
Load Balancing
and

Parallel Algorithms II

A Model for Efficient Programming of Dynamic
Applications on Distributed Memory Multiprocessors

A. Erzmann, M. Hadeler, C. Mtiller-Schloer

Institut fiir Rechnerstrukturen und Betriebssysteme Universit~t Hannover
Lange Laube 3, D-30159 Hannover, Germany

erzmann@irb.uni-hannover.de

Abstract. We present the TDC programming model which aims to ease the effi-
cient implementation of dynamic applications on distributed memory multiproces-
sots. This model is based on task descriptors, data objects and capabilities which
reside in distinct, globally accessible domains. Dynamic load balancing will be
done by the system software and is completely transparent to the user. This often
leads to a significant reduction of code complexity. Our prototype of the TDC mod-
el on an 128 node nCUBE2 uses a distributed diffusion scheme to balance load dy-
namically. We have developed a task selection strategy which reduces the load
balancing overhead. Measuring and simulation results for a parallel implementa-
tion of a block matching algorithm indicate that runtime efficiency close to the op-
timum can be achieved with the TDC model even for highly parallel systems.

Keywords. Programming Model, Dynamic Load Balancing, Block Matching, Dis-
tributed Memory Multiprocessors.

1 Introduction

From the user's point of view two goals are crucial when programming distributed
memory multiprocessors: efficiency and ease-of-programming. Whether both require-
ments can be met simultaneously depends on the appropriate choice of the program-
ming model. The programming model is the description of the virtual parallel
architecture as it is seen by the user, i.e. it provides a certain level of abstraction. The
better this level fits the application requirements, the easier the programming will be for
the user. On the other hand, the implementation of the programming model on a given
parallel machine may be the source of substantial efficiency losses if the provided ab-
slraction and the hardware differ too much. A programming model is easy to use if it
precisely supports the application needs and on the other hand, may be implemented ef-
ficiently if its abstractions closely resemble the underlying hardware. If the problem
structure dOes not naturally map onto the hardware of the parallel machine, then the user
has to find a good trade-off between the ease-of-programming and efficiency by care-
fully choosing the programming model. This choice will be influenced by the applica-
tion properties and the target architecture.

2 T h e T D C P r o g r a m m i n g M o d e l

Before the description of the TDC programming model (Tasks, Data Objects and Cap-
abilities), we define the application class and target multiprocessor architecture:

368

Application Class

The TDC Programming Model is designed to ease the efficient programming of dynam-
ic applications, These applications have at least one dynamic execution phase of con-
siderable length with respect to the total execution time. A dynamic execution phase
(DP) has the following properties: The work which has to be done during a DP can be
split into a certain number of tasks which may be created at any time during the DP. All
tasks which are existent at a given point of time during the DP can be executed inde-
pendently and in arbitrary sequence. All information needed to process a task is avail-
able as soon as the task is created, i.e. there is no need for direct task interaction. Task
dependencies are resolved by delayed creation of the dependent task. The task execu-
tion time depends on the input data and cannot be predetermined. Examples for dynam-
ic applications are: ray tracing, volume rendering and block matching algorithms.

Target Architecture

The target architecture is a general purpose distributed memory multiprocessor
(MIMD). The nodes of this multiprocessor are linked via an interconnection network.
Examples for this class of multiprocessors are: nCUBE 2, Intel iPSC, Intel Paragon.

2.1 Description

The parallelisation of a dynamic application for a distributed memory multiprocessor
requires the following steps: (1) The load has to be partitioned into tasks, which can be
executed in parallel. (2) The input data has to be partitioned and (3) tasks have to be
assigned together with the required parts of input data to the nodes of the parallel ma-
chine. Since the task execution times are unpredictable, static assignment of tasks often
leads to load imbalance, i.e. low efficiency. To achieve high efficiency it is necessary
to balance the load dynamically, which is done by repeated reassignment of tasks and
data parts at runtime. Since dynamic load balancing requires complex algorithms espe-
cially in highly parallel environments and these algorithms are essentially the same for
a wide range of applications, it is desirable to separate dynamic load balancing activities
from the application code. The TDC programming model provides the user with the ab-
stractions necessary to program his application easily. Moreover it is designed for effi-
cient implementation on the target architecture.

TDC is based on three separate, globally accessible domains: The task bag which con-
tains task descriptors, the data space which contains data objects and the code space
which contains capabilities 1 (Fig. 1).

