The align operator: 

align: :ParArray index a-+ ParArray index fl---* ParArray index (~,fl) 

pairs corresponding subarrays in two distributed arrays together to form a new 
configuration which is an ParArray of tuples. Objects in each tuple of the con- 
figuration are regarded as being allocated on the same processor. A more general 
configuration skeleton can be defined as: 
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distribution [(f,p)] [d] = p o partition f d 

distribution (f,p):fl d:dl = 
align (p o partition f d) (distribution fl dl) 

where ~1 is a list of distribution strategies for the corresponding data objects in 
the list all. 

Applying the d i s t r i b u t i o n  skeleton forms a configuration which is an array 
oftuples. Each element i of the configuration is a tuple of the form (DA~,..., DA~) 

where n is the number of arrays that have been distributed and DA i represents 

the sub-array of the j th  array allocated to the i th  processor. As short hand 
rather than writing a configuration as an array of tuples we can also regard it 
as a tuple of (distributed) arrays and write it as <DA1, . . . ,  DAn> where the DA; 
stands for the distribution of the array Aj. In particular we can pattern matc~ 
to this notation to extract a particular distributed array from the configuration. 

Configuration skeletons are capable of abstracting not only the initial dis- 
tribution of data structures but also their dynamic redistribution. Data redis- 
tribution can be uniformly defined by applying bulk data movement operators 
to configurations. Given a configuration C: <DA1,... , DAn>, a new configuration 
C': <DA~,...,DA~> can be formed by applying f j  to the distributed structure 
DAj where f j  is some bulk data movement operator defined specifying collec- 
tive communication. This behaviour can be abstracted by the following skeleton 
redistribut ion: 

redistribution Ill ,'", fn] <DAI ..... DAn> = <flDAI ,'", fnDAn> 

SCL supports nested parallelism by allowing Pal:Arrays as elements of a ParArray 
and by permitting a parallel operation to be applied to each of elements (ParArrays) 
in parMlel. An element of a nested array corresponds to the concept of group in 
MPI [7]. The leaves of a nested array contain any vMid sequential data structure 
of the base computing language. The following skeleton ga ther  collects together 
a distributed array: 

gather :: ParArray index (SeqArray index a) -+ SeqArray index a 

Another pair of configuaration skeletons are split and combine: 

split :: Partition_pattern -~ Parhrray index ~-~ 

Parhrray index (Parhrray index ~) 

combine :: ParArray index (ParArray index ~) -+ ParArray index 

s p l i t  divides a configuration into sub-configurations, combine is used to flatten 
a nested ParArray. 

2.2 Elementary Skeletons: Paral le l  Arrays  Operators 

In the following we introduce functions, regarded as elementary skeletons, ab- 
stracting basic operations in the data parallel computation model. 

The following familiar functions abstract essential data parallel computation 
patterns: 



59 

map :: (~-~) -~ ParArray index ~ -, ParArray index 

map f << xo~...,x n >> = << fxo,...,fx n >> 

imap :: (index -+ ~-~ ~) --+ ParArray index ~ -~ ParArray index 

imap f << xo,...,Xn >> = << f Oxo,...,fnxn >> 

Gold :: (~-+~-~) -+ ParArray index G -~ 

Gold (~) << Xo~...,Xn >> = x O~...~xn 

The function map abstracts  the behaviour of broadcasting a parallel task 
to all the elements of an array. A variant of map is the function imap which 
takes into account the index of an element when mapping  a function across an 
array. The  reduction operator  Gold abstracts  tree-structured parallel reduction 
computa t ion  over arrays. 

