
Opt imal Circular Arc Representat ions

Lin Chen
FRL, P. O. Box 18345, Los Angeles, CA 90018

A b s t r a c t . We investigate some properties of minimal interval and circu-
lar arc representations and give several optimal parallel recognition and
construction algorithms. We show that, among other things, given an s • t
interval or circular arc representation matrix,

- deciding if the representation is minimal can be done in O(log s) time
with O(st/log s) EREW PRAM processors, or in O(1) time with O(st)
Common CRCW PRAM processors;

- constructing a minimum interval representation can be done in O(log(st))
time with O(st/log(st)) EREW PRAM processors, or in O(log t / log log t)
time with O(stlog log t~ log t) Common CRCW PRAM processors, or
in O(1) time with O(st) BSR processors.

1 Preliminaries

Circular arc graphs are well-known intersection graphs and properly contain inter-
val graphs. Benzer [4] showed overlap da ta involving fragments of a certain gene
could be modeled by intervals. This finding confirmed the hypothesis that DNA
has a linear structure within genes and helped him win a Nobel Prize. Circular arc
graphs also find applications in some other areas such as register allocation. The
best way to allocate registers corresponds to an opt imal coloring of an interference
graph which is often a circular arc graph or even an intervaI graph (see, "e.g., [16]).
Many algorithms on circular are graphs work on circular arc representations (see,
e.g., [15]), which can be constructed f rom circular arc graphs (see, e.g., [9]). In this
paper, we s tudy the properties of minimal interval and circular arc representations
and present some efficient recognition and construction algorithms.

Given a family S of nonempty sets, the intersection graph G has vertices cor-
responding to the sets in S and two distinct vertices of G are adjacent iff the
corresponding sets in S intersect. S is called an intersection representation (IR)
for G. I f S is a family of arcs on a circle, G is called a circular arc graph, if, in
addition, the family of arcs satisfies the Helly property (i.e., if several arcs mutu-
ally intersect, then the intersection of these arcs is nonempty) , G is called a Helly
circular arc graph (a.k.a. O circular arc graph). G is called an interval graph if S
is a family of intervals on a real line.

In this paper, we often use a pair of the two endpoints of an arc to denote a
closed arc. I f we move along an arc in the clockwise direction, the last point on
the arc is clockwise endpoint. The other endpoint is counterclockwise endpoint. If
we use [lo, 11] to denote an arc, 11 and 10 represent clockwise and counterclockwise
endpoints, respectively.

The aforementioned classes of graphs can also be defined as intersection graphs
on some discrete objects. Take the circular arc graphs for example. Let D be a

256

circularly ordered set (such as points on a circle). A circular arc of D is defined
as any set of contiguous elements in D. Let S be a set of circular arcs on D. The
intersection graph G of S is a circular arc graph and the pair (D, S) is a circular
arc representation. Two IRs (D1, $1) and (D2, $2) are said to be equivalent if there
exists a one-to-one onto function f : $1 -+ $2 such that x and y in $1 intersect iff
f (x) and f(y) in $2 intersect. An IR (D, S) is said to be minimal if there does
not exist an equivalent IR (D ~, S~), where D' C D. An IR (D, S) is said to be
minimum if, for any other equivalent IR (D ~, S'), [D'[> [D[. We call [D[the size
of the IR (D, S). An element, say d, in D is called an intersection point (IP) if
there exist two elements (not necessarily distinct), say sl and s2, in S such that
Sl N s2 = {d}. An In, say (D, S), is often denoted by a [S I x ID] (0, 1)-matrix.
A row, say R, of the matr ix corresponds to an element in S. R(i) = 1 iff the ith
element of D is contained in the element of S. We simply refer to the matrix as
an IR if no confusion arises.

