
Funct ional Skeletons for Parallel Coordinat ion

John Darlington Yi-ke Guo Hing Wing To

Department of Computing
Imperial College

180 Queen's Gate, London SW7 2BZ, U.K.
E-mail: {jd, yg, hwt, jy}@doc.ic.ac.uk

Jin Yang

A b s t r a c t . In this paper we propose a methodology for structured par-
allel programming using functional skeletons to compose and coordinate
concurrent activities written in a standard imperative language. Skele-
tons are higher order functional forms with built-in parallel behaviour.
We show how such forms can be used uniformly to abstract all aspects
of a parallel program's behaviour including data partitioning, placement
and re-arrangement (communication) as well as computation. Skeletons
are naturally data parallel and are capable of expressing computation and
co-ordination at a higher level of abstraction than other process oriented
co-ordination notations. Examples of the application of this methodology
are given and an implementation technique outlined.

1 I n t r o d u c t i o n

This paper proposes the use of skeletons as a coordination language for pro-
gramming parallel architectures. The coordination language model, as proposed
by Gelernter and Carriero, builds parallel programs out of two separate com-
ponents, the computation model and the coordination model [4]. Applications
written in this way have a two-tier structure. The coordination level abstracts
all the relevant aspects of a program's parallel behaviour, whilst the computa-
tion level expresses sequential computation through procedures written in an
imperative base language. Such a separation allows the task of parallel program-
ming to focus on the parallel coordination of sequential components. This is in
contrast to the low level parallel extensions to languages where both tasks must
be programmed simultaneously in an unstructured way.

Although developing coordination languages has become a significant re-
search topic for parallel programming, there is still no general purpose coor-
dination language designed to meet the requirements of constructing verifiable,
portable and structured parallel programs. In this paper, we propose an approach
for parallel coordination using functional skeletons to abstract all essential as-
pects of parallelism including data distribution, communication and commonly
used parallel computation structure. Applying skeletons to coordinate sequential
components, we have developed a structured parallel programming framework,
SPP(X), where parallel programs are constructed in a structured way. In the
SPP framework, an application is constructed in two layers: a higher skeleton

56

coordination level and a lower base language level. Parallel programs are con-
structed by using a skeleton based coordination language (SCL) to coordinate
fragments of sequential code written in a base language (BL). The fundamental
compositional property of functional skeletons naturally supports modularity of
such programs. Using skeletons as the uniform means of coordination and compo-
sition removes the need to work with the lower level details of computation such
as port connection. The uniform mechanism of high level abstraction of parallel
behaviour means that all analysis and optimisation required can be confined to
the coordination level which, being functional and constructed from pre-defined
units, is much more amenable to such analysis and manipulation than the base
language components or other coordination mechanisms.

This paper is organised into the following sections. In section 2, a skeleton
coordination language, SCL, for is introduced and an example is presented to
show its programming style and expressive power. In section 3, a concrete SPP
programming language is proposed by taking Fortran as the base language for
specifying sequential computation. Related work is overviewed in section 4. We
finally summarise our work in section 5.

2 S C L : A S t r u c t u r e d Coordination Language

We introduce a structured coordination language SCL as a general purpose co-
ordination language by describing its three components: configuration and con-
figuration skeletons, elementary skeletons and computational skeletons.

2.1 Configuration and Configuration Skeletons

The basic parallel computation model underlying SCL is the data parallel model.
In SCL, data parallel computation is abstracted as a set of parallel operators
over a distributed data structure. In this paper distributed arrays are used as
our underlying parallel data structure, though this idea can be generalised to
richer and higher level data structures. Each distributed array, called a parallel
array, has the type ParArray index a where each element is of type c~ and each
index is of type index. In this paper we use << . . . >> to represent a ParArray.
To take advantage of locality when manipulating such distributed data struc-
tures one of the most important issues is to coordinate the relative distribution
of one data structure to that of another, i.e. data alignment. The importance
of abstracting this configuration information in parallel programming has been
recognised in other languages such as High Performance Fortran (HPF), where
a set of compiler directives are proposed to specify parallel configurations [5]. In
SCL, we abstract control over both distribution and alignment through a set of
configuration skeletons.

