
An Implementation of Race Detection and
Deterministic Replay with MPI

C. Clgmen~on I , J. Fritscher 1, M.J. Meehan 2 and R. Riilal t

1 CSCS-ETH, Centro Svizzero di Calcolo Scientifico,
6928 Manno, Switzerland

2 Dept. of Computer Science, Univ. of North Carolina,
Chapel Hill, NC 27599-3175, U.S.A

Abstract. The Parallel Debugging Tool (PDT) of the Annai programming envi-
ronmentis developed within the Joint CSCS-ETH/NEC Collaboration in Parallel
Processing [1]. Like the other components of the integrated environment, PDT
aims to provide support for application developers to debug portable large-scale
data-parallelprograms based on HPF and message-passing programs based on the
MPI standard. PDT supports MPI event tracing for race detection and determin-
istic replay for manually parallelized MPI programs as well as for code generated
with the advanced techniques of a data-parallel compiler. This paper describes
the tracing and replaying mechanisms included in PDT as well as their efficiency
by presenting execution time overheads for several benchmark programs running
on the NEC Cenju-2/3 distributed-memory parallel computers.

1 Introduction

The lowest-level programming paradigm employed often on Distributed-Memory Par-
allel Processors (DMPPs) is pure messagepassing. Until recently, proprietary message-
passing libraries have been used a majority of the time, which has made porting of
applications from a given DMPP to a system of another vendor difficult. In addition,
messagepassing has been recognized to be tedious and error prone. To provide a higher-
level programming interface, several data-parallel languages have been proposed. To
allow for portability, the low-level Message-Passing Interface (MPI) and the high-level
High Performance Fortran (HPF) have been defined and both have been accepted as
standard by most DMPP vendors. HPF allows for the integration of MPI primitives into
high-level source code through extrinsic procedures.

Many problems still remain regarding theusability of DMPPs. Debugging of DMPP
programs for correctness is difficult because of possible deadlocks and non-determinism.
Non-determinism may be either unintended or intended. Unintended non-determinism
is a programming error and should be detectable by a DMPP debugger. The intended
non-determinism used in some programming models (such as the master~worker model
described in Section 2) can cause problems for the debugger because it might not be
possible to re-produce an error condition if it is dependent on the execution order of a
non-deterministic section of a program.

We are currently developing a fully interactive, source-level debugger for large-
scale DMPP programs. The debugger is called Parallel Debugging Tool (PDT) [2], and

156

is integrated into the programming environment Annai [3]. Annai also includes a Paral-
lelization Support Tool (PST) [41, a Performance Monitor and Analyzer (PMA) [5] and
an OSF/Motif-based graphical User Interface (UI). PMA supports performance debug-
ging, while PDT supports debugging for correctness. Among the major design objectives
for all tools are application-oriented design, portability, scalability, and support of both
MPI at the low level and extended HPF at the high level. A group of application develop-
ers is continuously evaluating tool prototypes and providing feedback for functionality
enhancements.

This paper reports results about the race detection and deterministic replay facil-
ities built into PDT. Although first DMPP debuggers have been built which include
deterministic replay features, they are either research systems targeting at a single com-
munication interface and lacking theportability of MPI, or they emphasize other features
than replay efficiency and scalable interactive debugging. In contrast to these systems
(see also Section 3.1), PDT provides portable scalable interactive debugging support
for both low and high-level programming paradigms. This includes a complete MPI
instrumentation for the detection of non-determinism and for deterministic replay.

The next section gives an example of the two main types of non-determinism
which can occur in MPI programs. Then we summarize related work and describe the
integration of the various Annai components in more detail. After a summary of the
algorithms used for race detection and deterministic replay, we present measurements
of tracing and replay overhead on NEC Cenju-2/3 DMPPs.