Worker

The user process, which is written by the programmer, is called the worker. It initializes
the data objects and inserts task descriptors into the task bag. In order to do work, it re-
moves task descriptors (one after another) from the task bag and executes the task using
the specified capability. The task descriptor contains a set of user defined parameters

1 The term capability is not to be confused with an access control mechanism of the same name
in the context of data security.

369

A Task descriptor
...... ~::~::::::::iiii~iiiii ~i~!~i!ii::::::::: [] Data object

.... ~:~:~:~:~:~:~:~:~:~:~:~:~:~#"i~i~i~i~i~:: i :iii~iiii~!i!i~ii~iiii~i!iii ~: iiii~ii!!iiiiiiiii~iiii!iiii!i!!iiii::ii::ii~ ~ Capability
O Task bag access

> Reference to
data object or
capability

Q Worker process

Fig. 1. The TDC programming model.

which specify details of the task execution process. During the task execution period the
worker accesses data objects, which are specified in the task descriptor. Typically there
will be a single worker per processing node.

Task Descriptor

A task descriptor is a data structure which contains (1) references to an arbitrary number
of data objects and a capability and (2) a set of input parameters, which is used by the
capability to distinguish tasks from each other. A task descriptor is created and insetted
into the task bag by a certain worker as soon as the corresponding task is executable and
will be removed by a potentially different worker in order to execute the specified task.

Data Object

Data objects are contiguous pieces of data associated with an globally unique logical
identifier. They are initialized by an arbitrary worker before they are accessed and may
be read by any number of workers simultaneously. The size and number of data objects
is dependent on the application. Data objects reside in the data space.

Capability

A capability is a piece of code which is used by the worker to process a given task. Ca-
pabilities must be loaded into the code space prior to task execution. They can be ac-
cessed by an arbitrary number of workers simultaneously.

2.2 Related Programming Models and Tools

In this section two related programming models (Message Passing, Linda) and the tool
Dynamo for distributed memory multiprocessors are described and compared to TDC.
The suitability of these models for programming dynamic applications is discussed.

Message Passing

In the Message Passing programming model, processes communicate and synchronize
by explicit exchange of messages. No globally accessible data structures exist and

370

therefore tasks, data objects and code have to be encapsulated inside the worker pro-
cesses. Dynamic load balancing can be done (1) by the programmer himself, which is
often prohibitive because of the involved implementation complexity, or (2) by an un-
derlying process migration system [1]. The latter however requires that the location of
processes is transparent to the programmer. Moreover the number of processes per node
must be raised artificially in order to make process migration feasible. Thus the benefit
of dynamic load balancing is limited due to the additional overhead and the coarse grain
size of the balancing entities, i.e. the processes.

Linda

In Linda [2] workers communicate and synchronize via tuples, which reside in the glo-
bally accessible tuple space. Valid operations on tuples are: insert tuple, remove tuple
and read tuple. Since tuples are accessed by contents rather than by address these oper-
ation require a costly associative matching process. In Linda tuples do not have a se-
mantic meaning, i.e. the system cannot distinguish between task descriptors and data
objects. Load balanced execution of dynamic applications is achieved automatically up
to a certain degree since workers remove task tuples from tuple space as needed. This
works well for shared memory multiprocessors but is likely to produce overhead on dis-
tributed memory machines because the communication latency cannot be hidden (tu-
pies reside anywhere in the system and must be searched for and transferred to the
worker which accesses them). The system is not able to support load balancing since
task descriptors cannot be identified and load balancing costs cannot be calculated.

Dynamo

Dynamo [3] is a library for dynamic load balancing on distributed memory multicom-
puters based on the PICL message passing primitives. It provides support for managing
local task queues and for writing code which dynamically balances these queues. The
main differences to TDC are: (1) The underlying programming model neither supports
shared data objects nor capabilities. This limits the range of applications which can be
programmed using Dynamo. (2) The dynamo implementation does not use a runtime
system, i.e. the programmer must explicitly call the load balancer from its application
program (see chapter 3 for the TDC implementation). This synchronizes load balancing
and task execution and thus limits the range of balancer algorithms which can be used.

2.3 Comparison of Programming Models

As stated in the introduction our main concern is to provide ease-of-programming and
high efficiency. Therefore the question which arises is: How much effort is required by
the user to write an efficient implementation of a dynamic application using one of the
above-described programming models?