A configuration models the logical division and distribution of data objects.
Such a distribution has several components: the division of the original data
structure into distributable components, the location of these components rela-
tive to each other and finally the allocation of these co-located components to
processors. In SCL this process is specified by a p a r t i t ion function to divide the

57

initial structure into nested components and an a l i gn function to form a collec-
tion of tuples representing co-located objects. This model, illustrated in Fig.l,
clearly follows and generalises the data distribution directives of HPF. Applying

Arrays

�9 ~ Virtual Processors

Partition]] ~ r

Fig. 1. Data Distribution Model.

this general idea to arrays, the following configuration skeleton distribution
defines tile configuration of two arrays A and B:

distribution (f,p) (g,q) A B =
align (p o partition f A) (q o partition g B)

This skeleton takes two functions pairs, f and g specify the required partition-
ing (or distribution) strategies of A and B respectively and p and q are bulk
data-movement functions specifying any initial data re-arrangement that may
be required. The d i s t r i b u t i o n skeleton is defined by composing the functions
a l i g n and p a r t i t i o n . P a r t i t i o n divides a sequentiM array into a parallel array
of sequential subarrays:

partition :: Partition_pattern -+ SeqArray index a-+
ParArray index (SeqArray index ~)

where P a r t i t i o n _ p a t t e r n is a function of type (indexs --+ indexp), where
indexs is associated with the SeqArray and indexp addresses the ParArray.
The type SeqArray is the ordinary sequentiM array type of our base language.
Some commonly occurring partitioning functions are provided as built-in func-
tions. For example, partitioning a i x m two-dimensional array using row_block
we will get:

partition (row_block p) A = << ii := B I ii +- [I, ,p] >>
where B = SeqArray (l:i/p, l:n)

[(i,j) := A (i+(ii-l)*i/p,j) I i~--[l..1/p], j~-[l..n]]

Other similar functions for two-dimensional arrays are col_block, row_col_block,
row_cyclic and col_cyclic. The align operator:

align: :ParArray index a-+ ParArray index fl---* ParArray index (~,fl)

pairs corresponding subarrays in two distributed arrays together to form a new
configuration which is an ParArray of tuples. Objects in each tuple of the con-
figuration are regarded as being allocated on the same processor. A more general
configuration skeleton can be defined as:

58

distribution [(f,p)] [d] = p o partition f d

distribution (f,p):fl d:dl =
align (p o partition f d) (distribution fl dl)

where ~1 is a list of distribution strategies for the corresponding data objects in
the list all.

Applying the d i s t r i b u t i o n skeleton forms a configuration which is an array
oftuples. Each element i of the configuration is a tuple of the form (DA~,..., DA~)

where n is the number of arrays that have been distributed and DA i represents

the sub-array of the j th array allocated to the i th processor. As short hand
rather than writing a configuration as an array of tuples we can also regard it
as a tuple of (distributed) arrays and write it as <DA1, . . . , DAn> where the DA;
stands for the distribution of the array Aj. In particular we can pattern matc~
to this notation to extract a particular distributed array from the configuration.

Configuration skeletons are capable of abstracting not only the initial dis-
tribution of data structures but also their dynamic redistribution. Data redis-
tribution can be uniformly defined by applying bulk data movement operators
to configurations. Given a configuration C: <DA1,... , DAn>, a new configuration
C': <DA~,...,DA~> can be formed by applying f j to the distributed structure
DAj where f j is some bulk data movement operator defined specifying collec-
tive communication. This behaviour can be abstracted by the following skeleton
redistribut ion:

redistribution Ill ,'", fn] <DAI DAn> = <flDAI ,'", fnDAn>

SCL supports nested parallelism by allowing Pal:Arrays as elements of a ParArray
and by permitting a parallel operation to be applied to each of elements (ParArrays)
in parMlel. An element of a nested array corresponds to the concept of group in
MPI [7]. The leaves of a nested array contain any vMid sequential data structure
of the base computing language. The following skeleton ga ther collects together
a distributed array:

gather :: ParArray index (SeqArray index a) -+ SeqArray index a

Another pair of configuaration skeletons are split and combine:

split :: Partition_pattern -~ Parhrray index ~-~

Parhrray index (Parhrray index ~)

combine :: ParArray index (ParArray index ~) -+ ParArray index

s p l i t divides a configuration into sub-configurations, combine is used to flatten
a nested ParArray.

2.2 Elementary Skeletons: Paral le l Arrays Operators

In the following we introduce functions, regarded as elementary skeletons, ab-
stracting basic operations in the data parallel computation model.

The following familiar functions abstract essential data parallel computation
patterns:

59

map :: (~-~) -~ ParArray index ~ -, ParArray index

map f << xo~...,x n >> = << fxo,...,fx n >>

imap :: (index -+ ~-~ ~) --+ ParArray index ~ -~ ParArray index

imap f << xo,...,Xn >> = << f Oxo,...,fnxn >>

Gold :: (~-+~-~) -+ ParArray index G -~

Gold (~) << Xo~...,Xn >> = x O~...~xn

The function map abstracts the behaviour of broadcasting a parallel task
to all the elements of an array. A variant of map is the function imap which
takes into account the index of an element when mapping a function across an
array. The reduction operator Gold abstracts tree-structured parallel reduction
computa t ion over arrays.

Da ta communications among parallel processors are expressed as the move-
ment of elements in ParArrays . In SCL, a set of bulk data-movement functions
are introduced as the data parallel counterpart of sequential loops and element
assignments at the structure level. Communicat ion skeletons can be generally
divided into two classes: regular and irregular. The following ro l ; a t e function is
a typical example of regular data-movement .

rotate :: Int --+ ParArray Int a -~ ParArray Int a

rotate k A = << i := A((i+k) mod SIZE(A)) I i ~- [1..SIZE(A)] >>

For a m x n array, the following rotate_row operator express the data rotat ion
of all rows:

rotate_row: :(Int-~Int)-+ParArray (Int,Int) a-~VarArray (Int,Int) a

rotate_row df A =

<<(i,j) := A(i,(j+(df i)) meal n) I i~--[l..m], j+--[l..n]>>

where df is a function and (d r i) indicates the distance of rotat ion for the i t h
row. An operator r o t a t e _ c o l for rotat ing columns can defined in the same way.

Broadcasting can be thought as a regular data-movement in which a data
i tem is broadcast to all sites and aligned together with the local data. This
skeleton is defined as:

brdcast :: a-+ ParArray index fl-~ ParArray index (~,~)

brdcast a A = map (align_pair a) A

where a l i g n _ p a i r groups a data i tem with the local da ta of a processor.
For irregular da ta-movement the destination is a function of the current

index. This definition introduces various communication modes. Multiple array
elements may arrive at one index (i.e. many to one communication). We model
this by accumulating a sequential vector of elements at each index in the new
array. Since the underlying implementa t ion is non-deterministic no ordering of
the elements in the vector may be assumed. The index calculating function
can specify either the destination of an element or the source of an element.
Two functions, send and fe tch , are provided to reflect this. Obviously, the

60

fetch operation models only one to one communication. For the one dimensional
definitions, two functions can be defined as:

send :: (Int -~ (SeqArray Int Int)) -~ ParArray Int
-~ ParArray Int (SeqArray Int ~)

s e n d f << x 0 , . . . , x n >> : << [x k l 0 i n i n f > >

f e t c h : : (I n t --* I n t) --* Pa rAr ray I n t ~ --* P a r b r r a y I n t c~
f e t c h f << x o , . . . , X n >> = << x (f o) , . . . , X (f n) >>

The above functions can be used to define more complex and powerful commu-
nication skeletons required for realistic problems.