Suppose D1 = {&, 0 , (3, 6}, and S~ = {{~, (~}, {(>, ~9}, {~9, 6}, {~}}. The
corresponding matrix is/141. Let D2 = {J, Q, K, A}, and $2 = {{J}, {J, Q, K},
{Q, K, A}, {A}}. Then the corresponding matrix is M2. It is easy to verify these
two interval representations are equivalent. The minimal interval representation is
Ma, which can be obtained by deleting a column from M1 or M2.

ri1001 [00!] 3 [i~ / 0 1 1 0 / 1 1 1 1
M1 = / o o 1 1 / ' M 2 - - o l l 1

[0 0 0 1 1 0 0 0 0

The computation models employed in this paper are more or less standard. One
model used is the well known PRAM. Some of our algorithms are implemented
on EREW PRAM. Some other algorithms are designed for the Common CRCW
PRAM. Also mentioned is a stronger submodel called Priority CRCW PRAM.
A more powerful model known as Broadcasting with Selective Reduction (BSR)
introduced in Akl and Guenther [2] is also used here.

A PRAM algorithm is said to be work-optimal ff the processor-time product
matches the time lower bound of the sequential algorithm. We say an algorithm
is time-optimal if its time bound matches the lower bound on the corresponding
model.

In designing PRAM algorithms, we often use the following result, usually at-
tributed to Brent [5], to obtain the best tradeoff between the time and processor
bounds.

T h e o r e m 1. If a problem can be solved in O(T) time with O(P) PRAM pro-
cessors, the problem can also be solved in O (T P / P ~) time with O(P') PRAM
processors, for P~ < P.

Cook, Dwork and Reischuk [12] established the following lower bound.

T h e o r e m 2. Computing the OR of n bits lvquires at least/2(logn) time on exclusive.
write machines.

257

A lower bound on CRCW PRAM is given in Beame and Hastad [3].

T h e o r e m 3. Checking parity for n bits requires at least/2(log n~ loglog n) time
on a Priority CRCW P R A M if a polynomially bounded number of processors are
used.

We say a problem is in NC if there is an algorithm for it that runs in polylog
time with a polynomial number Of processors. Such an algorithm is called NC
algorithm. Any parallel algorithm mentioned in the paper is meant to be an NC
algorithm.

One very useful procedure in parallel computing is the prefix computation. It is
not hard to see the above PRAM lower bounds apply to the prefix computation. It
is known that all prefix sums for an array of n elements can be obtained in O(log n)
time using O(n/ log n) EREW PRAM processors [17], or in O(log n~ log log n) time
using O(n log log n / log n) Common CRCW PRAM processors [11], or in O (1) time
using O(n) BSR processors [18].

One problem discussed in Chen [8] is the subarray computation. Given an
array, say all : hi, composed of two types of elements, the problem is to obtain
a subarray b[1 : k] of all : n] such that b[j] is the j t h element in a of type 1, for
0 < j < k, where k is the number of elements in a of type 1. The problem can
be solved using the procedure for computing the prefix sums. It is now easy to
conclude the following.

Theorem4. The subar~ay computation can be done in O(log n) time with O(n/ log n)
E R E W P R A M processors, or in O(log n / log log n) time with O(n loglog n / log n)
Common CRCW P R A M processors. Both procedures are work-optimal. On the
BSR model, the problem can be solved in O(1) time with O(n) processors. The
algorithms are all time-optimal.

These results are used frequently in designing other parallel algorithms. We
may not make explicit reference to these results every time we use them later
in this paper. In this paper, the minimal IR matrices are obtained thru column
deletion. So the lower bound for subarray computation also applies to computing
minimal representations.

2 Propert ies

In this section, we present some properties of minimal interval and circular arc
representations. The proofs, if not given here, can be found in our earlier works
[6] [10].

L e m m a 5. Suppose (D, I) is an interval representation. An element d E D is an
IP iff there exist intervals Ii and Ij E I (Ii and Ij may be the same interval) such
that d is the left endpoint of Ii and the right endpoint of Ij.

L e m m a 6. Suppose (D, I) is an interval representation, and M is the correspond-
ing matrix. An element of D is an IP iff the corresponding column of M is not
contained in any other column.

258

Theorem 7. Suppose (D, I) is an interval representation and M is the corre-
sponding matrix. The following four assertions are equivalent:

1. (D, I) is a minimum interval representation.
2. (D, I) is a minimal interval representation.
3. Every element of D is an IP.
4. No column of M contains another.