Da ta  communications among parallel processors are expressed as the move- 
ment  of elements in ParArrays .  In SCL, a set of bulk data-movement functions 
are introduced as the data  parallel counterpart  of sequential loops and element 
assignments at the structure level. Communicat ion skeletons can be generally 
divided into two classes: regular and irregular. The following ro l ; a t e  function is 
a typical example of regular data-movement .  

rotate :: Int --+ ParArray Int a -~ ParArray Int a 

rotate k A = << i := A((i+k) mod SIZE(A)) I i ~- [1..SIZE(A)] >> 

For a m x n array, the following rotate_row operator express the data  rotat ion 
of all rows: 

rotate_row: :(Int-~Int)-+ParArray (Int,Int) a-~VarArray (Int,Int) a 

rotate_row df A = 

<<(i,j) := A(i,(j+(df i)) meal n) I i~--[l..m], j+--[l..n]>> 

where df is a function and (d r  i )  indicates the distance of rotat ion for the i t h  
row. An operator  r o t a t e _ c o l  for rotat ing columns can defined in the same way. 

Broadcasting can be thought as a regular data-movement  in which a data  
i tem is broadcast to all sites and aligned together with the local data. This 
skeleton is defined as: 

brdcast :: a-+ ParArray index fl-~ ParArray index (~,~) 

brdcast a A = map (align_pair a) A 

where a l i g n _ p a i r  groups a data  i tem with the local da ta  of a processor. 
For irregular da ta-movement  the destination is a function of the current 

index. This definition introduces various communication modes. Multiple array 
elements may  arrive at one index (i.e. many  to one communication).  We model 
this by accumulating a sequential vector of elements at each index in the new 
array. Since the underlying implementa t ion is non-deterministic no ordering of 
the elements in the vector may  be assumed. The index calculating function 
can specify either the destination of an element or the source of an element. 
Two functions, send and fe tch ,  are provided to reflect this. Obviously, the 
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fetch operation models only one to one communication. For the one dimensional 
definitions, two functions can be defined as: 

send :: (Int -~ (SeqArray Int Int)) -~ ParArray Int 
-~ ParArray Int (SeqArray Int ~) 

s e n d  f << x 0 , . . . , x n  >> : << [ x k l 0  i n  i n  f > >  

f e t c h  : :  ( I n t  --* I n t )  --* Pa rAr ray  I n t  ~ --* P a r b r r a y  I n t  c~ 
f e t c h  f << x o , . . . , X n  >> = << x ( f o ) , . . . , X ( f n )  >> 

The above functions can be used to define more complex and powerful commu- 
nication skeletons required for realistic problems. 

2.3 C o m p u t a t i o n a l  S k e l e t o n s :  A b s t r a c t i n g  C o n t r o l  F l o w  

A key to achieving proper coordination is to provide the programmer with the 
flexibility to organise multi-threaded control flow in a parallel environment. In 
SCL this flexibility is provided by abstracting the commonly used parallel com- 
putational patterns as computational skeletons. The control structures of parallel 
processes can then be organised as the composition of computational skeletons. 
This structured approach of process coordination means that the behaviour of a 
parallel program is amenable to proper mathematical  rigour and manipulation. 
Moreover, a fixed set of computational skeletons can be efficiently implemented 
across various architectures. In this subsection, we present a set of computational 
skeletons abstracting data  parallel computation. 

The SPMD skeleton, defined as follows, abstracts the features of SPMD (Single 
Program Multiple Data) computation: 

SPMD I'] = • 
SPMD (gf, if) : fs = (SPMD fs) o (gf o (imap if )) 

The skeleton takes a list of global-local operation pairs, which are applied over 
configurations of distributed data objects. The local operations are farmed to 
each processor and computed in parallel. Flat local operations, which contain 
no skeleton applications, can be regarded as sequential. The global operations 
over the whole configuration are parallel operations that  require synchroniza- 
tion and communication. Thus, the composition of gf  and imap I f  abstracts a 
single stage of SPMD computation where the composition operator models the 
behaviour of barrier synchronization. 

The i t  erUnt i t  skeleton, defined as follows, captures a common form of itera- 
tion. The condition con is checked before each iteration. The function i t e r S o l v e  
is applied at each iteration, while the function f i n a l S o l v o  is applied when the 
condition is satisfied. 

iterUntil iterSolve finalSolve con x 

= if con x 

then finalSolve x 

else • iterSolve finalSolve con (iterSolve x) 
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Variants of iterUntil can be used. For example, when an iteration counter is 
used, an iteration can be captured by the skeleton i t e r F o r  defined as follows: 

iterFor terminator iterSolve x 

= fst (iterUntil iterSolve ~ id con (x, I)) 

where 

iterSolve' (x, i) = (iterSolve i x, i+l) 

con (x, j) = j > terminator 

2.4 Para l le l  Ma t r i x  Mul t ip l ica t ion:  A Case Study 
To investigate the expressive power of SCL, in this subsection we define the 
coordination structure of two parallel matrix multiplication algorithms using 
SCL. The two following matrix multiplication algorithms are adapted from [9]. 