2.3 C o m p u t a t i o n a l S k e l e t o n s : A b s t r a c t i n g C o n t r o l F l o w

A key to achieving proper coordination is to provide the programmer with the
flexibility to organise multi-threaded control flow in a parallel environment. In
SCL this flexibility is provided by abstracting the commonly used parallel com-
putational patterns as computational skeletons. The control structures of parallel
processes can then be organised as the composition of computational skeletons.
This structured approach of process coordination means that the behaviour of a
parallel program is amenable to proper mathematical rigour and manipulation.
Moreover, a fixed set of computational skeletons can be efficiently implemented
across various architectures. In this subsection, we present a set of computational
skeletons abstracting data parallel computation.

The SPMD skeleton, defined as follows, abstracts the features of SPMD (Single
Program Multiple Data) computation:

SPMD I'] = •
SPMD (gf, if) : fs = (SPMD fs) o (gf o (imap if))

The skeleton takes a list of global-local operation pairs, which are applied over
configurations of distributed data objects. The local operations are farmed to
each processor and computed in parallel. Flat local operations, which contain
no skeleton applications, can be regarded as sequential. The global operations
over the whole configuration are parallel operations that require synchroniza-
tion and communication. Thus, the composition of gf and imap I f abstracts a
single stage of SPMD computation where the composition operator models the
behaviour of barrier synchronization.

The i t erUnt i t skeleton, defined as follows, captures a common form of itera-
tion. The condition con is checked before each iteration. The function i t e r S o l v e
is applied at each iteration, while the function f i n a l S o l v o is applied when the
condition is satisfied.

iterUntil iterSolve finalSolve con x

= if con x

then finalSolve x

else • iterSolve finalSolve con (iterSolve x)

61

Variants of iterUntil can be used. For example, when an iteration counter is
used, an iteration can be captured by the skeleton i t e r F o r defined as follows:

iterFor terminator iterSolve x

= fst (iterUntil iterSolve ~ id con (x, I))

where

iterSolve' (x, i) = (iterSolve i x, i+l)

con (x, j) = j > terminator

2.4 Para l le l Ma t r i x Mul t ip l ica t ion: A Case Study
To investigate the expressive power of SCL, in this subsection we define the
coordination structure of two parallel matrix multiplication algorithms using
SCL. The two following matrix multiplication algorithms are adapted from [9].

Row-Co lumn-Or i en t ed Paral le l Ma t r i x Mul t ip l ica t ion: Consider the prob-
lem of multiplying matrices Atxm and Bmxn and placing the result in Ctx,~ on p
processors. Initially, A is divided into p groups of contiguous rows and B is divided
into p groups of contiguous columns. Each processor starts with one segment of
A and one segment of B. The overall algorithm structure is an SPMD computa-
tion iterated p times. At each step the local phase of the SPMD computation
multiplies the segments of the two arrays located locally using a sequential ma-
trix multiplication and then the global phase rotates the distribution B so that
each processor passes its portion of B to its predecessor in the ring of processors.
When the algorithm is complete each processor has computed a portion of the
result array r corresponding to the rows of A that it holds. The computation is
shown in the Figure 2.

A A

B

C

(stcp 1)

A

I
2
3
4

B

C

(s~p 2)

B

3 4 1 2

C

(s~t, 3)

A

I
2
3
4

B
l

4 1 2 3]

I

c

(~p 4)

Fig. 2. Parallel matrix multiplication: row-column-oriented algorithm

The parallel structure of the algorithm is expressed in the following SCL
program:

62

ParMM :: Int -+ SeqArray index Float -~

SeqArray index Float -+ SeqArray index Float

ParMM p A B = gather DC

where

C = SeqArray ((1 , S I Z E (A , 1)) , (1, SIZE(B,2))
[(i , j) : - 0 I i +-- [1. .SIZE(A,1)] , j , - [1 . . S I Z E (B , 2)]]