Note the analogous statements of Theorem 7, Lemma 5 and Lemma 6 for cir-
cular arc representations are not true,. We will instead give the following results
for the circular arc representation.

L e m m a 8. Suppose (D, A) is a circular arc representation, and M is the cor-
responding matrix. A column of M is not contained in any other column if the
corresponding element of D is an IP.

Theorem 9. Suppose (D, A) is a circular arc representation and M is the corre-
sponding matrix. For the following four assertions, one implies the next:

1. (D, A) is a minimum circular are representation.
2. (D, A) is a minimal circular arc representation.
3. Every element of D is an IP.
4. No column of M contains another.

Proof. (1 = 2) By definition.
(2 ~ 3) Analogous to the corresponding part of the proof of Theorem 7.
(3 ==r 4) Immediate from Lemma 8. []

Theo rem 10. Suppose (D , A) is a circular arc representation. The representation
is minimal iff every element of D is an IP.

However, for circular arc representation satisfying the Helly property, the anal-
ogous statement of Theorem 7 is true. The proof is Mso analogous. We only list
the result below.

Theorem l l . Suppose (D,A) is a 0 circular arc representation and M is the
corresponding matrix. The following four assertions are equivalent:

1. (D, A) is a minimum 0 circular arc representation.
2. (D, A) is a minimal 0 circular arc representation.
3. Every element of D is an IP.
4. No column of M contains another.

The following theorem tells us something about the relation between minimal
0 circular arc representations and minimal circular arc representations.

Theo rem 12. If (D, A) is a minimal 0 circular arc representation for G, (D, A)
is also a minimal circular arc representation for G.

Proof. If (D, A) is a minimal 0 circular arc representation for G, then every
element of D is an IP, by Theorem 11. Now the result follows from Theorem 10.

[]

259

3 Algorithms

In this section we give concrete computational procedures for the recognition and
construction of minimum interval and circular arc representations. We begin with
the problem of testing for minimum interval representations. We note that if an
s • t matr ix is a minimum interval representation matrix, then s _> t. The reason
is, if the matr ix is a minimum interval representation, then all columns of the
matr ix correspond to IPs by Theorem 7. Thus, the number of left endpoints and
therefore the number of rows is at least t. Consequently, if s < t, we can conclude
immediately the representation is not minimum. Suppose we have an interval rep-
resentation matr ix with size s • t (s > t). We first check which columns correspond
to the IPs. Obtaining the IPs is easy. By Lemma 5, a column corresponds to an
IP iff it corresponds to a left endpoint and a right endpoint. For each row, we can
decide its two endpoints in O(1) time with t EREW PRAM processors. It then
follows easily that all the IPs can be identified in O(1) time with O(st) Common
CRCW PRAM processors. On the EREW PRAM model, the problem cannot be
solved in O(1) time. In fact, we have established a lower bound stated in the
following theorem.

T h e o r e m 1 3 . Deciding i f an s x t interval representation matrix is minimum
requires at least ~2(logs) time on a C R E W PRAM, for s > t.

P r o o f . We prove the theorem by a reduction from computing the OR. Let b[1],
b[2], . . . , b[n] be n bits. We construct an n • n matr ix M as follows.

1 if b[i] = l A O < j < n
M [i , j] = O i f b [i] = O A i ~ j A O < j < n

l i f i = j

Obviously, M can be constructed in constant time with O(n 2) processors. Ac-
cording to the construction, all columns correspond to IPs iff all bits of b are 0, or
equivalently, iff the OR of the n bits is 0. By Theorem 7, all columns of M corre-
spond to IPs iff M is a minimum interval representation. Now the bound follows
easily from Theorem 2. []

The J2(logs) lower bound also applies to the problem of deciding if an s • t
(O) circular arc representation is minimal.

Below we show deciding if an interval representation is minimum can be done in
O(log s) t ime by an optimal EREW PRAM procedure. The following is a procedure
that computes the left endpoints.