Row-Co lumn-Or i en t ed  Paral le l  Ma t r i x  Mul t ip l ica t ion:  Consider the prob- 
lem of multiplying matrices Atxm and Bmxn and placing the result in Ctx,~ on p 
processors. Initially, A is divided into p groups of contiguous rows and B is divided 
into p groups of contiguous columns. Each processor starts with one segment of 
A and one segment of B. The overall algorithm structure is an SPMD computa- 
tion iterated p times. At each step the local phase of the SPMD computation 
multiplies the segments of the two arrays located locally using a sequential ma- 
trix multiplication and then the global phase rotates the distribution B so that 
each processor passes its portion of B to its predecessor in the ring of processors. 
When the algorithm is complete each processor has computed a portion of the 
result array r corresponding to the rows of A that it holds. The computation is 
shown in the Figure 2. 
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Fig. 2. Parallel matrix multiplication: row-column-oriented algorithm 

The parallel structure of the algorithm is expressed in the following SCL 
program: 
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ParMM :: Int -+ SeqArray index Float -~ 

SeqArray index Float -+ SeqArray index Float 

ParMM p A B = gather DC 

where 

C = SeqArray ( ( 1 , S I Z E ( A , 1 ) ) ,  (1,  SIZE(B,2) )  
[ ( i , j )  : -  0 I i +-- [1. .SIZE(A,1)] ,  j , -  [ 1 . . S I Z E ( B , 2 ) ]  ] 

<DA, DB, DC> = iterFor p step dist 
fl = [(row_block p, id), (col_block p, id), (rou_block p, id)] 
dl= [A, B, C] 
dist = distribution fl dl 

s t e p  i <DA, DB, DC> = 
SPND [(gf, SEQ_MM i)] <DA, DB, DC> 

w h e r e  
n e e D i s t  = [ i d ,  ( r o t a t e  1) ,  i d ]  
gf X ffi redistribution neeDist <DA, DB, X> 

where SE0-MM is a sequential procedure for matr ix  multiplication. Data  distribu- 
tion is specified by the d i s t r i b u t i o n  skeleton wi th  the parti t ion strategies of 
[ ( ( r o e _ b l o c k  p ) ,  i d ) ,  ( ( co l_b lock  p ) , i d ) ,  ( ( roe_b lock  p ) , i d ) ]  for A, 
B and C respectively. The data  redistribution of B is performed by using the 
r o t a t e  operator which is encapsulated in the r e d i s t r i b u t i o n  skeleton. The 
example shows that ,  by applying SCL skeletons, parallel co-ordination structure 
of the algorithm is precisely specified at a higher level. 

B l o c k - O r i e n t e d  P a r a l l e l  M a t r i x  M u l t i p l i c a t i o n :  This time we wish to mul- 
tiply an 1 x m matr ix  A by an m x n matr ix  B on a p • p processor mesh with 
wraparound connections. Assume that  1, m and n are integer multiples of p and 
p is an even power of 2. Initially both A and B are partit ioned into mesh of blocks 
and each processor takes a (1 / p) • (m / p)subsect ion of A and a (m / p) • 
(n / p) subsection of B (Fig.3(a)). The parallel algorithm staggers each block 

i i 

B~ Bl~ B~ 

(a) 0~) (c) 

