
Efficient Software D a t a Prefe tch ing for a Loop
w i t h Large Arrays +

Se-Jin Hwang and Myong-Soon Park

Department of Computer Science
Korea University

Seoul, Korea, 136-701
{hsj,myongsp}@cslabl.korea.ac.kr

Abs t rac t . In this paper, we propose a software data prefetching mech-
anism to cope with following two unfavorable phenomenons from large
arrays. One is the failure of the reuse, and the other is the effect of the
presence of unnecessary prefetching instructions. Also, we realized the
proposed mechanism into a preprocessor,LOOP.

1 I n t r o d u c t i o n

The memory latency problem by cache miss is very serious in superscalar micro-
processor that allows the simultaneous issuing of multiple instructions[2]. There-
fore, techniques to reduce or tolerate large memory latency become essential for
achieving high processor utilization. As one of the techniques to mitigate the
large memory latency, the researches on data prefetching have been done for a
few years[l, 2, 3, 4].

Prefetching transaction can be triggered either by a dedicated instruction[l,
4] or by a hardware auto-detection[3]. We call the former as software data
prefetching, and the latter hardware data prefetching. The major drawback of
software data prefetching is extra processor cycles to execute prefetching in-
structions inserted by a compiler[4]. Henceforth, the effectiveness of a software
scheme is sensitive to how well the compiler inserts these instructions.

Mowry et al proposed a selective prefetching mechanism[4] which inserts
prefetching instructions for array elements likely to show cache miss. The reuse
analysis by the compiler makes it possible that we should insert only necessary
prefetching instructions. In this mechanism, it is very crucial that the compiler
should insert necessary prefetching instructions and transform a loop to exploit
data reuse. However, these two items can be threatend by large arrays.

Unless a cache could hold one row of array accessed non-sequentially, some
elements might be displaced from a cache[5]. Such fact urges us to load again
data that used to be in the cache.

In addition, larger the size of an array becomes, more the number of prefetch
instructions must be executed. When the array has LCD 2, same elements of the

* This paper was supported (in part) by NON DIRECTED RESEARCH FUND, Korea
Research Foundation

2 We abbreviate loop carried dependency to 'LCD' in the rest of this paper.

302

array may be used at different loop iterations. Such fact may turn out many
prefetching instructions to be unnecessary, if they were inserted uncarefully, rib
make mat ters worse, provided that the array were large, the amount of wasted cy-
cles to execute the unnecessary prefetching instructions could be non-negligible.

In this paper, we propose software data prefetching mechanism which con-
siders LCD, and the size of a cache along with the number of data that will
be referenced. The proposed mechanism has two philosophies to cope with the
failure of the data reuse: One is to reuse it desparately, and the other to give it
up. Also, in order to eliminate unnecessary prefetching instructions for an array
with LCD, it apropriately transforms a loop based on an accurate analysis.

The organization of the rest of this paper is as follows. First, section 2 dis-
cribes the motivat ion of this work. Section 3 proposes software data prefetching
mechanism to mit igate the problem indicated in section 2. Section 4 describes
the simulation method to measure the execution cycles of loops transformed
by LOOP[6]. LOOP is a preprocessor that transforms a loop in order to insert
prefetching instructions by using proposed scheme. We finally conclude in section
5.

2 M o t i v a t i o n

In this section, we address the types of performance degradation by large arrays
in a loop.

2.1 T h e f a i l u r e o f d a t a r e u s e b y l arge a r r a y s

When the non-sequentially accessed array is so large that a cache cannot hold
one row of the array, some element could be displaced before reuse[5]. Therefore,
it is necessary that we should reload data that used to be in the cache.

To est imate how successfully array elements can be reused as the array size in-
creases, we transformed VPENTA 3 using the selective prefetching mechanism[4].
VPENTA is a nested loop with depth 2, and has eight array variables within a
body. Furthermore, since all arrays in VPENTA are accessed non-sequentially,
it is heavily sensitive t o the size of the arrays. When we applied such selec-
tive mechanism into VPENTA, we assumed that the size of cache line is twice
as much as that of one array element. Two innermost loops are generated af-
ter transforming VPENTA with the selective mechanism. The first one includes
prcfetching instructions, but the second does not, in order to use elements that
have been brought into a cache during the execution of the first innermost loop.