The effort to identify and express parallelism is essentially the same: In all cases a suit-
able partitioning of load and input data has to be found. Using Message Passing, the par-
titioning generally is contained inside the code, whereas tasks and data objects have to

371

be created explicitly if Linda, Dynamo or TDC are used. The main difference is the way
how dynamic load balancing will be achieved: In Message Passing programs, the pro-
grammer has to insert dynamic load balancing operations into the application code,
thereby increasing the code complexity substantially, whereas dynamic load balancing
will be done by the system software if Linda, Dynamo or TDC are used.

A mechanism which we call passive load balancing is inherent to the Linda program-
ruing model: Each worker, which becomes idle, requests a new task. This task (a Linda
tuple) has to be located in the distributed tuple space and must be moved to the node
where the worker resides. The same is true for each data tuple which is accessed during
task execution time. The worker remains idle until the requested task and data arrive,
i.e. the network latency, which usually dominates the transfer time, cannot be hidden.
In TDC the semantics of task descriptors is known to the system. It therefore can per-
form active load balancing, i.e. task descriptors, data objects and capabilities can be
moved to underloaded nodes in advance. This enables the system to overlap communi-
cation and computation, thereby hiding network latency and minimizing idle times.

3 Implementation

The TDC programming model has been implemented 2 on an 128 node nCUBE 2 as run-
time environment on top of the VERTEX | node operating system [4]. Our main imple-
mentation goals were:

�9 High efficiency. The local parts of the distributed task bag and data space reside in a
portion of memory which is shared by the TDC system and the worker. This avoids
unnecessary copying of potentially large data objects and task descriptors. The TDC
system itself is implemented in a distributed fashion, i.e. there does not exist any cen-
tral resource that might become a bottleneck in highly parallel systems.

�9 Ease-of-use. The user accesses the TDC system by a well-defined set of C library
functions which are linked to the application code. The TDC system will be cordig-
ured dynanfically and is suitable for future integration into the node operating system.

3.1 Overview

The TDC system consists of two system processes per node (see Fig. 2): The task server
processes control the task bag and perform dynamic load balancing. The data server
processes send and receive data objects.

3.2 User Interface

The worker process accesses the TDC system by a set of C library functions which are
described briefly in this section. These library functions hide the

2 Currently it is assumed that each worker stores the entire set of capabilities. The code space is
therefore integrated into the worker processes. This restriction does not affect the general ap-
plicability of this implementation but may increase memory requirements.

372

[~~::iiiiiii::ii~i~ii::!iiii::i::i::i::i::i::i::i::i::iii::i::i::ii~it~ <r--a> Sharedmcmory access
Iiii~iiiiiiii iiiiiiii~iiiiiiiii~iiiiiiili iiiiii]
~ i i ! i ~ i ~ i ! i i i ! ! i i i i i ; ~ Message exchange

~!~::~!~i!~!~::~::~::~: ::i!!!!!ili~] O Worker process using
ro o,h iiiiiiii the rDC lib y
nodes i!iiiii~

i Task Server process

l ~ i ~ O Data Server process

Fig. 2. Overview of TDC implementation on a node of the nCUBE 2 multiprocessor.

tdc init0

~lc__flush0

talc_write0
tdc_put0

tdc._get0

Dynamic configuration of the TDC system. The size and maximum num-
ber of task descriptors and data objects are specified as well as the logical
identifies of the locally stored data objects. It synchronizes the workers.

Delete data objects and capabilities. This may be necessary if multiple
dynamic execution phases occur within the same application.

Create and initialize a data object

Insert a task descriptor into the task bag.

Retrieve a task descriptor from the task bag. This function returns end-of-
processing if all tasks have been processed, i.e. the task bag is empty.

Examp~ Usage

Fig. 3 mows an worker program written using the TDC programming modd. The func-
tion p r o c e s s () contains the appl~ation code w~ch processes the given task.