0 f o r i := 1 t o t c o d o l[i] := 0 odoc ; {initialize l}
1 f o r i := 1 t o s c o d o {initialize ml}
2 fo r j : - 1 to t codo
3 ml[i, j] := 0;
4 odoc ;
5 odoc ;
6 f o r i := 1 to s c o d o rot[i, b[i]] := 1 odoc ;

s ml[j , i] odoc; 7 fo r i := 1 t o t c o d o l[i] := Vj=I

260

After executing the above code, l[i] = 1 iff Column i corresponds to a left
endpoint. The only step that requires more than constant time is Line 7, which can
be done in O(log s) t ime on an EREW PRAM. All steps can be done optimally. In
an analogous way, we can also decide which columns correspond to right endpoints.
So we can now conclude the following.

T h e o r e m 14. Given an s • t interval representation matrix, deciding if the repre-
sentation is minimum can be done in O(log s) time with O(s t / log s) E R E W P R A M
processors, or in 0(1) time with O(st) Common C R C W P R A M processors. Both
algorithms are time-and-work-optimal.

If an interval representation matr ix is not minimum, we can obtain a mini-
mum one by deleting some columns. However, we cannot obtain such a matr ix
by simply deleting all columns that do not correspond to IPs initially, since one
column may become to correspond to an IP as a result of deleting a neighbor-
ing column. Below we describe a sequential procedure for obtaining a minimum
interval representation.

First compute l[i] and r[i] for 0 < i < t. Then perform the following task.

0 f o r i := 1 t o t d o m[i] := l[i] ^ od;
I i := 1;
2 whi le i < = t d o
3 i f / [/] = 1 A r[i] = 0 t h e n
4 w h i l e r[i] = 0 d o i := i + 1 od;
5 re[i] := 1;
6 fi;
7 i : = i + 1 ;
8 od;

Line 0 sets re[i] to 1 iff Column i corresponds to an IP. Then we scan the
columns from left to right (Lines 2-8). If a column corresponds to a left endpoint
but not a right endpoint, we will repeatedly remove columns (keep m[i] as 0) until
we have reached a column that corresponds to a right endpoint (Line 4). Then the
column corresponds to an IP and will remain (set m[i] to 1 at Line 5). When the
above procedure terminates, the columns that correspond to IPs (m[i] = 1) form
a minimum interval representation.

The parallel procedure can work as follows. First, set m[i]'s as Line 0. Then,
for each left endpoint that does not correspond to an IP, find the closest right
endpoint, say k, to its right, and set m[k] to 1. This can be easily done within the
resource bounds for parallel prefix computation. Once we have identified all the
columns corresponding to maximal cliques, we simply apply subarray computat ion
on all the rows. It is now easy to conclude the following.

T h e o r e m 15. Given an s x t interval representation matrix, a minimum interval
representation can be obtained in O(log(st)) time with O(st / log(st)) processors by
a time-and-work-optimal E R E W P R A M algorithm, or in O(log t / log log t) time
with O(st log log t / log t) processors by a time-and-work-optimal Common C R C W

261

P R A M algorithm, or in 0(1) time with O(st) processors by a time-optimal BSR
algorithm.

Next we consider the problem of deciding if a circular arc representation is
minimal. If follows from Theorem 10 that the problem can be solved by checking
if each column of the representation matr ix corresponds to an IP. For the same
reason as above, if the input matr ix is of size s x t and s < t, we can conclude
immediately the representation is not minimal. So we only need to consider the
case s > t.

The procedure works as follows. We first locate all the clockwise and counter-
clockwise endpoints. Then for each column, say i, perform the following task. If the
column corresponds to both clockwise and counterclockwise endpoints, then find
the shortest arcs, say a and b, whose clockwise and counterclockwise endpoints are
i, respectively. Then i is an IP iff the size of intersection of a and b is 1. Both a
and b can be found using a variation of the procedure for finding the first 1 in a
(0, 1)-array, which takes O(1) t ime and O(t) Common CRCW PRAM processors
[13], or O(logt) t ime and O (t / l o g t) EREW PRAM processors. It is now easy to
conclude the following.