We estimated the hit ratio of accessing array Y in the second innermost loop
in VPENTA varying the size of the array. Graphs in Figure 1 present how well
the array Y can be reused with increasing the size of it. In general, the graph
for the size of 64• shows higher hit ratio than that for the size of 256•

It indicates that the larger the size of array is, the fewer the possiblity of
reusing data accessed non-sequentially is. This phenomenon means that more

3 VPENTA is a benchmark loop included in NAS kernels

303

90

80

70 g

t 5o

1

t

2 3 4 5 6 7 8 9 I0111213141SI6171019~ '~212223242S~ '627~11293VJ

lOOP ~ la r~n

Fig. 1. Degree of reusability of array Y in VPENTA

reloading costs must be paid as the number of accessed array elements is in-
creased.

To remove such overhead, our proposed mechanism examines whether array
elements will be held in a cache or not. Unless we can reuse them in the cache,
it applies indiscriminate prefetehing mechanism[l] proposed by Porterfield. Oth-
erwise, we applies the selective mechanism.

2.2 The negative effect of large arrays with LCD

Unnecessary prefetching instructions for an array with LCD might be easily
inserted into a loop. Unfortunately, when the array is large, the total waste cycles
to execute such instructions comes to be considerable. Therefore, it is essential
that we consider prudently LCD to achieve efficient software data prefetching.

To illustrate how many prefetching instructions are turned out to be unnec-
essary by LCD, we present Figure 2. When we insert the prefetching instruction,
we assume that the size of cache block is twice as much as tha t of an element of
the array A.

for(i=O;i < 100;i++){
prefetch(~(A[i]));
d[i + 1] = g[i] + ...;
}

(a) a prefetching instruction for
A[i] is inserted

for(i=O;i< 100;i++)(
prefetch(&(A[i + 1]));
A[i + 1] = A[i] + ...;
}

(b) a prefetching instruction for
A[i + 1] is inserted

Fig. 2. Two cases of a loop which includes a prefetching instruction for an array A
with LCD

Under this assumption, we can presume that the percentage of executed
unnecessary prefetching instructions will be 99% at the execution of the loop in

304

Figure 2(a). All executec~ prefetching instructions, except for the first, will be
unnecessary, since the object of the prefetching has been already cached before
one iteration.

In case the argument of the prefetching instruction is substituted with '&(A[i+
1])' as in Figure 2(b), the percentage of unnecessary prefetching instructions
comes to be about 50% with the same presumption described above. At every
two iterations, the inserted prefetching instruction tries to access array element
which has been already cached in.

From Figure 2, we can know that LCD is should be taken into account on
inserting prefetchinging instructions. Our proposed mechanism transforms prop-
erly a loop with consideration of LCD of an array. To avoid inserting unnecessary
prefetching instructions, it peels as well as unrolls the loop.

3 Proposed Software Data Prefetching

In this section, we propose a software data prefetching mechanism to cope with
the problems indicated in section 2. First, in subsection 3.1, we describes mem-
ory reference pat tern of an array within a loop. From subsection 3.2 to 3.4, we
:propose loop transformation algorithms to insert efficiently prefetching instruc-
tions into the loop, according to the memory reference pattern. We put these
algorithms all together to be applicable to general nested loop in subsection 3.5.

3.1 M e m o r y r e f e r e n c e p a t t e r n

We denote the k-th loop nest in nested loop by Lk (1 < k < n, n : the depth of
nested loop). As the level of a loop is proceeded one by one from the innermost
to the outermost, we assume that the value of k increases by one. lk also refers to
the loop control variable of the Lk. We use Loc(Ik) as a notation to express the
corresponding position of loop control variable Ik into subscripts of an array. P %
stands for the memory reference pattern that comes out at running an iteration
of Lk. Since memory reference pattern is intrinsically the sequence of repeated
cache hit and miss, we can describe P~ as (M a Hb), here, M and H mean cache
miss and hit respectively, a and b refers to the number of repetition of cache
miss and hit respectively. Fk also represents the upper bound of Lk.