Fig. 3. Block-oriented algorithm: initial distribution 

at row i of A to the left by i block column positions, and each block column i of 
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B upwards by i block row positions (Fig.3(b)) and the data is wrapped around 
(Fig.3(c)). The overall algorithm structure is also an SPMD computation iter- 
ated p times. At each step the local phase of the SPMD computation multiplies 
the pair of blocks located locally using a sequential matrix multiplication pro- 
gram and then the global phase moves the data: each processor passes its portion 
of A to its left neighbour and passes its portion of B to its north neighbour. The 
SCL code for this algorithm is shown below: 

matrixMul :: Int -* SeqArray index Float -~ 

SeqArray index Float -+ SeqArray index Float 

matrixMul p A B = gather DC 

where 

C = SeqArray ((1,SIZE(A,1)), (I, SIZE(B,2)) 

[ ( i , j )  := 0 I i *-  [ 1 . . S I Z E ( A , 1 ) ] ,  j ~- [ 1 . . S I Z E ( B , 2 ) ]  ] 
<DA, DB, DC> = iterFor p step dist 

fl = [((row_col_block p p), (rotate_row dfl)), 

((row_col_block p p), (rotate_col dfl)), 
((row_col_block p p), id)] 

dl = [A, B, c] 
dist = distribution fl dl 

dfl i = i (* to indicate the distance of rotation *) 

step i <DA, DB, DC> = 

SPMD [(gf, SEQ_MM 0)] <DA, DB, DC> 

where 

newDist = [(rotate_row dr2), (rotate_col dr2), id] 

gf X = redistribution newDist <DA, DB, X> 

dr2 i = 1 (* to indicate the distance of rotation *) 

Abs t r ac t i on .  The above examples highlight an important feature of SCL. The 
parallel structure of a class of parallel algorithms for matrix multiplication can 
be abstracted and defined by the following SCL program: 

Gener i c_mat r ixMul  p d i s t r i b u s t r a t e g y  r e d i s t r i b u s t r a t e g y  A B = g a t h e r  DC 
where 

C -- SeqAr ray  ( ( 1 , S I Z E ( A , 1 ) ) ,  (1 ,  S IZE(B ,2 ) )  
[ (i,j) := 0 I i ~- [1..SIZE(A,1)], j ~- [1..SIZE(B,2)] ] 

dist = distribution distribustrategy [A, B, C] 

<DA, DB, DC> = iterFor p step dist 

I 

step i <DA, DB, DC> -- 

SPMD [(gf, SEQ_NM i)] <DA, DB, DC> 

where 

gf X -- redistribution redistribustrategy <DA, DB, X> 

Thus, the row-column-oriented and the block-oriented parallel matrix multipli- 
cation program become instances of the generic parallel matrix multiplication 
code by instantiating the corresponding distribution and redistribution strate- 
gies. That is, the SCL code for generic parallel matrix multiplication defines an 
algorithmic skeleton for parallel matrix multiplication. This example shows how 
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an application oriented parallel computation structure could be systematically 
defined. 

3 F o r t r a n - S :  C o o r d i n a t i n g  F o r t r a n  P r o g r a m s  w i t h  S C L  

As an exercise in developing a concrete SPP language we are designing a lan- 
guage, Fortran-S, to act as a powerful front end for Fortran based parallel pro- 
gramming. Conceptually, the language is designed by instantiating the base lan- 
guage in the SPP scheme with Fortran. Thus, to write a parallel program in 
Fortran-S, SCL is used as a coordination language to define the parallel struc- 
ture of the program. Local sequential computation for each processor is then 
programmed in Fortran. 

The matrix multiplication examples (section 2) can be coded in Fortran-S by 
instantiating the sequential local procedure S~.q~ll with the following Fortran 
subroutine for matrix multiplication (Fortran 90 syntax is adopted): 

SUBROUTINE SEQ_~ (IT, IDX, X, Y, Z) 
INTEGER, INTENT (IN) :: IT, IDX 

REAL, DIMENSION (:,:), INTENT (IN) :: X 

REAL, DIMENSION (:,:), INTENT (IN) :: Y 

REAL, DIMENSION (: ,:), INTENT (INOUT) : �9 Z 

INTEGER :: I, J 

START ffi ((IT + IDX) * SIZE(Y,2)) MOD SIZE(Z,2) 

DO I = I, SIZE(X,I) 

DO J - 1, SIZE(Y,2) 

DO K = 1, SIZE(Y,1) 

Z (I,J+START) = Z (I,J+START) § Z (I,K) * Y (K,J) 

END DO 
END DO 

END DO 

END SUBROUTINE SEq_MM 

The argument intent of the parameters identifies the intended use of the vari- 
ables. Variables specified with INTENT(IN) must not be redefined by the pro- 
cedure, whilst INTENT(INOUT) variables are expected to be redefined by the 
procedure, and variables specified with INTENT(OUT) pass information out of 
the procedure. 