<DA, DB, DC> = iterFor p step dist
fl = [(row_block p, id), (col_block p, id), (rou_block p, id)]
dl= [A, B, C]
dist = distribution fl dl

s t e p i <DA, DB, DC> =
SPND [(gf, SEQ_MM i)] <DA, DB, DC>

w h e r e
n e e D i s t = [i d , (r o t a t e 1) , i d]
gf X ffi redistribution neeDist <DA, DB, X>

where SE0-MM is a sequential procedure for matr ix multiplication. Data distribu-
tion is specified by the d i s t r i b u t i o n skeleton wi th the parti t ion strategies of
[((r o e _ b l o c k p) , i d) , ((co l_b lock p) , i d) , ((roe_b lock p) , i d)] for A,
B and C respectively. The data redistribution of B is performed by using the
r o t a t e operator which is encapsulated in the r e d i s t r i b u t i o n skeleton. The
example shows that , by applying SCL skeletons, parallel co-ordination structure
of the algorithm is precisely specified at a higher level.

B l o c k - O r i e n t e d P a r a l l e l M a t r i x M u l t i p l i c a t i o n : This time we wish to mul-
tiply an 1 x m matr ix A by an m x n matr ix B on a p • p processor mesh with
wraparound connections. Assume that 1, m and n are integer multiples of p and
p is an even power of 2. Initially both A and B are partit ioned into mesh of blocks
and each processor takes a (1 / p) • (m / p)subsect ion of A and a (m / p) •
(n / p) subsection of B (Fig.3(a)). The parallel algorithm staggers each block

i i

B~ Bl~ B~

(a) 0~) (c)

Fig. 3. Block-oriented algorithm: initial distribution

at row i of A to the left by i block column positions, and each block column i of

63

B upwards by i block row positions (Fig.3(b)) and the data is wrapped around
(Fig.3(c)). The overall algorithm structure is also an SPMD computation iter-
ated p times. At each step the local phase of the SPMD computation multiplies
the pair of blocks located locally using a sequential matrix multiplication pro-
gram and then the global phase moves the data: each processor passes its portion
of A to its left neighbour and passes its portion of B to its north neighbour. The
SCL code for this algorithm is shown below:

matrixMul :: Int -* SeqArray index Float -~

SeqArray index Float -+ SeqArray index Float

matrixMul p A B = gather DC

where

C = SeqArray ((1,SIZE(A,1)), (I, SIZE(B,2))

[(i , j) := 0 I i *- [1 . . S I Z E (A , 1)] , j ~- [1 . . S I Z E (B , 2)]]
<DA, DB, DC> = iterFor p step dist

fl = [((row_col_block p p), (rotate_row dfl)),

((row_col_block p p), (rotate_col dfl)),
((row_col_block p p), id)]

dl = [A, B, c]
dist = distribution fl dl

dfl i = i (* to indicate the distance of rotation *)

step i <DA, DB, DC> =

SPMD [(gf, SEQ_MM 0)] <DA, DB, DC>

where

newDist = [(rotate_row dr2), (rotate_col dr2), id]

gf X = redistribution newDist <DA, DB, X>

dr2 i = 1 (* to indicate the distance of rotation *)

Abs t r ac t i on . The above examples highlight an important feature of SCL. The
parallel structure of a class of parallel algorithms for matrix multiplication can
be abstracted and defined by the following SCL program:

Gener i c_mat r ixMul p d i s t r i b u s t r a t e g y r e d i s t r i b u s t r a t e g y A B = g a t h e r DC
where

C -- SeqAr ray ((1 , S I Z E (A , 1)) , (1 , S IZE(B ,2))
[(i,j) := 0 I i ~- [1..SIZE(A,1)], j ~- [1..SIZE(B,2)]]

dist = distribution distribustrategy [A, B, C]

<DA, DB, DC> = iterFor p step dist

I

step i <DA, DB, DC> --

SPMD [(gf, SEQ_NM i)] <DA, DB, DC>

where

gf X -- redistribution redistribustrategy <DA, DB, X>

Thus, the row-column-oriented and the block-oriented parallel matrix multipli-
cation program become instances of the generic parallel matrix multiplication
code by instantiating the corresponding distribution and redistribution strate-
gies. That is, the SCL code for generic parallel matrix multiplication defines an
algorithmic skeleton for parallel matrix multiplication. This example shows how

64

an application oriented parallel computation structure could be systematically
defined.