Memory reference pattern can be classified by comparing Loc(Ik) with Loc(Ik_l)
of all array variables into a loop body : sequential, non-sequential, fixed-positional
reference patterns. As the corresponding position of Ik into array subscripts is
moving from the right to the left, we assume that Loc(Ik) is increasing by one.
]n case that Ik corresponds to no position of the array subscripts, Loc(Ik) is 0.
We describe the features of memory reference patterns, and the corresponding
result of comparing Loc(Ik) with noc(Ik_ t) as follows.

- Sequential memory reference pat tern
The adjacent array elements can be reused only a few iterations later.

Loe(ll) = 1 , (k = 1) (1)

Loe(Ik) > Loe(h_l) , (k > 1) (2)

305

- Non-sequential memory reference pat tern
The adjacent array elements can be reused after one row of the array was
entirely accessed.

Loc(I :) # 1 , (k = 1) (3)

Loc(Ik) < L o c (I k - :) , (k > 1) (4)

- Fixed-positional memory reference pat tern
This array element comes to be reused, after the first compulsory miss.

L o c (h) = 0 (5)

F rom subsection 3.2 to 3.4, three loop transformation algorithms are intro-
duced. They insert efficiently prefetching instructions into a loop, according to
the correspoding memory reference pattern.

3.2 Loop t r a n s f o r m a t i o n a l g o r i t h m for s equent ia l re ference p a t t e r n

When we access an array sequentially in a loop, we come to reference the adjacent
elements in a memory. Therefore, more than one cache hit will occur, after one
cache miss. It is the sequential reference pattern. This sequence will be repeated
during our references to this array. Pak, sequential access pattern of an array a
can be represented at k-th loop nest as follows.

p a l -- (M H v)F~/(v+]) , (k = 1) (6)

Pak = (Pak_:) F'/(~+:) , (k > 1) (7)

Above, v can be calculated by

a r r a y e l emen t s ize _ 1. (8)
v = cache l ine s i ze

Since the memory reference pattern of the lower level is preserved as shown in
the above expression (7), transformation algorithm only have to work at the
innermost loop level.

When an array has LCD, many references to the array exist within a loop
body. Therefore, we can express the memory reference pat tern of this array at
k-th loop nest as P a " k , (n > 0). Here, n means the number of memory references
which access the array a within a loop body. Sequential reference pat tern of the
array a with LCD can be expressed like the following.

Pa"k = (Pa~ H =) , (x > 0) (9)

We can interpret the expression (9) that a reference to an array with LCD tends
to access an array without LCD for a while, but, it always comes to show cache
hit after the particular loop iteration. From such particular loop iteration, this
reference uses array elements which have been already in the cache by other
references with larger subscript. The reference with largest subscript accesses
the array as f l i t had no LCD. Therefore, the value of x in expression (9) of such
reference is 0.

Based on expression (6),(7) and (9), we present an algorithm for an array
with sequential reference pat tern in Figure 3.

306

if(LCD appears){
unrolling = the smallest x in expression (9).
/ , unrolling indicates how many iterations will be peeled. */
peel iterations as much unrolling.

}
i f (k = 1)1

/ , k indicates the level of a nested loop */

unroll the k-th loop v + 1 times.
insert prefetching instructions in the body of unrolled loop.
split unrolled loop.
/ , we split the loop into prologue, body
and epilogue loops, to secure enough prefetch distance. , /

}

Fig. 3. Loop transformation algorithm for an array with sequential reference pattern

3.3 L o o p t r a n s f o r m a t i o n a l g o r i t h m fo r n o n - s e q u e n t i a l r e f e r e n c e
pattern

Non-sequential reference pattern can be represented as follows.