2 An MPI Example

In Fig. 1 we show a simple code segment with calls to MPI which cause races.
These races are due to blocking receives which use the blPI AN-Y SOURCE wild-
card for matching the source processors of incoming concurrent messages. Although
the code segment has no application and was constructed solely for benchmarking
purposes (see also Section 5.2), it illustrates one kind of race possible in MPI programs:
p - 1 processors send messages "concurrently" to the same processor which accepts
messages using a wild-card for increased parallelism and efficiency. In the benchmark
this is repeated n x (p - 1) times (loops at lines 5 and 6) and each processor plays the
role of a receiver n times.

The situation is again depicted in Fig. 2 in a space-time diagram for four processors.
Throughout the paper we denote a message as MSG(a, b), where a defines the id of the
source processor of a message, and b a serial event counter on that source. Analogously,
the respective receive events are denoted as RECV(a, b), where the serial number b is
computed on the receiver.

Fig. 2 shows a triple race between MSG(0, 1), MSG(2, 1) and MSG(3, 1). If replay
information about MSG(0, 1) and MSG(3, 1) (the first two messages to be received) is
stored in a first execution of the code segment and during re-execution the order of these
two messages is guaranteed, then Mso(2, 1) goes to Rncv(1, 3) as desired and the first
execution is deterministicaUy replayed.

A second type of non-determinism can occur in MPI due to the use of the non-
blocking probe operation Iv lPI_ ' rp robe (further on called iprobe). With iprobes,

157

Void RECEIVI/BENcI-IMARK(Int n, MPI_Comm c)

1: MPI_Status s;

2: Inti;j;k,x;p, myid;
3: MPI_CoMM_SlZE(c, &p);

4: MPI_COMM_RANK(e, &myid);
5: for i : = 1 to n
6: for j : = 0 to p - 1

7: if j = rayid
8: for k : = l to p - 1
9: MPI.RECV(&x, 1, MPIINT, MPL.ANY_SOURCE, TAG, c, &s);

10: end for

l h else

12: MPI_SFa'r 1, MPIINT, j , TAG, e);

13: end i f

14: end for

15: end for

Fig. 1. RECI~VEBENCHMARK is a typical example MPI code segment with races due to receives
with wild-card source specification.

0 1 2 3

S
Fig. 2. Simple three message race.

non-determinism can occur on as few as two processors, because when replaying,
depending on communication delays, the same sequence of iprobes may result in a
non-deterministic sequence of booleans indicating the success of the operations. The
example in Fig. 3 shows how a user can emulate a blocking receive using iprobes.
For repeated executions of a program using EMULATEDRECV, with the same input, the
loop at line 3 of Fig. 3 may be executed a different number of times. Note that in our
implementation of MPI, HPI R e c v is actually based on non-blocking probes similar
to what is shown in the figure.

158

Void ~TEDRF~V(Void *a, Int n, Int src, Int tag, MPI_Comm c, MPI_Status .s)

1: Int true_src;

2: Boolean 2r
3: repeat
4: MPI._IPROBE(src, tag, e, &f, s);

5: until f;
6: MPI_GET_SOURCE(s, &true_src);
7: MPI_RECv(a, n, MPI_INT, true_src, tag, c, s);

Fig. 3. EMULAT~RECV emulates a blocking receive using non-blocking probe operations.

3 B a c k g r o u n d

3.1 Related Work

The first step towards correct tracing and replay of communication events of a DMPP
program, is the definition of the order of the events. Lamport [6] has first defined the
happens before (or causality) relation "---,", an irreflexive, partial order on a set of events
E. For two events el, e2 E E, el ---, e2 is the smallest transitive relation satisfying the
following conditions: either el, e2 are happening on the same processor and el precedes
e2, or el is a send event and e2 is the respective receive event on the destination of el. If
two events do not causally affect each other, they are called concurrent. A time stamp
added to each message can be used to compute on each processor for the events ez, e2
logical clocks C(el); C(e2) which satisfy the clock condition:

e 1 ~ e 2 ~ C (e l) < C(e2)

Fidge [7] has first used vector clocks to define the exact causal order of events
in DMPPs. On a DMPP with p processors, vector clocks have p elements, and their
computation in general requires appending of a vector time stamp of length p to each
message. For the many DMPP programs which feature communication locality, how-
ever, such overhead can be drastically reduced by only communicating incremental
vector clock changes [8] which typically adds constant overhead independent of the
number of processors.