T h e o r e m 16. Given an s • t circular arc representation matrix, deciding if the
representation is minimal can be done in O(logs) time with O(s t / l ogs) E R E W
P R A M processors, or in 0(1) time with O(st) Common C R C W P R A M proeessors.
Both algorithms are time-and-work-optimal.

Below we consider how to construct a minimal circular arc representation. The
method is sketched as follows. First we obtain all the clockwise endpoints e[i]'s and
counterclockwise endpoints b[i]'s. Then starting from the first column, we perform
the following task for each column: Check, based on the values of b[i]'s and e[i]'s,
if the current column, say c, corresponds to an IP. If so, set m[c] to 1. Otherwise,
delete the column (keep m[c] as 0) and update b[i]'s and e[i]'s if applicable. At
the end of the iteration, each remaining column corresponds to an IP, and all the
remaining columns form a minimal circular arc representation, by Theorem 10.

We are now going to present an efficient implementation of the algorithm. For
the convenience of the description, we assume, in the following, that the indices
of the first row and the first column are both 0. We also assume, without loss of
generality, that the input matr ix does not contain an all-1 row.

0 fo r i := 0 t o s - 1 do {compute b and e}
1 fo r j := 0 t o t - 1 do
2 i f M[i, j] = 1 A M[i, (j + 1) mod t] = 0 t h e n e[i] := j fi;
3 i f M[i, j] = 1 A M[i, (j + t - 1) mod t] = 0 t h e n b[i] := j fi;
4 od;
5 od;
6 f o r i := 0 t o t - 1 do m[i] := 0 od; {initialize m}
7 f o r i := 0 t o t - 1
8 find shortest arc, say j , whose clockwise endpoint is i;
9 find shortest arc, say k, whose counterclockwise endpoint is i;

262

10 i f both j and k exist and size of their intersection is 1 t h e n m[i] := 1 fi;
l l i f m[i] = 0 t h e n {delete Column i}
12 for j := 0 t o s - 1 do {update b and e, if applicable}
13 i f b[j] = i t h e n b[j] := (i + 1) rood s fi;
14 i f e[j] = i t h e n e[j] := (i - 1 + s) rood s fi;
15 od;
16 ti;
17 od;

Computing the b[i]'s and e[i]'s (Lines 0-5) is straightforward and takes O(st)
time. Lines 8-9 can be easily done in O(t) time. If both j and k exist, we have two
arcs [b[j], i] and [i, elk]]. The size of their intersection can be decided in constant
time. So we can now conclude the following.

T h e o r e m 17. Given an s • t circular arc representation matrix, a minimal cir-
cular arc representation can be obtained in O(st) time.

Suppose M4 is the input circular arc representation. None of the columns cor-
respond to any IP. When Columns 0 and 1 have been deleted, Column 2 becomes
to correspond to an IP. So Column 2 is not removed, according to the above pro-
cedure. Then the rest of the columns are all deleted. So the minimal circular arc
representation matr ix is a column that consists of six l 's only. 1001 1;]

0 1 1 1 0 0 0 1 ~

0 0 1 1 1 1 , M s = ~1
M 4 = 0 1 1 1 1 0 ~I

1 1 1 1 0 0 11
1 1 1 1 1 0 11

To obtain an efficient parallel algorithm, we make some observations. It is easy to
see that deleting a column that does not correspond to an IP yields an equivalent
circular arc representation. Moreover, being an IP is not affected by deleting some
columns. Nevertheless, a column can change status and become to correspond to
an IP as a result of deleting another column, even though the two columns are
not next to each other. Suppose we have two arcs [i, j] and [j, i]. If Column i is
deleted, Column j becomes to correspond to an IP and cannot be deleted. We say
two arcs embrace if they intersect at both endpoints but neither is contained in
the other. If we delete a column, the two neighboring columns and any embracing
columns may change status. It should be obvious that several columns can be
deleted simultaneously if the deletion of one column does not affect the status of
another column. So, if we can identify those columns efficiently, we can also obtain
a more compact circular arc representation efficiently.