Pal = (M F1 HFlx~) , (k = 1) (10)

Pak = ((P a k - l { M }) Fk (P a k - l { H }) Fkx~) , (k > 1) (11)

Here, P~'k- I{M} and P % - I { H } represent a sequence of cache hit and a se-
quence of cache miss of memory reference pat tern at Lk-1 respectively, v can
be calculated using expression (8). As we can see from the expression (11), the
sequences of cache hit and miss shown at the execution of the (k - 1)th loop are
preserved at k-th loop nest. Therefore, we only have to unroll the k-th loop v
times. After unrolling, our algorithm for this pat tern inserts prefetching instruc-
tions only into the first (k - 1)th loop. If the number of array elements that are
referenced during the excution of k-th loop is so large that the cache cannot hold
all referenced elements, some of these will conflict with old cached ones. Such
conflicts among array elements prevent us from analyzing which elements can
be reused. By examining the expression (12), we cgn determine whether such
conflicts will occur or not.

Fk x na > C S x 2. (12)

Here, na means the number of array elements that will be referenced, and C S
the cache size. If the expression (12) is satisfied, memory reference pat tern will
be the followings.

Pa l = (Ml%) , (k = 1) (13)

Fk (k 1) (14) Pak = P k - 1 , >

307

We present the loop transformation algorithm for non-sequential reference pat-
tern in Figure 4. It considers the number of array elements that will be refer-
enced, and meet with the case that we can hardly exploit the reuse property of
the cache. The algorithm in Figure 4 has two opposite philosophics: one is to
ignore the reuse property, and the other to exploit it.

if(we can hardly reuse array elements in a cache){
/* the condition can be examined using expression (12) */
inserts prefetching instructions for all arrays accessed at the k-th loop nest.
/* Here, we ignore the reuse property in the cache,
and, prefetch array elements indiscriminately , /

}else{
unrolls the body of k-th loop nest.
inserts prefetching instructions only the first (k - 1)-th loop.
/* Here, we unroll the loop based on the pattern
of expressions (10),(11) to exploit reuse property ,/

}

Fig. 4. Loop transformation algorithm for an array with non-sequential reference pat-
tern

3.4 L o o p t r a n s f o r m a t i o n a l g o r i t h m fo r f i x e d - p o s i t i o n a l r e f e r e n c e
p a t t e r n

If an array does not include I~ as a subscript, this will be referenced like a single
variable at the execution of k-th loop. This array is not affected by the decrement
or increment of the value of the Ik. So, all accesses to this element will show
cache hit continuously after one cache miss at the first time. We refer to such
reference pat tern as fixed-positional reference pattern. It can be represented as
follows.

P a l = (M H F1-1) , (k = l)

Pal: = (Pak-1 H Fk-]) , (k > 1)

(]5)
(16)

Since only one cache miss is shown in expression (15), peeling one iteration is
enough measure to optimize the number of prefetching instructions. We express
it as an algorithm in Figure 5.

3.5 G e n e r a l i z e d A l g o r i t h m

Algorithms from Figure 3 to Figure 5 can be applicable to only one loop level, and
to only one memory reference pattern. It is practically essential tha t we should

308

peel the body of the k-th loop.
if(k = 1) inserts prefetching instructions above the loop.

Fig. 5. Loop transformation algorithm for an array with fixed-positional reference pat-
tern

k ~ 1. / , the innermost loop level , /
while(k < the outermost toop level)

P~ ~ memory reference patterns shown at level k.
/* P, : temporary buffer holding reference patterns. , /
if(P, includes sequential memory reference pattern)

apply the algorithm in Figure 3.
if(P, includes non-sequential memory reference pattern)

apply the algorithm in Figure 4.
if(P, includes fixed-positional memory reference pattern)

apply the algorithm in Figure 5.
k ~- k + 1 . /* navigates to the upper loop nest , /

Fig. 6. Generalized loop transformation algorithm

make these algortihms cooperate one another to transform a general nested loop
and to insert prefetchirtg instructions into it.

Therefore, we generalize three algorithms to insert prefetching instructions
efficiently into a nested loop. Figure 6 shows a generalized loop transformation
algorithm. It navigates every loop nests from the innermost to the outermost.
It identifies memory reference patterns of all arrays at each loop nest, and then
transforms a loop using a corresponding algorithm.

4 S i m u l a t i o n

In this section, we describe a simualtion method in order to measure the exe-
cution cycles of loops transformed by LOOP[6]. We als0 present our simulation
results.