Netzer and Miller 19] have first described how to use vector clocks to trace and replay
frontier races. A frontier is drawn across a space-time diagram of a DMPP program,
which divides communication send and receive events into two sets such that (1) two
(or more) sends are just after the frontier, (2) a receive that could have received either
of the respective messages is just after the frontier, and (3) all receive events before the
frontier also have their senders before the frontier. For simple messagepatterns, frontier
races are traced and replayed with minimum overhead. An evaluation of six programs

159

on a 32 node iPSC/2 is carried out which shows that only 1-2% of all messagereceives
need tracing, and that tracing execution time overhead is less than 14%.

Damodaran-Kamal and Francioni [10] present the mdb debugger which allows the
user to detect races using controlled execution: at certain points, the running program is
suspended and the user is allowed to permute messages in send or receive queues. A set
of commands is presented which can be applied to a suspended program; among others
a sequential debugger can be used to inspect processor states, md.b does not support
fully interactive low-level debugging in a scalable fashion. However, it supports the
debugging of portable PVM programs.

Leu and Schiper [11] have built a system which integrates replay of non-determinism
with ParaGraph-like visualization of message-passing programs. On the one hand,
because the same trace format is used for visualization, race debugging and deterministic
replay, both global and local behavior can be observed simultaneously. On the other
hand, complete event tracing is necessary which introduces large trace overhead.

May and Berman [12] describe Panorama, a portable extensible system for both
performance and correctness debugging of DMPP programs. A graphical interface runs
on a user workstation and drives a vendor base debugger on the actual parallel platform.
Deterministic replay is provided using complete message tracing. Measurements are
shown on both an iPSC/860 and on an nCUBE, and for small messages, tracing accounts
for an execution-time overhead of 7-55% on the iPSC and of 40-90% on the nCUBE,
respectively, independent of the machine size.

3.2 Annai and its Parallel Debugging Tool (PDT)

Annai accepts high-level extended HPFprograms and low-level message-passing source
code. PST acts as a compiler for both paradigms. We are separately developing two
other tools, one for correctness debugging (PDT) and one for performance analysis
and tuning (PMA). For the reduction of trace overhead, each tool uses independent
trace information, i.e. our basic communication platform MPI includes two orthogonal
instrumentations.

The overall debugging support of Annai is split into two components, the Tool
Services Agent (TSA) and PDT. TSA constitutes the machine interface of Annai, and
provides a collection of basic debugging functions, for loading, executing, halting and
inspecting a parallel program. TSA can be viewed as the back-end, low-level debugger o f
Annai and parts of it run on the target platform. PDT runs on the user workstation and its
role is to provide more elaborate, higher-level debugging functions built from sequences
of TSA commands. The high level debugging functions supported by PDT include global
displays of distributed data structures and various breakpointing mechanisms. PMA uses
TSA for interactive instrumentation of the target program. TSA is currently based on the
GNU gdb debugger from the Free Software Foundation and plays a role similar to the
basic vendor debugger underlying Panorama: while at the application level, portability
is supported through the use of MPI and HPF, at the system level, TSA eases porting
of the whole tool environment. Currently, we support the NEC Cenju-2, Cenju-3, and a
DMPP emulator running on a Solaris workstation.

160

4 MPI Race Detection and Deterministic Replay

MPI provides three different kinds of tags as a basis for receiving a message: the source,
the communicator (thus defining a context or group), and a conventional tag. Except
for the communicator, there are wild-cards available for these tags. The communica-
tor allows grouping of processes. Intra-group and inter-group communication is only
possible through different communicators.

In a correct implementation of MPI, the order of messages with matching tags,
sources and communicators is preserved (FIFO). Messages with different tags are al-
lowed to overtake, however, even if they come from the same sender.