0 compute b and e in parallel;
1 fo r i := 0 t o t - 1 codo m[i] := 0 odoc ; {initialize m}
2 min := O; n := t;
3 whi le rain = 0 do {consider odd columns}

263

4 set lena~i, j] and rena~i, j] to 0, for 0 < i, j < n;
5 fo r i := 1 s t e p 2 t o n - 1 eodo {compute lend and rend}
6 f o r j : = 0 t o s - 1 c o d o
7 i f e[j] = i t h e n lena~b~]], i] := 1 fi; {lend[i,j] = 1 means [i, j] is an arc}
8 i f b[j] = i t h e n rename[j], i] := 1 fi; {rend[i,j] = 1 means [j, i] is an arc}
9 odoc ;

10 i f i is an IP t h e n re[i] := 1 fi;
11 odoc ;
12 construct G = (V,E), where V = {vi[i mod 2 = 1 A m[i] = 0 A 0 < i < n}
13 and E = {(vi,vj)] lend[i,j] = rena~i,j] = 1};
14 find a maximal independent set V ~ of G;
15 re[i] := 1 for all vi E V - W;
16 delete Column i of M and m[i] if i mod 2 = 1 and m[i]= 0, for 0 < i < n.
17 let n ~ be the number of columns in the resulting matrix.
18 if n ' = n t h e n min := 1 else update b and e fi;
19 n := nP;
20 od; {next consider even columns}
21 set lend[i,j] and rend[i,j] to 0, for 0 < i , j < n;
22 fo r i := 0 s t ep 2 t o n - 1 e o d o {compute lend and rend}
23 f o r j : = 0 t o s - l e o d o
24 ife[j] = i t h e n lend[b~],i] := 1 fi;
25 i f b[j] = i t h e n rend[e[j], i] := 1 fi;
26 odoc ;
27 if i is an IP t h e n m[i] := 1 fi;
28 odoc ;
29 construct G = (V , E) , w h e r e V = { v i l i m o d 2 = 0 A m [i] = 0 A 0 < i < n - 1 }
30 and E = {(vi,vj) I lend[i,j] = rend[i,j] = 1};
31 find a maximal independent set V ~ of G;
32 m[i] := 1 for all vi E V - W;
33 delete Column i of U and rn[i] if i rood 2 = 0 and re[i] = 0, for 0 < i < n - I.
34 i f the last column does not correspond to an IP t h e n remove it fi;

In order to achieve a polylog time bound, we must identify columns that can
be deleted simultaneously. We first consider odd columns (columns whose indices
are odd numbers) that do not correspond to IPs. Obviously, none of them are
neighbors. However, we may not remove all those columns since there may be some
embracing arcs. To resolve this problem, we construct a graph (Lines 12-13) as
follows. Associate each such column (endpoint) with a vertex. If two arcs embrace
and the size of their intersection is 2, then link the two vertices corresponding to
the two endpoints. So, if two vertices are adjacent in the resulting graph, only one
of the two columns can be deleted. If several vertices are mutually independent ,
then all of the columns can be deleted simultaneously. Therefore, we compute a
maximal independent set of the graph (Line 14). Because of the maximality, any
vertex not in the independent set is adjacent to a vertex in the independent set.
Consequently, the columns associated with the vertices outside the independent set
become to correspond to IPs when the columns associated with the vertices inside

264

the independent set have been deleted. After the deletion of some columns, some
even columns may become odd columns. So we repeat this process and consider
the odd columns again until all odd columns correspond to IPs (Lines 3-20).

Then, in an analogous way, we consider even columns among Columns from 0
to (n - 2) (we do not consider Column (n - 1) for the t ime being since Columns
0 and (n - 1) are neighbors) that do not correspond to IPs. However, in this case,
after some columns are deleted, we do not need to repeat the process since all
columns except possibly the last one now correspond to IPs. Finally, we check if
the last column corresponds to an IP. If not, simply delete it. It is now easy to
conclude the procedure correctly constructs a minimal circular arc representation,
by Theorem 10.