4.1 E n v i r o n m e n t s

We defined our own mutated - C language[6]. Our m u t a t e d - C includes only
for , i f and assignment statements.

The preprocessor, LOOP, can understand only such restricted specifications
of mutated - C. LOOP transforms ' for ' statements in mutated - C, and trans-
forms it with prefetching instructions. The prefetching instructions inserted into
the loop like an external function call, for example, 'prefetch(&(A[i][j]));'. The

309

argument of this function is the address of one array element. The loop pro-
duced from the preprocessor takes a form of the program written in an original
C language.

We obtain machine codes of the transformed loop using dlxcc, the compiler
in DLX simulator. After compilation with dlxcc, the prefetching instructions
inserted by LOOP are changed into DLX machine code, jal. However, since DLX
simulator cannot support our requests, such as a prefetching request buffer, we
made our own simulator using C.

To execute the DLX machine codes in our simulator, it is necessary that we
should change every DLX machine codes into functions defined in our simulator.
However, it was so laborious and monotonous work that we made a converter
called DLX2C[6] that performs the dirty work only in a few seconds.

D L X 2 C produces a C program that describes the DLX machine instructions.
After linking it with our simulator, we can obtain an executable file. This exe-
cutable file keeps track of the machine codes of the loop transformed by LOOP,
and calculates execution cycle, processor idle cycle etc. To quantify the execution
cycle, we assume that the cycle t ime spent at the execution stage of individual
instructions of DLX as Table 1.

Table 1. Assumed instruction cycle
DLX instructions cycles

add addi addui sub subi movfp2i movi2fp lhi sll jal j 1
sleu slt sle sgtu sge sgt bnez beqz 2

multf divf 3

Benchmarks evaluated in this paper are a part of Lawrence Livermore Loop and
VPENTA. LLLs of number 1, 7, 9, 11, 18 and 21 are used. LLL 1, 7, 11, 18 loop
have arrays with sequential reference pattern. LLL 9 has only one array variable
with non-sequential reference pattern. We set the size of arrays in these loops to
be 1000.

All arrays accessed in VPENTA have only the non-sequential reference pat-
tern, whereas, all arrays in LLL 21 have three kinds of reference pattern. On sim-
ulating VPENTA, we vary the size of array variables in it to 64 x 64, 128 x 128,
256 x 256 and 512 x 512. We also vary the total iteration number of LLL 21 to
the followings: 20 x 20 x 100, 20 x 20 x 500, 20 x 20 x 1000, and 20 x 20 x 2000.
Since cache pollution phenomenon breaks out seriously in VPENTA, we increase
the size of array variables by adding prime number to avoid it intentionally[4].

A secondary cache miss is assumed to be delayed by as much as 30 cycles,
when it tries to access memory, and a primary cache miss is assumed to spend
13 cycles. To handle prefetching, the hardware has a prefetch issue buffer, which
can hold up to 16 prefetching requests.

Processor is assumed to have an on-chip primary data cache of 2K bytes, and
a secondary cache of 64K bytes. Both caches are direct-mapped and use 8 bytes
blocks. The size of array elements that is mentioned in this paper is assumed
to be 4 bytes. The primary cache is operated by write-through manner, and the
secondary cache by write-back manner.

310

4.2 E v a l u a t i o n

In each bar of all graphs from Figure 7 to 10, the bot tom section is the amount of
time spent executing instructions, and the upper section is the processor idle t ime
due to memory access. We use the following characters to denote the prefetching
method applied to experimented loops: I, S, P. Each of these represents indis-
criminate prefetehing method, selective prefetching method and proposed one
repectively. Character N denote a loop which is not reorganized.

Figure 7 presents the performances of LLL1, LLL 7, LLL 9, LLL 11 and
LLL 18. Since LLL 18 is a nested loop with depth 2, we can see rather good
performance by avoiding the insertion of unnecessary prefetching instructions
for arrays with LCD.