/* Initialize TDC system */
tdc_imlt(<application specific parameters>);
/* Initialize data objects */
forall(<!ocal data objects>)tdc_wrlte(<data object>);
/* Put tasks into task bag */
create_tasks();
forall(<local tasks>) tdc_put(<task descriptor>);
/* Process tasks */
while (tdc_get(&task) != EOP) process(task);

F~.3.Workerp~gramwrit~nusingt~TDCp~grammingm~r

4 Implementation of Block Matching Using the TDC Model

In this section we demonstrate how areal application can be paraUelized using the TDC
programming model and present a modified receiver initiated diffusion algorithm for
dynamic load bala.cing. This algorithm uses a heuristic approach for the task selection

373

slrategy which aims to minimize the load balancing overhead thereby maximizing the
overall efficiency.

4.1 The Block Matching Algorithm

In a sequence of pictures successive pictures are likely to be quite similar. Therefore the
amount of data necessary to store or transmit image sequences can be reduced signifi-
cantly if only the difference between two pictures is coded rather than coding each pic-
ture separately. The picture which has to be coded will be partitioned into square blocks.
For each of these blocks the most similar block is searched for in the previous picture.
This is done by calculating the mean absolute error for each block and choosing the
block with the least error value. This technique is called block matching and is used by
programs with compress image data according to the MPEG standard [5].

In our implementation we choose each image of the sequence to be a data object and
the matching of one block to be a task. Consequently each task requires two data objects
(images) to be processed. Tasks which require an identical set of data objects belong to
the same task class. The maximum number of task classes which can be stored on a
node simultaneously is limited by its memory size.

A static assignment of tasks to nodes would lead to load imbalance mainly for two rea-
sons: The task execution time depends on the contents of the images. This is true since
the computation of the mean absolute error is stopped as soon as its value becomes
greater than the minimum found so far, i.e. finding a good reference block early will
lead to shorter execution time. Moreover due to the limited I/O bandwidth the loading
of images takes a variable amount of time and therefore prevents nodes from starting
with task execution at the same time.

4.2 Dynamic Load Balancing

The load balancing system which is integrated into the task server processes can be di-
vided into four sections:

�9 Dynamic load balancing strategy

�9 Task selection strategy

�9 Local load estimation and load update policy

�9 Load imbalance detection and balancer activation

Load Balancing Strategy

A variety of dynamic load balancing strategies have been proposed for highly parallel
systems ([6],[7],[8],[9]). The load model assumed here has two important differences:

�9 Task migration may cause data object migration. Thus the task migration overhead
cannot be neglected.

�9 The limited number of distinct task classes per node influences the task selection.

374

These restrictions imply the use of a task selection strategy which considers the task mi-
gration costs and task class limitations. Therefore the receiver (the underloaded node)
must control the task selection and migration process. We have chosen the RID strategy
(receiver initiated diffusion, [8]) for 3 reasons: (1) RID is a completely asynchronous
and distributed approach, (2) task migration is controlled by the receiver and (3) this
strategy performs comparable or better than the other strategies ([8],[10]).

The balancing domain consists of the underloaded node itself (receiver) and its direct
neighbors. Each time the algorithm is invoked, it balances load locally. Successive local
balancing steps lead to globally balanced load [7]. We describe a local balancing step:
Let K be the number of direct neighbors per node, l 0 the receiver's load and I i the load
of its i-th neighbor. The average l oad /avg in the balancing domain is:

K
/avg 1 = K + I " ~ l i (Eq. 1)

i=0

The fraction d i of load which has to be demanded from the i-th neighbor in order to
balance load in the local domain is calculated according to the following formulas:

K hi
hi = max(li - lavg, 0) hsum = E hi di = (lavg - 10) " hsum (F.q. 2)

i=1

Task Selection Strategy

The load balancing strategy determines how many tasks have to be migrated within one
local balancing step, whereas the task selection strategy is used to minimize the load
balancing overhead by choosing the set of tasks which causes the least cost. We assume
that the task migration cost is primarily caused by the involved data object transfers.
Thus it is always profitable to select as many tasks of a given class as possible. We use
an iterative, heuristic approach with low computational complexity to get a near optimal
task selection instead of doing a full search. The receiver executes the following steps:

1. For all neighbors: Calculate the number of tasks di, which have to be demanded
from neighbor i according to the RID balancing strategy (Eq. 2).

2. For each neighbor i and each task class j in the balancing domain: Let aij be the
number of tasks of this class which are available on neighbor i. Calculate the max-
imum number of tasks rij of class j which might be requested from neighbor i:

rij = nfm(d i, aij) (Eq. 3)

3. For each task class j: Calculate the total number of tasks which could be requested
if class j is selected:

K
Rj = ~.~ rij (F_.~ I. 4)

i--1

375

.