If the procedure runs on M4, Lines 12-13 construct a graph with three vertices
corresponding to Columns 1, 3, and 5, respectively. The graph does not contain
any edge. So all three columns are removed at Line 16 and the intermediate matr ix
is Ms. Then Column 1 corresponds to an IP and the w h i l e loop cannot remove
any more column, so the control goes on to Line 21 and we consider even columns.
The first column of M5 is removed at the end of Line 33. And finally Line 34
deletes the last column.

Before deriving efficient resource bounds for the above procedure, we make
some additional assumptions. The first one is s = O(t2). If this is not true, the
input matr ix contains some identical rows. In this case, we can simply remove and
make row duplicates at the beginning and at the end, respectively. We claim this
can be done within O(log(st)) t ime and O(st) work. Obviously, any row, say i, can
be represented by a pair, (b[i], e[i]), where 0 _< i < s and 0 < b[i], e[i] < t. First we
sort the rows using radix sort. Then we can identify row duplication in constant
time with O(s) EREW PRAM processors. We sort e[i]'s by actually sorting e'[i]'s,
where e'[i] = se[i] + i. So each e'[i] is distinct and is in the range [0, st - 1].
Such numbers can be sorted in O(log(st)) t ime with O(st/log(st)) EREW PRAM
processors [7]. Then b[i]'s can be sorted using the same method. Now, the validity
of the claim follows immediately.

The next assumption is t = O(s). If this is not true, some columns do not
correspond to any endpoint. In this case, we simply delete those columns. This
can obviously be done in O(log(st)) t ime and O(st) work on an EREW PRAM.

With the above assumptions, let's now consider the resource requirements of
the procedure. It is easy to see the most expensive part is the w h i l e loop (Lines
3-20). Lines 5-11 can be done in O(log s) t ime with O(st) work on EREW PRAM.
One challenging step is to find a maximal independent set (Line 14). Currently, the
most efficient algorithm solves the problem in O(log 3 v) t ime with O((v + e) log 2 v)
work on an EREW PRAM [14], where v and e denote, respectively, the number of
the vertices and the edges in a graph. In our case, v <_ t /2 = O(t). Since each edge
corresponds to two embracing arcs (rows), we have e < s/2 = O(s). Therefore,
Line 14 takes O(log ~ t) t ime with O((s § t)log 2 t) work on an EREW PRAM. The

2 total work of the loop body (Lines 4-19) is O(st + (s + t) log t) = O(st) since
3 t = O(s). The total t ime of the loop body is O(logs + log t). By Assumption

1, logs = O(logt). So the loop body takes O(log3t) time. Since the loop iterates
O(logt) times, the loop takes O(log 4 t) t ime and O(st log t) work. Now the total
resource bounds follow easily.

265

T h e o r e m 18. Given an s • t circular arc representation matrix, a minimal circu-
lar arc representation can be obtained in O(log s+log 4 t) time with O(st log t~ (log s+
log 4 t)) processors on an E R E W PRAM.

The time lower bound on the EREW PRAM is f2(log(st)) and does not match
the above upper bound. We conjecture the algorithm is not time-optimal. The
algorithm is work-optimal within a factor of O(logt). If the input is a 69 circular
arc representation matrix, then the above algorithm is definitely not time-optimal.
Below we describe a time-optimal procedure.

First, we eliminate all column duplication. Then, we check, for each column, if
it is contained in another column. If so, delete it. It follows that, in the resulting
matrix, no column contains another. So the resulting matrix gives a minimum
69 circular arc representation by Theorem 11, and also a minimal circular arc
representation by Theorem 12. Deciding whether Column i contains Column j
takes constant t ime wi th O(s) Common CRCW PRAM processors. There are
O(t 2) pairs of columns. So all the IPs can be identified in constant time with
O(st 2) Common CRCW PRAM processors. On the EREW PRAM, this can be
done in O(log(st)) time with O(st 2) work. Once all the IPs are identified, we can
obtain a minimum 61 circular arc representation by applying subarray computation
on all the rows. Now, it is easy to conclude the following.