I0

J

i
Z

100

90

BO

10

BO

50

40

30

20

10

0
N I S P N I S P N I S P N I S P N I S P

LLL I LLL 7 LLL 9 LLL 11 LLL I 8

Fig. 7. Normalized execution cycles of simulated loops

Figure 8 shows the simulation results of LLL 21, the loop of matr ix multipli-
cation. Only three arrays are accessed within the body of LLL 21. We applied
four prefetching methods to LLL 21 with different number of iterations. From the
rightmost to the leftmost of each title, each number represents a loop bounds of
the each loop nest from the innermost to the outermost. Cache can hold M1 arrays
accessed within a loop body when the loop bounds of the innermost loop is 100.
Meanwhile, as the iterations of the innermost loop is larger and larger, proposed
method shows somewhat better performance than the selective method.

Figure 9 shows the simulation results of VPENTA. Since VPENTA is com-
posed of only eight arrays with non-sequential memory reference pattern, heavy
conflict comes to appear at run time. Henceforth, in Figure 9, we can find it that
only a few cycles are saved with increasing of the iteration of innermost loop.
Leftmost four graphs in Figure 9 is the results of simulations in case that array
variables in VPENTA has 64 x 64 elements. Since such small number of array
elements can be loaded in cache without conflict,

160 ,

110

100

80

~, 140 I I I e,.==,=,, E==~,=, C~a,,
120 - - [] I ~ m r S t d C.pcle

100

II I I I I i l II I I l i i
N I S P N I $ p N I S P N I S P

20xZOxl O0 20X20XSO0 20X20xl OOO 20X20X2000

Fig. 8. Normalized execution cycles of LLL 21

i 70
60

50

30

10
N I S P

G4xB4

i i 113
H H ~-

H .H "~-

h
I S

1 2 ~ 1 2 8 256x256

N I S P N S P
512x512

311

Fig. 9. Normalized execution cycles of VPENTA

Figure 10 shows a percentage of unnecessary prefetching instructions. Our
proposed algorithm is more wasteful than the selective one. However, as the
iteration of loop is larger and larger, the percentage of unnecessary prefctching
instructions are getting smaller and smaller.

5 C o n c l u s i o n

In this paper, we propose a software data prefetching mechanism to mitigate the
problem which can occur by large array. To attack the problem of the failure of
reusng data which is accessed non-sequentially, proposed algorithm has two op-
posite tactics: downright ignorance of it[l] and exhaustive consideration[4]. Addi-
tionally, our mechanism can successfully avoid inserting unnecessary prefetching
instructions.

312

It

.,,d

m.

'S

I S P I S P I S P

120x126 256;<256 512:~12

Fig. 10. Percentage of unnecessary prefetching instructions (VPENTA)

We realize our proposed algorithm into a preprocessor,LOOP[6]. After sim-
ulation using it, we can see that our method shows bet ter performance than
previous prefetching methods.

In the future, we will consider the type of the reference to an array, load or
store. Relying on these types, the prefetched elements will be appropriately kept
within a hardware which we plan to design and add. This extra hardware holds
some prefetched array elements, and manages it in cooperation with a secondary
cache. The preprocessor,LOOP, should t ransform a loop in the consideration of
this hardware.

References

1. D. Callahan, K. Kennedy and A. Porterfield: Software prefetching. Proc. 5th AS-
PLOS. (1991) 40-52

2. Chen, T. F.: Data Prefetching for High-Performance Processors. TR 93-07-01,
Dept. of Computer Science and Engineering, University of Washington, (1993)

3. Fu, J. W. C. and Patel, J. H.: Data Prefetching in Multiprocessor Vector Memories,
Proc. 18th ISCA, (1991) 54-63

4. Mowry, T., Lam, M. S. and Gupta, A.: Design and evaluation of a compiler algo-
rithm for prefetching. Proc. 5th ASPLOS. 0992) 62-73

5. M. E. Wolf and M. S. Lam: A Data Locality Optimizing Algorithm. Proc. SIG-
PLAN '91 PLDI (1991) 30-44

6. Se-Jin Hwang and Myong-Soon Park: Loop Iteorganizing Algorithm for Data
Prefetching. TIt KUCS-CS-94-004, Korea University, (1994) (in Korean)