As already pointed out in Section 2 two classes of races can occur in MPI programs:
races due to blocking receives and probes with equal tags, communicators and message-
source wild-cards (for instance with MPI_Recv, MPI_Probe and MPI_Wai t), and
races due to asynchronous probe operations which non-deterministically test for mes-
sage arrival in the system's message buffer (for instance with M P I _ I p r o b e and
MPI_Test).

4.1 Blocking Probes and Receives

Race Detection and Tracing We use the same technique as Netzer and Miller to deter-
mine causality between messages and to trace racing receive primitives. Each processor
maintains a vector time stamp and appends it to each message sent. On each processor, an
internal scalar logical clock is incremented by one upon each send event. On processor
i, the i-th element of the vector time stamp is equivalent to the processor's scalar clock.
The remainder of the vector is determined by doing a component-wise maximum on the
current time stamp and any time stamp received at the end of an incoming message.

Given two incoming messages a and b, the first arriving from processor pa the
second from Pb and their vector time stamps Va and V~, one can determine if they race
by comparing the Pa'th value of the vector time stamps. If the p,,-th value of Va is larger
than the pa'th value of V~, then the two messages are concurrent and race. For message
a to happen before b, the pa-th value (2a's internal clock) would have to be incorporated
into message b's time stamp, because the p,,-th value would be passed along through
the chain of messages linking the two.

Fig. 4 (a) demonstrates this. MSG(2, 1) (2,, = 2) arrives before MSG(0, 1) (2b = 0)
so the third (2a-th) value of their time stamps must be compared. The third value of
MsG(2, 1)'s time stamp is 1 and the third value ofMs~(0, 1)'s time stamp is 0, therefore
the two messages race. Considering Msc(2, 2) and Msc(0, 1), we see that the first value
of the MsG(0, 1)'s time stamp is 1 and the first value of Ms~(2, 2)'s time stamp is also
1, so the first message happens before the second message.

A block race is a collection of special frontier races which denotes races between
a message and a set of messages. If the same message is concurrent to more than one
message from the same processor, then it races with all of them. Fig. 4 (b) shows a block
race. MsG(2, 1) is concurrent to both Msc(0, 1) or Msc(0, 2), therefore it races with both
of them. Since Ms~(2, 1)races with these messages, trace information about REcv(1, 1)
and REcv(1, 2) must be stored. There also exists a block race between MSG(0, 3) and the
pair MSG(2, 2) and MSG(2, 3) which results in storing information about REcv(1, 3) and

161

\
i,' ,~)/

y

(a) (b)

Fig. 4. On the left we show how vector time stamps are used to identify message races. On the
right a block race is depicted.

RECV(1, 4). Due to the FIFO nature of the MPI communication channels, it is possible
to store block races as single trace file entries. In our MPI implementation, block races
can occur when long messages are chopped into pieces to fit into communication buffers
of limited size.

To detect block races, a buffer of time stamps stemming from recently received
messages must be stored for each tag. The buffer does not have to store all past time
stamps. A time stamp can be taken out if a message of its tag has been received
from every processor (excluding the time stamp's source and receiving processor). If
a message of the same tag is received from another processor, then the message either
races with the current message or it doesn't. If the new message races with the old, then
the old message's trace information is stored in the trace file and the old time stamp is
removed from the buffer. If the new message does not race with the old, then the new
one's time stamp is added to the buffer and the old one remains.

In MPI, blocking and non-blocking probes can affect a program's execution when
polling for racing messages. If any of the information from the probe is used in the
program (for instance, existence of the message, the message's source or length), then
the race affects the program.

Blocking probes can be traced in the same manner as receives. To trace them
correctly, all of the operations for tracing a receive must be performed during the probe
except for the removal of the message from the system buffer. The incoming time stamps
are compared to those of the receives and other blocking probes, stored and removed
from the buffer upon the same conditions and stored identically in the trace file if they
race.

When a blocking probe is traced, the same actions performed for an equivalent

162

receive are performed, including incrementing the same internal clock for each occur-
rence. If on a processor p there have been two blocking receives and three blocking
probes, then the internal clock is incremented by five.