.

.

Determine the cost c j due to data object migration, which would be caused by the
migration of tasks class j . Assign infinite costs to class j if this class cannot be se-
lected due to the limited number of task classes on the receiving node. Calculate the
cost per task cj assuming that Rj tasks will be transferred:

Determine the task class k with the least cost per task. If no class with finite cost per
task can be found then no more tasks can be migrated: Stop here.

For each neighbor i: Request ril: tasks of class k arid adjust d i accordingly:

d i <-- a i - rik (Eq. 6)

I f still tasks remain to demand, i.e. any d i # O, continue with step 2, else stop here.

Local Load Estimation and Load Update Policy

We assume that the average task execution time tavg is constant. This time is estimated
locally by averaging the measured task execution times of the tasks which have been
processed so far. Since tavg is time invariant, we simply use the number of tasks which
still have to be processed as load estimate.

As soon as the local load changes significantly, load update messages will be sent to all
neighbors in the balancing domain. These messages contain information about the task
classes residing on the node and the number of tasks which are currently available for
each of these classes.

Balancer Activation

Performing a load balancing step reduces the probability that nodes become idle and on
the other hand causes overhead. Thus the frequency of balancer activation and the de-
gree of load imbalance that can be tolerated must be chosen carefully in order to get the
best overall efficiency. We use the number of tasks dsu m , which would be demanded if
the balancer is activated, as a criterion for load imbalance in the balancing domain:

K
dsu m = ~ d i = max (lavg - 10' 0) (F-Xl. 7)

i=1

Let tlatency be the network latency necessary to load the data objects for a new task class
and/latency the number of tasks which can be processed during tlatency :

tlatencY (Eq. 8)
/latency - tavg

We distinguish two balancing phases: Phase 1 is active while the local load is greater
than/latency' phase 2 otherwise. During phase 1 load imbalance will be evaluated when-
ever the load drops below the threshold lb~, which will be decreased by the constant

376

activation factor fa after each imbalance evaluation. Load will be balanced if the detect-
ed imbalance is greater than /latency" During phase 2 load imbalance will be evaluated
whenever the node recognizes a load change in the balancing domain. Load will be bal-
anced each time an imbalance of at least one task is detected.

During phase 1 both load imbalance will be determined less frequently and a higher
load imbalance will be tolerated compared to phase 2. Thereby unnecessary balancing
overhead is avoided unless the local load drops below the critical threshold/latency and
on the other hand, the probability that nodes become idle is kept low.

Balancer Activation Algorithm

while (not end of balancing)

if (Ibal>/latency) /* Phase 1 */
if (10 ~< lb~)

evaluate d~u m
if (dsum>llate.cy) balance load
Ib~ = fa" Ib~

endi f
else /* Phase2 */

if (load in the domain has changed)
evaluate ~um
if (~um~l) balance load

endif
endif

endwhile

4.3 Results

In this section the results we have obtained using our TDC implementation on an
128 node nCUBE 2 are presented and compared to simulation results. We have used the
block matching algorithm to process theflowergarden video sequence as example ap-
plication. Each picture of this sequence contains 720*576 pixels and is divided into
1620 square blocks. Each node has to compute the motion vectors for one quarter of an
image (405 blocks) on average.

Simulation

We have used event-driven simulation based on traces of program execution to deter-
mine which efficiency could be optimally achieved, if (1) the balancer has global
knowledge about the system load, i.e. it can get tasks from any node in the system, (2)
dynamic load balancing activities, except the transfer of data objects, do not cause over-
head and (3) the network latency is zero. Consequently, only the idle time at the end of
the processing phase and the overhead for data object transfer is considered.

In Fig. 4 the efficiency for the block matching algorithm and a constant average load
per node is depicted for a varying number of nodes. Additionally the overhead and the

377

10o i
90

80

�9 ~ 70

6o

50

Simulated optimal load balancer~

~ modified RID strategy

Static load assignment-~""-~

tavg = 52ms

tlatency = 554ms

/avg = 405 tasks

2 4 8 16 ;2 64 128 Nodes
Fig. 4. Measured versus simulated efficiency for the Block Matching Application.