3 F o r t r a n - S : C o o r d i n a t i n g F o r t r a n P r o g r a m s w i t h S C L

As an exercise in developing a concrete SPP language we are designing a lan-
guage, Fortran-S, to act as a powerful front end for Fortran based parallel pro-
gramming. Conceptually, the language is designed by instantiating the base lan-
guage in the SPP scheme with Fortran. Thus, to write a parallel program in
Fortran-S, SCL is used as a coordination language to define the parallel struc-
ture of the program. Local sequential computation for each processor is then
programmed in Fortran.

The matrix multiplication examples (section 2) can be coded in Fortran-S by
instantiating the sequential local procedure S~.q~ll with the following Fortran
subroutine for matrix multiplication (Fortran 90 syntax is adopted):

SUBROUTINE SEQ_~ (IT, IDX, X, Y, Z)
INTEGER, INTENT (IN) :: IT, IDX

REAL, DIMENSION (:,:), INTENT (IN) :: X

REAL, DIMENSION (:,:), INTENT (IN) :: Y

REAL, DIMENSION (: ,:), INTENT (INOUT) : �9 Z

INTEGER :: I, J

START ffi ((IT + IDX) * SIZE(Y,2)) MOD SIZE(Z,2)

DO I = I, SIZE(X,I)

DO J - 1, SIZE(Y,2)

DO K = 1, SIZE(Y,1)

Z (I,J+START) = Z (I,J+START) § Z (I,K) * Y (K,J)

END DO
END DO

END DO

END SUBROUTINE SEq_MM

The argument intent of the parameters identifies the intended use of the vari-
ables. Variables specified with INTENT(IN) must not be redefined by the pro-
cedure, whilst INTENT(INOUT) variables are expected to be redefined by the
procedure, and variables specified with INTENT(OUT) pass information out of
the procedure.

In Fortran-S, the basic data type for SCL programming is the ParArzay
which is regarded as the parallel data structure whilst the basic data types,
including arrays of Fortran are the sequential data structures. Thus, Fortran
subroutines handle only Fortran data objects.

Fortran-S can be implemented by transforming Fortran-S programs into con-
ventional parMlel Fortran programs, that is sequential Fortran augmented with
message passing libraries. Due to the functional nature of SCL source level trans-
formation can be applied to optimise the parMlel behaviour of the program,
including granularity adjustment, nested parallelism flattening, optimised data
distribution and interprocessor communication [2].

65

Currently, we are building a prototype system based on Fortran 77 plus
MPI [7] targeted at a Fujitsu AP1000 machine [6]. The matrix multiplication
example has been translated to Fortran77 plus MPI on an AP1000. Due to the
richness of information provided by the Fortran-S code, the performance data is
very encouraging, as shown in Fig. 4 for an array size of 400 • 400.

i~r~s ame(~r speed~ 70

1 521.41 1.0 60
4 133,22 3.9

8 fi6,11 7.9 50

10 52.73 9.9
40

16 32.88 15.9

20 26.$5 19.6 30

25 21A6 243
20

50 12.31 42.3

80 8.95 58.2 |0

100 7.44 70.1
0

.,lr

f~ w o"

. / /

j /
f

D"

, ~ Number of 1~.occmors

I I I f I I I I
10 20 30 40 50 60 70 80

I

90 100

Fig. 4. Parallel matrix multiplication: speedup

4 R e l a t e d w o r k

C o m p a r i s o n with H P F . HPF supports data parallel programming by adding
extensions to Fortran 90 including compiler directives for data distribution. Our
work has been motivated by HPF. For example, there is a direct correspondence
between the distribution specified by the HPF directives and the d i s t r i b u t i o n
skeleton. Configuration skeletons can be regarded as functional abstractions of
HPF directives. Since SCL configuration skeletons are freely composable they
are much more flexible than the fixed HPF directives. Moreover, the SCL op-
erators are extendable and provide a more powerful means to express data
distribution/re-distribution, alignment and movement.