Deterministic Replay To replay a race condition, one needs to know which messages
should arrive at all critical receives and should be able to hold off reception until
the correct message arrives. To determine which messages race, given that the original
execution has been traced correctly, one needs to read in the trace file which will indicate
all critical receives and the correct messages for each.

Because FIFO message passing is assumed, the order of arrival of messages from
a given processor is guaranteed. Therefore, the only piece of information necessary to
determine the correct message for a critical receive is the sending processor's number.
Assuming that all messages up to a certain critical receive arrive in the correct order,
then the next message to come from the critical receive's desired source will be the
correct one.

For a processor to replay deterministically, it needs to know which receives are
critical and which messages should be received at each. To know which receives are
critical, the trace file must--for each processor--supply the number corresponding to
the internal clock of the original receive. Since the internal clock is incremented in the
same manner as in the original execution, the algorithm can compare its current internal
clock and the numbers of the critical receives to determine which receives must be
controlled.

To implement re-execution, the program reads in the trace file and determines what
the next critical receive is. The program executes without any interference until the first
critical receive (since all of the preceding receives are already deterministic). Upon the
first critical receive, the program blocks until the correct message arrives. This process
is repeated again for the next and all proceeding critical receives.

One should note that this does not guarantee the order of arrival of messages.
It simply guarantees the order of reception of the messages. The messages can still
arrive in any order and must be buffered until their correct reception time. Netzer and
Miller have proposed a handshake protocol for the correct replay of message arrivals.
However, the MPI user is only affected by different message arrivals if message buffer
overflows occur. In our MPI implementation, buffers are fairly large, and we refrained
from implementing the above handshakes because of efficiency considerations.

42, Non-blocking Probes

Non-blocking probes (iprobes as defined above) can also cause non-deterministic be-
havior. As with blocking probes, if any of the information from an iprobe is used
in a program (for instance existence, source or message length), it can cause non-
determinism. Iprobes cannot be traced in the same manner as blocking probes and
receives, since they are simply checks for existence of messages. Instead, the outcome
of every non-blocking probe must be recreatable from a trace file.

Keeping the trace information for every iprobe would be expensive. One would
have to store each iprobe's outcome (true or false) and the probed message's source if
the iprobe was successful and was of a class that can detect messages from more than

163

one source. For instance, in the Traveling Salesman Problem considered in Section 5.3,
less than one percent of the iprobes executed return successfully. In such an application,
tracing only successful iprobes can significantly reduce tracing overhead.

For deterministic replay of the iprobes, the traces are read into a buffer. Every time
an iprobe is called, a respective counter is incremented. This iprobe event counter and
trace files are separate and distinct from those used for the blocking receives and probes.
Regardless of the existence of messages in the buffer, the replay mechanism forces the
iprobe to return value FALSE until the iprobe counter matches the value for the next
true iprobe, when the counter does match, value TRUE must be returned. To re-execute
properly, the iprobe blocks until it has received the correct message before it returns a
true value. Once again, only the source number of the message needs to be known for
the critical iprobes.

5 Performance Measurements

5.1 The NEC Cenju-2 and Cenju-3

The NEC Cenju-3 installed at CSCS is configured with 128 processing nodes, each
comprising a 75 MHz VR4400SC RISC processor, 32 Kbytes primary on-chip cache,
1 Mbyte of secondary cache and 64 Mbytes main dynamic memory. Processors com-
municate via a packet-switched multi-stage interconnection network composed of 4 x 4
crossbar switches. At CSCS, a 16 processor Cenju-2 (a predecessor of the Cenju-3) is
also installed. The Cenju-2 features a similar network but is based on the slower 25
MHz MIPS R3000 processor. Some of the measurements shown in this paper were
collected on the smaller Cenju-2, because it features a less intrusive timing function.
Theback-end C compiler used on both systems is the GNU g c c compiler, version 2.5.7.