In Fortran-S, the basic data type for SCL programming is the ParArzay 
which is regarded as the parallel data structure whilst the basic data types, 
including arrays of Fortran are the sequential data structures. Thus, Fortran 
subroutines handle only Fortran data objects. 

Fortran-S can be implemented by transforming Fortran-S programs into con- 
ventional parMlel Fortran programs, that is sequential Fortran augmented with 
message passing libraries. Due to the functional nature of SCL source level trans- 
formation can be applied to optimise the parMlel behaviour of the program, 
including granularity adjustment, nested parallelism flattening, optimised data 
distribution and interprocessor communication [2]. 
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Currently, we are building a prototype system based on Fortran 77 plus 
MPI [7] targeted at a Fujitsu AP1000 machine [6]. The matrix multiplication 
example has been translated to Fortran77 plus MPI on an AP1000. Due to the 
richness of information provided by the Fortran-S code, the performance data is 
very encouraging, as shown in Fig. 4 for an array size of 400 • 400. 
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Fig. 4. Parallel matrix multiplication: speedup 

4 R e l a t e d  w o r k  

C o m p a r i s o n  with  H P F .  HPF supports data parallel programming by adding 
extensions to Fortran 90 including compiler directives for data distribution. Our 
work has been motivated by HPF. For example, there is a direct correspondence 
between the distribution specified by the HPF directives and the d i s t r i b u t i o n  
skeleton. Configuration skeletons can be regarded as functional abstractions of 
HPF directives. Since SCL configuration skeletons are freely composable they 
are much more flexible than the fixed HPF directives. Moreover, the SCL op- 
erators are extendable and provide a more powerful means to express data 
distribution/re-distribution, alignment and movement. 

Other coord ina t ion  languages.  One of the best known coordination lan- 
guages is Linda, by Gelernter and Carriero [4]. As a coordination language, Linda 
abstracts MIMD parallel computation as an asynchronously executing group of 
processes that interact by means of an associative shared memory. Our work 
differs by extending the coordination language to describe all aspects of parallel 
coordination including partitioning and scheduling of parallel activities. 

The coordination language PCN [3], promoted the concept of composing to- 
gether modules by connecting together explicitly-declared communication ports. 
An interesting development of the PCN approach is the PaL system [8]. Rather 
than using a set of primitive composition operators, a set of parallel constructs 
are used as program composition forms. Each parallel construct in p3L abstracts 
a specific form of commonly used parallelism. This approach is based on the in- 
tegration of the skeleton approach [1] and the PCN model. Such an integration, 



66 

however, is not smooth since the high level abstraction of parallel computat ion 
structure is compromised by the lower level process model. 

5 C o n c l u s i o n  

In this paper we have proposed functional skeletons as a new mechanism for 
developing general purpose parallel coordination systems. The work stems from 
our original work on functional skeletons to capture re-occurring patterns of 
parallel computation. This has been extended so that  control of all aspects of 
parallel computation can be now expressed using skeletons. Therefore, it provides 
an ideal means for coordinating parallel computation. In this paper we have 
presented a coordination language, SCL, and a parallel programming scheme, 
SPP(X),  obtMned by applying SCL to coordinate computation programmed in 
a base language, X. 

This work present a significant synthesis of some major  developments of de- 
signing parallel programming systems including the coordination approach, data  
parallel programming, skeleton-based higher lever construction of parallel appli- 
cations and declarative parallel programming. It provides a promising solution 
to the engineering problems of developing a practical structured programming 
paradigm for constructing verifiable, reusable and portable parallel programs. 
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