Other coord ina t ion languages. One of the best known coordination lan-
guages is Linda, by Gelernter and Carriero [4]. As a coordination language, Linda
abstracts MIMD parallel computation as an asynchronously executing group of
processes that interact by means of an associative shared memory. Our work
differs by extending the coordination language to describe all aspects of parallel
coordination including partitioning and scheduling of parallel activities.

The coordination language PCN [3], promoted the concept of composing to-
gether modules by connecting together explicitly-declared communication ports.
An interesting development of the PCN approach is the PaL system [8]. Rather
than using a set of primitive composition operators, a set of parallel constructs
are used as program composition forms. Each parallel construct in p3L abstracts
a specific form of commonly used parallelism. This approach is based on the in-
tegration of the skeleton approach [1] and the PCN model. Such an integration,

66

however, is not smooth since the high level abstraction of parallel computat ion
structure is compromised by the lower level process model.

5 C o n c l u s i o n

In this paper we have proposed functional skeletons as a new mechanism for
developing general purpose parallel coordination systems. The work stems from
our original work on functional skeletons to capture re-occurring patterns of
parallel computation. This has been extended so that control of all aspects of
parallel computation can be now expressed using skeletons. Therefore, it provides
an ideal means for coordinating parallel computation. In this paper we have
presented a coordination language, SCL, and a parallel programming scheme,
SPP(X), obtMned by applying SCL to coordinate computation programmed in
a base language, X.

This work present a significant synthesis of some major developments of de-
signing parallel programming systems including the coordination approach, data
parallel programming, skeleton-based higher lever construction of parallel appli-
cations and declarative parallel programming. It provides a promising solution
to the engineering problems of developing a practical structured programming
paradigm for constructing verifiable, reusable and portable parallel programs.

A c k n o w l e d g e m e n t s

The second author is supported by the ESPRC funded project GR/H77545 and the
fourth author is supported by a British Council grant.

R e f e r e n c e s

1. J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu,
and R. L. While. Parallel programming using skeleton functions. In Parallel Archi-
tectures And Languages, Europe: PARLE 93. Springer-Verlag, 1993.

2. J. Darlington, Y. Guo, and H. W. To. Structured parallel programming: Theory
meets practice. Technical report, Imperial College, 1995. unpublished.

3. Inn Foster, Robert Olson, and Steven Tuecke. Productive parallel programming:
The PCN approach. Scientific Programming, 1(1), 1992.

4. David Gelernter and Nicholas Carriero. Coordination languages and their signifi-
cance. Communications of the ACM, 35(2):97-107, February 1992.

5. High Performance Fortran Forum. Draft High Performance Fortran Language Speci-
fication, version 1.0. Available as technical report CRPC-TR92225, Rice University,
January 1993.

6. Hiroaki Ishihata, Takeshi Horie, Satoshi Inano, Toshiyuki Shimizu, Sadayuki Kato,
and Morio Ikesaka. Third generation message passing computer AP1000. In Inter-
national Symposium on Supercomputing, pages 46-55, 1991.

7. Message Passing Interface Forum. Draft Document for a Standard Message-Passing
Interface. Available from Oak Ridge National Laboratory, November 1993.

8. S. Pelagatti. A Methodology for the Development and the Support of Massively
Parallel Programs. PhD thesis, Universit~ Delgi Studi Di Pisa, 1993.

9. Michael J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, second
edition, 1994.