5.2 Single Communication Primitives

To measure the impact of tracing and deterministic replay on the execution time of
single MPI primitives we run the code segment of Fig. 1 ("Receive Benchmark") with
n = 500 on our Cenju-2. The system timer on that machine features low intrusiveness
and therefore average execution times of single MPI primitives can be measured reliably.
To measure tracing and replaying overhead for iprobes, the benchmark was modified by
replacing the MPI R e c v (Fig. 1, line 9) with the emulated receive of Fig. 3 ("Iprobe
Benchmark"). Fig. 5 shows results of our performance measurements by breaking down
the execution time spent in the three MPI primitives. Only the access time to trace buffers
in memory is included in the measurements, but not the I/O necessary for writing and
reading these buffers to and from disk.

The measurements show that with no instrumentation approximately half the time
for a receive is spent waiting for the message arrival inside a loop of non-blocking
probes. The other half is spent in receiving the message, which consists of bookkeeping
and copying from system to user space. When tracing races, the overhead introduced in
MPI R e c v is more expensive than for iprobes, because of the respective complexities
of either tracing algorithm. When racing messages are traced in the receive benchmark,

164

~ 4 0 0 r

X

Q

Receive Benchmark

No Instr. Tracing Replay

MPl_Send MPl_Recv MPl_lprobeJ

Iprobe Benchmark

.~80,

~ 40,
Ii)

�9 g eplay

Fig.5. Race detection and deterministic replay of single communication primitives on a 16
processor Cenju-2 in the benchmark of Fig. 1.

sends and receives are slowed down by approximately a factor of 2 and 6, respectively.
Racing receives are replayed with less than a factor of 2 overhead with no noticeable
performance difference for the respective sends. The relative execution-time overhead
during replay is similar for both benchmarks.

5.3 Applications

We benchmarked two example programs:
TSP solves a traveling salesman problem on 18 randomly distributed cities using

a parallel branch-and-bound algorithm. TSP is implemented in C with explicit MPI
calls using a master-worker execution model (see also Section 2): the master processor
constructs a queue of tasks which then are dynamically distributed to worker processes.
The most important communication routine used for master-worker communications is
MPI_Iprobe.

The BiCGSTAB solver from SPARSKIT [13] is applied to a simple sparse matrix,
namely a banded random matrix of 16384 rows and a total bandwidth of 201. Our
results refer to the performance of the iterative solver in steady state. BiCGSTAB is
implemented in HPF with PST extensions, and compiled by PST, which intentionally
introduces races for increased efficiency.

Fig. 6 shows the results of our measurements regarding the overhead of race de-
tection and replay for TSP and BiCGSTAB, respectively. Both benchmarks were run
on different Cenju-3 configurations without instrumentation, with race detection and
with deterministic replay instrumentation. For TSP we show parallel execution times
compared to an equivalent sequential program run; for BiCGSTAB MFLOPs are given.
In TSP, the main source of non-determinism is the use of MPI non-blocking probe
primitives. As the results show, replay is significantly slower than tracing: in the worst
case performance is reduced by a factor of two compared to the non-instrumented code.
In BiCGSTAB, few races are introduced by PST in blocking receive primitives. Our

165

TSP

;"t L
�9 i :t [

'f E--r-lJ
~ . :" . o .

O
t~ 2 4 8 16 32 64

Cenju-3 Conltgurstion

BiCGSTAB

it ,/
2 4 8 16 32 64

CaVlu-3 Configuration

~No in~a t ion Race Detection Deterministic Replays

Fig. 6. The performance of TSP (left) and BiCGSTAB (right) without instrumentation, with
race detection and with deterministic replay instrumentation is measured on several Cenju-3
configurations.

measurements show that only the performance of race detection is affected for l~ge
machine configurations, because the instrumentation requires longer messages to be
communicated. The performance difference between non-instrumented and determinis-
tically replayed program runs is negligible.

6 Conclusions

We have summarized the functionality of the Annai tool environment which integrates
a compiler for extended HPF, a performance monitor and a parallel debugger. Since the
whole tool environment aims at portable support of both extended HPF and MPI, one of
the main features of the parallel debugger is race detection and deterministic replay. We
have implemented such replay functionality in MPI with support for both frontier races
of message receives with source-id wild-cards and for non-blocking probes (which are
another type of race and require separate treatment).