6.0

,--, 5.0 T o t a ~ - ' -

~- 4.0
Task migration, load update /Tdla l lma

3o and.,c.latio, ovo e
"~ 2.0 Data object migration ~ /

1.0

o . 0 - ; .

2 4 8 16 32 64 128 Nodes

Fig. 5. Idle times and overhead for the RID dynamic load balancer.

idle times which occur if dynamic load balancing is used are shown in Fig. 5. The effi-
ciency decreases as the number of nodes increases primarily for 3 reasons:

* Statistic properties o f the load. The probability, that at least one node exhibits an exe-
cution time close to the maximum increases with the number of nodes. This leads to
an increased fraction of idle time, since this node determines the execution time.

�9 Number o f task classes. For the considered application the number of task classes is
proportional to the number of processing nodes. As the number of task classes be-
comes higher, task migration becomes more restricted due to the limited number of
task classes per node and the overhead caused by data object migration increases.

�9 Network diameter. The higher the network diameter, the more steps might be neces-
sary to migrate tasks from overloaded to underloaded nodes thereby increasing the
load balancing overhead and the fraction of idle time.

Fig. 4 shows that the modified RID algorithm is able to keep the efficiency close to the
optimum even when the number of processing nodes is high. There is an increasing de-
mand for dynamic load balancing in highly parallel systems since load imbalance tends
to increase with the number of nodes for dynamic applications.The overhead for data
object migration, which is controlled by the task selection algorithm, is kept consistent-
ly low. Our simulations have shown, that although the balancer can only select tasks in
the local balancing domain, at most twice the number of data object migrations have
been performed compared to the simulated balancer.

378

4.4 Conclusion

We have introduced the TDC programming model for distributed memory multiproces-
sors. TDC eases the implementation of dynamic applications since dynamic load bal-
ancing is now performed by the system rather than the programmer. The semantics of
task descriptors, data objects and capabilities as well as the logical linkage between
them is visible to the TDC system. This knowledge is used for active load balancing,
i.e. load and the required code and data will be transferred by the system to underloaded
nodes in advance thereby hiding network latency and hence reducing idle times.

We have implemented the TDC model on an 128 node nCUBE 2 and used this proto-
type to write a parallel version of the block matching algorithm. Our measurements and
simulation results indicate that the receiver initiated diffusion scheme in conjunction
with our task selection strategy leads to a runtime efficiency close to the optimum even
for highly parallel systems. Further research is required to proof the suitability of this
load balancing system for a broader range of dynamic applications.

References

[1] Ludwig, 1".: Lastverwaltungsverfahren far Mehrprozessorsysteme mit verteiltem
Speicher, Dissertation, Institut fiir Informatik, TU Miinchen, 1993

[2] Gelemter, D.; Ahuja, S.; Carriero, N.: Linda and Friends, Computer, Vol. 19, No.
8, Aug. 1986, pp 26-34

13] T~nvik, E.: Dynamo - a portable tool for dynamic load balancing on distributed
memory multicomputers, Concurrency: Pratice and Experience, Vol. 6, No. 8,
Dec. 1994

[4] nCUBE Cooperation: nCUBE 2 Programmer's Guide, PN 102294, 1992

[5] ISO/IEC 11172-2, Information technology - Coding of moving pictures and
associated audio for digital storage media at up to about 1.5 MBit/s - Part 2:
Video, Annex D.6.2, pp 78-85 Motion estimation and compensation

[6] Lin, F.; Keller, R.: The Gradient Model Load Balancing Method, IEEE
Transactions on Software Engineering, Vol. SE-13, No. 1, Jan. 1987

[7] Cybenko, G.: Dynamic Load Balancing for Distributed Memory Multiprocessors,
J. Parallel and Distributed Computing, Vol. 7, pp 279-301, October 1989

[8] Willebeek-LeMair, M.H.; Reeves, A.P.: Strategies for Dynamic Load Balancing
on Highly Parallel Computers, IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 9, Sep. 1993

[9] Gerogiannis, D.; Orphanoudakis, S.C.: Load Balancing Requirements in Parallel
Implementations of Image Feature Extraction Tasks, IEEE Transactions on
Parallel and Distributed Systems, Vol. 4, No. 9, Sep. 1993

[10] E~zaaann, A.; Miiller-Schloer, C.: Zur Beurteilung dynamischer Lastausgleichs-
verfahren, PARS Mitteilungen, Nr. 13, November 1994