T h e o r e m 19. Given an s • t 69 circular arc representation matrix, a minimum
69 circ.ular arc representation (also a minimal circular arc representation) can be
obtained in O(log(st)) time with O(st~/log(st)) E R E W P R A M processors, or in
O(log t / log log t) time with O(st 2 loglog t~ logt) Common C R C W P R A M proces-
sors, or in O(1) time with O(st 2) BSR processors. All algorithms are time-optimal.

Although the above procedure for computing 61 circular arc representations is
time-optimal, the total work involved moves away from optimality.

4 D i s c u s s i o n

In this paper, we have studied the properties of minimal interval and circular arc
representations and have given some efficient algorithms for the recognition and
construction of such representations. The models of parallel computation used in
this paper include EREW PRAM, CRCW PRAM, and BSR. We have presented
algorithms for each of these models and they are of independent interest. One
might ask the following questions: Which model is the best? Is it sufficient to
design algorithms on only one of the models? It is often debatable whether one
model is better than another. There is no universal agreement on the answer. It
seems premature to tell at this point. There is an interesting project on building
PRAM-type computers (see, e.g., [1]). BSR is a relatively new model; the analogous
project is not known currently but it is technically feasible (see, e.g., [18]). As in
the way of deciding Gordon Bell Prize winners, probably a good way to compare
the performance between PRAM and BSR computers is to run sample programs

266

on both types of machines, in which case efficient algorithms on both PRAM and
BSR are needed. Perhaps someday, the algorithms in this paper will Mso be used
for this purpose.

R e f e r e n c e s

1. F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, and D. Scheerer. On the phys-
ical design of PRAMs. Computer Journal, 36(8):756-762, December 1993.

2. S. G. Aid and G. R. Guenther. Broadcasting with selective reduction. In G. X.
Ritter, editor, Proceedings, l l th IFIP World Computer Congress, pages 515-520,
1989. North-Holland.

3. P. W. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW
PRAM. Journal of the ACM, 36(3):643-670, July 1989.

4. S. Benzer. On the topology of the genetic fine structure. Proceedings, Nat. Acad.
Sci., 45:1607-1620, 1959.

5. R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of
the ACM, 21:201-208, 1974.

6. L. Chen. Efficient parallel algorithms for several intersection graphs. In Proceedings,
22nd Int'l Syrup. on Circuits and Systems, pages 973-976. /EEE, 1989.

7. L. Chela. Efficient deterministic parallel algorithms for integer sorting. In S. G.
Akl, F. Fiala, and W. W. Koczkodaj, editors, Proc. International Conference on
Computing and Information, Lecture Notes in Computer Science, Vol. 468, pages
433-442. Springer-Verlag, 1990.

8. L. Chen. Optimal parallel time bounds for the maximum clique problem on intervals.
Information Processing Letters, 42(4):197-201, June 1992.

9. L. Chen. Efficient parallel recognition of some circular arc graphs, I. Algorithmica,
9(3):217-238, March 1993.

10. L. Chen. Revisiting circular arc graphs. In D.-Z. Du and X.-S. Zhang, editors,
Proceedings, 5th Annual International Symposium on Algorithms and Computation,
Lecture Notes in Computer Science, Vol. 834, pages 559-566. Springer-Verlag, 1994.

11. R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Infor-
mation and Computation, 81(3):334-352, June 1989.

12. S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM Journal on Computing,
15(1):87-97, 1986.

13. F. E. Fich, P. L. Ragde, and A. Wigderson. Relations between concurrent-write
models of parallel computation. In Proc. 3rd A CM Syrup. on Principles of Distributed
Computing, pages 179-189. Association for Computing Machinery, 1984.

14. M. Goldberg and T. Spencer. Constructing a maximal independent set in parallel.
SIAM J. on Discr. Math., 2(3):322-328, August 1989.

15. U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algorithms for interval graphs
and circular-arc graphs. Networks, 12:459-467, 1982.

16. J. L. Heunessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmaun, 1990.

17. R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831-838, October 1980.

18. L. F. Lindon and S. G. Akl. An optimal implementation of broadcasting with selec-
tive reduction. IEEE Transactions on Parallel and Distributed Systems, 4(3):256-
269, March 1993.