We have measured the overhead introduced by both tracing and replay in a worst-case
artificial benchmark where all messages race, as well as in two application programs,
one parallelized using a master/worker model and non-blocking probes, and another
data-parallel program where races are introduced for increased efficiency by the high-
level compiler. We believe that the measurements show that the overhead introduced is
acceptable, even for the debugging of large scale programs on many processors.

While the individual components of the debugger are not new to the research
community, we believe we are the first to have integrated efficient race detection and
deterministic replay into MPI and a tool environment which is portable and supports
application portability.

166

Acknowledgments

The development of Annai has been a joint effort with A. Endo, A. MOiler, and B. Wylie. Other
project members, V. Deshpande, N. Masuda, W. Sawyer, and E Zimmermann have generously
been patient while evaluating our prototypes. We are grateful for many useful comments and
careful proofreading of K. M. Decker and the EURO-PAR'95 reviewers.

References

1. C. C16manf.on, K. M.Decker, A. Endo, J. Fritscher, G. Jost, N. Masuda, A. Mtlller, R. Rtthl,
W. Sawyer, E. de Sturler, B. J. N. Wylie, and E Zimmermann. Application-Driven Devel-
opment of an Integrated Tool Environment for Distributed Memory Parallel Processors. In
R. Rao and C. P. Ravikumar, editors, Proceedings of the First International Workshop on
Parallel Processing (Bangalore, India, December 27-30), 1994.

2. C. Cl~men~n, J. Fritscher, and R. Rtlhl. Execution control, visualization and replay of
massively parallel programs within Annai's debugging tool. In Proc. High Performance
Computing Symposium, HPCS'95, Montrdal, CA, July 1995.

3. C. C16menf.on, A. Endo, J. Fritscher, A. Mtlller, R. Rtthl, and B. J. N. Wylie. The "Annai"
Environment for Portable Distributed Parallel Programming. In Hesham EI-Rewini and
Bruce D. Shriver, editors, Proc. of the 28th Hawaii International Conference on System Sci-
ences, Volume H (Maui, Hawaii, USA, 3-6 January, 1995), pages 242-251. IEEE Computer
Society Press, January 1995.

4. A. MOiler and R. R01al. Extending HPF for the Support of Unstructured Computations. In
Proc. ACM International Conference on Supercomputing, ICS'95, Barcelona, Spain, July
1995.

5. B. J. N. Wylie and A. Endo. Design and realization of the Annai integrated parallel program-
wing environment performance monitor and analyser. Technical Report CSCS-TR-94-07,
CSCS, CH-6928 Manno, Switzerland, November 1994.

6. L. Lamport. Tmae, docks, and the ordering of events in a distributed system. Communica-
tions of the A CM, 21(7):558-565, July 1978.

7. C.J. Fidge. Partial orders for parallel debugging. Proceedings of the ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, 24(1):183-194, January
1989. Published in ACM SIGPLAN Notices.

8. M. Singhal and A. Kshemkalyani. An efficient implementation of vector clocks. Information
Processing Letters, 43(10):47-52, August 1992.

9. R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for debugging message-passing
parallel programs. In Proceedings of Supercomputing '92, pages 502-511, Minneapolis,
MN, November 1992.

10. S. K. Damodaran-Kamal and J. M. Francioni. mdb: A semantic race detection tool for PVM.
In Proceedings of the Scalable High-Performance Computing Conference, pages 702-709,
May 1994.

11. E. Leu and A. Schiper. Execution replay: A mechanism for integrating a visualization tool
with a symbolic debugger. In Proceedings of CONPAR '92, pages 55-66, September 1992.

12. J. May and F. Berman. Panorama: A portable, extensible parallel debugger. In Proceedings
of A CM/ONR Workshop on Parallel and Distributed Debugging, pages 96-106, San Diego,
California, May 1993.

13. Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computation. CSRD Technical
Report 1029, University of Illinois, IL, August 1990.

